JP2010070397A - Method for joining pressure moldings of ceramic raw material powder and method for producing ceramic sintered compact - Google Patents
Method for joining pressure moldings of ceramic raw material powder and method for producing ceramic sintered compact Download PDFInfo
- Publication number
- JP2010070397A JP2010070397A JP2008236833A JP2008236833A JP2010070397A JP 2010070397 A JP2010070397 A JP 2010070397A JP 2008236833 A JP2008236833 A JP 2008236833A JP 2008236833 A JP2008236833 A JP 2008236833A JP 2010070397 A JP2010070397 A JP 2010070397A
- Authority
- JP
- Japan
- Prior art keywords
- pressure
- joining
- raw material
- molded body
- bonding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Ceramic Products (AREA)
Abstract
Description
本発明は、セラミックス原料粉末の加圧成形体及び焼結体の製造方法に関し、複雑形状品、肉厚品、長尺品を得るための、複数のセラミックス原料粉末の加圧成形体を接合する方法、及び接合された加圧成形体を焼成して得られるセラミックス焼結体の製造方法に関する。 The present invention relates to a method of manufacturing a pressure-formed body and sintered body of ceramic raw material powder, and joins a plurality of pressure-formed bodies of ceramic raw material powder to obtain a complex shape product, a thick product, and a long product. The present invention relates to a method and a method for producing a ceramic sintered body obtained by firing a bonded pressure-formed body.
従来から、所望の形状のセラミックス焼結体を得るための、複数のパーツ(部品)を接合して作製する方法として、パーツであるセラミックス原料粉末の加圧成形体を接合した後に焼成して接合する第1の方法、及び、予めパーツである加圧成形体の焼結体を作製し、当該パーツの焼結体を接合する第2の方法がある。 Conventionally, as a method of joining and producing a plurality of parts (parts) to obtain a ceramic sintered body of a desired shape, after joining the pressure-formed bodies of ceramic raw material powders that are parts, firing and joining are performed. There is a first method for performing the above, and a second method for preparing a sintered compact of a pressure-formed body that is a part in advance and joining the sintered body of the part.
第2の方法である焼結体を接合する方法としては、金属系のロウ材やガラス等を接合材として用いる方法が一般的である。しかし、接合後の各焼結体の間の接合層が母材(焼結体)であるセラミックスと材質が異なるため、母材(セラミックス)固有の特性が損なわれてしまう。 As a second method for joining the sintered bodies, a method using a metal brazing material, glass or the like as a joining material is common. However, since the material of the bonding layer between the sintered bodies after bonding is different from that of the ceramic that is the base material (sintered body), the characteristics inherent to the base material (ceramics) are impaired.
一方、上記の接合部材による接合層ができない接合方法として、複数の焼結体同士を直接に接触させて接合する拡散接合等が知られている。しかし、セラミックスの拡散が起こるのは高温なので、拡散接合法による焼結体の接合には高温での処理が必要となるという問題点がある。また、当該接合法では、焼結体それぞれの接合面を密着するように高精度に加工しても未接合の空隙が残り易いという問題点等もある。 On the other hand, as a joining method in which a joining layer using the joining member cannot be formed, diffusion joining or the like in which a plurality of sintered bodies are brought into direct contact with each other is known. However, since the diffusion of ceramics occurs at a high temperature, there is a problem that a high temperature treatment is required for bonding of sintered bodies by the diffusion bonding method. In addition, the joining method has a problem that unjoined voids are likely to remain even if the joined surfaces of the sintered bodies are processed with high precision so as to closely contact each other.
これに対し、第1の方法は、セラミックス原料粉末の加圧成形体であるパーツ同士を接合した後に焼成して接合するので、接合部の空隙を焼成過程である程度減らすことが可能であり、より信頼性の高い接合が得られる可能性がある。
例えば、特許文献1には、複数の加圧成形体をCIP(冷間静水圧成形)により直接に接合する方法が開示されている。しかしながら、加圧成形体同士を直接合わせて接合するので、2つの加圧成形体の接合面の間(接合部)に空隙が残り易く、焼成過程でこの空隙を完全に除くことは困難である。焼結体で当該空隙を減らすためには、接合面に隙間が生じないように加圧成形体それぞれの接合面を密着するように高い精度で加工する必要がある。ところが、焼結体と異なり空隙を含む加圧成形体では、高い精度で接合面の形状を加工するのが一般的に困難である。
On the other hand, since the 1st method joins the parts which are the pressure forming bodies of ceramic raw material powder after joining, it can reduce the gap of a joined part to some extent in a firing process, and more There is a possibility that a highly reliable joint can be obtained.
For example,
また、特許文献2には、加圧成形体の接合面にセラミックスの原料粉末と溶剤等とからなるスラリーを塗布した後に、2つの加圧成形体を接合する技術が開示されている。接合面にスラリーを塗布する場合、スラリーに含まれるセラミックスの原料粉末の濃度と成形体に含まれる当該原料粉末の濃度とが大きく異なる。すなわち、スラリーを塗布した部分(すなわち接合中間層)の原料粉末濃度(充填密度)が低いため、2つ又はそれ以上の加圧成形体をスラリーを介して接合し焼成したとき、接合部の密度が低くなり易く、空隙が残り易い。さらに、原料粉末の濃度の低いスラリーを用いる場合は、加圧成形体を直接接合する場合と同様に、接合部に空隙が残らないように加圧成形体の接合面を密着するように精度を高く仕上げておく必要がある。
また、特許文献3には、セラミックス原料粉末のペーストを接合剤として用いる接合方法が開示されている。当該ペーストの場合、前記スラリーよりもセラミックス原料粉末濃度が高くできることから、加圧成形体同士を直接接合する場合やスラリーを用いる場合よりも、加圧成形体の接合面の加工精度は低くても、空隙が少なく良好な接合は可能である。しかしながら、セラミックスのペーストも加工成形体を直接に接合するときに比べると、セラミックス原料粉末の濃度が低いため空隙が残り易く、接合部の密度が低くなり易いという問題があった。
なお、本願においては、セラミックスとはAl2O3、ZrO2、SiCやSi3N4などの材質又は物質を表し、セラミックス焼結体(又は単に焼結体とも記す)とはセラミックスの粉末を焼結して得られる部材を表す。
以上で説明したように、従来のセラミックス原料粉末の加圧成形体同士を直接接合する方法は、均質な接合体が得られる可能性がある。しかし、現実的には、各加圧成形体の接合面を完全に密着させて接合することが困難であるため、接合部に欠陥が残り易く、接合部の強度が母材よりも大きく低下する等の問題があった。 As described above, the conventional method of directly bonding the pressure-formed bodies of ceramic raw material powders may obtain a homogeneous bonded body. However, in reality, since it is difficult to join the pressure-molded bodies with the joint surfaces completely adhered to each other, defects are likely to remain in the joint portion, and the strength of the joint portion is significantly lower than that of the base material. There was a problem such as.
また、接合中間層として、加圧成形体と同組成の原料粉体を用いたスラリーやペーストを用いる場合、接合中間層では原料粉体の濃度が低い(充填密度が低い)ため、焼成して得られたセラミックス焼結体の接合部に空隙が残ったり、母材部分と接合部の密度が異なったりするため、接合部の強度等の機械的特性が、加圧成形体自体の母材と同じものを得ることは困難であった。 In addition, when a slurry or paste using raw material powder having the same composition as the pressure molded body is used as the bonding intermediate layer, the bonding intermediate layer has a low concentration of raw material powder (low packing density), and is fired. Since voids remain in the joined portion of the obtained ceramic sintered body or the density of the base material portion and the joint portion is different, the mechanical properties such as strength of the joint portion are different from the base material of the pressure-formed body itself. It was difficult to get the same thing.
