JP2010071272A - Fluid machine in which flow stabilizer is fitted in tunnel shape in coaxial groove and edge and at end of blade of fluid machine in consideration of height, width, and resistance since blade of fluid machine makes parallel flow area and provides entrained flow on outer periphery and which is subject to total wedge treatment - Google Patents

Fluid machine in which flow stabilizer is fitted in tunnel shape in coaxial groove and edge and at end of blade of fluid machine in consideration of height, width, and resistance since blade of fluid machine makes parallel flow area and provides entrained flow on outer periphery and which is subject to total wedge treatment Download PDF

Info

Publication number
JP2010071272A
JP2010071272A JP2008266868A JP2008266868A JP2010071272A JP 2010071272 A JP2010071272 A JP 2010071272A JP 2008266868 A JP2008266868 A JP 2008266868A JP 2008266868 A JP2008266868 A JP 2008266868A JP 2010071272 A JP2010071272 A JP 2010071272A
Authority
JP
Japan
Prior art keywords
blade
fluid machine
flow
fluid
edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008266868A
Other languages
Japanese (ja)
Inventor
Nobuhiko Naito
宣彦 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2008266868A priority Critical patent/JP2010071272A/en
Publication of JP2010071272A publication Critical patent/JP2010071272A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a blade for reducing resistance by a total wedge treatment by providing a coaxial groove and an edge to the blade, identifying flow areas, and fitting a flow stabilizer in a tunnel shape into the outermost periphery of the blade as a result of the analysis of the flow of a fluid and the changes of volume and density under the conditions in which the blade of the fluid machine does not have a mechanism for axially moving the fluid, the absence of the mechanism generates a centrifugal force, and a defect such as cavitation is left unrepaired. <P>SOLUTION: This fluid machine is adaptable to both an improvement measure in which a conventional processing method is used and a method in which the entire blade is made by assembling novel plate parts. In any case, the measure against cavitation is taken by providing the mechanism for causing an axial flow to the blade. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

現在の羽根、プロペラ、ブレード、インペラーは全て自由曲面だけでなりたっている為、軸方向へ流体に圧力を掛ける機構が欠落している。目標とする回転力、圧縮力は、軸の回転に依る羽根のピッチ分の軸方向分力を伝達するものであり、回転力其の物を取り出す機構が無い。軸方向へ力を伝達する機構を設けるには、羽根に伝達機構を設ける事が最良な方法である。  Since all current blades, propellers, blades, and impellers are composed of free-form surfaces, a mechanism for applying pressure to the fluid in the axial direction is missing. The target rotational force and compressive force transmit the axial component force corresponding to the pitch of the blades depending on the rotation of the shaft, and there is no mechanism for extracting the rotational force itself. In order to provide a mechanism for transmitting force in the axial direction, it is best to provide a transmission mechanism for the blade.

羽根を改善する方法として、圧縮方向、回転を得る方向、にどの様な改善が良いのか,裏付けと成る理論、研究、が無いので、船舶のプロペラは1800年以来形状が変わっていない。或はタービン ブレードが60年余り同じ形状の儘今日に至っている。然し、現状の羽根は攪拌機械に使用されている羽根の形状と基本的に同様な形状であり、羽根を改善する理論の欠落は羽根の欠陥改善不能の原因でもある。  The ship propeller has not changed in shape since 1800 because there is no supporting theory or research on how to improve the direction of compression or the direction of rotation to improve the blades. Or turbine blades have been in the same shape for over 60 years. However, the current blades have basically the same shape as the blades used in the agitating machine, and the lack of theory for improving the blades is the cause of the failure to improve the blade defects.

圧縮力を与える機械、或は回転力を得る機械の羽根が攪拌機の機械の羽根と基本的に大差が無い事は技術的に大きな問題である。流体の動き機械の動き双方の関連を追求する分析をしなければならない。  It is technically a big problem that the blades of the machine that applies the compressive force or the machine that obtains the rotational force are basically not different from the blades of the agitator machine. Analyzes must be made to explore the relationship between fluid movement and machine movement.

