JP2010071694A - Surface inspection apparatus, defect detecting method using the same, program, and recording medium - Google Patents
Surface inspection apparatus, defect detecting method using the same, program, and recording medium Download PDFInfo
- Publication number
- JP2010071694A JP2010071694A JP2008237065A JP2008237065A JP2010071694A JP 2010071694 A JP2010071694 A JP 2010071694A JP 2008237065 A JP2008237065 A JP 2008237065A JP 2008237065 A JP2008237065 A JP 2008237065A JP 2010071694 A JP2010071694 A JP 2010071694A
- Authority
- JP
- Japan
- Prior art keywords
- defect detection
- frequency
- image data
- inspection apparatus
- surface inspection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Length Measuring Devices By Optical Means (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
Abstract
Description
本発明は、対象物表面の凹凸や異物、傷、あるいは濃淡色むら等の欠陥を検出する表面検査装置、それを用いた欠陥検出方法、プログラム及び記録媒体に関する。 The present invention relates to a surface inspection apparatus for detecting defects such as irregularities on the surface of an object, foreign matter, scratches, or shading unevenness, a defect detection method using the same, a program, and a recording medium.
従来から、対象物に格子状のパターンを投影し、対象物各部の高さ分布に応じて変形した格子像から3次元形状を測定するモレア法やヘテロダイン法が知られている。しかし、このような方法では、形状が滑らかでかつ各部が接続された対象物以外には適用することができないという問題があった。 Conventionally, a moire method or a heterodyne method is known in which a lattice pattern is projected onto an object and a three-dimensional shape is measured from a lattice image deformed according to the height distribution of each part of the object. However, such a method has a problem that it cannot be applied to objects other than the object having a smooth shape and connected to each part.
上記問題を解決するために、運動中や変形中の不連続物体の瞬時形状の計測を可能にする3次元形状測定方法が開示されている(例えば、特許文献1)。具体的には、周期と向きが互いに異なる複数の1次元格子を重畳させた2次元格子パターンを対象物に投影して、対象物の3次元形状に応じて変形した2次元格子像を撮像し、2次元格子から像から1次元格子成分毎に位相を検出することにより測定値を得る技術である。 In order to solve the above-mentioned problem, a three-dimensional shape measurement method that enables measurement of an instantaneous shape of a discontinuous object during movement or deformation has been disclosed (for example, Patent Document 1). Specifically, a two-dimensional lattice pattern in which a plurality of one-dimensional lattices having different periods and directions are superimposed is projected onto an object, and a two-dimensional lattice image deformed according to the three-dimensional shape of the object is captured. This is a technique for obtaining a measurement value by detecting a phase for each one-dimensional grating component from an image from a two-dimensional grating.
また、3次元形状を測定するためには、装置が複雑化してしまうという問題があった。この問題を解決するために、容易な装置で位相分布を3次元的に測定する、フーリエ変換法を用いた測定方法も開示されている(例えば、特許文献2)。 In addition, there is a problem that the apparatus becomes complicated in order to measure a three-dimensional shape. In order to solve this problem, a measurement method using a Fourier transform method in which the phase distribution is measured three-dimensionally with an easy apparatus is also disclosed (for example, Patent Document 2).
ここで、従来の上記したフーリエ変換法と縞パターン投影法による三次元計測手法に関して、非特許文献1の「フーリエ変換法を用いた三次元形状計測」を参考にし、縞パターン投影法を示す図6を用いて説明する。図6に示すように、この方法は、高さL の位置にあるプロジェクターから縞パターンを対象物体に対して斜めに投影し、物体表面上の変形格子像を距離D 離れた位置にあるカメラで撮影し、得られた画像から、物体形状による縞パターンのずれ量を位相として算出する方法である。カメラによって撮影された変形格子像g(x,y)は下記式(1)、図7のように表される。
Here, with respect to the conventional three-dimensional measurement method using the Fourier transform method and the fringe pattern projection method described above, a diagram showing the fringe pattern projection method with reference to “three-dimensional shape measurement using the Fourier transform method” in
g(x,y)=a(x,y)+b(x,y)cos〔2π(fx0x+fy0y)+φ(x,y)〕 ・・・式(1) g (x, y) = a (x, y) + b (x, y) cos [2π (f x0 x + f y0 y) + φ (x, y)] Equation (1)
ここで、a(x,y)は背景、b(x,y)は縞の明暗変化の振幅分布である。fx0、fy0は投影縞パターンの縞間隔に依存するキャリア周波数であり、φ(x,y)は物体形状の情報を持つ位相である。位相φ(x,y)と物体の高さh(x、y)は下記式(2)で関係付けられる。 Here, a (x, y) is the background, and b (x, y) is the amplitude distribution of the change in brightness of the stripes. fx0 and fy0 are carrier frequencies depending on the fringe interval of the projected fringe pattern, and φ (x, y) is a phase having information on the object shape. The phase φ (x, y) and the height h (x, y) of the object are related by the following equation (2).