このように、焼結後の接合部に空隙等の欠陥が残ったり、接合部の密度が加圧成形体自体の母材に比べて低かったりした場合、接合体の機械的な強度等に関する信頼性は著しく損なわれる。一般にセラミックスは、金属材料に比べて、靭性が低い材料であるため、空隙等の欠陥や密度に敏感な材料であり、このような欠陥や不均質部分から破壊が起こり易くなってしまう。また、複数の加圧成形体を上記の接合方法で接合して作製された加圧成形体では、焼成前の接合部の強度が十分ではないため、接合のない加圧成形体と比べて機械的には弱く、同様の方法で加工を行うことが難しいという問題があった。 Thus, when defects such as voids remain in the joint after sintering, or the density of the joint is lower than the base material of the pressure-formed body itself, the reliability related to the mechanical strength, etc. of the joint The properties are significantly impaired. In general, ceramic is a material having low toughness as compared with a metal material, and is therefore a material sensitive to defects such as voids and density, and breakage easily occurs from such defects and inhomogeneous portions. In addition, the pressure-formed body produced by joining a plurality of pressure-formed bodies by the above-mentioned joining method is not sufficient in the strength of the joint before firing. However, there is a problem that it is difficult to perform processing by the same method.
以上のような、セラミックス原料粉末の加圧成形体である複数のパーツを接合し、その後に焼成して所望の形状の焼結体を作製する従来技術の問題に鑑みて、本発明はなされたものである。すなわち、本発明は、接合部の欠陥や密度の不均一等が母材と同程度に少なく、かつ接合していない加圧成形体と同様の機械的加工が可能な高強度の接合強度を有する一体化された加圧成形体を作製するための加圧成形体の接合方法を提供することを第1の目的とし、当該接合方法で接合した加圧成形体を焼成した、接合部の強度が母材程度に大きなセラミックス焼結体の製造方法を提供することを第2の目的とする。 The present invention has been made in view of the problems of the prior art in which a plurality of parts that are pressure-formed bodies of ceramic raw material powder as described above are joined and then fired to produce a sintered body of a desired shape. Is. In other words, the present invention has a joint strength with high strength capable of performing mechanical processing similar to that of a pressure-molded body that is not joined, and has as few defects and non-uniformity in density as the base material. The first object is to provide a method of joining a pressure-molded body for producing an integrated pressure-molded body, and the strength of the joint is obtained by firing the pressure-molded body joined by the joining method. A second object is to provide a method for producing a ceramic sintered body that is as large as the base material.
前記の課題は、本発明により解決される。本発明の要旨は、以下の通りである。
(1)本発明のセラミックス原料粉末の加圧成形体の接合方法は、
第1の加圧成形体の接合面と第2の加圧成形体の接合面の間に、接合中間層として前記セラミックスと同種又は異種のセラミックス原料粉末を含む成形体を挟む工程、および
前記接合中間層の成形体を介して第1の加圧成形体と第2の加圧成形体とを加圧して接合する工程を含み、
前記接合中間層とする成形体は、第1の加圧成形体及び第2の加圧成形体の弾性率よりも小さい弾性率を有することを特徴とする。
(2)本発明のセラミックス原料粉末の加圧成形体の接合方法は、(1)において、前記接合中間層とする成形体の弾性率が、150MPa以下であることを特徴とする。
(3)本発明のセラミックス原料粉末の加圧成形体の接合方法は、(1)または(2)において、前記加圧成形体の弾性率が、150MPaを超え、300MPa以下であることを特徴とする。
(4)本発明のセラミックス原料粉末の加圧成形体の接合方法は、(1)〜(3)のいずれかにおいて、前記第1の加圧成形体、第2の加圧成形体および接合中間層とする成形体は、バインダーを含み、
前記第1の加圧成形体と第2の加圧成形体のバインダー含有率Cb1と前記接合中間層とする成形体のバインダー含有率Cb2とが、2×Cb1<Cb2の関係を満たすことを特徴とする。
(5)本発明のセラミックス原料粉末の加圧成形体の接合方法は、(1)〜(4)のいずれかにおいて、前記第1の加圧成形体、前記第2の加圧成形体、及び、前記接合中間層とする成形体それぞれのセラミックス原料粉末いずれも同じ組成であることを特徴とする。
(6)本発明のセラミックス原料粉末の加圧成形体の接合方法は、(1)〜(5)のいずれかにおいて、前記セラミックス原料粉末が、アルミナであることを特徴とする。
(7)本発明のセラミックス焼結体の製造方法は、(1)〜(6)のいずれかに記載のセラミックス原料粉末の加圧成形体の接合方法により、複数の加圧成形体を接合して一体化した加圧成形体を作製する工程、および
前記一体化した加圧成形体を焼成して焼結体を得る工程を含むことを特徴とする。
The above problems are solved by the present invention. The gist of the present invention is as follows.
(1) The method of joining the pressure-formed body of the ceramic raw material powder of the present invention is as follows:
A step of sandwiching a molded body containing a ceramic raw material powder of the same or different kind as the ceramic as a bonding intermediate layer between the bonding surface of the first pressure-molded body and the bonding surface of the second pressure-molded body; and the bonding Including pressurizing and bonding the first pressure-molded body and the second pressure-molded body through the molded body of the intermediate layer,
The molded body as the joining intermediate layer has an elastic modulus smaller than that of the first pressure molded body and the second pressure molded body.
(2) The method for bonding a pressure-molded body of ceramic raw material powder according to the present invention is characterized in that, in (1), an elastic modulus of the molded body as the bonding intermediate layer is 150 MPa or less.
(3) The method for bonding a pressure formed body of ceramic raw material powder according to the present invention is characterized in that, in (1) or (2), the elastic modulus of the pressure formed body is more than 150 MPa and not more than 300 MPa. To do.
(4) The method for joining the pressure-formed bodies of the ceramic raw material powder of the present invention is the method according to any one of (1) to (3), wherein the first pressure-formed body, the second pressure-formed body, and the joining intermediate. The molded body as a layer contains a binder,
Wherein the first binder content of the molded body pressed compact and a binder content of C b1 of the second pressed compact and the intermediate joining layer C b2 is the relationship of 2 × C b1 <C b2 It is characterized by satisfying.
(5) The method for bonding a pressure-formed body of ceramic raw material powder according to the present invention is the method according to any one of (1) to (4), wherein the first pressure-formed body, the second pressure-formed body, and The ceramic raw material powders of the compacts to be used as the joining intermediate layer have the same composition.
(6) The method for bonding a pressure-formed body of ceramic raw material powder according to the present invention is characterized in that in any one of (1) to (5), the ceramic raw material powder is alumina.
(7) A method for manufacturing a ceramic sintered body according to the present invention includes joining a plurality of pressure-formed bodies by the method for joining pressure-formed bodies of ceramic raw material powders according to any one of (1) to (6). And a step of producing an integrated pressure molded body, and a step of firing the integrated pressure molded body to obtain a sintered body.
