JP2010071654A - Method and device for estimating causal physical quantity - Google Patents

Method and device for estimating causal physical quantity Download PDF

Info

Publication number
JP2010071654A
JP2010071654A JP2008235943A JP2008235943A JP2010071654A JP 2010071654 A JP2010071654 A JP 2010071654A JP 2008235943 A JP2008235943 A JP 2008235943A JP 2008235943 A JP2008235943 A JP 2008235943A JP 2010071654 A JP2010071654 A JP 2010071654A
Authority
JP
Japan
Prior art keywords
physical quantity
cause physical
cause
result
estimated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008235943A
Other languages
Japanese (ja)
Other versions
JP5467747B2 (en
Inventor
Eiichi Bando
永一 坂東
登誉子 ▲さつ▼摩
Toyoko Satsuma
Yutaka Sato
佐藤  裕
Mariko Kitamura
万里子 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008235943A priority Critical patent/JP5467747B2/en
Publication of JP2010071654A publication Critical patent/JP2010071654A/en
Application granted granted Critical
Publication of JP5467747B2 publication Critical patent/JP5467747B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To estimate a causal physical quantity x based on a resultant physical quantity y without requiring complicated calculation. <P>SOLUTION: When a forward direction function y=f(x) of providing the resultant physical quantity y dependent on the causal physical quantity x, and an approximate reverse direction function x'=g'(y) of estimating approximate causal physical quantity x' based on the resultant physical quantity y are known, and i is set at an integer of 2 or more, i-th estimated causal physical quantity x<SB>i</SB>for the resultant physical quantity y obtained by measurement using x'=g'(y), x<SB>1</SB>=2×x'-g'(f(x')), and x<SB>i</SB>=x'+x<SB>i-1</SB>-g'(f(x<SB>i-1</SB>)). Since the approximate reverse direction function x'=g'(y) is used without using the reverse function x=g(y) of the forward direction function y=f(x), the causal physical quantity x can be estimated based on the resultant physical quantity y without requiring complicated calculation. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、原因物理量推定方法および装置に関し、さらに詳しくは、原因物理量に依存する結果物理量が与えられたときに煩雑な演算を要さずに結果物理量から原因物理量を推定することが出来る原因物理量推定方法および装置に関する。   The present invention relates to a causal physical quantity estimation method and apparatus, and more particularly, a causal physical quantity capable of estimating a causal physical quantity from a result physical quantity without requiring a complicated calculation when a result physical quantity depending on the causal physical quantity is given. The present invention relates to an estimation method and apparatus.

従来、測定用コイルで検出された磁界強度と信号源コイルの仮定の位置から計算された磁界強度の誤差が小さくなるように信号源コイルの仮定の位置を変更し、誤差が小さい信号源コイルの仮定の位置を求める位置推定方法が知られている(例えば、特許文献1参照。)。
特許第3571675号公報([0086]〜[0089])
Conventionally, the assumed position of the signal source coil is changed so that the error between the magnetic field intensity detected by the measuring coil and the assumed position of the signal source coil is reduced, and A position estimation method for obtaining an assumed position is known (for example, see Patent Document 1).
Japanese Patent No. 3571675 ([0086] to [0089])

上記従来の位置推定方法では、仮定の位置を変更するのに偏微分演算が必要になるなど、演算が煩雑になる問題点があった。
そこで、本発明の目的は、煩雑な演算を要さずに結果物理量から原因物理量を推定することが出来る原因物理量推定方法および装置を提供することにある。
The conventional position estimation method has a problem that the calculation is complicated, for example, partial differential calculation is required to change the assumed position.
Accordingly, an object of the present invention is to provide a causal physical quantity estimation method and apparatus capable of estimating a causal physical quantity from a result physical quantity without requiring a complicated calculation.

第1の観点では、本発明は、原因物理量xに依存する結果物理量yを与える順方向関数y=f(x)および結果物理量yを基に近似原因物理量x’を推定する近似逆方向関数x’=g’(y)が既知であるとき、測定により得られた結果物理量yに対して
x’=g’(y)
1=2・x’−g’(f(x’))
により第1推定原因物理量x1を求めることを特徴とする原因物理量推定方法を提供する。
上記構成における数式の意味については実施例1で説明する。
上記第1の観点による原因物理量推定方法では、順方向関数y=f(x)の逆関数x=g(y)を用いるのではなく、近似逆方向関数x’=g’(y)を用いる。
例えば、y=x2+xという順方向関数f(x)を想定するとき、逆関数g(y)はx=(−1±√{1+4y})/2となり、演算が煩雑になる。これに対して、本発明では、例えば0<x≦0.1のときには、y≒xであるから、x’=yという近似逆方向関数g’(y)を用いる。すると、上式は、
x’=y
1=2・x’−(x’2+x’)=x’−x’2
となり、煩雑な演算を要さずに、結果物理量yから原因物理量x1を推定することが出来る。
なお、順方向関数y=f(x)の逆関数x=g(y)を用いれば結果物理量yから原因物理量xを求めることが出来るが、物理現象においては、しばしば逆関数x=g(y)が非常に煩雑な演算になってしまう。このため、本発明では、逆関数x=g(y)を用いるのではなく、近似逆方向関数x’=g’(y)を用いる。
In a first aspect, the present invention provides a forward function y = f (x) that gives a result physical quantity y that depends on the cause physical quantity x and an approximate backward function x that estimates the approximate cause physical quantity x ′ based on the result physical quantity y. When '= g' (y) is known, for the result physical quantity y obtained by measurement, x '= g' (y)
x 1 = 2 · x′−g ′ (f (x ′))
The cause physical quantity estimation method characterized by obtaining the first estimated cause physical quantity x 1 is provided.
The meaning of mathematical expressions in the above configuration will be described in the first embodiment.
In the causal physical quantity estimation method according to the first aspect, the approximate backward function x ′ = g ′ (y) is used instead of the inverse function x = g (y) of the forward function y = f (x). .
For example, when a forward function f (x) of y = x 2 + x is assumed, the inverse function g (y) is x = (− 1 ± √ {1 + 4y}) / 2, and the calculation becomes complicated. On the other hand, in the present invention, when 0 <x ≦ 0.1, for example, y≈x, and therefore an approximate backward function g ′ (y) of x ′ = y is used. Then, the above formula is
x ′ = y
x 1 = 2 · x ′ − (x ′ 2 + x ′) = x′−x ′ 2
Thus, the causal physical quantity x 1 can be estimated from the result physical quantity y without requiring a complicated calculation.
If the inverse function x = g (y) of the forward function y = f (x) is used, the cause physical quantity x can be obtained from the resulting physical quantity y. However, in the physical phenomenon, the inverse function x = g (y ) Becomes a very complicated calculation. For this reason, in the present invention, instead of using the inverse function x = g (y), the approximate backward function x ′ = g ′ (y) is used.

