JP2010071148A - Exhaust gas purification system for engine in marine vessel - Google Patents

Exhaust gas purification system for engine in marine vessel Download PDF

Info

Publication number
JP2010071148A
JP2010071148A JP2008238193A JP2008238193A JP2010071148A JP 2010071148 A JP2010071148 A JP 2010071148A JP 2008238193 A JP2008238193 A JP 2008238193A JP 2008238193 A JP2008238193 A JP 2008238193A JP 2010071148 A JP2010071148 A JP 2010071148A
Authority
JP
Japan
Prior art keywords
water
engine
tank
reducing agent
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008238193A
Other languages
Japanese (ja)
Inventor
Kazutomo Kioi
和睦 鬼追
Tetsuya Yokoyama
哲也 横山
Toru Machida
徹 待田
Takeshi Inoue
剛 井上
Fumiya Koto
文哉 古東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2008238193A priority Critical patent/JP2010071148A/en
Priority to KR1020167014715A priority patent/KR20160075784A/en
Priority to CN200980136281.0A priority patent/CN102159455B/en
Priority to KR1020117006029A priority patent/KR20110058813A/en
Priority to PCT/JP2009/066132 priority patent/WO2010032739A1/en
Priority to DK14178157.5T priority patent/DK2813424T3/en
Priority to EP14178157.5A priority patent/EP2813424B1/en
Priority to EP09814584.0A priority patent/EP2332826A4/en
Publication of JP2010071148A publication Critical patent/JP2010071148A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02T10/24

Abstract

<P>PROBLEM TO BE SOLVED: To provide a NOx conversion system suitable for a marine vessel. <P>SOLUTION: An exhaust gas treatment device 9 with a built-in SCR reduction catalyst 10 is connected to the exhaust pipe 7 of an engine 1, and NOx is decomposed by spraying urea water on the exhaust pipe 7. The urea water is produced in a mixing tank 25 and adjusted to concentration in response to the output of the engine 1 in an adjusting tank 26. The marine vessel has a drinking water generator 21 for obtaining water for living use and a water tank 22. Water is fed from the water tank 22 to the mixing tank 25, and the urea water is produced by mixing water and powdered or granulated material urea in the mixing tank 25. Although the amount of the urea water used is large because the engine of the marine vessel is continuously operated with large output for a long period of time, the urea water can be produced as needed by using the drinking water generator 21 always provided in the ship. Therefore, even in the marine vessel that cannot receive the urea water on the ocean, it is possible to convert NOx while ensuring space saving and power saving. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、船舶におけるエンジン(ディーゼルエンジン)の排気ガス浄化システムに関するものである。   The present invention relates to an exhaust gas purification system for an engine (diesel engine) in a ship.

ディーゼルエンジンにおいて、排気ガスに含まれるNOx(窒素参加物)の浄化手段として、還元剤として尿素を使用したSCR触媒浄化法が一般化している。このSCR触媒浄化法では、一般に、Ti等の酸化物の担体にVやCr等の活性成分を担持させた材料よりなるハニカム構造体が使用されており、ハニカム構造体の上流側に還元剤水溶液としての尿素水を噴霧すると、尿素水が排気ガスの熱で加水分解されてアンモニアが生成し、このアンモニアが還元剤としてNOxに作用し、NOxが無害な窒素と水とに分解される。   In diesel engines, an SCR catalyst purification method using urea as a reducing agent has become common as a purification means for NOx (nitrogen inclusions) contained in exhaust gas. In this SCR catalyst purification method, in general, a honeycomb structure made of a material in which an active component such as V or Cr is supported on an oxide carrier such as Ti is used, and an aqueous reducing agent solution is provided upstream of the honeycomb structure. When the urea water is sprayed, the urea water is hydrolyzed by the heat of the exhaust gas to generate ammonia. This ammonia acts on NOx as a reducing agent, and NOx is decomposed into harmless nitrogen and water.

SCR触媒浄化法では排気ガスに尿素水を噴霧し続ける必要があり、そこで、例えばトラックのような陸上車両では、尿素水のタンクを車両に取り付けている。また、特許文献1には、尿素水を車両に供給するための一種のスタンド用設備として、タンクに水と原料尿素と投入して攪拌するようにした台車方式で給水ガン付きの尿素水製造装置が開示されている。
特開2005−324134号公報
In the SCR catalyst purification method, it is necessary to continue spraying urea water on the exhaust gas. Therefore, in a land vehicle such as a truck, a tank of urea water is attached to the vehicle. Further, in Patent Document 1, as a kind of stand equipment for supplying urea water to a vehicle, an apparatus for producing urea water with a water supply gun in a cart system in which water and raw material urea are charged into a tank and stirred. Is disclosed.
JP-A-2005-324134

さて、トラックのような陸上車両の場合は、車両に搭載する尿素水タンクは容量が小さくても、ガソリンスタンドや車庫などで補給できるので特段の問題はないと言える。しかし、他方、貨物船や遠洋漁船のようにいったん出航すると数日〜数カ月も寄港(帰港)しない中型・大型船舶の場合は、洋上にはスタンドのような補給設備がないため尿素水も船内で調達せねばならない。   Now, in the case of a land vehicle such as a truck, it can be said that there is no particular problem because the urea water tank mounted on the vehicle can be replenished at a gas station or a garage even if the capacity is small. However, on the other hand, in the case of medium-sized and large vessels that do not call (return to the port) for several days to several months once they depart, such as cargo ships and ocean fishing boats, urea water is also onboard because there is no supply facility such as a stand on the ocean. Must be procured.

船舶における尿素水の調達手段の一つとして、出航してから寄港するまでの使用量を賄える尿素水タンクを搭載することが考えられるが、船舶は、一度出航すると洋上ではエンジンを運転し続けているのが普通であるため、単位出力当たりの尿素水使用量は陸上車両に比べて格段に大きいという事情に加えて、船舶用エンジンは陸上車両用エンジンに比べて出力が遥かに大きいため、使用する尿素水の絶対量も多いという事情があり、このため、尿素水タンクは巨大なものにならざるを得ず、従って、尿素水をタンクのみで賄う方式は、近距離フェリーのようなごく一部の船舶を除いて現実性が乏しい。   As a means of procuring urea water on a ship, it is conceivable to install a urea water tank that can cover the amount of use from departure to call, but once a ship departs, it continues to operate its engine offshore. In addition to the fact that the amount of urea water used per unit output is significantly higher than that of land vehicles, the marine engine has a much higher output than the land vehicle engine. Therefore, the amount of urea water to be used is large, and therefore the urea water tank must be huge. Except for some ships, the reality is poor.

船舶における尿素水の他の調達手段の一つとして、特許文献1に記載されている尿素水製造装置をエンジンルームに配置することが考えられる。この方式は巨大なタンクが不要であるためタンクのみの方式に比べると現実性が高いが、製造された尿素水を人手によってガンで水溶液タンクに補給するのは多大の手間であり、省力化が進む現在の船舶には受け容れられ難い。   As another means for procuring urea water in a ship, it may be possible to arrange the urea water production apparatus described in Patent Document 1 in an engine room. This method does not require a huge tank, so it is more realistic than the tank-only method. However, it is a lot of labor to manually supply the aqueous urea solution to the aqueous solution tank with a gun. It is hard to be accepted by the current ship that advances.

本願発明はこのような現状に鑑み成されたものであり、船舶の特殊性を十分に考慮して現実性・実用性に優れた排気ガス浄化システムを提供せんとするものである。   The present invention has been made in view of such a current situation, and intends to provide an exhaust gas purification system excellent in practicality and practicality in consideration of the special characteristics of a ship.