本発明によると、母材と同等の密度、機械特性の接合部を有するセラミックス原料粉末の加圧成形体を得ることが可能となる。さらに、これを焼結することで接合部も母材と同等の特性を有するセラミックス焼結体が得られ、複雑形状や大型の信頼性の高いセラミックス材料を提供することができる。 According to the present invention, it is possible to obtain a pressure-formed body of ceramic raw material powder having a joint portion having a density and mechanical properties equivalent to those of the base material. Furthermore, by sintering this, a ceramic sintered body having the same characteristics as the base material can be obtained at the joint portion, and a ceramic material having a complicated shape and a large size and high reliability can be provided.
本発明のセラミックス原料粉末の加圧成形体の接合方法、及びセラミックス焼結体の製造方法を実施するための形態を詳細に説明する。
所望の形状のセラミックス焼結体を得るために、予めセラミックス原料粉末を加圧成形して、2つ又はそれ以上の複数のパーツ(被接合体)である加圧成形体を作製する。次に以下で詳細に説明するように、各被接合体の加圧成形体を接合して所望の形状の加圧成形体を作製し、その後当該加圧成形体を焼成してセラミックス焼結体を得る。
An embodiment for carrying out a method for joining a pressure-formed body of ceramic raw material powder and a method for producing a ceramic sintered body according to the present invention will be described in detail.
In order to obtain a ceramic sintered body having a desired shape, a ceramic raw material powder is pressure-molded in advance to produce a pressure-formed body which is two or more parts (joined bodies). Next, as will be described in detail below, the pressure-formed bodies of the respective bonded bodies are joined to produce a pressure-formed body having a desired shape, and then the pressure-formed body is fired to sinter the ceramic sintered body. Get.
被接合体である加圧成形体を作製するセラミックスの原料粉末としては、特に材質は限定されない。例えば、セラミックス作製用の材料として公知または周知のアルミナ、ジルコニア、コーディエライト、及びムライト等の酸化物系セラミックス原料粉末、並びに、窒化ケイ素及び炭化ケイ素等の非酸化物系セラミックス原料粉末を使用することが可能である。後で記載する実施例では酸化物系セラミックス原料粉末を用いたときの例を示す。
被接合体(パーツ)である加圧成形体は、セラミックスの原料粉末を金型プレス成形、CIP(冷間静水圧成形)、一軸加圧成形等の加圧成形方法により作製したものを使用できる。
The material for the ceramic raw material powder for producing the press-formed body that is the joined body is not particularly limited. For example, known or well-known oxide-based ceramic raw material powders such as alumina, zirconia, cordierite, and mullite, and non-oxide-based ceramic raw material powders such as silicon nitride and silicon carbide are used as materials for producing ceramics. It is possible. In the examples described later, an example of using an oxide-based ceramic raw material powder is shown.
As the press-molded body that is the joined body (part), a ceramic raw material powder produced by a press-molding method such as die press molding, CIP (cold isostatic pressing), or uniaxial pressure molding can be used. .
そして、2つの被接合体それぞれの接合面の間に、同種または異種のセラミックス原料粉末の成形体を接合中間層として挟んで、2つの被接合体を接合して1個の加圧成形体を得る。加圧接合の概略図を図1に示す。図1は、2つの直方体形状の被接合体1、2を、接合中間層3を挟んで、一軸圧力7、8を印加して接合する際の各部材の配置を示す。なお、図1において6は2つの接合面4、5、およびその間の接合中間層3からなる接合部である。
And between the joining surfaces of two to-be-joined bodies, the same kind or different type | mold of ceramic raw material powder is pinched | interposed as a joining intermediate | middle layer, two to-be-joined bodies are joined, and one press-molded body is obtained. obtain. A schematic diagram of pressure bonding is shown in FIG. FIG. 1 shows an arrangement of each member when two cuboid shaped
被接合体の加圧成形体の原料は、バインダーを含んでいることが好ましい。その理由の一つとして、接合した後で、被接合体である加圧成形体と、接合中間層として用いるセラミックス原料粉末の成形体との結合を強め、接合した加圧成形体を加工等でハンドリングするときに十分な接合強度を有することが可能となるからである。 It is preferable that the raw material of the pressure-formed body of the joined body contains a binder. One of the reasons is that after bonding, the bond between the pressure formed body that is the bonded body and the ceramic raw material powder formed body used as the bonding intermediate layer is strengthened, and the bonded pressure formed body is processed or the like. This is because it becomes possible to have a sufficient bonding strength when handling.
また、別の理由としては、被接合体の加圧成形体の弾性率は、主にバインダーの添加量(含有率)により変化させて調節することが可能であることである。すなわち、被接合体である加圧成形体の弾性率を低くすることにより、接合時に接合中間層との隙間を無くし、接合中間層との結合を強固にすることが可能となる。しかしながら、バインダー添加量が多すぎると、セラミックスの原料粉末とバインダーとを一様にまぜて加圧成形して加圧成形体を作製したあと、加熱によりバインダーを分解、揮発させて除去する脱脂の工程で加圧成形体に割れが生じて、健全な接合体を得ることが困難となる場合がある。加圧成形体に添加されるバインダーの添加量が、固形分換算で10質量%を越えると脱脂の際に割れが生じやすくなる。よって、バインダーの添加量は、セラミックスの原料粉末に対して10質量%以下がより好ましい。 Another reason is that the elastic modulus of the press-molded body of the joined body can be adjusted mainly by changing the amount (content ratio) of the binder. That is, by reducing the elastic modulus of the pressure-formed body that is the joined body, it is possible to eliminate a gap with the joining intermediate layer at the time of joining and to strengthen the bond with the joining intermediate layer. However, if the amount of the binder added is too large, the ceramic raw material powder and the binder are uniformly mixed and pressure-molded to produce a pressure-molded body, which is then degreased by removing the binder by decomposition and volatilization by heating. There are cases where cracking occurs in the pressure-formed product during the process, making it difficult to obtain a sound joined product. If the added amount of the binder added to the pressure-molded product exceeds 10% by mass in terms of solid content, cracking tends to occur during degreasing. Therefore, the addition amount of the binder is more preferably 10% by mass or less with respect to the ceramic raw material powder.
以上のように、加圧成形体のバインダーの添加量を増やして弾性率を下げるのが好ましいが、前記脱脂割れが生じないバインダーの添加量の上限値があり、そのときの加圧成形体の弾性率が望ましい弾性率の下限値である。すなわち、バインダーの添加量は、加圧成形体の弾性率を指標として決定できる。本発明において弾性率は、式(1)から算出した曲げ弾性率Eを用い、成形体の三点曲げ試験により得られた曲げ荷重と変位量から式(1)により算出した値を用いる。 As described above, it is preferable to increase the amount of binder added to the pressure molded body to lower the elastic modulus, but there is an upper limit of the amount of binder added that does not cause the degreasing crack, and the pressure molded body at that time The elastic modulus is a desirable lower limit of the elastic modulus. That is, the addition amount of the binder can be determined using the elastic modulus of the pressure-formed body as an index. In the present invention, as the elastic modulus, the value calculated by the equation (1) from the bending load and the amount of displacement obtained by the three-point bending test of the molded body is used using the bending elastic modulus E calculated from the equation (1).
E=9.8×P×L3/(4×b×h3×x) (1)
ここで、E:弾性率(MPa)
P:曲げ荷重(kgf)
L:支点間距離(mm)
b:サンプル幅(mm)
h:サンプル厚み(mm)
x:変位量(mm)である。
E = 9.8 × P × L 3 / (4 × b × h 3 × x) (1)
Where E: elastic modulus (MPa)
P: Bending load (kgf)
L: Distance between fulcrums (mm)
b: Sample width (mm)
h: Sample thickness (mm)
x: displacement (mm).