第2の観点では、本発明は、原因物理量xに依存する結果物理量yを与える順方向関数y=f(x)および結果物理量yを基に近似原因物理量x’を推定する近似逆方向関数x’=g’(y)が既知であり、iを2以上の整数とするとき、測定により得られた結果物理量yに対して
x’=g’(y)
1=2・x’−g’(f(x’))
i=x’+xi-1−g’(f(xi-1))
により第i推定原因物理量xiを求めることを特徴とする原因物理量推定方法を提供する。
上記構成における数式の意味については実施例で説明する。
上記第2の観点による原因物理量推定方法では、順方向関数y=f(x)の逆関数x=g(y)を用いるのではなく、近似逆方向関数x’=g’(y)を用いる。
例えば、y=x2+xという順方向関数f(x)を想定するとき、逆関数g(y)はx=(−1±√{1+4y})/2となり、演算が煩雑になる。これに対して、本発明では、例えば0<x≦0.1のときには、y≒xであるから、x’=yという近似逆方向関数g’(y)を用いる。すると、上式は、
x’=y
1=2・x’−(x’2+x’)=x’−x’2
2=x’+x1−(x1 2+x1)=x’−x1 2

i=x’+xi-1−(xi-1 2+xi-1)=x’−xi-1 2
となり、煩雑な演算を要さずに、結果物理量yから原因物理量xiを推定することが出来る。
In a second aspect, the present invention provides a forward function y = f (x) that gives a result physical quantity y that depends on the cause physical quantity x and an approximate backward function x that estimates the approximate cause physical quantity x ′ based on the result physical quantity y. When '= g' (y) is known and i is an integer equal to or greater than 2, for the result physical quantity y obtained by measurement, x '= g' (y)
x 1 = 2 · x′−g ′ (f (x ′))
x i = x ′ + x i−1 −g ′ (f (x i−1 ))
Providing cause physical quantity estimation method characterized by obtaining the i-th presumed cause physical quantity x i by.
The meaning of the mathematical expression in the above configuration will be described in an embodiment.
In the causal physical quantity estimation method according to the second aspect, the approximate backward function x ′ = g ′ (y) is used instead of the inverse function x = g (y) of the forward function y = f (x). .
For example, when a forward function f (x) of y = x 2 + x is assumed, the inverse function g (y) is x = (− 1 ± √ {1 + 4y}) / 2, and the calculation becomes complicated. On the other hand, in the present invention, when 0 <x ≦ 0.1, for example, y≈x, and therefore an approximate backward function g ′ (y) of x ′ = y is used. Then, the above formula is
x ′ = y
x 1 = 2 · x ′ − (x ′ 2 + x ′) = x′−x ′ 2
x 2 = x ′ + x 1 − (x 1 2 + x 1 ) = x′−x 1 2
...
x i = x ′ + x i−1 − (x i−1 2 + x i−1 ) = x′−x i−1 2
Next, without requiring complicated calculation, it is possible to estimate the cause physical quantity x i from the result the physical quantity y.

第3の観点では、本発明は、前記第2の観点による原因物理量推定方法において、予め設定した誤差閾値をEとするとき、
|x’−g’(f(x’))|≦Eならx’だけを求め、
|x’−g’(f(x’))|>Eかつ|x’−g’(f(x1))|≦Eならx1まで求め、
|x’−g’(f(xi-1))|>Eかつ|x’−g’(f(xi))|≦Eならxiまで求めることを特徴とする原因物理量推定方法を提供する。
上記第3の観点による原因物理量推定方法では、予め設定した誤差閾値E以下の誤差で原因物理量を求めることが出来る。
In a third aspect, the present invention relates to the causal physical quantity estimation method according to the second aspect, when a preset error threshold is E,
If | x′−g ′ (f (x ′)) | ≦ E, only x ′ is obtained.
| X'-g '(f ( x')) |> E and | x'-g '(f ( x 1)) | determined to if ≦ E x 1,
A causal physical quantity estimation method characterized by obtaining up to x i if | x′−g ′ (f (x i−1 )) |> E and | x′−g ′ (f (x i )) | ≦ E. provide.
In the causal physical quantity estimation method according to the third aspect, the causal physical quantity can be obtained with an error equal to or less than a preset error threshold E.

第4の観点では、本発明は、原因物理量xに依存する結果物理量yを与える順方向関数y=f(x)および結果物理量yを基に近似原因物理量x’を推定する近似逆方向関数x’=g’(y)が既知であるとき、測定により得られた結果物理量yに対して
x’=g’(y)
1=2・x’−g’(f(x’))
により第1推定原因物理量x1を演算し出力する第1推定原因物理量演算手段を具備したことを特徴とする原因物理量推定装置を提供する。
上記第4の観点による原因物理量推定装置では、前記第1の観点による原因物理量推定方法を好適に実施できる。
In a fourth aspect, the present invention provides a forward function y = f (x) that gives a result physical quantity y that depends on the cause physical quantity x and an approximate backward function x that estimates the approximate cause physical quantity x ′ based on the result physical quantity y. When '= g' (y) is known, for the result physical quantity y obtained by measurement, x '= g' (y)
x 1 = 2 · x′−g ′ (f (x ′))
By providing cause physical quantity estimating apparatus characterized by comprising a first probable cause physical quantity calculation means for first calculates the probable cause physical quantity x 1 output.
In the causal physical quantity estimation device according to the fourth aspect, the causal physical quantity estimation method according to the first aspect can be suitably implemented.

第5の観点では、本発明は、原因物理量xに依存する結果物理量yを与える順方向関数y=f(x)および結果物理量yを基に近似原因物理量x’を推定する近似逆方向関数x’=g’(y)が既知であり、iを2以上の整数とするとき、測定により得られた結果物理量yに対して
x’=g’(y)
1=2・x’−g’(f(x’))
i=x’+xi-1−g’(f(xi-1))
により第i推定原因物理量xiを演算し出力する第i推定原因物理量演算手段を具備したことを特徴とする原因物理量推定装置を提供する。
上記第5の観点による原因物理量推定装置では、前記第2の観点による原因物理量推定方法を好適に実施できる。
In a fifth aspect, the present invention provides a forward function y = f (x) that gives a result physical quantity y that depends on the cause physical quantity x and an approximate backward function x that estimates the approximate cause physical quantity x ′ based on the result physical quantity y. When '= g' (y) is known and i is an integer equal to or greater than 2, for the result physical quantity y obtained by measurement, x '= g' (y)
x 1 = 2 · x′−g ′ (f (x ′))
x i = x ′ + x i−1 −g ′ (f (x i−1 ))
A causal physical quantity estimation device comprising an i-th estimated causal physical quantity calculating means for calculating and outputting the i-th estimated causal physical quantity x i is provided.
In the causal physical quantity estimation device according to the fifth aspect, the causal physical quantity estimation method according to the second aspect can be suitably implemented.

