JP2010069417A - Methane fermentation apparatus - Google Patents

Methane fermentation apparatus Download PDF

Info

Publication number
JP2010069417A
JP2010069417A JP2008239930A JP2008239930A JP2010069417A JP 2010069417 A JP2010069417 A JP 2010069417A JP 2008239930 A JP2008239930 A JP 2008239930A JP 2008239930 A JP2008239930 A JP 2008239930A JP 2010069417 A JP2010069417 A JP 2010069417A
Authority
JP
Japan
Prior art keywords
alkalinity
fermentation
methane fermentation
electrical conductivity
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008239930A
Other languages
Japanese (ja)
Other versions
JP4844608B2 (en
Inventor
Miyako Hitomi
美也子 人見
Tadashi Komatsu
正 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2008239930A priority Critical patent/JP4844608B2/en
Publication of JP2010069417A publication Critical patent/JP2010069417A/en
Application granted granted Critical
Publication of JP4844608B2 publication Critical patent/JP4844608B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a methane fermentation apparatus that can promptly deal with performance reduction of methane fermentation by automatically measuring the alkalinity, concentration of ammonia nitrogen and concentration of all organic acids of a fermented solution. <P>SOLUTION: The methane fermentation apparatus includes a methane fermentation tank 12 comprising a slurry adjusting tank 11 for slurrying organic wastes, a pH meter 23 for measuring the pH of the fermented solution in the tank, an electric conductivity meter 22 for measuring the electric conductivity of the fermented solution in the tank and an arithmetic unit 30 for calculating the alkalinity, concentration of ammonia nitrogen and concentration of all organic acids of the fermented solution from the measured values of the pH and the electric conductivity. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、長期にわたって安定したメタン発酵状態を維持できるメタン発酵処理装置に関する。   The present invention relates to a methane fermentation treatment apparatus capable of maintaining a stable methane fermentation state over a long period of time.

生ごみ、汚泥等の有機性廃棄物のほとんどは、焼却や埋立処分されているが、焼却に伴うダイオキシンの発生や埋立処分地の逼迫、悪臭などの問題から、環境負荷の少ない処理方法が求められている。これらの問題を解決するために有機性廃棄物をメタン発酵処理し、発生したメタンガスを燃料電池やガスエンジンを用いて発電するシステムが開発されている。   Most organic waste such as garbage and sludge is incinerated or landfilled. However, due to problems such as dioxin generation due to incineration, tightness of landfill sites, and bad odors, treatment methods with low environmental impact are required. It has been. In order to solve these problems, a system has been developed in which organic waste is subjected to methane fermentation treatment, and the generated methane gas is generated using a fuel cell or a gas engine.

メタン発酵処理は、有機性廃棄物を粉砕・スラリー化した後、発酵槽に投入し、嫌気性下でメタン菌により発酵処理して、有機性廃棄物をメタンガスに転換する処理方法で、有機性廃棄物をバイオガスと水とに分解して大幅に減量でき、嫌気性のため曝気動力が不要であるため省エネルギーな処理法である。しかも、副産物として生成するメタンガスをエネルギーとして回収できるメリットがある。   Methane fermentation treatment is a treatment method in which organic waste is pulverized and slurried, put into a fermenter, fermented with methane bacteria under anaerobic conditions, and organic waste is converted to methane gas. Waste can be decomposed into biogas and water to greatly reduce the amount of waste, and since it is anaerobic, it does not require aeration power, so it is an energy-saving treatment method. In addition, there is an advantage that methane gas generated as a by-product can be recovered as energy.

有機性廃棄物を効率的にメタン発酵処理するシステムとして、例えば特許文献1や特許文献2には、有機性廃棄物をペースト状に粉砕して、50〜60℃で大きな活性を示す高温メタン菌で処理するシステムが開示されている。高温菌は、36〜38℃の中温で活性が大きくなる中温菌に比べ2〜3倍の活性を持っており、高温菌でメタン発酵を行うことで、分解速度の向上と消化率の向上とを図ることができる。   As a system for efficiently treating methane fermentation of organic waste, for example, Patent Document 1 and Patent Document 2 disclose a high-temperature methane bacterium that pulverizes organic waste into a paste and exhibits high activity at 50 to 60 ° C. Is disclosed. Thermophilic bacteria are 2-3 times more active than mesophilic bacteria whose activity is increased at a medium temperature of 36-38 ° C. By performing methane fermentation with the high-temperature bacteria, the decomposition rate is improved and the digestibility is improved. Can be achieved.