変形格子像の画像g(x,y)から、不要信号a(x,y)、b(x,y)を除去し、物体の高さ情報を持つ位相φ(x,y)のみを取り出す手法がフーリエ変換法である。変形格子像の画像g(x,y)をフーリエ変換すると下記式(3)のようになる。 A method that removes unnecessary signals a (x, y) and b (x, y) from the deformed lattice image g (x, y) and extracts only the phase φ (x, y) having the object height information Is the Fourier transform method. When the transformed lattice image g (x, y) is Fourier transformed, the following equation (3) is obtained.
G(fx,fy)=A(fx,fy)+C(fx-fx0,fy-fy0)+C*〔-(fx+fx0),-(fy-fy0)〕・・・式(3) G (f x, f y) = A (f x, f y) + C (f x -f x0, f y -f y0) + C * [- (f x + f x0) , - (f y - f y0 )] ... Equation (3)
c(x,y)=(1/2)b(x、y)exp〔iφ(x,y)〕・・・式(4) c (x, y) = (1/2) b (x, y) exp [iφ (x, y)] (4)
ここで、*は複素共を、A(fx,fy)はa(x,y)の、フーリエ変換をC(fx,fy)は上記式(4)のフーリエ変換を示す。 Here, * indicates the complex, A (fx, fy) indicates a Fourier transform of a (x, y), and C (fx, fy) indicates the Fourier transform of the above equation (4).
物体形状の情報を含む関数C(fx,fy) がキャリア周波数fx0、fy0 によって不要な信号A(fx,fy)と分離されているのがわかる。このスペクトルG(fx,fy)の各項の絶対値を周波数空間に図示すると図8のようになる。上記式(3)において、図9に示すように、C(fx-fx0,fy-fy0)だけを取り出し、キャリア周波数fx0,fy0分だけ原点方向にシフトすることにより、C(fx、fy)が得られる(図10参照)。このスペクトルの逆フーリエ変換により、複素振幅c(x,y)が得られるので、虚数部と実数部のアークタンジェントにより位相φ(x,y)を算出する(式(5))。 It can be seen that the function C (fx, fy) including the object shape information is separated from the unnecessary signal A (fx, fy) by the carrier frequencies fx0 and fy0. The absolute value of each term of this spectrum G (fx, fy) is illustrated in the frequency space as shown in FIG. In the above equation (3), as shown in FIG. 9, by extracting only C (fx-fx0, fy-fy0) and shifting in the direction of the origin by the carrier frequency fx0, fy0, C (fx, fy) becomes Is obtained (see FIG. 10). Since the complex amplitude c (x, y) is obtained by inverse Fourier transform of this spectrum, the phase φ (x, y) is calculated by the arc tangent of the imaginary part and the real part (formula (5)).
φ(x,y)=tan-1〔Im [c(x,y)]/Re[c(x,y)]〕・・・式(5) φ (x, y) = tan −1 [Im [c (x, y)] / Re [c (x, y)]] (5)
最後に上記式(2)の関係から、位相φ(x,y)を高さh(x、y)に変換すれば、対象面の三次元形状計測をすることができる。
ここで、OPC(Organic PhotoConductor)ドラムのような対象物の表面検査に、上述の計測手法を適用する場合を考える。図11に示すようなOPCドラムは、金属素菅上に、UC(UnderCoat)層、CG(Charge Generation)層、CT(Charge Transfer)層といった層が形成された構造になっている。発生する欠陥種として、表面層に発生する膜厚むら(図11:a)やキズ(図11:b)、突起(図11:c)、CT層に混入した異物(図11:d)、CG層の塗布むらに起因する色むら(図11:e)等がある。 Here, consider a case where the above-described measurement method is applied to the surface inspection of an object such as an OPC (Organic PhotoConductor) drum. The OPC drum as shown in FIG. 11 has a structure in which layers such as a UC (UnderCoat) layer, a CG (Charge Generation) layer, and a CT (Charge Transfer) layer are formed on a metal substrate. As defect types that occur, film thickness unevenness (FIG. 11: a) and scratches (FIG. 11: b), protrusions (FIG. 11: c), foreign matter (FIG. 11: d) mixed in the CT layer, There is color unevenness (FIG. 11: e) due to uneven application of the CG layer.
図11のaの膜厚むらのような欠陥は、膜厚むらの空間周波数よりやや高いキャリア周波数を設定すれば、上述の縞パターン投影法とフーリエ変換法により、形状計測が可能である。しかし、図11bのキズ、cの突起、dの異物は、大きさが小さくかつ形状変化が急激な為、空間周波数が高くなりすぎてしまい、図9のC(fx-fx0,fy-fy0)だけを取り出す処理のところで除去されてしまうため、検出できない。また、図11のeの色むらは、画像上、キャリア周波数より低周波であり、上記式(1)のa(x,y)やb(x,y)に含まれている。しかし、これらの信号は、フーリエ変換法においては不要信号として除去されてしまうため、その結果、色むらは検出することができない。 A defect such as the film thickness unevenness in FIG. 11A can be measured by the above-described fringe pattern projection method and Fourier transform method if a carrier frequency slightly higher than the spatial frequency of the film thickness unevenness is set. However, the scratches in FIG. 11b, the protrusions in c, and the foreign matter in d are small in size and suddenly change in shape, so that the spatial frequency becomes too high, and C (fx-fx0, fy-fy0) in FIG. Since it will be removed in the process of taking out only, it cannot be detected. Further, the color unevenness e in FIG. 11 is lower than the carrier frequency on the image, and is included in a (x, y) and b (x, y) of the above equation (1). However, these signals are removed as unnecessary signals in the Fourier transform method, and as a result, color unevenness cannot be detected.