第6の観点では、本発明は、原因物理量xに依存する結果物理量yを与える順方向関数y=f(x)および結果物理量yを基に近似原因物理量x’を推定する近似逆方向関数x’=g’(y)が既知であり、iを2以上の整数とするとき、測定により得られた結果物理量yに対して
x’=g’(y)
により第0推定原因物理量x’を演算し出力する第0推定原因物理量演算手段と、
1=2・x’−g’(f(x’))
により第1推定原因物理量x1を演算し出力する第1推定原因物理量演算手段と、
i=x’+xi-1−g’(f(xi-1))
により第i推定原因物理量xiを演算し出力する第i推定原因物理量演算手段と、
予め設定した誤差閾値をEとするとき、
|x’−g’(f(x’))|≦Eなら前記第0推定原因物理量演算手段だけを作動させ、
|x’−g’(f(x’))|>Eかつ|x’−g’(f(x1))|≦Eなら前記第1推定原因物理量演算手段までを作動させ、
|x’−g’(f(xi-1))|>Eかつ|x’−g’(f(xi))|≦Eなら前記第i推定原因物理量演算手段までを作動させる演算制御手段とを具備したことを特徴とする原因物理量推定装置を提供する。
上記第6の観点による原因物理量推定装置では、前記第3の観点による原因物理量推定方法を好適に実施できる。
In a sixth aspect, the present invention provides a forward function y = f (x) that gives a result physical quantity y that depends on the cause physical quantity x and an approximate backward function x that estimates the approximate cause physical quantity x ′ based on the result physical quantity y. When '= g' (y) is known and i is an integer equal to or greater than 2, for the result physical quantity y obtained by measurement, x '= g' (y)
A zeroth estimated cause physical quantity calculating means for calculating and outputting the zeroth estimated cause physical quantity x ′,
x 1 = 2 · x′−g ′ (f (x ′))
A first estimated cause physical quantity calculating means for calculating and outputting a first estimated cause physical quantity x 1 by:
x i = x ′ + x i−1 −g ′ (f (x i−1 ))
And the i probable cause physical quantity calculation means for the i calculates the probable cause physical quantity x i output by,
When the preset error threshold is E,
If | x′−g ′ (f (x ′)) | ≦ E, only the 0th presumed cause physical quantity calculating means is operated,
If | x′−g ′ (f (x ′)) |> E and | x′−g ′ (f (x 1 )) | ≦ E, the first estimated cause physical quantity calculating means is operated.
If | x′−g ′ (f (x i−1 )) |> E and | x′−g ′ (f (x i )) | ≦ E, calculation control for operating up to the i th estimated cause physical quantity calculation means A causal physical quantity estimation apparatus characterized by comprising: means.
In the causal physical quantity estimation device according to the sixth aspect, the causal physical quantity estimation method according to the third aspect can be suitably implemented.

本発明の原因物理量推定方法および装置によれば、煩雑な演算を要さずに、結果物理量から原因物理量を推定することが出来る。   According to the causal physical quantity estimation method and apparatus of the present invention, it is possible to estimate the causal physical quantity from the result physical quantity without requiring a complicated calculation.

以下、図に示す実施の形態により本発明をさらに詳細に説明する。なお、これにより本発明が限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to embodiments shown in the drawings. Note that the present invention is not limited thereby.

図1は、実施例1に係る原因物理量推定装置10を示す説明図である。
この原因物理量推定装置10は、センサ装置Dから入力された結果物理量yから原因物理量xを推定し推定原因物理量x’またはx1またはx2またはxiを出力するコンピュータ1から構成される。
コンピュータ1は、原因物理量xに依存する結果物理量yを与える順方向関数y=f(x)と、結果物理量yを基に近似原因物理量x’を推定する近似逆方向関数x’=g’(y)と、誤差閾値Eと、上限演算回数Iとを予めメモリに記憶している。
FIG. 1 is an explanatory diagram illustrating a cause physical quantity estimation device 10 according to the first embodiment.
The causal physical quantity estimation device 10 includes a computer 1 that estimates the causal physical quantity x from the result physical quantity y input from the sensor device D and outputs the estimated causal physical quantity x ′, x 1, x 2, or x i .
The computer 1 uses a forward function y = f (x) that gives a result physical quantity y that depends on the cause physical quantity x, and an approximate backward function x ′ = g ′ (that estimates an approximate cause physical quantity x ′ based on the result physical quantity y. y), the error threshold value E, and the upper limit calculation count I are stored in the memory in advance.

例えば、センサ装置Dは検出コイルにより磁界強度を計測する磁界強度計測装置であり、結果物理量yは磁界強度であり、原因物理量xは磁気発生源に対する検出コイルの空間位置である。   For example, the sensor device D is a magnetic field strength measuring device that measures the magnetic field strength with a detection coil. As a result, the physical quantity y is the magnetic field strength, and the cause physical quantity x is the spatial position of the detection coil with respect to the magnetic source.

図2は、コンピュータ1で実行される原因物理量推定処理を示すフロー図である。   FIG. 2 is a flowchart showing the cause physical quantity estimation process executed by the computer 1.

ステップS1では、センサ装置Dから結果物理量yを取得する。
図3の(a)に示すように、原因物理量xと結果物理量yとは順方向関数y=f(x)の関係にある。
In step S1, the result physical quantity y is acquired from the sensor device D.
As shown in FIG. 3A, the cause physical quantity x and the result physical quantity y have a relationship of a forward function y = f (x).

ステップS2では、結果物理量yを基に近似逆方向関数x’=g’(y)を用いて第0推定原因物理量x’を求める。
x’=g’(y)
図3の(a)に示すように、第0推定原因物理量x’は原因物理量xの近似値になっている。
In step S2, the 0th estimated cause physical quantity x ′ is obtained using the approximate backward function x ′ = g ′ (y) based on the result physical quantity y.
x ′ = g ′ (y)
As shown in FIG. 3A, the 0th estimated cause physical quantity x ′ is an approximate value of the cause physical quantity x.

ステップS3では、第0推定原因物理量x’を基に順方向関数y=f(x)を用いて第0計算結果物理量y’を求める。
y’=f(x’)
図3の(a)に示すように、第0推定原因物理量x’と第0計算結果物理量y’とは順方向関数y=f(x)の関係にある。
In step S3, the 0th calculation result physical quantity y ′ is obtained using the forward function y = f (x) based on the 0th estimated cause physical quantity x ′.
y ′ = f (x ′)
As shown in FIG. 3A, the 0th estimated cause physical quantity x ′ and the 0th calculation result physical quantity y ′ are in a relationship of a forward function y = f (x).

ステップS4では、第0計算結果物理量y’を基に近似逆方向関数x’=g’(y)を用いて第0計算原因物理量x”を求める。
x”=g’(y’)=g’(f(x’))=g’(f(g’(y)))
図3の(a)に示すように、第0計算原因物理量x”は第0推定原因物理量x’の近似値になっている。
In step S4, the zeroth calculation cause physical quantity x ″ is obtained using the approximate backward function x ′ = g ′ (y) based on the zeroth calculation result physical quantity y ′.
x ″ = g ′ (y ′) = g ′ (f (x ′)) = g ′ (f (g ′ (y)))
As shown in FIG. 3A, the 0th calculation cause physical quantity x ″ is an approximate value of the 0th estimation cause physical quantity x ′.

ステップS5では、第0推定原因物理量x’と第0計算原因物理量x”の間の誤差の大きさe=|x’−x”|が誤差閾値E以下か否か判定する。
ここで、第0推定原因物理量x’と第0計算原因物理量x”の間の誤差x’−x”が原因物理量xと第0推定原因物理量x’の間の誤差x−x’に略等しいと仮定する(この仮定が成り立つような物理現象に対して本発明は有用である)。つまり、
x−x’≒x’−x”
が成り立つとする。すると、|x’−x”|≦Eなら第0推定原因物理量x’を必要な精度の原因物理量xとみなしてよいことになり、ステップS6へ進む。そうでないなら精度のより高い第1推定原因物理量x1を求めるため、ステップS7へ進む。
In step S5, it is determined whether or not an error magnitude e = | x′−x ″ | between the 0th estimated cause physical quantity x ′ and the 0th calculated cause physical quantity x ″ is equal to or smaller than an error threshold E.
Here, the error x′−x ″ between the 0th estimated cause physical quantity x ′ and the 0th calculated cause physical quantity x ″ is substantially equal to the error xx ′ between the cause physical quantity x and the 0th estimated cause physical quantity x ′. (The present invention is useful for physical phenomena where this assumption holds). That means
xx′≈x′−x ″
Suppose that Then, if | x′−x ″ | ≦ E, the 0th estimated cause physical quantity x ′ may be regarded as the cause physical quantity x having the required accuracy, and the process proceeds to step S6. to determine the cause physical quantity x 1, the process proceeds to step S7.