羽根の回転に従って流体も旋回運動をする。当然軸方向の移動も有る。其の旋回方向と軸方向の流れの中間で旋回したり、軸方向へ移動したりする不安定部分も有る。
機械の回転‥‥‥‥(1)羽の回転に依る旋回運動をする部分。
(2)軸方向に移動をする部分。
(3)旋回、軸方向、双方に動く不安定部分。
流体は(1)、(2)、(3)の3通りの運動をする。(1)の運動は、羽根との 摩擦抵抗と羽根のピッチ分の圧力に拠る流体の移動、其の結果の流体の運動である。
(3)の部分は(1)に移動する時、体積積変化をする。其の変化する速度に依り密度の変化を起す状態になると、密度変化は減圧状態に変化して行く。
密度の変化は流体の定圧時の体積が示す力を出す事が出来ない。減圧の傾向を示す。
此の変化する速度で軸方向へ移動する速度の差に依り、速度の早い方へ流体が移動し(1)の方向へ移動する。(3)は更に減圧傾向から負圧傾向を帯びる。
(3)が確実に(1)に従い、同時に(2)も(1)へ移動する位置がある。遠心力が一番強い位置。羽根の先端部分。此処では完全に負圧の状態になる。軸方向の力は存在しない。
負圧状態に過流の発生を伴い、其の過流部分に周囲から伴走流が逆流となって流れ込む為、出力損となる。従って、遠心力の発生と(3)を分析、遠心力の問題が負圧問題で分析の対象になる。
羽根先端部に周囲の流体が逆流となり流入する現象は、明らかに出力損となるが、キャビテーション等の原因でもある。此の点の分析が欠落している。
The fluid also swirls as the blades rotate. Of course, there is also axial movement. There is also an unstable part that turns in the middle of the flow in the turning direction and the axial direction or moves in the axial direction.
Rotation of the machine (1) The part that makes a swivel motion depending on the rotation of the wings.
(2) A portion that moves in the axial direction.
(3) Unstable parts that move both in the swivel and axial directions.
The fluid moves in three ways: (1), (2), and (3). The movement of (1) is the movement of the fluid due to the frictional resistance with the blade and the pressure corresponding to the pitch of the blade, and the resulting movement of the fluid.
Part (3) undergoes a volume product change when moving to (1). When the density changes due to the changing speed, the density changes to a reduced pressure state.
The change in density cannot produce the force indicated by the volume of the fluid at constant pressure. The tendency of decompression is shown.
Depending on the difference in the speed of moving in the axial direction at this changing speed, the fluid moves toward the higher speed and moves in the direction of (1). (3) further has a negative pressure tendency from a reduced pressure tendency.
There is a position where (3) surely follows (1) and (2) also moves to (1) at the same time. The position with the strongest centrifugal force. The tip of the blade. Here, it is completely in a negative pressure state. There is no axial force.
The generation of overflow occurs in the negative pressure state, and the accompanying flow flows back into the overflow portion from the surroundings, resulting in an output loss. Therefore, the generation of centrifugal force and (3) are analyzed, and the problem of centrifugal force is the subject of analysis as a negative pressure problem.
The phenomenon in which the surrounding fluid flows into the blade tip as a reverse flow obviously causes an output loss, but also causes cavitation and the like. Analysis of this point is missing.

業界誌,或は各メーカーのカタログ、会社案内等羽根に関して改善する動きは無い様で製品には変化が起きない様である。
船舶のプロペラト同じ様な形をした製品は同じ様にエネルギー損失を伴う。
A、改善方法(1)軸同心の溝、エッジを設け、羽根の流域を明確にする。
軸中心部分は流域から除外する為のエッジを設ける。平行な流れをつ くり、軸心部で流れが交差しない事。
(2)羽根先端部に軸同心円弧流量安定板を設け、外周部で伴走流を伴う様 に、安定板は軽量、靭性、抵抗を考慮したトンネル状に設置する。
(3)全形楔形処理。
B、工法内容(1)鋳物加工の場合。
従来のフライス加工工程で、出来るだけ溝を利用する。図1に示す。 軸流機械全てに共通である。
(2)羽根、溝、を板物部品で組立工法とする場合。図2に示す。

Figure 2010071272
There seems to be no improvement in the industry magazines or catalogs of each manufacturer, company information, etc., and there seems to be no change in the product.
A product with the same shape as a ship's propeller has the same energy loss.
A, Improvement method (1) A concentric groove and edge are provided to clarify the basin of the blade.
The center part of the shaft is provided with an edge for exclusion from the basin. Create parallel flow and do not cross the flow at the axial center.
(2) An axial concentric arc flow stabilizer is provided at the tip of the blade, and the stabilizer is installed in the form of a tunnel considering lightness, toughness, and resistance so that a follower flow is generated at the outer periphery.
(3) Full wedge processing.
B, Method contents (1) In the case of casting.
Use grooves as much as possible in the conventional milling process. As shown in FIG. Common to all axial flow machines.
(2) When blades and grooves are assembled with plate parts. As shown in FIG.
Figure 2010071272

改善した羽根の共通項目。
(1)羽根の捻り強度が高くなる。
(2)羽根先端部の巾を広くする事ができる。
(3)軸心部分の流域を羽根の流域外に除外できる。
(4)過流の逆流は無い。軸に平行な流入を伴い軸並行の流 れを伴う。
(5)上記(2)の工法は手仕上げ工数大幅削減となる。
Common items for improved feathers.
(1) The torsional strength of the blade is increased.
(2) The blade tip can be widened.
(3) The axial basin can be excluded from the blade basin.
(4) There is no reverse flow. Along with the inflow parallel to the axis, the flow is parallel to the axis.
(5) The method (2) described above significantly reduces the number of hand finishing steps.