具体的には、加圧成形体の弾性率は、150MPaを越えることが望ましい。言い換えれば、加圧成形体の弾性率を150MPa以下とするには、バインダー添加量を多くする必要があり、脱脂割れが生じる場合がある。一方、加圧成形体の弾性率の上限は、圧接時に加圧成形体が変形して、被接合体と接合中間層とを隙間なく接合できるという観点から300MPa以下であることが望ましい。 Specifically, it is desirable that the elastic modulus of the pressure-molded body exceeds 150 MPa. In other words, in order to make the elastic modulus of the pressure-formed body 150 MPa or less, it is necessary to increase the amount of binder added, and degreasing cracks may occur. On the other hand, the upper limit of the elastic modulus of the pressure-molded body is desirably 300 MPa or less from the viewpoint that the pressure-molded body is deformed at the time of pressure welding and the joined body and the joining intermediate layer can be joined without a gap.
上記のバインダーとしては、ポリビニルアルコール、ポリアクリル酸エステル等が代表的である。しかしながら、被接合体の加圧成形体のセラミックス原料粉末の種類に応じて、当該セラミックス原料粉末に混合した際に、弾性を付与できるバインダーであれば、これらに限らず適宜選択して使用することができる。
なお、この他に、加圧成形体の弾性率は、セラミックス原料粉末の種類や、粒径、形状等により調整してもよい。
Typical examples of the binder include polyvinyl alcohol and polyacrylate. However, according to the type of the ceramic raw material powder of the pressure-formed body of the joined body, any binder that can impart elasticity when mixed with the ceramic raw material powder is appropriately selected and used. Can do.
In addition, the elastic modulus of the pressure-formed body may be adjusted by the type, particle size, shape, etc. of the ceramic raw material powder.
上記の接合中間層として用いるセラミックス原料粉末の成形体は、所望の弾性率となるように、種類や形状が最適化された公知のセラミックス原料粉末を用いてよい。しかしながら、被接合体と同じセラミックス原料粉末とバインダーの混合物を、被接合体と同様に金型プレス成形、CIP、一軸加圧成形等の加圧成形法の他に、射込成形、射出成形、ドクターブレード(シート成形)等の成形方法により作製したものを使用することが好ましい。弾性率の調整が容易だからである。接合中間層の成形体の弾性率は、上記被接合体である加圧成形体の弾性率よりも小さくする。接合中間層の弾性率を被接合体の弾性率より小さくすることにより、接合部における欠陥を無くし、強固な接合部を形成できる。 As the molded body of the ceramic raw material powder used as the bonding intermediate layer, a known ceramic raw material powder whose type and shape are optimized so as to obtain a desired elastic modulus may be used. However, a mixture of the same ceramic raw material powder and binder as the object to be joined, in addition to the pressure forming method such as die press molding, CIP, uniaxial pressure molding, etc., like the object to be joined, injection molding, injection molding, It is preferable to use one produced by a molding method such as a doctor blade (sheet molding). This is because the elastic modulus can be easily adjusted. The elastic modulus of the molded body of the bonding intermediate layer is made smaller than the elastic modulus of the pressure molded body that is the bonded body. By making the elastic modulus of the bonding intermediate layer smaller than the elastic modulus of the object to be bonded, defects in the bonded portion can be eliminated and a strong bonded portion can be formed.
接合中間層は、曲げ試験における荷重変位曲線から前記式(1)で算出される弾性率が被接合体の弾性率よりも小さいものが良く、さらに当該弾性率が150MPa以下である成形体を用いるのが好ましい。弾性率が150MPaより大きい成形体を接合中間層とした場合、加圧による接合時に被接合体の接合面形状に合わせて接合中間層が変形することが難しいため、被接合体との接合界面に空隙を生じやすく、欠陥のない接合部を得ることができない場合がある。 The bonding intermediate layer preferably has a modulus of elasticity calculated by the above formula (1) from a load displacement curve in a bending test smaller than the modulus of elasticity of the bonded body, and further uses a molded body having a modulus of elasticity of 150 MPa or less. Is preferred. When a molded body having an elastic modulus greater than 150 MPa is used as a bonding intermediate layer, it is difficult for the bonding intermediate layer to be deformed in accordance with the shape of the bonding surface of the bonded body during bonding by pressurization. In some cases, voids are easily generated, and a defect-free joint cannot be obtained.
弾性率が150MPa以下の成形体を得る方法としては、添加するバインダーの量を制御する方法がある。バインダーとしては、ポリビニルアルコール、ポリアクリル酸エステル等が代表的であるが、セラミックス原料粉体に混合した際に、弾性を付与できるバインダーであれば、これらに限らず使用することができる。ポリビニルアルコールやポリアクリル酸エステルなどのバインダーを用いた場合、これらの添加量(含有率)を増やすことにより、接合中間層となる成形体の弾性率が下がり、前記成形体が、接合時に被接合体(加圧成形体)の接合面形状に合わせて変形することが可能となる。 As a method of obtaining a molded product having an elastic modulus of 150 MPa or less, there is a method of controlling the amount of a binder to be added. Typical examples of the binder include polyvinyl alcohol and polyacrylic acid ester. However, any binder that can impart elasticity when mixed with the ceramic raw material powder can be used. When binders such as polyvinyl alcohol and polyacrylic acid esters are used, increasing the amount added (content ratio) decreases the elastic modulus of the molded body that becomes the bonding intermediate layer, so that the molded body is bonded during bonding. It becomes possible to deform | transform according to the joint surface shape of a body (pressure-molded body).
適切なバインダーの添加量は、用いるセラミックス原料粉体の形状、サイズ等により異なる。例えばアルミナ原料粉末では、平均粒径0.5μmのセラミックス原料粉末を用いる場合、バインダーの添加量は、バインダーを固形物換算した値でセラミックス原料粉末に対して2.4質量%以上とすることで、弾性率を150MPa以下の低弾性率の成形体とすることが可能である。 The appropriate amount of binder to be added varies depending on the shape and size of the ceramic raw material powder used. For example, in the case of using an alumina raw material powder, when using a ceramic raw material powder having an average particle size of 0.5 μm, the amount of binder added should be 2.4% by mass or more based on the ceramic raw material powder in terms of the solid equivalent of the binder. Further, it is possible to obtain a molded article having a low elastic modulus having an elastic modulus of 150 MPa or less.
また、接合中間層とする成形体の弾性率には、下限はなく、自重で変形してしまい、曲げ試験による弾性率が測定できない成形体でも、被接合体の間に挟んで保持することが可能であれば中間層として使用可能である。但し、前記成形体を接合中間層として、被接合体に挟み込み作業のしやすさから、5MPa程度以上の弾性率がより好ましい。 In addition, there is no lower limit to the modulus of elasticity of the molded body used as the bonding intermediate layer, and even a molded body that is deformed by its own weight and cannot be measured by a bending test can be sandwiched and held between the bonded bodies. If possible, it can be used as an intermediate layer. However, an elastic modulus of about 5 MPa or more is more preferable in view of the ease of the work of sandwiching the formed body as a bonding intermediate layer and the object to be bonded.