本願発明は、エンジンと、海水を真水化する造水機と、前記造水機で造られた真水を溜める水タンクとが搭載されており、前記エンジンの排気管に設けた還元触媒に還元剤水溶液を噴霧することにより、前記エンジンの排気ガス中に含まれているNOxが浄化されており、更に、前記還元剤水溶液は、粉状又は顆粒状のような固体状の原料還元剤を真水に混合することで製造されている、という船舶を対象にしいてる。   The invention of the present application is equipped with an engine, a desalinator that desalinates seawater, and a water tank that stores fresh water produced by the desiccator, and a reducing agent provided in a reduction catalyst provided in an exhaust pipe of the engine The NOx contained in the exhaust gas of the engine is purified by spraying the aqueous solution. Further, the reducing agent aqueous solution converts the solid raw material reducing agent such as powder or granules into fresh water. For ships that are manufactured by mixing.

そして、請求項1の発明では、エンジンと、海水を真水化する造水機と、前記造水機で造られた真水を溜める水タンクとが搭載されており、前記エンジンの排気管に設けた還元触媒に還元剤水溶液を噴霧することにより、前記排気ガス中に含まれているNOxが浄化されており、更に、前記還元剤水溶液は、粉状又は顆粒状のような固体状の原料還元剤を真水に混合することで製造されている。   And in invention of Claim 1, the engine, the water generator which desalinates seawater, and the water tank which stores the fresh water made with the said water generator are mounted, and it provided in the exhaust pipe of the said engine. The NOx contained in the exhaust gas is purified by spraying a reducing agent aqueous solution on the reducing catalyst, and the reducing agent aqueous solution is a solid raw material reducing agent such as powder or granules. It is manufactured by mixing with fresh water.

請求項2の発明は、請求項1に加えて、更に、 更に、前記エンジンの出力を検知する出力センサ又は排気ガス中のNOx濃度を検出する濃度センサが具備されている一方、前記水溶液管路には、前記混合タンクから供給された還元剤水溶液を真水で希釈することで還元剤濃度を調節する調節タンクが介在しており、前記出力センサ又は濃度センサからの信号に基づいて調節タンクにおける還元剤の濃度が調節されていると共に、前記調節タンクにも水タンクから給水されている。   In addition to claim 1, the invention of claim 2 is further provided with an output sensor for detecting the output of the engine or a concentration sensor for detecting NOx concentration in the exhaust gas. Is provided with an adjustment tank that adjusts the concentration of the reducing agent by diluting the reducing agent aqueous solution supplied from the mixing tank with fresh water, and the reduction in the adjustment tank is based on a signal from the output sensor or the concentration sensor. The concentration of the agent is adjusted, and the adjustment tank is also supplied with water from the water tank.

請求項3の発明は、請求項1又は2において、前記原料還元剤は尿素又はその含有物であって粉末状又は顆粒状の外観を呈している一方、前記原料タンクには乾燥手段を設けており、前記混合タンクと調節タンクとには加温度手段を設けている。この請求項3の展開例として請求項4では、前記加温手段は、前記エンジンの排気ガス又は使用済冷却水を熱源にしている。   A third aspect of the present invention provides the raw material reducing agent according to the first or second aspect, wherein the raw material reducing agent is urea or its content and has a powdery or granular appearance, while the raw material tank is provided with a drying means. The mixing tank and the adjustment tank are provided with a heating means. As a development example of the third aspect, in the fourth aspect, the heating means uses exhaust gas of the engine or used cooling water as a heat source.

請求項5の発明は、請求項1〜4のうちのいずれかにおいて、前記混合タンクには水位センサを設けている一方、前記原料ホッパーから混合タンクへの原料還元剤の投入はシャッタ手段で制御されており、かつ、前記原水管路には給水手段を設けており、そして、前記水位センサと給水手段とシャッタ手段とは、前記水位センサによる下限レベル検出信号によって給水手段が作動して給水され、前記水位センサによる上限レベル検出信号によって給水手段が作動停止し、混合タンクへの給水中又は給水後若しくは給水前にシャッタ手段が開いて原料還元剤が投入される、というように関連している。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the mixing tank is provided with a water level sensor, while the supply of the raw material reducing agent from the raw material hopper to the mixing tank is controlled by a shutter means. In addition, the raw water pipe is provided with water supply means, and the water level sensor, the water supply means, and the shutter means are supplied with water supplied by the water supply means operated by a lower limit level detection signal from the water level sensor. The water supply means is stopped by the upper limit level detection signal from the water level sensor, and the shutter means is opened and the raw material reducing agent is introduced after water supply to the mixing tank or after or before water supply. .

さて、中・大型の船舶は生活用水等を賄うため海水を真水化(淡水化)する造水機を搭載しているのが通常であり、造水機で造られた真水は水タンクに貯留されて、各使用場所に管路で供給されるようになっている。そして、本願発明では、粉末状や顆粒状の原料還元剤を混合タンクで真水に混ぜることで還元剤水溶液を製造するものであるため、すなわち、航海しながら随時還元剤水溶液を製造できるため、混合タンクは巨大である必要はなくて省スペースに貢献できる。そして、還元剤水溶液に使用する原水は水タンクから給水されるため、還元剤水溶液の製造のための造水機は新設したり増設したりする必要はなく、このためコストダウンに貢献できる。   Now, medium and large ships are usually equipped with a desalinator that desalinates seawater (freshwater) in order to provide water for daily use, and the fresh water produced by the dessicator is stored in a water tank. As a result, the pipes are supplied to each place of use. In the present invention, since the reducing agent aqueous solution is produced by mixing the powdery or granular raw material reducing agent with fresh water in the mixing tank, that is, the reducing agent aqueous solution can be produced at any time while sailing. The tank does not need to be huge and can contribute to space saving. Since the raw water used for the reducing agent aqueous solution is supplied from the water tank, it is not necessary to newly install or add a fresh water generator for producing the reducing agent aqueous solution, which can contribute to cost reduction.

また、混合タンクで製造された還元剤水溶液は水溶液管路を介して触媒に自動的に供給されるため、人手がかかることはない。すなわち、本願発明は省力化にも貢献しており、従って、現代の船舶に好適である。   Further, since the reducing agent aqueous solution produced in the mixing tank is automatically supplied to the catalyst via the aqueous solution pipe, it does not require manual labor. That is, the present invention contributes to labor saving and is therefore suitable for modern ships.

さて、ディーゼルエンジンにおいて、排気ガス中に含まれるNOxの濃度は一般に出力に比例して大きくなる。従って、触媒に噴霧する還元剤水溶液の濃度はNOxの濃度に比例して増減するのが好ましい(濃度に応じて噴霧量を増減することも可能であるが、水の発生量が増える弊害がある。)。   In a diesel engine, the concentration of NOx contained in exhaust gas generally increases in proportion to the output. Therefore, the concentration of the reducing agent aqueous solution sprayed on the catalyst is preferably increased or decreased in proportion to the concentration of NOx (the amount of spray can be increased or decreased depending on the concentration, but there is a problem that the amount of water generated increases. .)