ところで、メタン発酵処理は、発酵状態が安定しているときは、生ゴミ等の有機性廃棄物が規定量投入されていればバイオガスが一定量生成する。しかしながら、発酵温度や有機性廃棄物の投入量、有機性廃棄物の性状等の変動によって、メタン発酵に関係する菌体の活性が低下し、発酵性能が低下する傾向がある。   By the way, in the methane fermentation treatment, when the fermentation state is stable, a certain amount of biogas is generated if a specified amount of organic waste such as garbage is input. However, due to fluctuations in fermentation temperature, input amount of organic waste, properties of organic waste, etc., the activity of the cells related to methane fermentation tends to decrease and fermentation performance tends to decrease.

そこで、メタン発酵槽内のpH、アルカリ度、アンモニア性窒素濃度、全有機酸濃度などを計測し、阻害限界値とならないように運転する試みがなされている。   Therefore, an attempt has been made to measure the pH, alkalinity, ammoniacal nitrogen concentration, total organic acid concentration, etc. in the methane fermenter so as not to reach the inhibition limit value.

例えば、特許文献3には、有機性廃棄物をメタン発酵処理する前に、メタン発酵槽内のアンモニア性窒素濃度が2000mg/L以下になるように有機性廃棄物を希釈することで、メタン菌の活性阻害を防止する技術が開示されている。同様に、特許文献4には、メタン発酵槽内のアンモニア性窒素濃度が、3000mg/Lを越えると、あるいは、酢酸やプロピオン酸などの揮発性脂肪酸が2000〜3000mg/Lを超えるとメタン発酵が阻害されることが記載されており、有機性廃棄物をメタン発酵させるに際し、発酵槽内の発酵液の一部を抜き出して固液分離し、分離した固形分を水で希釈して発酵槽内へ返送することにより、発酵槽内の溶解性発酵阻害物質の濃度を低下させることを特徴とするメタン発酵処理が開示されている。
特開平10−137730号公報 特開平13−46997号公報 特公平7−115030号公報 特開平11−221548号公報 特許第3630165号公報
For example, in Patent Document 3, before organic waste is subjected to methane fermentation, the organic waste is diluted so that the ammoniacal nitrogen concentration in the methane fermenter is 2000 mg / L or less, so that methane bacteria A technique for preventing the inhibition of the activity is disclosed. Similarly, Patent Document 4 describes that methane fermentation occurs when the concentration of ammoniacal nitrogen in the methane fermentation tank exceeds 3000 mg / L, or when the volatile fatty acid such as acetic acid or propionic acid exceeds 2000 to 3000 mg / L. It is described that the organic waste is methane-fermented, and when the organic waste is subjected to methane fermentation, a part of the fermented liquid in the fermenter is extracted and solid-liquid separated, and the separated solid content is diluted with water and the fermenter is A methane fermentation treatment characterized by reducing the concentration of the soluble fermentation inhibitor in the fermenter by returning to the fermenter is disclosed.
Japanese Patent Laid-Open No. 10-137730 Japanese Patent Laid-Open No. 13-46997 Japanese Patent Publication No.7-115030 JP-A-11-221548 Japanese Patent No. 3630165

発酵液のpHは、pHメータなどで常時観測が可能である。また、発酵液のアンモニア性窒素濃度は、本出願人は、特許文献5(特許第3630165号公報)において、メタン発酵槽内に貯留されているスラリー化された有機性廃棄物の電気伝導率がアンモニア性窒素濃度と相関を有している点に着目し、電気伝導率からアンモニア性窒素濃度を換算して、発酵液中のアンモニア性窒素濃度が所定値以上にならないように制御する技術を提案した。   The pH of the fermentation broth can be constantly observed with a pH meter or the like. In addition, according to Patent Document 5 (Patent No. 3630165), the present applicant has found that the electrical conductivity of the slurried organic waste stored in the methane fermentation tank is as follows. Focusing on the fact that there is a correlation with the ammonia nitrogen concentration, we propose a technology to control the ammonia nitrogen concentration in the fermentation broth so that it does not exceed the predetermined value by converting the ammonia nitrogen concentration from the electrical conductivity. did.