そして、被接合体である加圧成形体のバインダーと、接合中間層として用いる成形体のバインダーとの比率は、加圧成形体のバインダー含有率Cb1と接合中間層として用いる成形体のバインダー含有率Cb2との比率を、2×Cb1<Cb2の関係を満たすようにすることにより、より良好な接合体が得られる。バインダー含有率の比率が、2×Cb1≧Cb2の場合、接合中間層の弾性率が十分低くないため、接合面で隙間を生じやすくなるため、健全な接合体を得ることができない場合がある。
加圧成形体のバインダー含有率Cb1は、成形体中のバインダーの質量%で定義される。同様に、接合中間層として用いる成形体のバインダー含有率Cb2も、成形体中のバインダーの質量%で定義される。
なお、被接合体である加圧成形体は、通常は複数存在するが、この場合、総ての加圧成形体のバインダー含有率Cb1は同じであることが好ましい。
And the ratio of the binder of the pressure-molded body which is a to-be-joined body, and the binder of the molded body used as a joining intermediate layer is the binder content Cb1 of a pressure-molding body, and the binder content of the molded body used as a joining intermediate | middle layer. By making the ratio with the rate C b2 satisfy the relationship of 2 × C b1 <C b2 , a better bonded body can be obtained. The ratio of the binder content, in the case of 2 × C b1 ≧ C b2, because the elastic modulus of the intermediate joining layer is not sufficiently low, it becomes likely to occur a gap at the joint surface, it may not be possible to obtain a sound conjugate is there.
Binder content C b1 of pressed compact is defined in mass% of the binder in the molded body. Similarly, the binder content Cb2 of the molded body used as the bonding intermediate layer is also defined by mass% of the binder in the molded body.
Incidentally, pressed compact is object to be bonded are normally there are multiple, in this case, it is preferable that the binder content C b1 of all pressed compact is the same.
2つの被接合体を接合する際には、上記の低弾性率の接合中間層の成形体を、被接合体である加圧成形体の接合面それぞれの間に挟み、加圧して接合(加圧接合)を行う。接合に用いる加圧方法としては、一軸加圧あるいは静水圧加圧が適用できる。加圧成形により作製した被接合体を接合する場合の接合時に印加する圧力は、被接合体の加圧成形時の圧力以上とすること望ましい。例えば、98MPaで加圧成形して得た被接合体を、98MPa以上の圧力で接合して作製した一体化された加圧成形体は、通常の加工時に負荷される応力に十分耐えうるような強度を有する。 When two objects to be bonded are bonded, the above-mentioned low elastic modulus bonded intermediate layer molded body is sandwiched between the bonding surfaces of the pressure-molded body that is the bonded object, and pressed (bonded). Pressure bonding). As a pressurizing method used for joining, uniaxial pressurization or hydrostatic pressurization can be applied. The pressure applied at the time of joining in the case of joining the joined bodies produced by pressure molding is preferably equal to or higher than the pressure at the time of pressure molding of the joined bodies. For example, an integrated pressure molded body produced by bonding a bonded body obtained by pressure molding at 98 MPa at a pressure of 98 MPa or more can sufficiently withstand the stress applied during normal processing. Has strength.
2つの被接合体(加圧成形体)の間に挟む接合中間層の加圧接合前の厚さは、被接合体のサイズや接合面の加工精度によって異なるので、これらに基づき適宜設定するが、例えば被接合体である加圧成形体の一般的な面精度の場合、10μm〜5cmの範囲とするのが好ましいことが多い。加圧接合後の接合中間層は、接合部の欠陥や空隙をなくせる程度の厚さが有れば十分である。したがって、加圧接合後の接合中間層の厚さは、0.5μm以上の厚さが好ましい。しかしながら、接合部の強度を十分保つためには加圧接合後の接合中間層の厚さは、0.8μm以下がより好ましい。 The thickness of the joining intermediate layer sandwiched between two joined bodies (pressure-formed bodies) before pressure joining varies depending on the size of the joined body and the processing accuracy of the joining surface, and is appropriately set based on these. For example, in the case of general surface accuracy of a press-molded body that is a joined body, it is often preferable to set the range of 10 μm to 5 cm. It is sufficient that the bonding intermediate layer after the pressure bonding has a thickness that can eliminate defects and voids in the bonded portion. Therefore, the thickness of the bonding intermediate layer after pressure bonding is preferably 0.5 μm or more. However, in order to sufficiently maintain the strength of the bonded portion, the thickness of the bonded intermediate layer after pressure bonding is more preferably 0.8 μm or less.
接合中間層として用いる成形体のセラミックス原料粉末は、被接合体の加圧成形体と同組成のセラミックス成分からなる原料粉末であることが望ましい。これにより加圧接合された加圧成形体の焼成後の接合焼結体は、各加圧成形体を焼成した母材と同組成の接合部を有する接合焼結体となるため、母材と同等の強度等の機械的特性を有する接合部を得ることが可能となる。また、同組成の粉末を用いることにより、加圧成形体と接合中間層の加圧接合体の焼成時の収縮が同様に起こるため、焼成時の接合面の剥離及び亀裂等の破損が起こりにくくなる。 The ceramic raw material powder of the molded body used as the bonding intermediate layer is desirably a raw material powder made of a ceramic component having the same composition as the pressure-formed body of the bonded body. The bonded sintered body after firing of the pressure-formed body that has been pressure-bonded thereby becomes a bonded sintered body having a joint portion of the same composition as the base material obtained by firing each pressure-formed body. It becomes possible to obtain a joint having mechanical properties such as equivalent strength. In addition, by using the powder having the same composition, shrinkage at the time of firing of the pressure-formed body and the pressure-bonded body of the joining intermediate layer occurs in the same manner. .
更に、接合する2つの加圧成形体も、同じ組成のセラミックス原料粉末の加圧成形体であることがより好ましい。上記の被接合体(加圧成形体)と接合中間層との接合の場合と同様に、焼成時の接合面の剥離が起こりにくいからである。 Further, the two pressure-formed bodies to be joined are more preferably pressure-formed bodies of ceramic raw material powder having the same composition. This is because, as in the case of joining the joined body (press-molded body) and the joining intermediate layer, peeling of the joining surface during firing hardly occurs.
また、接合中間層の成形体と被接合体の接合面に、成形体に添加するバインダーもしくは同等の機能を有する別の種類のバインダーを直接あるいは水等の溶媒に溶かした溶液で塗布することにより、より接合強度の高い接合体を得ることが可能となる。これにより、焼成前の接合部の強度が高くなり、ハンドリングが容易になると共に、接合した加圧成形体を機械加工するとき、加工時の破損を防ぐ効果が得られる。 In addition, by applying a binder added to the molded body or another type of binder having an equivalent function directly or with a solution dissolved in a solvent such as water on the bonding surface of the bonded intermediate layer molded body and the joined body. Thus, it is possible to obtain a bonded body with higher bonding strength. As a result, the strength of the bonded portion before firing is increased, handling becomes easy, and the effect of preventing breakage during processing is obtained when the bonded pressure-formed body is machined.
被接合体の加圧成形体および接合中間層として用いる成形体それぞれの接合面は、互いに密着する形状に加工することが好ましい。被接合体の接合面に接合中間層となる成形体を挟み、一軸加圧あるいはCIPにより接合した後、母材のセラミックスが目的とする密度に緻密化する焼成条件で焼成して焼結体を得る。特に、構造用材料として用いる場合、焼成後の焼結体の接合部の密度は、理論密度に対して95%以上に緻密化することが望ましい。 It is preferable to process the bonding surfaces of the pressure-formed body of the body to be bonded and the molded body used as the bonding intermediate layer into a shape that is in close contact with each other. After sandwiching a molded body as a joining intermediate layer between the joining surfaces of the joined bodies and joining them by uniaxial pressing or CIP, the sintered body is fired under firing conditions in which the base ceramic is densified to the desired density. obtain. In particular, when used as a structural material, it is desirable that the density of the bonded portion of the sintered body after firing is densified to 95% or more of the theoretical density.