流体機械の欠陥、キャビテーション等の原因は羽根にある。羽根の形状を改善すれば、流体を軸方向に流す機構になる。又、其の機構に依り羽根の平行流域、外周部の伴走流入が遠心力に依るキャビテーション等の発生を防ぐという課題。  The cause of fluid machine defects, cavitation, etc. lies in the blades. If the shape of the blade is improved, a mechanism for flowing fluid in the axial direction is obtained. Moreover, the subject that the parallel flow area | region of a blade | wing and the accompanying inflow of an outer peripheral part prevent generation | occurrence | production of the cavitation etc. which depend on a centrifugal force according to the mechanism.

Figure 2010071272
最外周部安定板流入量目標値=∫(最外周長さ×トンネル高さ×トンネル巾)
遠心力概算参考トルク計算
機械回転力;F、遠心力;F 圧縮力;F、羽根の半径;R,
半径方向の位置;r、rの位置の羽根巾;d、Rの位置の羽根巾;D
=F×R>F=F×D‥‥‥(圧縮力、回転力、無い状態)
=F×r<F=F×d‥‥‥(遠心力の流れ混在の状態)
解決する事は遠心力流れ混在状態を無くす事。
Figure 2010071272
Outermost circumference stabilizing plate inflow target value = ∫ Y (Outermost circumference length x Tunnel height Y x Tunnel width)
Centrifugal force approximate reference torque calculation Machine rotational force; F, centrifugal force; F 1 compression force; F 2 , blade radius; R,
Radial position; blade width at positions r and r; blade width at positions d and R; D
F 1 = F × R> F 2 = F × D (compressive force, rotational force, no state)
F 1 = F × r <F 2 = F × d (state of mixed flow of centrifugal force)
The solution is to eliminate the mixed flow of centrifugal force.

鋳物加工で対策する場合、板物で部品組立工法の場合双方とも対応可能。又、羽根を小型化する事ができる  When measures are taken in casting, both plate parts and parts assembly methods can be used. Also, the blades can be downsized

羽根の最外周部の出力が効果を齎す事が出来る。
出力効果、エネルギー効果、騒音効果、製品寿命効果が高まる。
板物部品組立工法の場合は、手仕上げ工数を大幅削減する。
The output at the outermost periphery of the blade can be effective.
Output effect, energy effect, noise effect, product life effect are enhanced.
In the case of the plate part assembly method, the number of hand finishing steps will be greatly reduced.

ローソクに拠る火の消火エスト。 比較テスト。
煙りテスト…外周部の過流の流れ、比較テスト。
(換気扇を改造、テスト品とした。)
Fire extinguishing est based on candles. Comparative test.
Smoke test: Overflow flow around the outer periphery, comparative test.
(The ventilation fan was modified and used as a test product.)

‥‥‥‥鋳物加工品対策図。及び断面形状。···························································································. And cross-sectional shape. ‥‥‥‥板物部品組み立て工法図。及び断面形状。……………… Drawings for assembling plate parts. And cross-sectional shape.

符号の説明Explanation of symbols

1 ・・・・・羽根、プロペラ、ブレード、インペラ。
2 ・・・・・溝。
3 ・・・・・エッジ、又は流域導入板。
4 ・・・・・最外周部安定板。
5 ・・・・・楔形処理部分。
6 ・・・・・軸、又は、軸心部分。
A−A・・・・A−A断面。
B−B‥‥‥‥B−B断面。
1 ...... Vane, propeller, blade, impeller.
2 ... groove.
3 ... Edge or basin introduction plate.
4 ・ ・ ・ ・ ・ Outermost peripheral stabilizer.
5 ... Wedge shaped processing part.
6 ・ ・ ・ ・ ・ Shaft or axial center part.
AA ... A-A cross section.
BB ... BB cross section.