すなわち、縞パターン投影法とフーリエ変換法による三次元計測方法を適用してOPCドラム表面検査を行おうとした場合、膜厚むらの検出は可能であるが、その他のキズ、突起、異物、色むら等の欠陥は検出できないという問題があった。 That is, when an OPC drum surface inspection is performed by applying a three-dimensional measurement method using a fringe pattern projection method and a Fourier transform method, it is possible to detect film thickness unevenness, but other scratches, protrusions, foreign matter, and color unevenness. There has been a problem that defects such as these cannot be detected.
本発明はこのような実情を鑑みてなされたものであり、従来の縞パターン投影法とフーリエ変換法による三次元計測方法に、新たな処理フローを加えることにより、対象物表面に発生する膜厚むら、きず、突起、異物及び色むら等の全種の欠陥を検出する表面検査装置、それを用いた欠陥検出方法、プログラム及び記録媒体を提供することを目的とする。 The present invention has been made in view of such circumstances, and a film thickness generated on the surface of an object by adding a new processing flow to the conventional three-dimensional measurement method by the fringe pattern projection method and the Fourier transform method. It is an object of the present invention to provide a surface inspection apparatus for detecting all kinds of defects such as unevenness, scratches, protrusions, foreign matter and color unevenness, a defect detection method using the same, a program, and a recording medium.
本発明の表面検査装置は、対象物上に縞パターンを投影する縞パターン投影手段と、対象物の表面を撮像する撮像手段と、縞パターン投影手段及び撮像手段により得られた対象物の画像データからフーリエ変換法により対象物の三次元形状データを算出する三次元形状演算手段と、対象物の画像データの高周波成分に基づいて欠陥検出を行う高周波欠陥検出手段と、を備えることを特徴とする。 The surface inspection apparatus according to the present invention includes a fringe pattern projecting unit that projects a fringe pattern onto an object, an image capturing unit that captures an image of the surface of the object, and image data of the object obtained by the fringe pattern projecting unit and the image capturing unit. A three-dimensional shape calculation means for calculating three-dimensional shape data of the object by Fourier transform method, and a high-frequency defect detection means for detecting a defect based on a high-frequency component of the image data of the object. .
本発明の表面検査装置は、対象物の画像データの低周波成分に基づいて欠陥検出を行う低周波欠陥検出手段をさらに備えることを特徴とする。 The surface inspection apparatus of the present invention further includes a low-frequency defect detection unit that performs defect detection based on a low-frequency component of image data of an object.
本発明の表面検査装置は、キズ、突起、異物混入及び色むらという欠陥を検出することを特徴とする。 The surface inspection apparatus of the present invention is characterized by detecting defects such as scratches, protrusions, foreign matter contamination, and color unevenness.
本発明の欠陥検出方法は、対象物上に縞パターンを投影する縞パターン投影ステップと、対象物の表面を撮像する撮像ステップと、縞パターン投影ステップ及び撮像ステップにより得られた対象物の画像データからフーリエ変換法により対象物の三次元形状データを算出する三次元形状演算ステップと、対象物の画像データのキャリア周波数よりも高い高周波成分を除去せずに残し、該高周波成分に基づいて欠陥検出を行う高周波欠陥検出ステップと、を備えることを特徴とする。 The defect detection method of the present invention includes a fringe pattern projecting step for projecting a fringe pattern onto an object, an imaging step for imaging the surface of the object, and the image data of the object obtained by the fringe pattern projecting step and the imaging step. 3D shape calculation step for calculating the 3D shape data of the object by the Fourier transform method, and removing the high frequency component higher than the carrier frequency of the image data of the object without removing it, and detecting the defect based on the high frequency component And a high-frequency defect detection step.
本発明の欠陥検出方法は、対象物の画像データのキャリア周波数よりも低い低周波成分を除去せずに残し、該低周波成分に基づいて欠陥検出を行う低周波欠陥検出ステップをさらに備えることを特徴とする。 The defect detection method of the present invention further includes a low-frequency defect detection step that leaves a low-frequency component lower than the carrier frequency of the image data of the object without being removed and performs defect detection based on the low-frequency component. Features.
本発明のプログラムは、対象物上に縞パターンを投影する処理と、対象物の表面を撮像する処理と、投影する処理及び撮像する処理により得られた対象物の画像データからフーリエ変換法により対象物の三次元形状データを算出する処理と、対象物の画像データの高周波成分に基づいて欠陥検出を行う処理と、対象物の画像データの低周波成分に基づいて欠陥検出を行う処理と、をコンピュータに実行させる。 The program of the present invention uses a Fourier transform method to project a fringe pattern on an object, an image of the surface of the object, a process of projecting, and image data of the object obtained by the process of imaging. A process for calculating the three-dimensional shape data of the object, a process for performing defect detection based on the high frequency component of the image data of the object, and a process for performing defect detection based on the low frequency component of the image data of the object. Let the computer run.