ステップS6では、第0推定原因物理量x’を出力する。そして、処理を終了する。   In step S6, the 0th estimated cause physical quantity x 'is output. Then, the process ends.

図4の(b)に計算例を示す。
例えば、y=x2+xという順方向関数y=f(x)を想定する。そして、0<x≦0.1とし、x’=yを近似逆方向関数x’=g’(y)とする。すると、原因物理量x=0.1に対して結果物理量y=0.11が計測される。
この結果物理量y=0.11に対して第0推定原因物理量x’は、
x’=y=0.11
となる。この第0推定原因物理量x’=0.11に対して第0計算結果物理量y’は、
y’=x’2+x’=0.1221
となる。この第0計算結果物理量y’=0.1221に対して第0計算原因物理量x”は、
x”=y’=0.1221
となる。誤差eは、
e=|x’−x”|=0.0121
となる。そこで、例えばE=0.02ならばステップS6へ進み、推定原因物理量x’=0.11を出力する。また、E=0.01ならばステップS7へ進む。
An example of calculation is shown in FIG.
For example, assume a forward function y = f (x) of y = x 2 + x. Then, 0 <x ≦ 0.1, and x ′ = y is an approximate backward function x ′ = g ′ (y). Then, the result physical quantity y = 0.11 is measured with respect to the cause physical quantity x = 0.1.
As a result, for the physical quantity y = 0.11 the 0th estimated cause physical quantity x ′ is
x ′ = y = 0.11
It becomes. For this 0th estimated cause physical quantity x ′ = 0.11, the 0th calculation result physical quantity y ′ is
y ′ = x ′ 2 + x ′ = 0.221
It becomes. For this 0th calculation result physical quantity y ′ = 0.1221, the 0th calculation cause physical quantity x ″ is
x ″ = y ′ = 0.1221
It becomes. The error e is
e = | x′−x ″ | = 0.0121
It becomes. For example, if E = 0.02, the process proceeds to step S6, and the estimated cause physical quantity x ′ = 0.11 is output. If E = 0.01, the process proceeds to step S7.

ステップS7では、第1推定原因物理量x1を求める。
1=2・x’−x”
これは、上記の式、
x−x’≒x’−x”
を変形し、
x≒2・x’−x”=x1
としたものである。
すなわち、図4の(a)に示すように、第0推定原因物理量x’と第0計算原因物理量x”とから第1推定原因物理量x1を求める。
In step S7, determining a first probable cause physical quantity x 1.
x 1 = 2 · x′−x ″
This is the above formula,
xx′≈x′−x ″
Transform
x≈2 · x′−x ″ = x 1
It is what.
That is, as shown in FIG. 4A, the first estimated cause physical quantity x 1 is obtained from the zeroth estimated cause physical quantity x ′ and the zeroth calculated cause physical quantity x ″.

図4の(b)に計算例を示す。
例えば、x’=0.11とx”=0.1221から、x1=0.0979が求まる。
An example of calculation is shown in FIG.
For example, x 1 = 0.0979 is obtained from x ′ = 0.11 and x ″ = 0.221.

ステップS8では、第1推定原因物理量x1を基に順方向関数y=f(x)を用いて第1計算結果物理量y1を求める。
1=f(x1)
図5の(a)に示すように、第1推定原因物理量x1と第1計算結果物理量y1とは順方向関数y=f(x)の関係にある。
In step S8, the first calculation result physical quantity y 1 is obtained using the forward function y = f (x) based on the first estimated cause physical quantity x 1 .
y 1 = f (x 1 )
As shown in FIG. 5A, the first estimated cause physical quantity x 1 and the first calculation result physical quantity y 1 are in a relationship of a forward function y = f (x).

ステップS9では、第1計算結果物理量y1を基に近似逆方向関数x’=g’(y)を用いて第1計算原因物理量x1’を求める。
1’=g’(y1)
図5の(a)に示すように、第1計算原因物理量x1’は第0推定原因物理量x’の近似値になっている。
In step S9, the first calculation cause physical quantity x 1 ′ is obtained using the approximate backward function x ′ = g ′ (y) based on the first calculation result physical quantity y 1 .
x 1 '= g' (y 1 )
As shown in FIG. 5A, the first calculation cause physical quantity x 1 ′ is an approximate value of the zeroth estimation cause physical quantity x ′.

ステップS10では、第0推定原因物理量x’と第1計算原因物理量x1’の間の誤差の大きさe=|x’−x1’|が誤差閾値E以下か否か判定する。
ここで、第0推定原因物理量x’と第1計算原因物理量x1’の間の誤差x’−x1’が原因物理量xと第1推定原因物理量x1の間の誤差x−x1に略等しいと仮定する(この仮定が成り立つような物理現象に対して本発明は有用である)。つまり、
x−x1≒x’−x1
が成り立つとする。すると、|x’−x1’|≦Eなら第1推定原因物理量x1を必要な精度の原因物理量xとみなしてよいことになり、ステップS11へ進む。そうでないなら精度のより高い第2推定原因物理量x2を求めるため、ステップS12へ進む。
In step S10, it is determined whether or not an error magnitude e = | x′−x 1 ′ | between the 0th estimated cause physical quantity x ′ and the first calculated cause physical quantity x 1 ′ is equal to or smaller than an error threshold E.
Here, the error x-x 1 between errors x'-x 1 'is caused physical quantity x and the first probable cause physical quantity x 1 between the zeroth probable cause physical quantity x' and the first computation cause physical quantity x 1 ' It is assumed that they are approximately equal (the present invention is useful for physical phenomena for which this assumption holds). That means
x−x 1 ≒ x′−x 1
Suppose that Then, if | x′−x 1 ′ | ≦ E, the first estimated cause physical quantity x 1 may be regarded as the cause physical quantity x with necessary accuracy, and the process proceeds to step S11. To determine the higher second probable cause physical quantity x 2 accuracy Otherwise, the process proceeds to step S12.

ステップS11では、第1推定原因物理量x1を出力する。そして、処理を終了する。 In step S11, it outputs a first probable cause physical quantity x 1. Then, the process ends.

図5の(b)に計算例を示す。
例えば、第1推定原因物理量x1=0.0979に対して第1計算結果物理量y1は、
1==x1 2+x1=0.1074844
となる。この第1計算結果物理量y1=0.1074844に対して第1計算原因物理量x1’は、
1’=y1=0.1074844
となる。誤差eは、
e=|x’−x1’|=0.0025156
となる。そこで、例えばE=0.003ならばステップS11へ進み、推定原因物理量x1=0.0979を出力する。また、E=0.002ならばステップS12へ進む。
An example of calculation is shown in FIG.
For example, for the first estimated cause physical quantity x 1 = 0.0979, the first calculation result physical quantity y 1 is
y 1 == x 1 2 + x 1 = 0.1074844
It becomes. For this first calculation result physical quantity y 1 = 0.1074844, the first calculation cause physical quantity x 1 ′ is
x 1 '= y 1 = 0.1074844
It becomes. The error e is
e = | x′−x 1 ′ | = 0.0025156
It becomes. For example, if E = 0.003, the process proceeds to step S11, and the estimated cause physical quantity x 1 = 0.0979 is output. If E = 0.002, the process proceeds to step S12.