そして、本願発明の請求項1の場合、混合タンクで濃度を調節することも可能ではあるが、原料還元剤や希釈水を小出して濃度調節するのは制御が面倒であると共に、濃度調整が正確に行えない虞がある。これに対して請求項2の構成を採用すると、混合タンクでは最も高い出力(NOx濃度)に対応した(或いはそれ以上の)高濃度還元剤水溶液を製造しておいて、調整タンクで希釈水を添加することにより、所望の還元剤能動の水溶液を簡単に製造できる利点がある。また、調整タンクの希釈水も水タンクから供給されるものであるため、造水機の新設や増設は必要なくてコスト面でも有利である。   In the case of claim 1 of the present invention, it is possible to adjust the concentration in the mixing tank. However, adjusting the concentration by dispensing the raw material reducing agent and dilution water is troublesome and the concentration adjustment is accurate. There is a possibility that it cannot be done. On the other hand, when the configuration of claim 2 is adopted, a high concentration reducing agent aqueous solution corresponding to (or higher than) the highest output (NOx concentration) is produced in the mixing tank, and diluted water is supplied in the adjustment tank. By adding, there exists an advantage which can manufacture easily the aqueous solution of a desired reducing agent active. Further, since the dilution water in the adjustment tank is also supplied from the water tank, it is not necessary to newly install or add a fresh water generator, which is advantageous in terms of cost.

請求項3のように原料還元剤として尿素又はその含有物を使用すると、安全性に優れている利点がある。また、尿素は安全性が高い利点がある一方で、吸湿性が高い性質と、水溶液の温度が低くなると溶解量(水の単位量当たりに溶け込むモル数)が低下する性質とがあるが、請求項3では原料タンクには乾燥手段を設けて混合タンクと調整タンクとには加温手段を設けているため、原料尿素の乾燥を防止又は抑制して自動的混合の実現に貢献できると共に、水溶液中の尿素の濃度低下を防止して効率的なNOx除去に貢献できる。なお、加温温度は40℃程度が好ましい。   When urea or its inclusion is used as a raw material reducing agent as in claim 3, there is an advantage of excellent safety. Urea has the advantage of high safety, but has the property of high hygroscopicity and the property that the dissolved amount (the number of moles dissolved per unit amount of water) decreases as the temperature of the aqueous solution decreases. In the item 3, since the raw material tank is provided with a drying means and the mixing tank and the adjustment tank are provided with a heating means, it is possible to prevent or suppress the drying of the raw material urea and contribute to the realization of automatic mixing. It can contribute to efficient NOx removal by preventing a decrease in the concentration of urea in it. The heating temperature is preferably about 40 ° C.

請求項3の場合、混合タンク及び調整タンクの加温手段としてはシーズヒータのような電気ヒータも使用できるが、請求項4のように加温手段としてエンジンの排ガス又は使用済冷却水を使用すると、ランニングコストを抑制できる利点がある。   In the case of claim 3, an electric heater such as a sheathed heater can be used as the heating means for the mixing tank and the adjustment tank. However, if the exhaust gas of the engine or the used cooling water is used as the heating means as in claim 4, There is an advantage that the running cost can be suppressed.

混合タンクで還元剤水溶液を製造する具体的な方法としては、例えば1日に1回というように所定の時間間隔で定期的に製造して溜めておくことも可能であるが、これは、混合タンクが大型化するため省スペースの点でマイナスであると共に、人手を要するため省力化という点でもマイナスである。これに対して請求項5の構成を採用すると、水溶液のストックが所定量まで減ると自動的に製造補給されるため、混合タンク及び調整タンクとは必要以上に大きくする必要がなくて省スペースを推進できると共に、人手を省いて省力化にも大きく貢献できる。   As a specific method of manufacturing the reducing agent aqueous solution in the mixing tank, it is possible to periodically manufacture and store it at a predetermined time interval, for example, once a day. It is negative in terms of space saving because the tank is large, and negative in terms of labor saving because it requires manpower. On the other hand, if the structure of claim 5 is adopted, since the manufacture and replenishment are automatically performed when the stock of the aqueous solution is reduced to a predetermined amount, it is not necessary to make the mixing tank and the adjustment tank larger than necessary and save space. In addition to being able to promote, it can greatly contribute to labor saving by eliminating human resources.

次に、本願発明の実施形態を図面に基づいて説明する。図1は船舶における設備の配置を示す概念的なブロック図であり、本願発明の実施形態はこの図1に凝縮されている。   Next, an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a conceptual block diagram showing the arrangement of equipment in a ship, and the embodiment of the present invention is condensed in FIG.

(1).エンジン回りの基本構成
図1に示すように、船舶はディーゼル方式のエンジン1を備えており、エンジン1には発電機2が接続されている。エンジン1には、第1燃料タンク3と第2燃料タンク4とのうち何れか一方から燃料が供給される。そこで、両燃料タンク3,4とエンジン1とを結ぶ燃料管路5には三方弁6を介在させている。2つの燃料タンク3,4には同一種類の燃料を蓄えることも可能であるし、例えばA重油のような一般燃料と低硫黄重油のような高品質重油とに区分することもできる。
(1) Basic configuration around the engine As shown in FIG. 1, the ship includes a diesel engine 1, and a generator 2 is connected to the engine 1. Fuel is supplied to the engine 1 from either the first fuel tank 3 or the second fuel tank 4. Therefore, a three-way valve 6 is interposed in the fuel line 5 connecting the fuel tanks 3 and 4 and the engine 1. The two fuel tanks 3 and 4 can store the same type of fuel, and can be classified into general fuel such as A heavy oil and high quality heavy oil such as low sulfur heavy oil.

なお、本実施形態の発電機は主として船舶の推進用モータを駆動するためのものであるが、エンジン1でスクリューを直接に駆動することも可能である。当然ながら、エンジン1を船内で使用する電力を得るための専用のエンジンとして、これに発電機2が接続されていてもよい。発電機2には出力センサ7を取付けている。この出力センサ7は直接には発電機の出力(或いは負荷)を検出するが、エンジン1の出力と発電機2の出力とは殆ど同じなので、出力センサ7はエンジン1の出力検知手段として機能している。   The generator of the present embodiment is mainly for driving a marine propulsion motor, but the engine 1 can also drive the screw directly. Of course, the generator 2 may be connected to the engine 1 as a dedicated engine for obtaining electric power to be used in the ship. An output sensor 7 is attached to the generator 2. The output sensor 7 directly detects the output (or load) of the generator, but the output of the engine 1 and the output of the generator 2 are almost the same, so the output sensor 7 functions as an output detection means of the engine 1. ing.

エンジン1は排気マニホールドに接続された主排気管8を有しており、主排気管8の途中に排気処理装置8が接続される。排気処理装置9は、排気ガスの流れ方向から見て上流側から順に、既述したSCR還元触媒10、SCR還元触媒10を通過したNOxを処理するためのスリップ触媒11、及び消音器12を有している。消音器12には放出管13が接続されている。なお、放出管13も主排気管8の一部と観念することは可能であり、この場合は、主排気管8の途中に排気処理装置9が介在していることになるが、本実施形態では、便宜的に排気処理装置9の上流側の部分を主排気管8として定義している。   The engine 1 has a main exhaust pipe 8 connected to an exhaust manifold, and an exhaust treatment device 8 is connected in the middle of the main exhaust pipe 8. The exhaust treatment device 9 has an SCR reduction catalyst 10 described above, a slip catalyst 11 for treating NOx that has passed through the SCR reduction catalyst 10, and a silencer 12 in order from the upstream side when viewed from the flow direction of the exhaust gas. is doing. A discharge pipe 13 is connected to the silencer 12. Note that the discharge pipe 13 can also be considered as a part of the main exhaust pipe 8. In this case, the exhaust treatment device 9 is interposed in the middle of the main exhaust pipe 8. For convenience, the upstream side portion of the exhaust treatment device 9 is defined as the main exhaust pipe 8.