本発明によれば、対象物表面に発生する、例えば膜厚むら、きず、突起、異物及び色むら等の全種の欠陥を検出することが可能となる。 According to the present invention, it is possible to detect all types of defects such as film thickness unevenness, scratches, protrusions, foreign matter, and color unevenness generated on the surface of an object.
以下に本発明の実施形態の例について、図面を用いて詳細に説明する。尚、本実施形態では、対象物としてOPCドラムを例に挙げて説明する。 Hereinafter, examples of embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, an OPC drum will be described as an example of the object.
まず本実施形態に係る表面検査装置の光学系の構成は、上記図6と同様の構成を適用することが可能であり、パターンを投影するパターン投影機(Projector)からパターンをOPCドラム表面に投影し、その変形格子像g’(x,y)をカメラによって撮像する。より具体的には、高さL の位置にあるプロジェクターから縞パターンを対象物体に対して斜めに投影し、物体表面上の変形格子像を距離D 離れた位置にあるカメラで撮影し、得られた画像から、物体形状による縞パターンのずれ量を位相として算出する。尚、光学系の構成はこれに限定されるものでない。 First, as the configuration of the optical system of the surface inspection apparatus according to the present embodiment, the same configuration as in FIG. 6 can be applied, and a pattern is projected onto the OPC drum surface from a pattern projector (Projector) that projects the pattern. Then, the deformed lattice image g ′ (x, y) is captured by the camera. More specifically, a fringe pattern is obliquely projected onto the target object from a projector at a height L, and a deformed grid image on the object surface is photographed with a camera at a distance D. From the obtained image, the shift amount of the stripe pattern due to the object shape is calculated as a phase. The configuration of the optical system is not limited to this.
ここで、OPCドラム上に発生する、色むらの空間周波数をfxc、fyc、膜厚むらの空間周波数fxl、fyl、キズ、突起、異物の空間周波数をfxd、fydとすると、下記式(6)のような関係となる。 Here, assuming that the spatial frequency of the color unevenness generated on the OPC drum is fxc, fyc, the spatial frequency of the film thickness unevenness fxl, fyl, scratches, protrusions, and the spatial frequency of the foreign matter is fxd, fyd, the following formula (6) It becomes a relationship like this.
fxc、fyc < fxl、fyl <fxd、fyd・・・式(6) f xc , f yc <f xl , f yl <f xd , f yd (6)
ここで、下記式(7)が成り立つようにキャリア周波数fx0、fy0を設定する。発生する最も小さい膜厚むらの空間周波数の数倍程度で良い。 Here, the carrier frequencies fx0 and fy0 are set so that the following equation (7) is satisfied. It may be several times the spatial frequency of the smallest film thickness unevenness that occurs.
fxc、fyc < fxl、fyl <fx0、fy0<fxd、fyd・・・式(7) f xc , f yc <f xl , f yl <f x0 , f y0 <f xd , f yd (7)
以上のような関係にある各種欠陥が存在する場合、カメラによって得られる変形格子像は下記式(8)、図1に示すようになる。 When there are various defects having the above relationship, the deformed lattice image obtained by the camera is as shown in the following equation (8) and FIG.
g’(x,y)=a(x,y)+b(x,y)cos〔2π(fx0x+fy0y)+φ(x,y)〕+ d(x,y)・・・式(8) g ′ (x, y) = a (x, y) + b (x, y) cos [2π (f x0 x + f y0 y) + φ (x, y)] + d (x, y)・ Formula (8)
色むらの情報は、照明むらなどと合わさりa(x,y)とb(x,y)に含まれる。膜厚むらによる高さ情報は、位相φ(x、y)に含まれる。最後のd(x,y)には、キズ、突起、異物といった空間周波数の高い欠陥の情報を含んでいる。次に変形格子像の画像g’(x,y)をフーリエ変換すると下記式(9)のようになる。 Color unevenness information is included in a (x, y) and b (x, y) together with illumination unevenness. Height information due to film thickness unevenness is included in the phase φ (x, y). The last d (x, y) includes information on defects having a high spatial frequency such as scratches, protrusions, and foreign matters. Next, when the transformed lattice image g ′ (x, y) is Fourier-transformed, the following equation (9) is obtained.
G’(fx,fy)=A(fx,fy)+C(fx-fx0,fy-fy0)+C*〔-(fx+fx0),-(fy-fy0)〕+ D(fx,fy)・・・式(9) G '(f x , f y ) = A (f x , f y ) + C (f x -f x0 , f y -f y0 ) + C * (-(f x + f x0 ),-(f y -f y0 )] + D (f x , f y ) (9)
ここで、D(fx,fy)は、d(x,y)のフーリエ変換を示す。このスペクトルG’(fx,fy)の各項の絶対値を周波数空間に図示すると図2のようになる。上述した図8に比べ、キズ、突起、異物による高周波成分が加わることになる。 Here, D (fx, fy) represents the Fourier transform of d (x, y). The absolute value of each term of the spectrum G ′ (fx, fy) is illustrated in the frequency space as shown in FIG. Compared with FIG. 8 described above, high frequency components due to scratches, protrusions, and foreign matter are added.