ステップS12では、演算回数カウンタi=2に初期化する。   In step S12, the operation counter is initialized to i = 2.

ステップS13では、第i推定原因物理量xiを求める。
i=x’+xi-1−xi-1
この式は、図6に示すように、第(i−1)推定原因物理量xi-1を基に順方向関数y=f(x)を用いて第(i−1)計算結果物理量yi-1を求め、第(i−1)計算結果物理量yi-1を基に近似逆方向関数x’=g’(y)を用いて第(i−1)計算原因物理量xi-1’を求め、第0推定原因物理量x’と第(i−1)計算原因物理量xi-1’の間の誤差x’−xi-1’が原因物理量xと第(i−1)推定原因物理量xi-1の間の誤差x−xi-1に略等しいと仮定する(この仮定が成り立つような物理現象に対して本発明は有用である)。つまり、
x−xi-1≒x’−xi-1
が成り立つとする。この式を変形し、
x≒x’+xi-1−xi-1’=xi
としたものである。
すなわち、図7に示すように、第0推定原因物理量x’と第(i−1)推定原因物理量xi-1と第(i−1)計算原因物理量xi-1’とから第i推定原因物理量xiを求める。
In step S13, an i-th estimated cause physical quantity x i is obtained.
x i = x '+ x i-1 -x i-1 '
As shown in FIG. 6, this equation uses the forward function y = f (x) based on the (i−1) th estimated cause physical quantity x i−1 and uses the (i−1) th calculated result physical quantity y i. −1 , and based on the (i−1) -th calculation result physical quantity y i−1 , the approximate (i−1) -th calculation cause physical quantity x i−1 ′ is calculated using the approximate backward function x ′ = g ′ (y). look, 'and the (i-1) calculated cause physical quantity x i-1' zeroth probable cause physical quantity x error x'-x i-1 'causes the physical quantity x and the (i-1) between the probable cause It is assumed that the error between the physical quantities x i-1 is approximately equal to the error x−x i−1 (the present invention is useful for a physical phenomenon for which this assumption holds). That means
x−x i−1 ≒ x′−x i−1
Suppose that Transform this equation,
x≈x ′ + x i−1 −x i−1 ′ = x i
It is what.
That is, as shown in FIG. 7, the i-th estimated cause physical quantity x ′, the (i−1) th estimated cause physical quantity x i−1, and the (i−1) th calculated cause physical quantity x i−1 ′. The cause physical quantity x i is obtained.

図8の(a)にi=2の例を示す。また、図8の(b)に計算例を示す。
例えば、第0推定原因物理量x’=0.11、第1推定原因物理量x1=0.0979、第1計算原因物理量x1’=0.1074844から、第2推定原因物理量x2=0.1004156が求まる。
FIG. 8A shows an example of i = 2. An example of calculation is shown in FIG.
For example, from the 0th estimated cause physical quantity x ′ = 0.11, the first estimated cause physical quantity x 1 = 0.0979, and the first calculated cause physical quantity x 1 ′ = 0.10074844, the second estimated cause physical quantity x 2 = 0. 1004156 is obtained.

ステップS14では、図9の(a)に示すように、第i推定原因物理量xiを基に順方向関数y=f(x)を用いて第i計算結果物理量yiを求める。
i=f(xi)
In step S14, as shown in FIG. 9 (a), obtaining the i-th calculation result physical quantity y i with i-th presumed cause physical quantity x i based on the forward function y = f (x).
y i = f (x i )

ステップS15では、図9の(a)に示すように、第i計算結果物理量yiを基に近似逆方向関数x’=g’(y)を用いて第i計算原因物理量xi’を求める。
i’=g’(yi)
In step S15, as shown in FIG. 9A, the i-th calculation cause physical quantity x i ′ is obtained using the approximate backward function x ′ = g ′ (y) based on the i-th calculation result physical quantity y i. .
x i '= g' (y i )

ステップS16では、第0推定原因物理量x’と第i計算原因物理量xi’の間の誤差の大きさe=|x’−xi’|が誤差閾値E以下か否か判定する。図9の(a)に示すように、誤差x’−xi’が原因物理量xと第i推定原因物理量xiの間の誤差x−xiに略等しいと仮定すれば、|x’−xi’|≦Eなら第i推定原因物理量xiを必要な精度の原因物理量xとみなしてよいことになり、ステップS17へ進む。そうでないなら精度のより高い第2推定原因物理量xi+1を求めるため、ステップS18へ進む。 In step S16, it is determined whether or not an error magnitude e = | x′−x i ′ | between the 0th estimated cause physical quantity x ′ and the i th calculated cause physical quantity x i ′ is equal to or smaller than an error threshold E. As shown in FIG. 9 (a), assuming error x'-x i 'is substantially equal to the error x-x i between cause physical quantity x and the i probable cause physical quantity x i, | x' If x i ′ | ≦ E, the i-th estimated cause physical quantity x i may be regarded as the cause physical quantity x with necessary accuracy, and the process proceeds to step S17. Otherwise, the process proceeds to step S18 in order to obtain the second estimated cause physical quantity x i + 1 with higher accuracy.

ステップS17では、第i推定原因物理量xiを出力する。そして、処理を終了する。 In step S17, the i-th estimated cause physical quantity x i is output. Then, the process ends.

図9の(b)に計算例を示す。
例えば、第0推定原因物理量x’=0.11、第2推定原因物理量x2=0.1004156、第2計算原因物理量x2’=0.1104988927であり、誤差e=0.000498892となる。そこで、例えばE=0.0005ならばステップS17へ進み、推定原因物理量x2=0.1004156を出力する。また、E=0.0004ならばステップS18へ進む。
An example of calculation is shown in FIG.
For example, the 0th estimated cause physical quantity x ′ = 0.11, the second estimated cause physical quantity x 2 = 0.1004156, the second calculated cause physical quantity x 2 ′ = 0.11049889927, and the error e = 0.000498882. For example, if E = 0.0005, the process proceeds to step S17, and the estimated cause physical quantity x 2 = 0.1004156 is output. If E = 0.004, the process proceeds to step S18.

ステップS18では、演算回数カウンタiの値が上限演算回数Iに達していないならステップS19へ進み、達しているならステップS20へ進む。   In step S18, if the value of the calculation number counter i has not reached the upper limit calculation number I, the process proceeds to step S19, and if it has reached, the process proceeds to step S20.

ステップS19では、演算回数カウンタiの値を1だけインクリメントし、ステップS13に戻る。
図10はi=3の計算例を示すもので、第0推定原因物理量x’=0.11と第2推定原因物理量x2=0.1004156と、第2計算原因物理量x2’=0.1104988927とから第3推定原因物理量x3=0.099916708が求まる。
In step S19, the value of the calculation number counter i is incremented by 1, and the process returns to step S13.
FIG. 10 shows a calculation example of i = 3, where the 0th estimated cause physical quantity x ′ = 0.11, the second estimated cause physical quantity x 2 = 0.1004156, and the second calculated cause physical quantity x 2 ′ = 0. From 11049889827, the third estimated cause physical quantity x 3 = 0.099916708 is obtained.