主排気管8の中途部には、還元剤水溶液の一例としての尿素水を噴霧するための噴霧口15を設けている。また、排気処理装置9には、SCR還元触媒10に向けて空気を噴出させるブロワー14が接続されている。また、主排気管8のうち噴霧口15よりも上流側にはパイパス排気管16が接続されており、バイパス排気管16の終端は、排気処理装置8のうち消音器12の部分に接続されている。   A spray port 15 for spraying urea water as an example of the reducing agent aqueous solution is provided in the middle of the main exhaust pipe 8. In addition, a blower 14 that ejects air toward the SCR reduction catalyst 10 is connected to the exhaust treatment device 9. A bypass exhaust pipe 16 is connected upstream of the spray port 15 in the main exhaust pipe 8, and the end of the bypass exhaust pipe 16 is connected to the silencer 12 portion of the exhaust treatment device 8. Yes.

排気切り換え弁17とバイパス排気管16との接続部には排気ガスの流れ方向を変えるための切り替え弁17を設けている。切り替え弁17の具体的構造例を図3に挙げている。すなわちこの例では、切り換え弁17は平板方式になっていてその一端部に位置した支軸を中心に回動するようにっており、モータ等のアクチェータ18で回転すると、バイパス排気管16の入り口を閉じる姿勢と主排気管8を閉じる姿勢とに切り替わる。   A switching valve 17 for changing the flow direction of the exhaust gas is provided at a connection portion between the exhaust switching valve 17 and the bypass exhaust pipe 16. A specific structural example of the switching valve 17 is shown in FIG. That is, in this example, the switching valve 17 is of a flat plate type and rotates around a support shaft located at one end thereof, and when rotated by an actuator 18 such as a motor, the inlet of the bypass exhaust pipe 16 is provided. Are switched to a posture for closing the main exhaust pipe 8 and a posture for closing the main exhaust pipe 8.

(2).尿素水の供給系統
船舶には、海水を第1ポンプ20でくみ上げて真水化する造水機21と、造水機21で造られた真水を溜めておく水タンク22とを有している。両者は従来から船舶で使用されているものであり、水タンク22には厨房や洗面所等に給水するための一般水管路23が多数接続されている。
(2) Urea water supply system The ship has a water generator 21 that pumps seawater into fresh water by the first pump 20, and a water tank 22 that stores fresh water produced by the water generator 21. is doing. Both are conventionally used in ships, and a number of general water pipes 23 for supplying water to a kitchen, a washroom, etc. are connected to the water tank 22.

造水機21で真水化しただけの水には雑菌が多数混入している場合がある。そこで、飲料用水や厨房用水として滅菌処理することも行われており、この場合は、滅菌前の雑水と滅菌した飲料水とを別々に水タンクに溜めることになる。この場合は、本実施形態ではいずれのタンクをも水タンク22として使用できる(尿素水は飲用ではないので、使用するのは雑水で差し支えない。)。   There are cases where a lot of germs are mixed in the water that has just been desalinated by the water generator 21. Therefore, sterilization is also performed as drinking water or kitchen water. In this case, miscellaneous water before sterilization and sterilized drinking water are separately stored in a water tank. In this case, in this embodiment, any tank can be used as the water tank 22 (because urea water is not potable, it can be used with miscellaneous water).

船舶には、更に、原料還元剤の一例としての顆粒状尿素を投入する原料ホッパー24と、原料ホッパー24から供給された原料尿素を水に混ぜて尿素水となす混合タンク25と、混合タンク25で製造された尿素水の濃度を調節する調整タンク26とが搭載されている。   The ship further includes a raw material hopper 24 into which granular urea as an example of the raw material reducing agent is charged, a mixing tank 25 that mixes the raw material urea supplied from the raw material hopper 24 with water to form urea water, and a mixing tank 25. And an adjustment tank 26 for adjusting the concentration of the urea water produced in (1).

混合タンク25と水タンク22とは原水管路27で接続されていて、原料管路27には給水をON・OFFする給水手段の一例としての第2ポンプ28を介在しており、混合タンク25と調整タンク26とは第1水溶液管路29で接続されており、第1水溶液管路29には第3ポンプ30を介在させている。調整タンク26と噴霧口15とは第2水溶液管路31で接続されており、第2水溶液管路31には電磁式等の開閉弁32を介在させている。   The mixing tank 25 and the water tank 22 are connected by a raw water pipe 27, and the raw material pipe 27 is provided with a second pump 28 as an example of water supply means for turning ON / OFF the water supply. And the adjustment tank 26 are connected by a first aqueous solution pipeline 29, and a third pump 30 is interposed in the first aqueous solution pipeline 29. The adjustment tank 26 and the spray port 15 are connected by a second aqueous solution conduit 31, and an electromagnetic on-off valve 32 is interposed in the second aqueous solution conduit 31.

原料ホッパー24には乾燥装置34が設けられており、かつ、原料ホッパー24と混合タンク25との間の放出管36には、当該放出管36を開閉するシャッター手段37を設けている。乾燥装置34は温風式や吸湿剤式などを使用できる。原料ホッパー24には、原料尿素の量を検知する容量センサ35が設けられている。シャッター手段36の具体的構造は図2(A)でも表示している。このシャッター手段は電磁ソレノイド等のアクチェータで遠隔的に駆動される。   The raw material hopper 24 is provided with a drying device 34, and the discharge pipe 36 between the raw material hopper 24 and the mixing tank 25 is provided with shutter means 37 for opening and closing the discharge pipe 36. The drying device 34 can use a warm air type or a hygroscopic type. The raw material hopper 24 is provided with a capacity sensor 35 that detects the amount of raw material urea. The specific structure of the shutter means 36 is also shown in FIG. This shutter means is driven remotely by an actuator such as an electromagnetic solenoid.

なお、原料ホッパー24で原料尿素を放出するにおいて、シャッター手段37が開いている限り流れ続ける方式と、シャッター手段37が1回作動すると一定量が放出される升方式とが有り得るが、本願発明ではどちらも採用できる(制御の容易性という点では升方式が優れていると言える。)。また、原料ホッパー24に羽根車式等の攪拌装置を設けて、定期的に攪拌して原料尿素を常に顆粒状又は粉末状に保持することも可能である。   In addition, when releasing the raw material urea with the raw material hopper 24, there can be a method in which the flow continues as long as the shutter means 37 is open, and a dredging method in which a certain amount is released when the shutter means 37 is operated once. Either can be used (it can be said that the dredge method is superior in terms of ease of control). It is also possible to provide a stirring device such as an impeller type in the raw material hopper 24 and regularly hold the raw material urea in a granular or powder state by stirring periodically.

混合タンク25にはロータリー式攪拌装置38と水位センサ39と加温手段40とを設けている。攪拌装置38はモータで駆動される。図2に示すように、加温手段40はループ状に巻かれた形態で混合タンク25の底近くに配置されている。具体的には、加温手段40は、電気抵抗で発熱するシーズヒータとすることができる。或いは、加温手段40をパイプで構成して、その内部にエンジン1の排気ガスや使用して温水化した冷却水を通すことができる。勿論、他の方式の加温手段も採用できる。   The mixing tank 25 is provided with a rotary stirring device 38, a water level sensor 39, and a heating means 40. The stirring device 38 is driven by a motor. As shown in FIG. 2, the heating means 40 is disposed near the bottom of the mixing tank 25 in a looped form. Specifically, the heating means 40 can be a sheathed heater that generates heat by electric resistance. Alternatively, the heating means 40 can be constituted by a pipe, and the exhaust gas of the engine 1 or the cooling water that has been warmed by using it can be passed through the heating means 40. Of course, other types of heating means may be employed.