この後、三次元形状演算装置では、C(fx-fx0,fy-fy0)を取り出し、原点移動後、逆フーリエ変換にして複素振幅c(x,y)を求め、アークタンジェントによる位相φ(x、y)を算出し、高さh(x、y)に変換し、膜厚むらによる形状変化を計測する。 Thereafter, in the three-dimensional shape calculation device, C (fx-fx0, fy-fy0) is taken out, moved to the origin, and then subjected to inverse Fourier transform to obtain the complex amplitude c (x, y), and the phase φ (x , Y) is calculated and converted into a height h (x, y), and a change in shape due to film thickness unevenness is measured.
(実施形態1)
図3は、本実施形態に係る表面検査装置の処理方法の例を示す。本実施形態では、表面検査装置による欠陥検出処理例について、図3に示す図を用いて説明する。
(Embodiment 1)
FIG. 3 shows an example of the processing method of the surface inspection apparatus according to the present embodiment. In the present embodiment, an example of defect detection processing by the surface inspection apparatus will be described with reference to FIG.
図3に示すように、本実施形態に係る表面検査装置は、上記三次元形状演算装置に加え、高周波欠陥検出装置を備えている。高周波欠陥検出装置での処理方法を説明する。まず、スペクトルG’(fx,fy)から高周波成分のみを抽出し、逆フーリエ変換を行う。その結果、元の変更格子像g'(x,y)から、パターンや背景光による明暗変化が消え、キズ、突起、異物といった空間周波数の高い欠陥による明暗変化のみが残る。その後、閾値処理により2値画像に変換し、孤立点除去、膨張、収縮といったモホロジー処理によりノイズを除去後、ラベリング処理で一つの塊として認識する。各ラベルに対して、画素数、長さといった欠陥特徴量を算出し、その特徴量の大きさにより良否判定を行う。 As shown in FIG. 3, the surface inspection apparatus according to this embodiment includes a high-frequency defect detection apparatus in addition to the three-dimensional shape calculation apparatus. A processing method in the high-frequency defect detection apparatus will be described. First, only high frequency components are extracted from the spectrum G ′ (fx, fy), and inverse Fourier transform is performed. As a result, the brightness change due to the pattern and background light disappears from the original modified lattice image g ′ (x, y), and only the brightness change due to defects with high spatial frequency such as scratches, protrusions, and foreign matters remains. After that, it is converted into a binary image by threshold processing, and noise is removed by morphological processing such as isolated point removal, expansion, and contraction, and then recognized as one lump by labeling processing. For each label, defect feature amounts such as the number of pixels and length are calculated, and pass / fail is determined based on the size of the feature amount.
本実施形態により、縞パターン投影法とフーリエ変換法による三次元計測方法において、従来除去していたキャリア周波数より高い高周波成分を用いることにより、キズ、突起、異物といった空間周波数の高い欠陥を同じ変形格子画像から検出することが可能となる。 According to this embodiment, in the three-dimensional measurement method using the fringe pattern projection method and the Fourier transform method, by using a high frequency component higher than the carrier frequency that has been removed in the past, defects having a high spatial frequency such as scratches, protrusions, and foreign matters are deformed in the same manner. It is possible to detect from the lattice image.
(実施形態2)
図4は、本実施形態に係る表面検査装置の処理方法の例を示す。本実施形態では、表面検査装置による欠陥検出処理例について、図4に示す図を用いて説明する。
(Embodiment 2)
FIG. 4 shows an example of a processing method of the surface inspection apparatus according to the present embodiment. In the present embodiment, an example of defect detection processing by the surface inspection apparatus will be described with reference to FIG.
図4に示すように、本実施形態に係る表面検査装置は、上記三次元形状演算装置に加え、低周波欠陥検出装置を備えている。低周波欠陥検出装置での処理方法を説明する。まず、スペクトルG’(fx,fy)から低周波成分のみを抽出し、逆フーリエ変換を行う。その結果、元の変更格子像g'(x,y)から、パターンによる明暗変化や、キズ、突起、異物といった空間周波数の高い欠陥による明暗変化が除去され、色むら照明むらによる低周波な明暗変化のみが残る。照明むらによる明暗変化は、シェーディング補正により、分離する。シェーディング補正の方法としては、良品画像や白色基準板等を撮像した画像から生成した照明むらデータを生成し、検査対象の画像から差し引くといった方法が考えられる。シェーディング補正後、画像を適当な矩形領域に分割し、各矩形領域内で画像データの標準偏差を算出し、その大きさにより良否判定を行う。 As shown in FIG. 4, the surface inspection apparatus according to the present embodiment includes a low-frequency defect detection apparatus in addition to the three-dimensional shape calculation apparatus. A processing method in the low-frequency defect detection apparatus will be described. First, only a low frequency component is extracted from the spectrum G ′ (fx, fy), and inverse Fourier transform is performed. As a result, light and dark changes due to patterns and light and dark changes due to defects with high spatial frequency such as scratches, protrusions, and foreign objects are removed from the original modified lattice image g ′ (x, y), and low-frequency light and dark due to uneven color illumination. Only changes remain. Changes in brightness due to uneven illumination are separated by shading correction. As a shading correction method, a method of generating illumination unevenness data generated from an image obtained by capturing a non-defective image, a white reference plate, or the like and subtracting it from the image to be inspected can be considered. After the shading correction, the image is divided into appropriate rectangular areas, the standard deviation of the image data is calculated in each rectangular area, and the quality is determined based on the size.