以上述べた方法により、複数の被接合体の加圧成形体と同じ種類のセラミックス原料粉末、又は焼成後に当該セラミックス原料と強固に結合することが可能なセラミックス粉末を原料とした接合中間層を準備し、かつその弾性率を上記のように適切に調節し、当該接合中間層を挟んで被接合体を加圧接合してセラミックス焼結体を得ることにより、接合部の強度が母材の強度と比べても劣らない複雑形状の焼結品、肉厚な焼結品、長尺な焼結品が、従来品と比べて安価で容易に作製することが可能となる。 By the method described above, a bonding intermediate layer made of the same kind of ceramic raw material powder as the pressure-formed body of a plurality of objects to be joined or ceramic powder that can be firmly bonded to the ceramic raw material after firing is prepared. And adjusting the elastic modulus appropriately as described above, and press-bonding the joined bodies with the joining intermediate layer sandwiched therebetween to obtain a ceramic sintered body, whereby the strength of the joint portion is the strength of the base material. Compared with conventional products, complex shaped sintered products, thick sintered products, and long sintered products that are not inferior to those of conventional products can be easily manufactured at a low cost.
特に本発明の効果が顕著である例として、次のような場合が挙げられる。(1)最終加工されるセラミックス焼結体が複雑な形状のために加圧成形体の接合部に応力集中しやすく、その部分の接合強度向上の要求が高い場合。(2)CIPをはじめとする加圧成形のための容器または装置の寸法が同一の場合。
本発明により、第一の加圧成形体と第二の加圧成形体は既に加圧収縮後の状態で新たに接合中間層を介して加圧接合できるから、当該工程での加圧収縮部分が接合中間層のみに限定されるため、一段階で加圧成形体を作る場合に比べて、より大型の加圧成形体の製作が可能になる。
本発明は近年、大型化、無欠陥高強度化のニーズが高まっている静電チャック、ステージ装置、半導体製造装置をはじめとする各種精密機器の部品に用いるセラミックス焼結体の製造に特に有用であるが、それらの対象物に限定されず広くセラミックス焼結体の製造に適用できる。
Examples where the effects of the present invention are particularly remarkable include the following cases. (1) When the ceramic sintered body to be finally processed has a complicated shape, it is easy to concentrate stress on the joint portion of the pressure-formed body, and there is a high demand for improving the joint strength at that portion. (2) When the dimensions of the container or apparatus for pressure molding including CIP are the same.
According to the present invention, the first pressure-molded body and the second pressure-molded body can be newly pressure-bonded through the bonding intermediate layer in a state after pressure-shrinkage. Is limited only to the bonding intermediate layer, it is possible to produce a larger-sized pressure-molded body as compared with the case where the pressure-formed body is produced in one step.
The present invention is particularly useful for the production of ceramic sintered bodies used for parts of various precision equipment such as electrostatic chucks, stage devices, and semiconductor manufacturing devices, which have recently been increasing in demand for larger size and higher defect-free strength. However, the present invention is not limited to these objects and can be widely applied to the production of ceramic sintered bodies.
以下、本発明のセラミックス原料粉末の加圧成形体の接合方法、及びセラミックス焼結体の製造方法の実施例として、セラミックス原料粉末を用いて加圧成形体を作製し、2つの加圧成形体を加圧接合して一体化した加圧接合体を作製し、さらに焼成して焼結体を得た。以下では、本発明の製造方法で作製した焼結体を「実施例」と記す。そして、本発明の製造方法と異なる製造方法、又は、本発明の製造方法の条件から外れた条件で作製した焼結体を「比較例」と記す。 Hereinafter, as an example of a method for joining a pressure-formed body of a ceramic raw material powder according to the present invention and a method for producing a ceramic sintered body, a pressure-formed body is produced using the ceramic raw material powder, and two pressure-formed bodies are produced. A pressure bonded body was produced by pressure bonding, and further sintered to obtain a sintered body. Below, the sintered compact produced with the manufacturing method of this invention is described as an "Example." And the sintered compact produced on the manufacturing method different from the manufacturing method of this invention or the conditions remove | deviated from the conditions of the manufacturing method of this invention is described as a "comparative example."
(実施例)
加圧成形体のセラミックス原料粉末としてアルミナ粉末(平均粒径0.6μm)を用い、当該アルミナ粉末と、バインダー(結合剤)としてポリビニルアルコールとを、加圧成形体中の固形分換算で表1の各試料について示すバインダー添加量になるように蒸留水を溶媒として混合して混合物を得た。前記混合物を、乾燥後、50mm(W)×50mm(L)×20mm(T)のサイズの直方体に98MPaで加圧成形した加圧成形体を2個作製した。
(Example)
Alumina powder (average particle size 0.6 μm) is used as the ceramic raw material powder of the pressure-formed body, and the alumina powder and polyvinyl alcohol as the binder (binder) are shown in Table 1 in terms of solid content in the pressure-formed body. Distilled water was mixed as a solvent so that the binder addition amount shown for each sample was obtained to obtain a mixture. After the mixture was dried, two pressure-molded bodies were produced by pressure-molding at 98 MPa on a rectangular parallelepiped having a size of 50 mm (W) × 50 mm (L) × 20 mm (T).
また、接合中間層として同じくアルミナ粉末に、ポリビニルアルコールを、成形体中の固形物換算で表1の各試料について示すバインダー添加量になるように水溶媒とともに混合した。この混合物を乾燥して得た粉末を50mm(W)×50mm(L)×5mm(T)のサイズに成形した。 Similarly, polyvinyl alcohol was mixed with the alumina powder as a joining intermediate layer together with an aqueous solvent so that the binder addition amount shown for each sample in Table 1 in terms of solid matter in the molded body was obtained. The powder obtained by drying this mixture was molded into a size of 50 mm (W) × 50 mm (L) × 5 mm (T).
これらの加圧成形体の接合面(50mm(W)×50mm(L))と接合中間層とする成形体の接合面とを#400の砥石で研削加工した後、2つの加圧成形体の間に厚さ5(mm)の接合中間層となる成形体を挟み、147MPaの圧力で加圧接合した。得られた接合体を、大気中、1600℃×8時間の条件で焼成し、セラミックス焼結体を得た。 After grinding the joint surface (50 mm (W) × 50 mm (L)) of these pressure-molded bodies and the joint surface of the molded body as a joining intermediate layer with a # 400 grindstone, A molded body serving as a bonding intermediate layer having a thickness of 5 (mm) was sandwiched therebetween, and pressure bonding was performed at a pressure of 147 MPa. The obtained joined body was fired in air at 1600 ° C. for 8 hours to obtain a ceramic sintered body.
得られた焼結体(接合焼結体)について、目視および光学顕微鏡により接合部の欠陥の有無を観察した。また、目視や光学顕微鏡で接合部に欠陥が見られなかった焼結体については、接合断面を鏡面研磨した後、リン酸によるエッチング処理を施し、走査型電子顕微鏡により接合部を観察した。また、接合部に欠陥が見られなかったサンプルについては、接合部が試験片の長さ方向の中心になるように3×4×40mmの試験片に加工した後、四点曲げ試験法により接合部の強度を測定した。 About the obtained sintered compact (joint sintered compact), the presence or absence of the defect of a junction part was observed visually and with the optical microscope. Moreover, about the sintered compact by which the defect was not looked at by the visual observation or the optical microscope, after carrying out the mirror surface grinding | polishing of the joining cross section, the etching process by phosphoric acid was given and the joining part was observed with the scanning electron microscope. In addition, for samples in which no defect was found in the joint, the sample was processed into a 3 × 4 × 40 mm test piece so that the joint became the center in the length direction of the test piece, and then joined by a four-point bending test method. The strength of the part was measured.