調整タンク26にも、攪拌装置41と加温手段42と水位センサ43とを設けている。また、調整タンク26と水タンク22とは希釈水管路44で接続されており、希釈水管路44には第3ポンプ45を介在させている(第3ポンプ45の代わりに切り換え弁を配置することも可能である。)。更に、調整タンク26には、尿素水の尿素濃度を検知する濃度センサ46を設けている。   The adjustment tank 26 is also provided with a stirring device 41, a heating means 42, and a water level sensor 43. The adjustment tank 26 and the water tank 22 are connected by a dilution water pipe 44, and a third pump 45 is interposed in the dilution water pipe 44 (a switching valve is disposed in place of the third pump 45). Is also possible.) Further, the adjustment tank 26 is provided with a concentration sensor 46 for detecting the urea concentration of the urea water.

なお、混合タンク25や調整タンク26を断熱構造とすることも可能である。水タンク22にも水位センサ47を設けており、水位が下限まで下がると第1ポンプ20が自動的に作動し、水位が上限まで上がると第1ポンプ20は自動停止する。   Note that the mixing tank 25 and the adjustment tank 26 may have a heat insulating structure. A water level sensor 47 is also provided in the water tank 22, and the first pump 20 automatically operates when the water level falls to the lower limit, and the first pump 20 automatically stops when the water level rises to the upper limit.

(3).制御系・まとめ
本実施形態では、中央演算装置(CPU)やメモリー等を内蔵した処理装置41を有している。処理装置41は専用品として製造・配置することも可能であるし、市販のパソコンやワークステーションを使用することもできる。
(3). Control System / Summary In this embodiment, a processing unit 41 having a central processing unit (CPU), a memory, and the like is provided. The processing device 41 can be manufactured and arranged as a dedicated product, or a commercially available personal computer or workstation can be used.

処理装置41には所定のプログラムが組み込まれており、入力信号に基づいて信号が入出力される。すなわち、処理装置41には、原料ホッパー24の容量センサ35、混合タンク25の水位センサ35、調整タンク26の水位センサ39、発電機1の出力センサ7から信号が入力される。2つの燃料タンク3,4にも容量センサ(レベル計)42,43が設けられており、これらの容量センサ42、43からも処理装置41に信号が送られる。   A predetermined program is incorporated in the processing device 41, and signals are input and output based on input signals. That is, signals are input to the processing device 41 from the capacity sensor 35 of the raw material hopper 24, the water level sensor 35 of the mixing tank 25, the water level sensor 39 of the adjustment tank 26, and the output sensor 7 of the generator 1. The two fuel tanks 3 and 4 are also provided with capacity sensors (level meters) 42 and 43, and signals are sent from these capacity sensors 42 and 43 to the processing device 41.

更に、船舶には衛星や地上局からの電波を受信するアンテナAと、アンテナAで受信した電波に基づいて自船位置を特定する位置特定装置Bが搭載されており、位置特定装置Bからも制御信号が処理装置41に送られる。なお、位置特定装置48は処理装置41に組み込むことも可能である。   Further, the ship is equipped with an antenna A that receives radio waves from satellites and ground stations, and a position specifying device B that specifies the position of the ship based on the radio waves received by the antenna A. From the position specifying device B, A control signal is sent to the processing device 41. Note that the position specifying device 48 can also be incorporated into the processing device 41.

処理装置41により、次のものの駆動が制御される。すなわち、第2ポンプ28、混合タンク25及び調整タンク26の攪拌手段28,41と加温手段40,42、シャッタ手段37、希釈水管路44の第4ポンプ45、第2水溶液管路31の開閉弁32、燃料管路5の三方弁6、排気切り換え弁17、ブロワ14の駆動が制御される。このうち燃料管路5の三方弁6の制御は位置特定装置48に基づいて行われるが、これは本願発明とは関係ないので説明は省略する。   The processing device 41 controls the drive of the following. That is, the stirring means 28 and 41 and the heating means 40 and 42 of the second pump 28, the mixing tank 25 and the adjustment tank 26, the shutter means 37, the fourth pump 45 of the dilution water pipe 44, and the opening and closing of the second aqueous solution pipe 31. The drive of the valve 32, the three-way valve 6 of the fuel line 5, the exhaust gas switching valve 17, and the blower 14 is controlled. Of these, the control of the three-way valve 6 in the fuel line 5 is performed based on the position specifying device 48, but this is not related to the present invention and will not be described.

さて、本実施形態では、混合タンク25で尿素水が製造されて、これが調整タンク26に送られて尿素調整が成されて、それから噴霧口15から排気ガスに噴霧されるが、まず、尿素水が間断なく供給されることが必要である。そこで、混合タンク25の水位センサ39から下限位置を検出したら、第2ポンプ28を駆動して水位センサ39が上限位置を検出するまで水タンク22から水を混合タンク25に給水すると共に、シャッタ37を開いて原料尿素を所定量だけ混合タンク25に供給し、攪拌手段38で攪拌する。原料尿素の投入や攪拌手段38の駆動開始開始は第2ポンプ28の駆動と同時でもよいし、前でもよいし後でもよい。   Now, in this embodiment, urea water is manufactured in the mixing tank 25, this is sent to the adjustment tank 26, urea adjustment is made, and then it sprays on exhaust gas from the spraying port 15, First, urea water Must be supplied without interruption. Therefore, when the lower limit position is detected from the water level sensor 39 of the mixing tank 25, the second pump 28 is driven to supply water from the water tank 22 to the mixing tank 25 until the water level sensor 39 detects the upper limit position, and the shutter 37. The raw material urea is supplied to the mixing tank 25 by a predetermined amount and stirred by the stirring means 38. Feeding of raw material urea and starting of driving of the stirring means 38 may be performed simultaneously with the driving of the second pump 28, or may be before or after.

調整タンク26の水位センサ43が下限位置を検知したら第3ポンプ30を駆動し、水位センサ43が上限位置を検知したら第3ポンプ30の駆動を停止する。原料ホッパー24の乾燥手段と混合タンク25及び調整タンク26の加温手段40,42とが電気式のものである場合は、これらのON・OFFも遠隔的に制御可能であるが、通常は、エンジンの運転中に切り換える必要はない。   When the water level sensor 43 of the adjustment tank 26 detects the lower limit position, the third pump 30 is driven, and when the water level sensor 43 detects the upper limit position, the driving of the third pump 30 is stopped. When the drying means of the raw material hopper 24 and the heating means 40 and 42 of the mixing tank 25 and the adjustment tank 26 are of an electric type, these ON / OFF can be controlled remotely. There is no need to switch while the engine is running.

また、第2水溶液管路31の開閉弁32も普通は開の状態のままであり、排気ガスがバイパス排気管16を流れてNOx浄化の必要がないときに閉じる。開閉弁32を流量調整弁に置き換えて、NOxの生成量に応じて(すなわちNOxの濃度センサからの信号に基づいて)尿素水の噴出量を増減することは可能であり、むしろ好ましいと言える。   Further, the on-off valve 32 of the second aqueous solution pipe 31 is normally kept open, and is closed when the exhaust gas flows through the bypass exhaust pipe 16 and there is no need for NOx purification. By replacing the on-off valve 32 with a flow rate adjusting valve, it is possible to increase or decrease the amount of urea water ejected according to the amount of NOx produced (that is, based on the signal from the concentration sensor of NOx), which is rather preferable.