本実施形態により、縞パターン投影法とフーリエ変換法による三次元計測方法において、従来除去していたキャリア周波数より低い低周波成分を用いることにより、色むらといった空間周波数の低い欠陥を同じ変形格子画像から検出することが可能となる。 According to this embodiment, in the three-dimensional measurement method using the fringe pattern projection method and the Fourier transform method, by using a low frequency component lower than the carrier frequency that has been removed in the past, defects having a low spatial frequency such as color unevenness can be displayed in the same deformed grid image It becomes possible to detect from.
(実施形態3)
図5は、本実施形態に係る表面検査装置の処理方法の例を示す。本実施形態では、表面検査装置による欠陥検出処理例について、図5に示す図を用いて説明する。
(Embodiment 3)
FIG. 5 shows an example of the processing method of the surface inspection apparatus according to the present embodiment. In the present embodiment, an example of defect detection processing by the surface inspection apparatus will be described with reference to FIG.
図5に示すように、本実施形態に係る表面検出装置は、上記三次元形状演算装置に加え、高周波欠陥検出装置及び低周波欠陥検出装置を備えている。 As shown in FIG. 5, the surface detection device according to the present embodiment includes a high-frequency defect detection device and a low-frequency defect detection device in addition to the three-dimensional shape calculation device.
各演算装置での処理方法は前述と同様である。すなわち、高周波欠陥検出装置では、スペクトルG’(fx,fy)から高周波成分のみを抽出し、逆フーリエ変換を行う。その後、閾値処理により2値画像に変換し、孤立点除去、膨張、収縮といったモホロジー処理によりノイズを除去後、ラベリング処理で一つの塊として認識する。各ラベルに対して、画素数、長さといった欠陥特徴量を算出し、その特徴量の大きさにより良否判定を行う。 The processing method in each arithmetic unit is the same as described above. That is, the high-frequency defect detection apparatus extracts only high-frequency components from the spectrum G ′ (fx, fy) and performs inverse Fourier transform. After that, it is converted into a binary image by threshold processing, and noise is removed by morphological processing such as isolated point removal, expansion, and contraction, and then recognized as one lump by labeling processing. For each label, defect feature amounts such as the number of pixels and length are calculated, and pass / fail is determined based on the size of the feature amount.
低周波欠陥検出装置では、スペクトルG’(fx,fy)から低周波成分のみを抽出し、逆フーリエ変換を行う。照明むらによる明暗変化を、シェーディング補正により、分離する。シェーディング補正後、画像を適当な矩形領域に分割し、各矩形領域内で画像データの標準偏差を算出し、その大きさにより良否判定を行う。 In the low frequency defect detection apparatus, only the low frequency component is extracted from the spectrum G ′ (fx, fy), and inverse Fourier transform is performed. Changes in brightness due to uneven illumination are separated by shading correction. After the shading correction, the image is divided into appropriate rectangular areas, the standard deviation of the image data is calculated in each rectangular area, and the quality is determined based on the size.
本実施形態により、縞パターン投影法とフーリエ変換法による三次元計測装置において、三次元形状演算装置に加え高周波欠陥検出装置及び低周波欠陥検出装置を備え、従来除去していた高周波成分及び低周波成分を用いることにより、キズ、突起、異物といった空間周波数の高い欠陥及び色むらといった空間周波数の低い欠陥を同じ変形格子画像から検出することが可能となる。 According to the present embodiment, the three-dimensional measuring device using the fringe pattern projection method and the Fourier transform method includes a high-frequency defect detection device and a low-frequency defect detection device in addition to the three-dimensional shape calculation device. By using the component, it is possible to detect a defect having a high spatial frequency such as a scratch, a protrusion, or a foreign substance and a defect having a low spatial frequency such as color unevenness from the same deformed grid image.
尚、図3〜5に示す処理を、CPUが実行するためのプログラムは本発明によるプログラムを構成する。このプログラムを記録するコンピュータ読み取り可能な記録媒体としては、半導体記憶部や光学的及び/又は磁気的な記憶部等を用いることができる。このようなプログラム及び記録媒体を、前述した各実施形態とは異なる構成のシステム等で用い、そこのCPUで上記プログラムを実行させることにより、本発明と実質的に同じ効果を得ることができる。 The program for the CPU to execute the processes shown in FIGS. 3 to 5 constitutes a program according to the present invention. As a computer-readable recording medium for recording the program, a semiconductor storage unit, an optical and / or magnetic storage unit, or the like can be used. By using such a program and recording medium in a system having a configuration different from that of each of the above-described embodiments and causing the CPU to execute the program, substantially the same effects as those of the present invention can be obtained.
以上好適な実施の形態に基づき具体的に説明したが、本発明は上述した表面検査装置、それを用いた欠陥検出方法、プログラム及び記録媒体に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であるということは言うまでもない。 Although specifically described above based on the preferred embodiment, the present invention is not limited to the above-described surface inspection apparatus, defect detection method, program and recording medium using the same, and does not depart from the gist of the invention. Needless to say, various changes can be made.