一方、全有機酸濃度は、通常、ガスクロマトグラフ法等で検出することが一般的であり、また、アルカリ度は、塩酸による滴定法で検出することが一般的であった。   On the other hand, the total organic acid concentration is generally detected by a gas chromatograph method or the like, and the alkalinity is generally detected by a titration method using hydrochloric acid.

このため、全有機酸濃度やアルカリ度の検出には時間や手間を要し、リアルタイムでの検出が困難であった。そのため、メタン発酵の処理性能の低下に対して、迅速な対処を行うことは困難であった。   For this reason, it takes time and labor to detect the total organic acid concentration and alkalinity, and real-time detection is difficult. For this reason, it has been difficult to quickly cope with a decrease in the processing performance of methane fermentation.

したがって、本発明の目的は、特に複雑な操作や、高価な測定器具を用いなくとも、発酵液のアルカリ度、アンモニア性窒素濃度、及び全有機酸濃度を自動計測でき、メタン発酵の発酵性能低下に対し迅速に対処が可能なメタン発酵装置を提供することである。   Therefore, the purpose of the present invention is to reduce the fermentation performance of methane fermentation by automatically measuring the alkalinity, ammoniacal nitrogen concentration, and total organic acid concentration of the fermentation liquor without using particularly complicated operations and expensive measuring instruments. It is to provide a methane fermentation apparatus that can quickly cope with the situation.

上記目的を達成するため、本発明のメタン発酵装置は、有機性廃棄物をスラリー化するスラリー調整槽と、前記スラリーをメタン発酵させるメタン発酵槽を備えたメタン発酵装置において、前記メタン発酵槽は、メタン発酵槽内の発酵液のpHを測定するpHメータと、メタン発酵槽内の発酵液の電気伝導率を測定する電気伝導率計と、前記pHの測定値と前記電気伝導率の測定値とから前記発酵液のアルカリ度、アンモニア性窒素濃度、及び全有機酸濃度を演算する演算機とを備えてなることを特徴とする。   In order to achieve the above object, the methane fermentation apparatus of the present invention is a methane fermentation apparatus comprising a slurry adjustment tank for slurrying organic waste and a methane fermentation tank for methane fermentation of the slurry. A pH meter for measuring the pH of the fermentation broth in the methane fermentation tank, an electrical conductivity meter for measuring the electrical conductivity of the fermentation broth in the methane fermentation tank, a measured value of the pH, and a measured value of the electrical conductivity And an arithmetic unit for calculating the alkalinity, ammoniacal nitrogen concentration, and total organic acid concentration of the fermentation broth.

本発明者らは、種々の検討の結果、メタン発酵槽における発酵液のアルカリ度は、発酵液のpHとの間に相関があり、また、発酵液の電気伝導率は、アンモニア性窒素由来のアルカリ度と相関があり、また、発酵液の全有機酸濃度は、アンモニア由来のアルカリ度と発酵液のアルカリ度との差分と相関があることを見出した。そこで、本発明によれば、メタン発酵槽内の電気伝導率とpH値を計測することにより、特に複雑な操作や、高価な測定器具を用いなくとも、発酵液のアルカリ度、アンモニア性窒素濃度、及び全有機酸濃度を常時監視でき、メタン発酵の発酵性能低下に対してより迅速に対処することができる。   As a result of various studies, the inventors have found that the alkalinity of the fermentation broth in the methane fermenter has a correlation with the pH of the fermentation broth, and the electrical conductivity of the fermentation broth is derived from ammoniacal nitrogen. It was found that there is a correlation with the alkalinity, and the total organic acid concentration of the fermentation broth is correlated with the difference between the alkalinity derived from ammonia and the alkalinity of the fermentation broth. Therefore, according to the present invention, by measuring the electrical conductivity and pH value in the methane fermenter, the alkalinity of the fermentation liquor, the ammoniacal nitrogen concentration, without using particularly complicated operations or expensive measuring instruments. , And the total organic acid concentration can be monitored at all times, and the fermentation performance decline of methane fermentation can be dealt with more quickly.