調整タンク26を混合タンク25よりも低い位置に配置して、調整タンク26は常に満杯状態に保持することも可能である。この場合は第3ポンプ30と水位センサ43とは不要になる。また、調整タンク26を混合タンク25よりも低い位置に配置して、尿素水を混合タンク25から調整タンク26に自然流下させることも可能であり、この場合は、第3ポンプ30に代えて切り換え弁を設けたらよい。   It is also possible to arrange the adjustment tank 26 at a position lower than the mixing tank 25 so that the adjustment tank 26 is always kept full. In this case, the third pump 30 and the water level sensor 43 are unnecessary. It is also possible to arrange the adjustment tank 26 at a position lower than the mixing tank 25 and allow the urea water to naturally flow from the mixing tank 25 to the adjustment tank 26. In this case, switching is performed in place of the third pump 30. A valve should be provided.

排気ガス中のNOxの濃度が高いと、排気ガスの単位量に必要な尿素の量も多くなる。そこで、混合タンク25では、想定される最も高いNOx濃度に対応した尿素濃度の水溶液を製造しておき、出力センサ7からの信号に基づいて、尿素水が浄化に必要な尿素濃度になるように第4ポンプ45を駆動して希釈水を取り込む。所定の濃度になったら第4ポンプ45の駆動を停止する。尿素水の濃度を濃くせねばならない場合は、第3ポンプ30を駆動して高濃度の尿素水を取り込むことになる。   If the concentration of NOx in the exhaust gas is high, the amount of urea necessary for the unit amount of the exhaust gas also increases. Therefore, in the mixing tank 25, an aqueous solution having a urea concentration corresponding to the highest possible NOx concentration is manufactured, and based on the signal from the output sensor 7, the urea water has a urea concentration necessary for purification. The fourth pump 45 is driven to take in the dilution water. When the predetermined concentration is reached, the driving of the fourth pump 45 is stopped. When it is necessary to increase the concentration of urea water, the third pump 30 is driven to take in high-concentration urea water.

NOxの濃度と尿素水の濃度とは、NOxの僅かの濃度変化に対応して尿素濃度を敏感に調節する微調整方式とすることも可能であるが、エンジン1の出力範囲を例えば低出力・中出力・高出力のような複数のゾーンに分ける一方、尿素濃度も出力ゾーンに対応して低濃度・中濃度・高濃度のような複数の濃度エリアに分けておいて、出力ゾーンの変更に応じて濃度エリアを変えるというゾーン調節方式が現実的であるとも言える。なお、排気系には温度センサも設けており、排気ガスの温度が過剰に上昇した場合はブロワ14から冷気が送られる。   The concentration of NOx and the concentration of urea water can be a fine adjustment system that adjusts the urea concentration sensitively in response to slight changes in the concentration of NOx. While dividing into multiple zones such as medium output and high output, urea concentration is also divided into multiple concentration areas such as low concentration, medium concentration and high concentration corresponding to the output zone to change the output zone It can be said that the zone adjustment method of changing the density area in accordance with this is realistic. The exhaust system is also provided with a temperature sensor, and cool air is sent from the blower 14 when the temperature of the exhaust gas rises excessively.

(4).その他
本願発明は、上記の実施形態の他にも様々に具体化できる。例えば、船舶には複数台のエンジンを搭載していることも多いが、本願発明は少なくとも1台のエンジンを対象にしている。混合タンクを水タンクよりも低い位置に配置した場合、給水手段としては単なる切り換え弁を採用することも可能である。
(4). Others The present invention can be embodied in various ways other than the above embodiment. For example, a ship is often equipped with a plurality of engines, but the present invention targets at least one engine. When the mixing tank is disposed at a position lower than the water tank, it is possible to employ a simple switching valve as the water supply means.

本願発明の実施形態を示す模式的なブロック図である。It is a typical block diagram which shows embodiment of this invention. (A)は混合タンク25の断面図、(B)は(A)のB−B視平断面図である。(A) is sectional drawing of the mixing tank 25, (B) is a BB view planar sectional view of (A). 排気切り換え弁の一例を示す断面図である。It is sectional drawing which shows an example of an exhaust gas switching valve.

符号の説明Explanation of symbols

1 エンジン
2 発電機
7 出力センサ
8 主排気管
9 排気処理装置
10 SCR還元触媒
11 スリップ触媒
12 消音器
15 噴霧口
21 造水機
22 水タンク
24 原料ホッパー
25 混合タンク
26 調整タンク
27 原水管路
28 給水手段の一例としての第2ポンプ
29,31 水溶液管路
34 乾燥手段(乾燥装置)
38,41 攪拌手段(攪拌装置)
40,42 加温手段(加温装置)
39,43 水位センサ
DESCRIPTION OF SYMBOLS 1 Engine 2 Generator 7 Output sensor 8 Main exhaust pipe 9 Exhaust treatment device 10 SCR reduction catalyst 11 Slip catalyst 12 Silencer 15 Spray port 21 Fresh water generator 22 Water tank 24 Raw material hopper 25 Mixing tank 26 Adjustment tank 27 Raw water pipe 28 Second pump as an example of water supply means 29, 31 Aqueous solution pipe 34 Drying means (drying device)
38, 41 Stirring means (stirring device)
40, 42 Heating means (heating device)
39,43 Water level sensor

Claims (5)