本発明は、光ディスクや感光体ドラムの欠陥検査方法及び装置にも適用することが可能である。 The present invention can also be applied to a defect inspection method and apparatus for optical discs and photosensitive drums.
Claims (11)
前記対象物の表面を撮像する撮像手段と、
前記縞パターン投影手段及び撮像手段により得られた前記対象物の画像データからフーリエ変換法により対象物の三次元形状データを算出する三次元形状演算手段と、
前記対象物の画像データの高周波成分に基づいて欠陥検出を行う高周波欠陥検出手段と、を備えることを特徴とする表面検査装置。 A fringe pattern projection means for projecting a fringe pattern onto the object;
Imaging means for imaging the surface of the object;
Three-dimensional shape calculation means for calculating the three-dimensional shape data of the object by Fourier transform from the image data of the object obtained by the fringe pattern projection means and the imaging means;
A surface inspection apparatus comprising: high-frequency defect detection means that performs defect detection based on a high-frequency component of image data of the object.
前記対象物の表面を撮像する撮像ステップと、
前記縞パターン投影ステップ及び撮像ステップにより得られた前記対象物の画像データからフーリエ変換法により対象物の三次元形状データを算出する三次元形状演算ステップと、
前記対象物の画像データのキャリア周波数よりも高い高周波成分を除去せずに残し、該高周波成分に基づいて欠陥検出を行う高周波欠陥検出ステップと、を備えることを特徴とする欠陥検出方法。 A fringe pattern projecting step for projecting a fringe pattern onto the object;
An imaging step of imaging the surface of the object;
A three-dimensional shape calculation step of calculating three-dimensional shape data of the object by Fourier transform from the image data of the object obtained by the fringe pattern projecting step and the imaging step;
A defect detection method comprising: a high-frequency defect detection step that leaves a high-frequency component higher than a carrier frequency of image data of the object without being removed and performs defect detection based on the high-frequency component.
前記対象物の表面を撮像する処理と、
前記投影する処理及び撮像する処理により得られた前記対象物の画像データからフーリエ変換法により対象物の三次元形状データを算出する処理と、
前記対象物の画像データの高周波成分に基づいて欠陥検出を行う処理と、をコンピュータに実行させるプログラム。 Projecting a fringe pattern on the object;
Processing to image the surface of the object;
A process of calculating the three-dimensional shape data of the object by Fourier transform from the image data of the object obtained by the process of projecting and the process of imaging;
A program that causes a computer to execute a defect detection process based on a high-frequency component of image data of the object.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008237065A JP2010071694A (en) | 2008-09-16 | 2008-09-16 | Surface inspection apparatus, defect detecting method using the same, program, and recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008237065A JP2010071694A (en) | 2008-09-16 | 2008-09-16 | Surface inspection apparatus, defect detecting method using the same, program, and recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010071694A true JP2010071694A (en) | 2010-04-02 |
Family
ID=42203647
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008237065A Withdrawn JP2010071694A (en) | 2008-09-16 | 2008-09-16 | Surface inspection apparatus, defect detecting method using the same, program, and recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010071694A (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102539437A (en) * | 2010-11-18 | 2012-07-04 | 松下电器产业株式会社 | Welding inspecting method and apparatus |
JP2014054758A (en) * | 2012-09-12 | 2014-03-27 | Ricoh Co Ltd | Inspection device, image formation device and inspection method |
JP2014508938A (en) * | 2011-03-10 | 2014-04-10 | ミルテク カンパニー リミテッド | Vision inspection equipment using multiple grid patterns |
CN107238605A (en) * | 2017-06-08 | 2017-10-10 | 广东嘉铭智能科技有限公司 | A kind of cylindric outer surface of workpiece defect inspection method and device |
CN108181320A (en) * | 2017-12-22 | 2018-06-19 | 广州锋立技术服务有限公司 | Surface Flaw identification, the method, apparatus and system of detection |
JP2018155718A (en) * | 2017-03-21 | 2018-10-04 | リコーエレメックス株式会社 | Image processor and inspection system |
JP2018165626A (en) * | 2017-03-28 | 2018-10-25 | 株式会社東京精密 | Surface foreign matter detection device and surface foreign matter detection method using the same |
CN110530881A (en) * | 2019-09-23 | 2019-12-03 | 苏州科洛尼自动化有限公司 | High-precision screen-vision detection system |
CN111551567A (en) * | 2020-07-02 | 2020-08-18 | 厦门大学 | Object surface defect detection method and system based on fringe projection |
CN111879257A (en) * | 2020-07-21 | 2020-11-03 | 南昌航空大学 | High dynamic range real-time three-dimensional measurement method based on Fourier transform profilometry |
CN112326671A (en) * | 2020-11-05 | 2021-02-05 | 菲特(天津)检测技术有限公司 | Metal plate surface defect detection method based on machine vision |
CN115165920A (en) * | 2022-09-06 | 2022-10-11 | 南昌昂坤半导体设备有限公司 | Three-dimensional defect detection method and detection equipment |
CN118501159A (en) * | 2024-07-16 | 2024-08-16 | 大连山丘科技有限公司 | Automobile part defect detection method and system based on machine vision |
-
2008
- 2008-09-16 JP JP2008237065A patent/JP2010071694A/en not_active Withdrawn