Claims (1)

流体機械の羽根、プロペラ、ブレード、インペラーの曲面と、流体との相関関係を分析追求し、羽根に軸同心円弧状の溝、及びエッジ、最外周部に軽量、靭性に富む、トンネル状の流量安定板を設け、全形楔形処理をし、流体が軸軸心部で流れが交差しない並行流、最外周部で、周囲からの伴走流を得られる様に改良した、軸流機械。  Analyzes the correlation between the curved surfaces of fluid blades, propellers, blades, and impellers, and fluids. Shafts are concentric arc-shaped grooves and edges, and light weight and toughness at the outermost periphery. Tunnel-shaped flow stability. An axial flow machine that has a plate and is processed in the form of a wedge, and has been improved so that fluid can be obtained in parallel flow where the flow does not intersect at the axial center of the shaft, and the follower flow from the periphery at the outermost peripheral portion.
JP2008266868A 2008-09-17 2008-09-17 Fluid machine in which flow stabilizer is fitted in tunnel shape in coaxial groove and edge and at end of blade of fluid machine in consideration of height, width, and resistance since blade of fluid machine makes parallel flow area and provides entrained flow on outer periphery and which is subject to total wedge treatment Pending JP2010071272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008266868A JP2010071272A (en) 2008-09-17 2008-09-17 Fluid machine in which flow stabilizer is fitted in tunnel shape in coaxial groove and edge and at end of blade of fluid machine in consideration of height, width, and resistance since blade of fluid machine makes parallel flow area and provides entrained flow on outer periphery and which is subject to total wedge treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008266868A JP2010071272A (en) 2008-09-17 2008-09-17 Fluid machine in which flow stabilizer is fitted in tunnel shape in coaxial groove and edge and at end of blade of fluid machine in consideration of height, width, and resistance since blade of fluid machine makes parallel flow area and provides entrained flow on outer periphery and which is subject to total wedge treatment

Publications (1)

Publication Number Publication Date
JP2010071272A true JP2010071272A (en) 2010-04-02

Family

ID=42203278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008266868A Pending JP2010071272A (en) 2008-09-17 2008-09-17 Fluid machine in which flow stabilizer is fitted in tunnel shape in coaxial groove and edge and at end of blade of fluid machine in consideration of height, width, and resistance since blade of fluid machine makes parallel flow area and provides entrained flow on outer periphery and which is subject to total wedge treatment

Country Status (1)

Country Link
JP (1) JP2010071272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108946848A (en) * 2018-09-06 2018-12-07 南通富莱克流体装备有限公司 Thermal energy pump feed system
CN110107529A (en) * 2019-05-13 2019-08-09 西华大学 A kind of axial-flow pump impeller and its axial-flow pump

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108946848A (en) * 2018-09-06 2018-12-07 南通富莱克流体装备有限公司 Thermal energy pump feed system
CN108946848B (en) * 2018-09-06 2024-05-24 南通富莱克流体装备有限公司 Water supply system of heat energy pump
CN110107529A (en) * 2019-05-13 2019-08-09 西华大学 A kind of axial-flow pump impeller and its axial-flow pump

Similar Documents

Publication Publication Date Title
JP5770705B2 (en) Propeller device especially for ships
US20120093660A1 (en) Blade Orientation of an Impeller or Propeller
US9709059B2 (en) Cross-flow wave making pump
KR101521904B1 (en) Axial flow pump
JP2023053982A (en) Marine ducted propeller jet propulsion system
JP2016061241A5 (en)
JP2010071272A (en) Fluid machine in which flow stabilizer is fitted in tunnel shape in coaxial groove and edge and at end of blade of fluid machine in consideration of height, width, and resistance since blade of fluid machine makes parallel flow area and provides entrained flow on outer periphery and which is subject to total wedge treatment
JP2012052443A (en) Propeller fan
JP2010001874A (en) Turbine impeller, radial turbine, and supercharger
KR101984022B1 (en) Compact and simplifying design method of diffuser for mixed flow pump, diffuser designed by the method and mixed flow pump having the same
CN105443433A (en) Design method for cavitation-resistance axial flow pump impeller
CN105435705A (en) Axial-flow agitating blade provided with blade tip winglets
CN108698678A (en) Horizontal axis rotor and the boat for having horizontal axis rotor
JP6330738B2 (en) Centrifugal blower and air conditioner using the same
TW201339052A (en) Asymmetrical fin device for ship
CN111677689A (en) Design method of vibration and noise reduction mixed flow pump or axial flow pump
CN212508963U (en) Mixed flow pump or axial flow pump
JP4183612B2 (en) Axial flow pump
JP2008133766A (en) Turbine impeller
CN104847417A (en) Plane linear integral blade
US7445532B2 (en) Safe efficient outboard motor assembly
JP2015522124A (en) Solid vortex pump
WO2013115658A1 (en) Propeller
RU2367823C1 (en) Birotary screw-type blower
WO2020213443A1 (en) Fluid resistance reduction device