エンジンと、海水を真水化する造水機と、前記造水機で造られた真水を溜める水タンクとが搭載されており、前記エンジンの排気管に設けた還元触媒に還元剤水溶液を噴霧することにより、前記エンジンの排気ガス中に含まれているNOxが浄化されており、更に、前記還元剤水溶液は、粉状又は顆粒状のような固体状の原料還元剤を真水に混合することで製造されている、という船舶において、
前記原料還元剤が投入される原料ホッパーと、前記原料ホッパーから排出された原料還元剤を真水に混ぜて水溶液化するための攪拌手段付き混合タンクとを有しており、前記水タンクと混合タンクとは原水管路で接続されており、かつ、前記混合タンクには、還元剤水溶液を還元触媒に導く水溶液管路が接続されている、
船舶におけるエンジンの排気ガス浄化システム。
An engine, a fresh water generator that desalinates seawater, and a water tank that stores fresh water produced by the fresh water generator are mounted, and a reducing agent aqueous solution is sprayed on a reduction catalyst provided in an exhaust pipe of the engine. As a result, NOx contained in the exhaust gas of the engine is purified, and the aqueous reducing agent solution is mixed with fresh raw material reducing agent such as powder or granules in fresh water. In a ship that is manufactured,
A raw material hopper into which the raw material reducing agent is charged; and a mixing tank with stirring means for mixing the raw material reducing agent discharged from the raw material hopper with fresh water to form an aqueous solution. The water tank and the mixing tank Are connected by raw water pipes, and the mixing tank is connected with an aqueous solution pipe for guiding the reducing agent aqueous solution to the reduction catalyst.
Engine exhaust gas purification system for ships.
更に、前記エンジンの出力を検知する出力センサ又は排気ガス中のNOx濃度を検出する濃度センサが具備されている一方、前記水溶液管路には、前記混合タンクから供給された還元剤水溶液を真水で希釈することで還元剤濃度を調節する調節タンクが介在しており、前記出力センサ又は濃度センサからの信号に基づいて調節タンクにおける還元剤の濃度が調節されていると共に、前記調節タンクにも水タンクから給水されている、
請求項1に記載した船舶におけるエンジンの排気ガス浄化システム。
Further, an output sensor for detecting the output of the engine or a concentration sensor for detecting NOx concentration in the exhaust gas is provided, while the aqueous solution conduit is provided with a reducing agent aqueous solution supplied from the mixing tank with fresh water. An adjustment tank that adjusts the concentration of the reducing agent by dilution is interposed, and the concentration of the reducing agent in the adjustment tank is adjusted based on a signal from the output sensor or the concentration sensor. Water is supplied from the tank,
The exhaust gas purification system of the engine in the ship described in Claim 1.
前記原料還元剤は尿素又はその含有物であって粉末状又は顆粒状の外観を呈している一方、前記原料ホッパーには乾燥手段を設けており、前記混合タンクと調節タンクとには加温手段を設けている、
請求項1又は2に記載した船舶におけるエンジンの排気ガス浄化システム。
The raw material reducing agent is urea or its content and has a powdery or granular appearance, while the raw material hopper is provided with a drying means, and the mixing tank and the adjustment tank are heated by the heating means. Have
The exhaust gas purification system for an engine in a ship according to claim 1 or 2.
前記加温手段は、前記エンジンの排気ガス又は使用済冷却水を熱源にしている、
請求項3に記載した船舶におけるエンジンの排気ガス浄化システム。
The heating means uses the exhaust gas or used cooling water of the engine as a heat source.
An exhaust gas purification system for an engine in a ship according to claim 3.
前記混合タンクには水位センサを設けている一方、前記原料ホッパーから混合タンクへの原料還元剤の投入はシャッタ手段で制御されており、かつ、前記原水管路には給水手段を設けており、そして、
前記水位センサと給水手段とシャッタ手段とは、前記水位センサによる下限レベル検出信号によって給水手段が作動して給水され、前記水位センサによる上限レベル検出信号によって給水手段が作動停止し、混合タンクへの給水中又は給水後若しくは給水前にシャッタ手段が開いて原料還元剤が投入される、というように関連している、
請求項1〜4のうちのいずれかに記載した船舶におけるエンジンの排気ガス浄化システム。
While the mixing tank is provided with a water level sensor, the introduction of the raw material reducing agent from the raw material hopper to the mixing tank is controlled by shutter means, and the raw water pipe is provided with water supply means, And
The water level sensor, the water supply means, and the shutter means are supplied by the water supply means by the lower limit level detection signal from the water level sensor, the water supply means is stopped by the upper limit level detection signal by the water level sensor, It is related that the shutter means is opened and the raw material reducing agent is put in before or after water supply.
The engine exhaust gas purification system in the ship described in any one of Claims 1-4.
JP2008238193A 2008-09-17 2008-09-17 Exhaust gas purification system for engine in marine vessel Pending JP2010071148A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2008238193A JP2010071148A (en) 2008-09-17 2008-09-17 Exhaust gas purification system for engine in marine vessel
KR1020167014715A KR20160075784A (en) 2008-09-17 2009-09-16 Exhaust gas purifying system for vessel engine
CN200980136281.0A CN102159455B (en) 2008-09-17 2009-09-16 Exhaust gas purifying system for vessel engine
KR1020117006029A KR20110058813A (en) 2008-09-17 2009-09-16 Exhaust gas purifying system for vessel engine
PCT/JP2009/066132 WO2010032739A1 (en) 2008-09-17 2009-09-16 Exhaust gas purifying system for vessel engine
DK14178157.5T DK2813424T3 (en) 2008-09-17 2009-09-16 Exhaust gas purification system for marine vessel engine
EP14178157.5A EP2813424B1 (en) 2008-09-17 2009-09-16 Exhaust gas purifying system for marine vessel engine
EP09814584.0A EP2332826A4 (en) 2008-09-17 2009-09-16 Exhaust gas purifying system for vessel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008238193A JP2010071148A (en) 2008-09-17 2008-09-17 Exhaust gas purification system for engine in marine vessel

Publications (1)

Publication Number Publication Date
JP2010071148A true JP2010071148A (en) 2010-04-02

Family

ID=42203173

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008238193A Pending JP2010071148A (en) 2008-09-17 2008-09-17 Exhaust gas purification system for engine in marine vessel

Country Status (1)

Country Link
JP (1) JP2010071148A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050196A1 (en) * 2010-10-14 2012-04-19 三菱重工業株式会社 Scr reduction agent maritime supply system
JP2014111229A (en) * 2012-12-05 2014-06-19 Hitachi Zosen Corp Powder dissolving device and powder dissolving method therefor
WO2015186559A1 (en) * 2014-06-03 2015-12-10 日立造船株式会社 Marine engine exhaust gas purification system
US9387438B2 (en) 2014-02-14 2016-07-12 Tenneco Automotive Operating Company Inc. Modular system for reduction of sulphur oxides in exhaust
JP2017036002A (en) * 2015-08-11 2017-02-16 三井造船株式会社 Device arrangement structure of ship
WO2017094915A1 (en) 2015-12-03 2017-06-08 日立造船株式会社 Combustion engine exhaust gas purifying facility
WO2019009149A1 (en) * 2017-07-05 2019-01-10 ヤンマー株式会社 Urea water supply device
KR102079540B1 (en) * 2019-08-06 2020-02-20 주식회사 현대기전 NH3 REDUCING AGENT SUPPLYING-EQUIPMENT SYSTEM BASED ON SOLID UREA FOR SCR(Selective Catalytic Reduction) DENITRIFICATION EQUIPMENT AND MANAGEMENT METHOD THEREOF
JP2020157781A (en) * 2019-03-25 2020-10-01 株式会社新来島どっく Tank arrangement of scr-mounted ship
KR102197078B1 (en) * 2019-08-06 2020-12-30 주식회사 현대기전 SOLID UREA INPUT-SUPPLY APPARATUS AND SOLID UREA INPUT-SUPPLY METHOD OF NH3 REDUCING AGENT SUPPLYING-EQUIPMENT SYSTEM FOR SCR(Selective Catalytic Reduction) DENITRIFICATION EQUIPMENT AND MANAGEMENT METHOD THEREOF
KR102211708B1 (en) * 2019-09-09 2021-02-03 주식회사 현대기전 NH3 REDUCING AGENT GENERATING APPARATUS OF NH3 REDUCING AGENT SUPPLYING-EQUIPMENT SYSTEM, MANAGEMENT CONTROL METHOD THEREOF, AND NH3 REDUCING AGENT SUPPLYING-EQUIPMENT SYSTEM FOR SCR(Selective Catalytic Reduction) DENITRIFICATION EQUIPMENT COMPRISING THE SAME
KR102211715B1 (en) * 2019-09-09 2021-02-03 주식회사 현대기전 Operating management method of nh3 reducing agent supplying-equipment system based on solid urea, and nh3 reducing agent supplying-equipment system and management method thereof
KR102211717B1 (en) * 2019-09-09 2021-02-03 주식회사 현대기전 Heat source supplying system of nh3 reducing agent supplying-equipment system based on solid urea, and nh3 reducing agent supplying-equipment system comprising the same
KR102211712B1 (en) * 2019-09-09 2021-02-03 주식회사 현대기전 MELTING UREA FIXATION PREVENTING APPARATUS, MELTING UREA SUPPLY APPARATUS INCLUDING THE SAEM, AND NH3 REDUCING AGENT SUPPLYING-EQUIPMENT SYSTEM FOR SCR(Selective Catalytic Reduction) DENITRIFICATION EQUIPMENT COMPRISING THE MELTING UREA SUPPLY APPARATUS
KR102211718B1 (en) * 2019-09-09 2021-02-03 주식회사 현대기전 SCR(Selective Catalytic Reduction) DENITRIFICATION EQUIPMENT FOR NH3 REDUCING AGENT SUPPLYING-EQUIPMENT SYSTEM