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102539437A (en) * | 2010-11-18 | 2012-07-04 | 松下电器产业株式会社 | Welding inspecting method and apparatus |
JP2014508938A (en) * | 2011-03-10 | 2014-04-10 | ミルテク カンパニー リミテッド | Vision inspection equipment using multiple grid patterns |
JP2014054758A (en) * | 2012-09-12 | 2014-03-27 | Ricoh Co Ltd | Inspection device, image formation device and inspection method |
JP2018155718A (en) * | 2017-03-21 | 2018-10-04 | リコーエレメックス株式会社 | Image processor and inspection system |
JP2018165626A (en) * | 2017-03-28 | 2018-10-25 | 株式会社東京精密 | Surface foreign matter detection device and surface foreign matter detection method using the same |
JP7301914B2 (en) | 2017-03-28 | 2023-07-03 | 株式会社東京精密 | Surface foreign matter detection device and surface foreign matter detection method using the same |
JP2021167845A (en) * | 2017-03-28 | 2021-10-21 | 株式会社東京精密 | Surface foreign matter detection device and surface foreign matter detection method using the same |
CN107238605B (en) * | 2017-06-08 | 2021-07-02 | 广东嘉铭智能科技有限公司 | Method and device for detecting defects on outer surface of cylindrical workpiece |
CN107238605A (en) * | 2017-06-08 | 2017-10-10 | 广东嘉铭智能科技有限公司 | A kind of cylindric outer surface of workpiece defect inspection method and device |
CN108181320A (en) * | 2017-12-22 | 2018-06-19 | 广州锋立技术服务有限公司 | Surface Flaw identification, the method, apparatus and system of detection |
CN110530881A (en) * | 2019-09-23 | 2019-12-03 | 苏州科洛尼自动化有限公司 | High-precision screen-vision detection system |
CN111551567B (en) * | 2020-07-02 | 2021-06-25 | 厦门大学 | Object surface defect detection method and system based on fringe projection |
CN111551567A (en) * | 2020-07-02 | 2020-08-18 | 厦门大学 | Object surface defect detection method and system based on fringe projection |
CN111879257A (en) * | 2020-07-21 | 2020-11-03 | 南昌航空大学 | High dynamic range real-time three-dimensional measurement method based on Fourier transform profilometry |
CN112326671A (en) * | 2020-11-05 | 2021-02-05 | 菲特(天津)检测技术有限公司 | Metal plate surface defect detection method based on machine vision |
CN115165920A (en) * | 2022-09-06 | 2022-10-11 | 南昌昂坤半导体设备有限公司 | Three-dimensional defect detection method and detection equipment |
CN118501159A (en) * | 2024-07-16 | 2024-08-16 | 大连山丘科技有限公司 | Automobile part defect detection method and system based on machine vision |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010071694A (en) | Surface inspection apparatus, defect detecting method using the same, program, and recording medium | |
US10739272B2 (en) | Inspection system and inspection method | |
JP6307367B2 (en) | Mask inspection apparatus, mask evaluation method and mask evaluation system | |
JP6220061B2 (en) | Wafer inspection using free form protection area | |
KR20100092014A (en) | Methods and apparatuses for detecting pattern errors | |
TW201740104A (en) | Computer-implemented method, non-transitory computer-readable medium, and system for detecting defects on a wafer | |
JP2013257304A5 (en) | ||
JP6043735B2 (en) | Image evaluation apparatus and pattern shape evaluation apparatus | |
JP5682419B2 (en) | Inspection method and inspection apparatus | |
Vishnoi et al. | Automated defect identification from carrier fringe patterns using Wigner–Ville distribution and a machine learning-based method | |
JP2009180690A (en) | Three-dimensional shape measuring apparatus | |
Huang et al. | A novel defect detection method with eliminating dust for specular surfaces based on structured-light modulation analysis technique | |
Kalms et al. | Automatic adaption of projected fringe patterns using a programmable LCD-projector | |
CN116559179B (en) | Reflective surface morphology and defect detection method and system thereof | |
JP2010164333A (en) | Device and method for inspecting defect | |
US9236218B2 (en) | Defect inspection apparatus and method using a plurality of detectors to generate a subtracted image that may be used to form a subtraction profile | |
JP5435904B2 (en) | How to detect fatal wounds | |
JP6013819B2 (en) | Surface shape inspection apparatus and surface shape inspection method | |
JP2017101977A (en) | Inspection system and inspection method | |
JP2005315748A (en) | Data compression method, defect inspection method, and defect inspection device | |
JP2009139209A (en) | Defect inspection method | |
KR20200016991A (en) | Amplitude and Phase Asymmetry Estimation in Imaging Technologies to Achieve High Accuracy in Overlay Metrology | |
JP5344629B2 (en) | Inspection apparatus and inspection method | |
Huang | A novel direct structured-light inspection technique for contaminant and defect detection | |
JP2005114421A (en) | Image processor and surface inspecting method in surface inspection system, and computer program therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20111206 |