表1に、実施例又は比較例である試料1〜19についての加圧成形体の説明、接合中間層の説明、及び評価結果の一覧表を示す。接合状態の評価では、接合面で分離あるいは割れを生じたものを×とし、目視もしくは光学顕微鏡、SEM観察で接合部で隙間などの明らかな欠陥が見られたものを△、接合に起因すると考えられる欠陥が見られなかったものを○として記述した。 In Table 1, the description of the press-molded body about the samples 1-19 which are an Example or a comparative example, the description of a joining intermediate | middle layer, and the list of evaluation results are shown. In the evaluation of the bonding state, the case where separation or cracking occurred on the bonding surface was evaluated as x, and the case where an obvious defect such as a gap was observed in the bonding portion by visual observation, optical microscope, or SEM observation was considered to be due to bonding. Those where no defects were found were marked as ○.
表1に示したように、本発明の範囲外である成形体よりも弾性率が低くない接合中間層を用いた、比較例である試料No.1、8および9は、脱脂あるいは焼成時に接合部から分離もしくは割れが生じてしまい、接合体を得ることが出来なかった。 As shown in Table 1, Sample No., which is a comparative example, using a bonding intermediate layer having an elastic modulus not lower than that of the molded body outside the scope of the present invention. Nos. 1, 8 and 9 were separated or cracked from the joint during degreasing or firing, and a joined body could not be obtained.
一方、本発明による接合方法を用いたものは、いずれの脱脂あるいは焼成時に割れや分離を起こすことなく接合体を得ることが出来た。
これらの健全な接合体が得られた焼結体を切断し、接合断面を鏡面研磨後、リン酸によるエッチング処理を行い、走査型電子顕微鏡により接合部を観察した結果、母材部分とほぼ同じ粒径の結晶粒からなることを確認し、母材と接合部がほぼ同様の構造をもつことを確認した。
On the other hand, those using the joining method according to the present invention were able to obtain a joined body without any degreasing or firing without cracking or separation.
After cutting the sintered body from which these healthy bonded bodies were obtained, the bonded cross section was mirror polished, etched with phosphoric acid, and the bonded portion was observed with a scanning electron microscope. It was confirmed that it was composed of crystal grains having a grain size, and it was confirmed that the base material and the joint had a similar structure.
本発明による接合焼結体のうち、接合中間層の弾性率が150MPaより大きい試料No.2、3、4では、走査型電子顕微鏡による観察の結果、数十μmのポアが接合界面に見られ、接合部の強度は母材の平均強度が460MPaであるに対して350〜370MPaとやや低い強度であった。しかし、試料No.2、3、4は、十分実用に資する程度の接合強度を有していた。 Among the bonded sintered bodies according to the present invention, the sample No. In 2, 3, and 4, as a result of observation with a scanning electron microscope, pores of several tens of μm are seen at the joint interface, and the strength of the joint is slightly 350 to 370 MPa while the average strength of the base material is 460 MPa. The strength was low. However, sample no. 2, 3, and 4 had a bonding strength sufficient for practical use.
一方、加圧成形体のバインダー含有率Cb1と接合中間層として用いる成形体のバインダー含有率Cb2との比率が2×Cb1<Cb2の関係を満たさない試料No.15、16は、接合部に目立った欠陥は見られず、接合部の強度は380〜390MPaであった。
また、310MPaと弾性率の高い加圧成形体を用いた試料No.18のサンプルでは、接合部に目立った欠陥は見られず、接合部の強度は370MPaであった。
On the other hand, the sample ratio of the binder content C b2 of the molded body used as a binder content of C b1 of pressed compact intermediate joining layer does not satisfy the relation of 2 × C b1 <C b2 No. In 15 and 16, no conspicuous defects were found in the joint, and the strength of the joint was 380 to 390 MPa.
Sample No. using a pressure-molded article having a high elastic modulus of 310 MPa. In 18 samples, no conspicuous defects were found in the joint, and the strength of the joint was 370 MPa.
加圧成形体のアルミナ原料に対して、MgO換算で0.1質量%となるように水酸化マグネシウムを添加した粉末を他の接合中間層と同じ方法で作製して接合中間層に用いた試料No.19では、走査型電子顕微鏡による観察の結果、数十μmのポアが接合界面に見られ、接合部の強度は370MPaであった。 A sample prepared by using the same method as that for other bonding intermediate layers in which magnesium hydroxide is added to the alumina raw material of the pressure-molded body so as to be 0.1% by mass in terms of MgO. No. In No. 19, as a result of observation with a scanning electron microscope, pores of several tens of μm were found at the bonding interface, and the strength of the bonding portion was 370 MPa.
接合中間層の弾性率が150MPa以下であり、かつ加圧成形体のバインダー含有率Cb1と接合中間層として用いる成形体のバインダー含有率Cb2との比率が2×Cb1<Cb2を満たす試料No.5〜7、10〜14および17は、走査型電子顕微鏡による観察の結果、接合界面には目立った欠陥は見られず、接合部の強度は380〜415MPaであった。 The elastic modulus of the bonding intermediate layer is 150 MPa or less, and the ratio of the binder content C b1 of the pressure-molded body and the binder content C b2 of the molded body used as the bonding intermediate layer satisfies 2 × C b1 <C b2 Sample No. As a result of observation with a scanning electron microscope, 5-7, 10-14, and 17 showed no noticeable defects at the joint interface, and the joint strength was 380 to 415 MPa.
(他の比較例1)
アルミナ粉末(平均粒径0.6μm)とポリビニルアルコール結合剤を体積比で45:55になるように混合しペーストを作製した。実施例と同様の方法で作製した被接合体の成形体の接合面にこのペースト1.5gを均一な厚みで載せ、もう一つの成形体を載せたものをビニルシートで真空封止した後、1.5ton/cm2の圧力で接合した。得られた接合体を大気中600℃で脱脂した後、大気中1600℃×8時間の条件で焼成し、焼結体を得た。
接合面の光学顕微鏡観察の結果、接合部に結合剤が抜けた跡と考えられる長さ100〜200μmの細長い欠陥が観察された。また、4点曲げ試験法による接合強度測定では、母材の平均強度460MPaに対して、接合体の平均強度は280MPaと強度が大きく低下しており、破壊が接合部の欠陥を起点としていることが確認された。
(Other Comparative Example 1)
Alumina powder (average particle size 0.6 μm) and polyvinyl alcohol binder were mixed at a volume ratio of 45:55 to prepare a paste. After 1.5 g of this paste was placed in a uniform thickness on the joint surface of the molded body of the joined body produced by the same method as in the example, and the other molded body was vacuum-sealed with a vinyl sheet, Bonding was performed at a pressure of 1.5 ton / cm 2 . The obtained joined body was degreased at 600 ° C. in the air, and then fired under the conditions of 1600 ° C. × 8 hours in the air to obtain a sintered body.
As a result of optical microscope observation of the joint surface, a long and narrow defect having a length of 100 to 200 μm, which is considered to be a trace of the binder being removed at the joint portion, was observed. Moreover, in the joint strength measurement by the four-point bending test method, the average strength of the bonded body is greatly reduced to 280 MPa with respect to the average strength of the base material, which is 280 MPa, and the failure starts from a defect in the joint. Was confirmed.