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101437822B1 (en) 2010-10-14 2014-09-05 미츠비시 쥬고교 가부시키가이샤 Scr reduction agent maritime supply system
CN103228881B (en) * 2010-10-14 2016-08-24 三菱重工业株式会社 Boats and ships SCR reducing agent supply system, boats and ships exhaust gas denitration device and boats and ships
CN103228881A (en) * 2010-10-14 2013-07-31 三菱重工业株式会社 Scr reduction agent maritime supply system
EP2628911A1 (en) * 2010-10-14 2013-08-21 Mitsubishi Heavy Industries, Ltd. Scr reduction agent maritime supply system
EP2628911A4 (en) * 2010-10-14 2014-05-14 Mitsubishi Heavy Ind Ltd Scr reduction agent maritime supply system
JP2012082796A (en) * 2010-10-14 2012-04-26 Mitsubishi Heavy Ind Ltd Maritime scr reducing agent supply system
WO2012050196A1 (en) * 2010-10-14 2012-04-19 三菱重工業株式会社 Scr reduction agent maritime supply system
JP2014111229A (en) * 2012-12-05 2014-06-19 Hitachi Zosen Corp Powder dissolving device and powder dissolving method therefor
US9387438B2 (en) 2014-02-14 2016-07-12 Tenneco Automotive Operating Company Inc. Modular system for reduction of sulphur oxides in exhaust
CN106460602B (en) * 2014-06-03 2019-04-12 日立造船株式会社 The exhaust gas purification apparatus of marine engine
KR20170016847A (en) 2014-06-03 2017-02-14 히다치 조센 가부시키가이샤 Marine engine exhaust gas purification system
CN106460602A (en) * 2014-06-03 2017-02-22 日立造船株式会社 Marine engine exhaust gas purification system
JPWO2015186559A1 (en) * 2014-06-03 2017-04-20 日立造船株式会社 Exhaust gas purification equipment for marine engines
WO2015186559A1 (en) * 2014-06-03 2015-12-10 日立造船株式会社 Marine engine exhaust gas purification system
JP2017036002A (en) * 2015-08-11 2017-02-16 三井造船株式会社 Device arrangement structure of ship
WO2017094915A1 (en) 2015-12-03 2017-06-08 日立造船株式会社 Combustion engine exhaust gas purifying facility
US10570795B2 (en) 2015-12-03 2020-02-25 Hitachi Zosen Corporation Combustion engine exhaust gas purifying facility
US20180371975A1 (en) * 2015-12-03 2018-12-27 Hitachi Zosen Corporation Combustion engine exhaust gas purifying facility
KR20180089402A (en) 2015-12-03 2018-08-08 히다치 조센 가부시키가이샤 Exhaust purification equipment for combustion engines
JP2019015199A (en) * 2017-07-05 2019-01-31 ヤンマー株式会社 Urea water supply device
CN110799733A (en) * 2017-07-05 2020-02-14 洋马株式会社 Urea water supply device
WO2019009149A1 (en) * 2017-07-05 2019-01-10 ヤンマー株式会社 Urea water supply device
JP2020157781A (en) * 2019-03-25 2020-10-01 株式会社新来島どっく Tank arrangement of scr-mounted ship
KR102079540B1 (en) * 2019-08-06 2020-02-20 주식회사 현대기전 NH3 REDUCING AGENT SUPPLYING-EQUIPMENT SYSTEM BASED ON SOLID UREA FOR SCR(Selective Catalytic Reduction) DENITRIFICATION EQUIPMENT AND MANAGEMENT METHOD THEREOF
KR102197078B1 (en) * 2019-08-06 2020-12-30 주식회사 현대기전 SOLID UREA INPUT-SUPPLY APPARATUS AND SOLID UREA INPUT-SUPPLY METHOD OF NH3 REDUCING AGENT SUPPLYING-EQUIPMENT SYSTEM FOR SCR(Selective Catalytic Reduction) DENITRIFICATION EQUIPMENT AND MANAGEMENT METHOD THEREOF
KR102211708B1 (en) * 2019-09-09 2021-02-03 주식회사 현대기전 NH3 REDUCING AGENT GENERATING APPARATUS OF NH3 REDUCING AGENT SUPPLYING-EQUIPMENT SYSTEM, MANAGEMENT CONTROL METHOD THEREOF, AND NH3 REDUCING AGENT SUPPLYING-EQUIPMENT SYSTEM FOR SCR(Selective Catalytic Reduction) DENITRIFICATION EQUIPMENT COMPRISING THE SAME
KR102211715B1 (en) * 2019-09-09 2021-02-03 주식회사 현대기전 Operating management method of nh3 reducing agent supplying-equipment system based on solid urea, and nh3 reducing agent supplying-equipment system and management method thereof
KR102211717B1 (en) * 2019-09-09 2021-02-03 주식회사 현대기전 Heat source supplying system of nh3 reducing agent supplying-equipment system based on solid urea, and nh3 reducing agent supplying-equipment system comprising the same
KR102211712B1 (en) * 2019-09-09 2021-02-03 주식회사 현대기전 MELTING UREA FIXATION PREVENTING APPARATUS, MELTING UREA SUPPLY APPARATUS INCLUDING THE SAEM, AND NH3 REDUCING AGENT SUPPLYING-EQUIPMENT SYSTEM FOR SCR(Selective Catalytic Reduction) DENITRIFICATION EQUIPMENT COMPRISING THE MELTING UREA SUPPLY APPARATUS
KR102211718B1 (en) * 2019-09-09 2021-02-03 주식회사 현대기전 SCR(Selective Catalytic Reduction) DENITRIFICATION EQUIPMENT FOR NH3 REDUCING AGENT SUPPLYING-EQUIPMENT SYSTEM

Similar Documents

Publication Publication Date Title
JP2010071148A (en) Exhaust gas purification system for engine in marine vessel
WO2010032739A1 (en) Exhaust gas purifying system for vessel engine
JP5330782B2 (en) Engine exhaust gas purification system for ships
KR102558877B1 (en) Exhaust gas purification facility of combustion engine
US7093551B2 (en) Freshwater supply system
US11034427B2 (en) Heat exchange systems for engine-powered watercraft and methods of using same
WO2009146504A1 (en) Heat treatment and disinfection system for fluids
JP4513110B2 (en) Farm water control method and apparatus for pelagic fishing boat
CA2711805A1 (en) A mobile concentration system and method for milk
KR102274549B1 (en) Marine engine exhaust gas purification system
JP6715579B2 (en) Drive unit and operating method thereof
JP2016164071A (en) Exhaust gas purification device on ship
JP5711315B2 (en) Engine exhaust gas purification system for ships
KR102292682B1 (en) Drain Water Treatment Equipment of Ship
KR101346234B1 (en) Fresh water producing system using a condensating water of hvac system
KR20210081922A (en) Producing System Of Urea Solution For Ship
KR20170061946A (en) Cooling system for vessel with EGR unit and cooling method therefor
US20110277842A1 (en) EcoSafe Desal Brine Return System
CN219237349U (en) Marine urea cabin heating system and boats and ships
CN106745868A (en) Mobile water body deposit aerator based on mobile phone A PP remote controls
US20090188866A1 (en) Desalination with production of brine fuel
US20090272695A1 (en) Desalination with production of brine fuel
CN210021965U (en) Water quality adjusting and mixing device for desalted water of ship
Mozes et al. Marine Water Recirculating Systems in Israël–Performance, Production Cost Analysis and Rationale for Desert Conditions
Manea et al. Study on the IMO quality requirements regarding marine pollution from ships