ステップS20では、第I推定原因物理量xIを求めても必要な精度にならなかった旨の推定失敗メッセージを出力する。そして、処理を終了する。 At step S20, and outputs a first I probable cause physical quantity estimation failure message that did not even required precision seeking x I. Then, the process ends.

実施例1に係る原因物理量推定装置10によれば、煩雑な演算を要さずに、結果物理量yから原因物理量xを推定することが出来る。   According to the causal physical quantity estimation apparatus 10 according to the first embodiment, the causal physical quantity x can be estimated from the result physical quantity y without requiring a complicated calculation.

図11に示すように、三次元空間に信号源三軸コイルC1,C2,C3と測定点三軸コイルc1,c2,c3を置き、信号源三軸コイルC1,C2,C3に電流Iを流し、測定点三軸コイルc1,c2,c3で磁界hを測定する。そして、信号源三軸コイルC1,C2,C3の中心を空間座標原点O(0,0,0)とし、測定点三軸コイルc1,c2,c3が第一象限にあるとしたときの測定点三軸コイルc1,c2,c3の位置P(x,y,z)を求める。このとき、位置P(x,y,z)が原因物理量であり、磁界hが結果物理量である。但し、磁界hの数値としては、データ処理を容易にするため、一般に「A/m」で表されている数値と比例関係にある別の数値を用いることとする。   As shown in FIG. 11, signal source triaxial coils C1, C2, and C3 and measurement point triaxial coils c1, c2, and c3 are placed in a three-dimensional space, and current I is passed through the signal source triaxial coils C1, C2, and C3. The magnetic field h is measured by the measurement point triaxial coils c1, c2, and c3. Then, the center of the signal source triaxial coils C1, C2, C3 is the spatial coordinate origin O (0, 0, 0), and the measurement point when the measurement point triaxial coils c1, c2, c3 are in the first quadrant. The position P (x, y, z) of the triaxial coils c1, c2, c3 is obtained. At this time, the position P (x, y, z) is the cause physical quantity, and the magnetic field h is the resulting physical quantity. However, as the numerical value of the magnetic field h, in order to facilitate data processing, another numerical value that is generally proportional to the numerical value represented by “A / m” is used.

信号源コイルC1にのみ電流Iを流したときに測定点三軸コイルc1,c2,c3で測定される磁界をh11,h21,h31とし、信号源コイルC2にのみ電流Iを流したときに測定点三軸コイルc1,c2,c3で測定される磁界をh12,h22,h32とし、信号源コイルC3にのみ電流Iを流したときに測定点三軸コイルc1,c2,c3で測定される磁界をh13,h23,h33とするとき、順方向関数h11=f11(x,y,z),h21=f21(x,y,z),h31=f31(x,y,z),h12=f12(x,y,z),h22=f22(x,y,z),h32=f32(x,y,z),h13=f13(x,y,z),h23=f23(x,y,z),h33=f33(x,y,z)は例えば次式を用いる。但し、aは、信号源三軸コイルC1,C2,C3の半径である。

Figure 2010071654
Figure 2010071654
Figure 2010071654
Measured when the current I flows through only the signal source coil C1, the magnetic fields measured by the measurement point triaxial coils c1, c2, and c3 are h11, h21, and h31, and the current I flows only through the signal source coil C2. The magnetic fields measured by the point triaxial coils c1, c2, and c3 are h12, h22, and h32, and when the current I is passed only through the signal source coil C3, the magnetic fields measured by the measurement point triaxial coils c1, c2, and c3. Where h13, h23, and h33 are forward functions h11 = f11 (x, y, z), h21 = f21 (x, y, z), h31 = f31 (x, y, z), h12 = f12 ( x, y, z), h22 = f22 (x, y, z), h32 = f32 (x, y, z), h13 = f13 (x, y, z), h23 = f23 (x, y, z) , H33 = f33 (x, y, z) uses, for example, the following equation. Here, a is the radius of the signal source triaxial coils C1, C2, C3.
Figure 2010071654
Figure 2010071654
Figure 2010071654

上式の根拠は、新楽和夫,田辺行人,権平健一郎編「物理学公式」共立出版、昭和45年、初版、第94頁にある。   The grounds for the above formula are in Kazuo Shinraku, Yukito Tanabe, Kenichiro Gonpeira, “Physics Official” Kyoritsu Shuppan, 1965, first edition, page 94.

また、近似逆方向関数は例えば次式を用いる。

Figure 2010071654
For example, the approximate backward function uses the following equation.
Figure 2010071654

上式の根拠は、桂井誠著「基礎電磁気学」オーム社、平成12年、第1版、第111頁にある。   The basis of the above formula is Makoto Katsui, “Basic Electromagnetics” Ohmsha, 2000, 1st edition, page 111.

本発明の原因物理量推定方法および装置は、例えば空間座標の原点に置いた磁気発生源から発生する磁気強度を検出コイルで結果物理量として計測し、その結果物理量を基に検出コイルの空間位置を推定するのに利用できる。また、CTやMRIなど一般に逆問題と呼ばれている問題を解いている装置に特に有効利用できる。   The causal physical quantity estimation method and apparatus of the present invention measures, for example, the magnetic intensity generated from a magnetic source placed at the origin of a spatial coordinate as a result physical quantity by a detection coil, and estimates the spatial position of the detection coil based on the result. Can be used to do. Further, it can be effectively used particularly for an apparatus that solves a problem generally called an inverse problem such as CT and MRI.