(他の比較例2)
成形体の原料としてアルミナ粉末(平均粒径0.6μm)に、溶媒として水を用い、これにポリカルボン酸系の分散剤、ポリビニルアルコール結合剤を添加したスラリーを作製した。実施例1と同様の方法で作製した2つの被接合体の成形体の接合面にこのスラリーを塗布した。次に、前記被接合体同士のスラリー塗布面を貼り合わせた。これをCIPにより接合し、得られた接合体を大気中600℃で脱脂した後、大気中1600℃×8時間の条件で焼成し、焼結体を得た。
接合面の光学顕微鏡観察の結果、接合面に10〜30μmの隙間が観察された。4点曲げ試験法による接合強度測定では、母材の平均強度460MPaに対して、接合体の平均強度は310MPaと大きく低下していた。
(Other Comparative Example 2)
A slurry was prepared by using alumina powder (average particle size 0.6 μm) as a raw material of the molded body, water as a solvent, and a polycarboxylic acid-based dispersant and a polyvinyl alcohol binder added thereto. This slurry was applied to the joint surfaces of the molded bodies of the two joined bodies produced by the same method as in Example 1. Next, the slurry application surfaces of the objects to be joined were bonded together. This was joined by CIP, and the obtained joined body was degreased at 600 ° C. in the atmosphere, and then fired at 1600 ° C. for 8 hours in the atmosphere to obtain a sintered body.
As a result of optical microscope observation of the joint surface, a gap of 10 to 30 μm was observed on the joint surface. In the measurement of the bonding strength by the four-point bending test method, the average strength of the joined body was greatly reduced to 310 MPa as compared to the average strength of the base material of 460 MPa.
1 第1の加圧成形体(被接合体)
2 第2の加圧成形体(被接合体)
3 接合中間層
4 第1の加圧成形体の接合面
5 第2の加圧成形体の接合面
6 接合部
7、8 一軸圧力
1 1st press-molded body (bonded body)
2 Second pressure-formed body (bonded body)
3 Joining
Claims (7)
第1の加圧成形体の接合面と第2の加圧成形体の接合面の間に、接合中間層として前記セラミックスと同種又は異種のセラミックス原料粉末を含む成形体を挟む工程、および
前記接合中間層の成形体を介して第1の加圧成形体と第2の加圧成形体とを加圧して接合する工程を含み、
前記接合中間層とする成形体は、第1の加圧成形体及び第2の加圧成形体の弾性率よりも小さい弾性率を有することを特徴とする、セラミックス原料粉末の加圧成形体の接合方法。 A method of joining a plurality of pressure-formed bodies obtained by pressure-molding ceramic raw material powder,
A step of sandwiching a molded body containing a ceramic raw material powder of the same or different kind as the ceramic as a bonding intermediate layer between the bonding surface of the first pressure-molded body and the bonding surface of the second pressure-molded body; and the bonding Including pressurizing and bonding the first pressure-molded body and the second pressure-molded body through the molded body of the intermediate layer,
The molded body as the bonding intermediate layer has a modulus of elasticity smaller than that of the first pressure molded body and the second pressure molded body. Joining method.
前記第1の加圧成形体と第2の加圧成形体のバインダー含有率Cb1と、前記接合中間層とする成形体のバインダー含有率Cb2とは、2×Cb1<Cb2の関係を満たすことを特徴とする、請求項1〜3のいずれか1項に記載のセラミックス原料粉末の加圧成形体の接合方法。 The first pressure molded body, the second pressure molded body, and the molded body as the bonding intermediate layer include a binder,
The first pressed compact and a binder content of C b1 of the second pressed compact, the the bonding intermediate layer a binder content C b2 of the molded body, 2 × C b1 <relation C b2 The method for bonding a pressure-formed body of ceramic raw material powder according to any one of claims 1 to 3, wherein:
前記一体化した加圧成形体を焼成して焼結体を得る工程を含むことを特徴とするセラミックス焼結体の製造方法。 The process of producing the press-molded body which joined and integrated the several press-molded body by the joining method of the press-molded body of the ceramic raw material powder according to any one of claims 1 to 6, and A method for producing a ceramic sintered body comprising a step of firing an integrated pressure formed body to obtain a sintered body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008236833A JP2010070397A (en) | 2008-09-16 | 2008-09-16 | Method for joining pressure moldings of ceramic raw material powder and method for producing ceramic sintered compact |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008236833A JP2010070397A (en) | 2008-09-16 | 2008-09-16 | Method for joining pressure moldings of ceramic raw material powder and method for producing ceramic sintered compact |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010070397A true JP2010070397A (en) | 2010-04-02 |
Family
ID=42202543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008236833A Pending JP2010070397A (en) | 2008-09-16 | 2008-09-16 | Method for joining pressure moldings of ceramic raw material powder and method for producing ceramic sintered compact |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010070397A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015030629A (en) * | 2013-07-31 | 2015-02-16 | 太平洋セメント株式会社 | Alumina ceramic joined body and method for producing the same |
-
2008
- 2008-09-16 JP JP2008236833A patent/JP2010070397A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015030629A (en) * | 2013-07-31 | 2015-02-16 | 太平洋セメント株式会社 | Alumina ceramic joined body and method for producing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6706428B2 (en) | Ceramic sintered bodies and a method of producing the same | |
JP4890968B2 (en) | Low thermal expansion ceramic joined body and manufacturing method thereof | |
KR20100108290A (en) | Alumina sintered body, method for manufacturing the same, and semiconductor manufacturing apparatus member | |
JP5805556B2 (en) | Alumina ceramic joined body and method for producing the same | |
JP5096872B2 (en) | Application tool tip member and application tool having the same | |
JP2011139000A (en) | Power module structure and method of manufacturing the same | |
JP6196492B2 (en) | Manufacturing method of alumina ceramic joined body | |
KR20140047607A (en) | Aln substrate and method for producing same | |
JP2010070397A (en) | Method for joining pressure moldings of ceramic raw material powder and method for producing ceramic sintered compact | |
JP4596855B2 (en) | Metal-ceramic composite structure and electrode member for plasma generation comprising the same | |
JP6236314B2 (en) | Silicon carbide bonded body and method for manufacturing the same | |
JP5092135B2 (en) | Porous material and method for producing the same | |
JP2012106929A (en) | Method for producing porous body | |
JP2002110772A (en) | Electrode built-in ceramic and its manufacturing method | |
JP7216611B2 (en) | Manufacturing method of SiC sintered member | |
JP2803111B2 (en) | Ceramic joining method | |
CN111448174B (en) | Bonded ceramic and method for producing same | |
KR0139551B1 (en) | Proce ss for simultaneously producing a number of ceramic sintered body by hot pressing method | |
JP4370624B2 (en) | Alumina member joining method | |
JP3942288B2 (en) | Method for producing setter material for firing ceramics | |
JP7556880B2 (en) | Method for producing oxide-containing ceramic sintered body and release sheet | |
JP2004083366A (en) | Aluminum nitride ceramic bonded product and its forming process | |
JP5166223B2 (en) | Method for joining members to be joined of silicon nitride ceramics | |
Gao et al. | Effects of adhesive composition on bond strength of green joined CePO4–ZrO2 ceramics | |
JPH04260669A (en) | Production of silicon nitride composite material containing silicon carbide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A711 Effective date: 20100511 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20100511 |