実施例1に係る原因物理量推定装置の構成説明図である。1 is a configuration explanatory diagram of a cause physical quantity estimation device according to Embodiment 1. FIG. 実施例1に係る原因物理量推定処理を示すフロー図である。It is a flowchart which shows the cause physical quantity estimation process which concerns on Example 1. FIG. 原因物理量xと結果物理量yと第0推定原因物理量x’と第0計算結果物理量y’と第0計算原因物理量x”の関係を示す模式図である。FIG. 6 is a schematic diagram illustrating a relationship among a cause physical quantity x, a result physical quantity y, a zeroth estimated cause physical quantity x ′, a zeroth calculation result physical quantity y ′, and a zeroth calculation cause physical quantity x ″. 原因物理量xと第0推定原因物理量x’と第0計算原因物理量x”と第1推定原因物理量x1の関係を示す模式図である。FIG. 6 is a schematic diagram illustrating a relationship among a cause physical quantity x, a zeroth estimated cause physical quantity x ′, a zeroth calculated cause physical quantity x ″, and a first estimated cause physical quantity x 1 . 原因物理量xと結果物理量yと第0推定原因物理量x’と第1推定原因物理量x1と第1計算結果物理量y1と第1計算原因物理量x1’の関係を示す模式図である。FIG. 6 is a schematic diagram illustrating a relationship among a cause physical quantity x, a result physical quantity y, a zeroth estimated cause physical quantity x ′, a first estimated cause physical quantity x 1 , a first calculation result physical quantity y 1, and a first calculation cause physical quantity x 1 ′. 原因物理量xと結果物理量yと第(i−1)推定原因物理量xi-1と第(i−1)計算結果物理量yi-1と第(i−1)計算原因物理量xi-1’の関係を示す模式図である。Cause physical quantity x, result physical quantity y, (i-1) -th estimated cause physical quantity x i-1 , (i-1) calculation result physical quantity y i-1, and (i-1) calculation cause physical quantity x i-1 ' It is a schematic diagram which shows the relationship. 原因物理量xと第0推定原因物理量x’と第(i−1)計算原因物理量xi-1’と第i推定原因物理量xiの関係を示す模式図である。Cause physical quantity x and the 0 probable cause physical quantity x 'and the (i-1) calculated cause physical quantity x i-1' and is a schematic diagram showing a relationship between the i-th estimated cause physical quantity x i. 原因物理量xと第0推定原因物理量x’と第1計算原因物理量x1’と第2推定原因物理量x2の関係を示す模式図である。FIG. 6 is a schematic diagram showing a relationship among a cause physical quantity x, a zeroth estimated cause physical quantity x ′, a first calculation cause physical quantity x 1 ′, and a second estimated cause physical quantity x 2 . 原因物理量xと結果物理量yと第i推定原因物理量xiと第i計算結果物理量yiと第i計算原因物理量xi’の関係を示す模式図である。FIG. 10 is a schematic diagram showing a relationship among a cause physical quantity x, a result physical quantity y, an i th estimated cause physical quantity x i , an i th calculation result physical quantity y i, and an i th calculation cause physical quantity x i ′. 原因物理量xと第0推定原因物理量x’と第2計算原因物理量x2’と第3推定原因物理量x3の関係を示す模式図である。Cause is a schematic diagram showing the relationship between the physical quantity x and the 0 probable cause physical quantity x 'and the second calculation causes physical quantity x 2' and the third probable cause physical quantity x 3. 実施例2にかかる信号源三軸コイルと測定点三軸コイルの配置を示す模式図である。It is a schematic diagram which shows arrangement | positioning of the signal source triaxial coil concerning Example 2, and a measurement point triaxial coil.

符号の説明Explanation of symbols

1 コンピュータ
10 原因物理量推定装置
1 Computer 10 Cause physical quantity estimation device

Claims (6)

原因物理量xに依存する結果物理量yを与える順方向関数y=f(x)および結果物理量yを基に近似原因物理量x’を推定する近似逆方向関数x’=g’(y)が既知であるとき、測定により得られた結果物理量yに対して
x’=g’(y)
1=2・x’−g’(f(x’))
により第1推定原因物理量x1を求めることを特徴とする原因物理量推定方法。
A forward function y = f (x) that gives a result physical quantity y depending on the cause physical quantity x and an approximate backward function x ′ = g ′ (y) that estimates an approximate cause physical quantity x ′ based on the result physical quantity y are known. When there is a physical quantity y obtained by measurement, x ′ = g ′ (y)
x 1 = 2 · x′−g ′ (f (x ′))
A causal physical quantity estimation method characterized in that the first estimated causal physical quantity x 1 is obtained by:
原因物理量xに依存する結果物理量yを与える順方向関数y=f(x)および結果物理量yを基に近似原因物理量x’を推定する近似逆方向関数x’=g’(y)が既知であり、iを2以上の整数とするとき、測定により得られた結果物理量yに対して
x’=g’(y)
1=2・x’−g’(f(x’))
i=x’+xi-1−g’(f(xi-1))
により第i推定原因物理量xiを求めることを特徴とする原因物理量推定方法。
A forward function y = f (x) that gives a result physical quantity y depending on the cause physical quantity x and an approximate backward function x ′ = g ′ (y) that estimates an approximate cause physical quantity x ′ based on the result physical quantity y are known. Yes, when i is an integer of 2 or more, the result physical quantity y obtained by measurement is x ′ = g ′ (y)
x 1 = 2 · x′−g ′ (f (x ′))
x i = x ′ + x i−1 −g ′ (f (x i−1 ))
A causal physical quantity estimation method characterized in that the i-th estimated causal physical quantity x i is obtained by:
請求項2に記載の原因物理量推定方法において、予め設定した誤差閾値をEとするとき、
|x’−g’(f(x’))|≦Eならx’だけを求め、
|x’−g’(f(x’))|>Eかつ|x’−g’(f(x1))|≦Eならx1まで求め、
|x’−g’(f(xi-1))|>Eかつ|x’−g’(f(xi))|≦Eならxiまで求めることを特徴とする原因物理量推定方法。
In the causal physical quantity estimation method according to claim 2, when the preset error threshold is E,
If | x′−g ′ (f (x ′)) | ≦ E, only x ′ is obtained.
| X'-g '(f ( x')) |> E and | x'-g '(f ( x 1)) | determined to if ≦ E x 1,
A cause physical quantity estimation method characterized by obtaining up to x i if | x′−g ′ (f (x i−1 )) |> E and | x′−g ′ (f (x i )) | ≦ E.
原因物理量xに依存する結果物理量yを与える順方向関数y=f(x)および結果物理量yを基に近似原因物理量x’を推定する近似逆方向関数x’=g’(y)が既知であるとき、測定により得られた結果物理量yに対して
x’=g’(y)
1=2・x’−g’(f(x’))
により第1推定原因物理量x1を演算し出力する第1推定原因物理量演算手段を具備したことを特徴とする原因物理量推定装置。
A forward function y = f (x) that gives a result physical quantity y depending on the cause physical quantity x and an approximate backward function x ′ = g ′ (y) that estimates an approximate cause physical quantity x ′ based on the result physical quantity y are known. When there is a physical quantity y obtained by measurement, x ′ = g ′ (y)
x 1 = 2 · x′−g ′ (f (x ′))
Cause physical quantity estimating apparatus characterized by comprising a first probable cause physical quantity calculation means for first calculates the probable cause physical quantity x 1 output by.
原因物理量xに依存する結果物理量yを与える順方向関数y=f(x)および結果物理量yを基に近似原因物理量x’を推定する近似逆方向関数x’=g’(y)が既知であり、iを2以上の整数とするとき、測定により得られた結果物理量yに対して
x’=g’(y)
1=2・x’−g’(f(x’))
i=x’+xi-1−g’(f(xi-1))
により第i推定原因物理量xiを演算し出力する第i推定原因物理量演算手段を具備したことを特徴とする原因物理量推定装置。
A forward function y = f (x) that gives a result physical quantity y depending on the cause physical quantity x and an approximate backward function x ′ = g ′ (y) that estimates an approximate cause physical quantity x ′ based on the result physical quantity y are known. Yes, when i is an integer of 2 or more, the result physical quantity y obtained by measurement is x ′ = g ′ (y)
x 1 = 2 · x′−g ′ (f (x ′))
x i = x ′ + x i−1 −g ′ (f (x i−1 ))
Cause physical quantity estimating apparatus characterized by comprising a first i probable cause physical quantity calculation means for calculating and outputting a second i probable cause physical quantity x i by.
原因物理量xに依存する結果物理量yを与える順方向関数y=f(x)および結果物理量yを基に近似原因物理量x’を推定する近似逆方向関数x’=g’(y)が既知であり、iを2以上の整数とするとき、測定により得られた結果物理量yに対して
x’=g’(y)
により第0推定原因物理量x’を演算し出力する第0推定原因物理量演算手段と、
1=2・x’−g’(f(x’))
により第1推定原因物理量x1を演算し出力する第1推定原因物理量演算手段と、
i=x’+xi-1−g’(f(xi-1))
により第i推定原因物理量xiを演算し出力する第i推定原因物理量演算手段と、
予め設定した誤差閾値をEとするとき、
|x’−g’(f(x’))|≦Eなら前記第0推定原因物理量演算手段だけを作動させ、
|x’−g’(f(x’))|>Eかつ|x’−g’(f(x1))|≦Eなら前記第1推定原因物理量演算手段までを作動させ、
|x’−g’(f(xi-1))|>Eかつ|x’−g’(f(xi))|≦Eなら前記第i推定原因物理量演算手段までを作動させる演算制御手段とを具備したことを特徴とする原因物理量推定装置。
A forward function y = f (x) that gives a result physical quantity y depending on the cause physical quantity x and an approximate backward function x ′ = g ′ (y) that estimates an approximate cause physical quantity x ′ based on the result physical quantity y are known. Yes, when i is an integer of 2 or more, the result physical quantity y obtained by measurement is x ′ = g ′ (y)
A zeroth estimated cause physical quantity calculating means for calculating and outputting the zeroth estimated cause physical quantity x ′,
x 1 = 2 · x′−g ′ (f (x ′))
A first estimated cause physical quantity calculating means for calculating and outputting a first estimated cause physical quantity x 1 by:
x i = x ′ + x i−1 −g ′ (f (x i−1 ))
And the i probable cause physical quantity calculation means for the i calculates the probable cause physical quantity x i output by,
When the preset error threshold is E,
If | x′−g ′ (f (x ′)) | ≦ E, only the 0th presumed cause physical quantity calculating means is operated,
If | x′−g ′ (f (x ′)) |> E and | x′−g ′ (f (x 1 )) | ≦ E, the first estimated cause physical quantity calculating means is operated.
If | x′−g ′ (f (x i−1 )) |> E and | x′−g ′ (f (x i )) | ≦ E, calculation control for operating up to the i th estimated cause physical quantity calculation means And a causal physical quantity estimation device.
JP2008235943A 2008-09-16 2008-09-16 Cause physical quantity estimation method and apparatus Active JP5467747B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008235943A JP5467747B2 (en) 2008-09-16 2008-09-16 Cause physical quantity estimation method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008235943A JP5467747B2 (en) 2008-09-16 2008-09-16 Cause physical quantity estimation method and apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013078237A Division JP2013130592A (en) 2013-04-04 2013-04-04 Causal physical quantity estimating method and device

Publications (2)

Publication Number Publication Date
JP2010071654A true JP2010071654A (en) 2010-04-02
JP5467747B2 JP5467747B2 (en) 2014-04-09

Family

ID=42203610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008235943A Active JP5467747B2 (en) 2008-09-16 2008-09-16 Cause physical quantity estimation method and apparatus

Country Status (1)

Country Link
JP (1) JP5467747B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212472A (en) * 1988-06-30 1990-01-17 Yokogawa Medical Syst Ltd Method and device for reconstituting picture having double-magnification function
JPH1019505A (en) * 1996-03-05 1998-01-23 He Holdings Inc Dba Hughes Electron Method and device for determining position of magnetic dipole which use spatial and temporal processing of magnetometer data
JPH11325810A (en) * 1998-03-18 1999-11-26 Olympus Optical Co Ltd Position presuming equipment
JP2000121579A (en) * 1998-10-13 2000-04-28 Nagoya Denki Kogyo Kk Method and apparatus for x-ray image pickup as well as medium with recorded x-ray image pickup control program
JP2002511571A (en) * 1998-04-14 2002-04-16 ハネウエル・インコーポレーテッド Position detecting device having correction function for non-linear region of sensor
JP2008534055A (en) * 2005-03-24 2008-08-28 オプタジア メディカル リミテッド Method and system for characterization of knee joint morphology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0212472A (en) * 1988-06-30 1990-01-17 Yokogawa Medical Syst Ltd Method and device for reconstituting picture having double-magnification function
JPH1019505A (en) * 1996-03-05 1998-01-23 He Holdings Inc Dba Hughes Electron Method and device for determining position of magnetic dipole which use spatial and temporal processing of magnetometer data
JPH11325810A (en) * 1998-03-18 1999-11-26 Olympus Optical Co Ltd Position presuming equipment
JP2002511571A (en) * 1998-04-14 2002-04-16 ハネウエル・インコーポレーテッド Position detecting device having correction function for non-linear region of sensor
JP2000121579A (en) * 1998-10-13 2000-04-28 Nagoya Denki Kogyo Kk Method and apparatus for x-ray image pickup as well as medium with recorded x-ray image pickup control program
JP2008534055A (en) * 2005-03-24 2008-08-28 オプタジア メディカル リミテッド Method and system for characterization of knee joint morphology

Also Published As

Publication number Publication date
JP5467747B2 (en) 2014-04-09

Similar Documents

Publication Publication Date Title
Sommer et al. Systematic approach to the modelling of measurements for uncertainty evaluation
EP1876464A2 (en) Magnetic resonance imaging apparatus, magnetic resonance imaging method and image processing apparatus
JP6763892B2 (en) Phase-corrected Dixon magnetic resonance imaging
JP5668224B2 (en) Current sensor
EP3324180B1 (en) Defect measurement method and testing probe
KR101152095B1 (en) Magnetic data processing device, method, and computer readable storage medium
US20070280520A1 (en) Magnetic resonance imaging apparatus and image correction estimating method
JP2016170059A (en) Linear member diagnostic system and diagnostic method
JP2019027873A (en) Offset estimation device and method, magnetic sensor correcting device, and current sensor
CN112946358A (en) Temperature drift error compensation unit and method for measuring current
Reischauer et al. Image denoising substantially improves accuracy and precision of intravoxel incoherent motion parameter estimates
Liu et al. 3D phase unwrapping using global expected phase as a reference: application to MRI global shimming
JP2013130592A (en) Causal physical quantity estimating method and device
JP5467747B2 (en) Cause physical quantity estimation method and apparatus
JP6897106B2 (en) Signal correction method for current sensor and current sensor
US20210072016A1 (en) Apparatus and method for ascertaining a rotation angle
US20150316637A1 (en) Magnetic sensor
Abdallh et al. Selection of measurement modality for magnetic material characterization of an electromagnetic device using stochastic uncertainty analysis
US11112474B2 (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method
Abdallh et al. Impact reduction of the uncertain geometrical parameters on magnetic material identification of an EI electromagnetic inductor using an adaptive inverse algorithm
Dewal et al. Volume of interest‐based fourier transform method for calculation of static magnetic field maps from susceptibility distributions
Hutton et al. Modelling temporal stability of EPI time series using magnitude images acquired with multi-channel receiver coils
CN111830450A (en) Method for determining and eliminating time delay between radio frequency pulse and selective layer gradient in magnetic resonance equipment
Zhao et al. An adaptive mesh method in transient finite element analysis of magnetic field using a novel error estimator
KR101506641B1 (en) Method for correcting magnetic field of magnetic resonance imaging device and magnetic resonance imaging device employing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140128

R150 Certificate of patent or registration of utility model

Ref document number: 5467747

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250