本発明のメタン発酵装置は、前記スラリー調整槽が、電気伝導率計を備え、前記スラリー調整槽内のスラリーの電気伝導率を前記演算機に出力できるように構成されており、前記演算機が、前記スラリー調整槽内の電気伝導率の測定値からアンモニアに起因しない電気伝導率とアルカリ度を算出して、このアンモニアに起因しない電気伝導率とアルカリ度とで補正して前記発酵液のアルカリ度、アンモニア性窒素濃度、及び全有機酸濃度を演算するように構成されていることが好ましい。メタン発酵槽内の発酵液の電気伝導率は、アンモニアに起因する電気伝導率の他に、有機性廃棄物が含有する塩濃度(例えば、Na、Ca、K、Mg等)に起因する電気伝導率がある。未分解の蛋白質等は、電気伝導率をほぼ有さないので、スラリー調整槽内の電気伝導率を測定することで、有機性廃棄物が含有するNa、Ca、K、Mg等の塩由来の電気伝導率を測定することができ、アンモニアに起因しない電気伝導率とアルカリ度を算出することができるので、発酵液のアルカリ度、アンモニア性窒素濃度、及び全有機酸濃度を精度よく演算することができる。   The methane fermentation apparatus of the present invention is configured such that the slurry adjustment tank includes an electric conductivity meter, and the electric conductivity of the slurry in the slurry adjustment tank can be output to the calculator. The electrical conductivity and alkalinity not attributed to ammonia are calculated from the measured values of electrical conductivity in the slurry adjusting tank, and corrected by the electrical conductivity and alkalinity not attributed to ammonia. It is preferably configured to calculate the temperature, the ammoniacal nitrogen concentration, and the total organic acid concentration. The electrical conductivity of the fermentation broth in the methane fermenter is the electrical conductivity caused by the salt concentration (for example, Na, Ca, K, Mg, etc.) contained in the organic waste in addition to the electrical conductivity caused by ammonia. There is a rate. Undegraded proteins and the like have almost no electrical conductivity, so by measuring the electrical conductivity in the slurry adjustment tank, it is derived from salts such as Na, Ca, K, and Mg contained in organic waste. The electrical conductivity can be measured, and the electrical conductivity and alkalinity not attributed to ammonia can be calculated, so the alkalinity, ammoniacal nitrogen concentration, and total organic acid concentration of the fermentation liquid must be calculated accurately. Can do.

また、本発明のメタン発酵装置は、前記pH測定値及び電気伝導率測定値に基づいて、下式(1)からメタン発酵槽内の発酵液のアルカリ度を算出し、下式(2)からアンモニア性窒素濃度を算出し、下式(3)から全有機酸濃度を算出することが好ましい。   Moreover, the methane fermentation apparatus of this invention calculates the alkalinity of the fermentation liquid in a methane fermenter from the following Formula (1) based on the said pH measured value and electrical conductivity measured value, From the following Formula (2) It is preferable to calculate the ammoniacal nitrogen concentration and to calculate the total organic acid concentration from the following equation (3).

(式中、Atotalは発酵液のアルカリ度であり、[NH ]は発酵液のアンモニア性窒素濃度であり、VFAtotalは全有機酸濃度であり、pHは発酵液のpHであり、ECは発酵液の電気伝導率であり、ECはスラリーの電気伝導率であり、a〜fは定数である。)
また、本発明のメタン発酵装置は、演算された前記発酵液のアルカリ度、アンモニア性窒素濃度、及び全有機酸濃度のいずれか一つの値が所定値を外れたとき、警報を出力する及び/又はメタン発酵槽内のスラリー濃度を低減させるように構成されていることが好ましい。この態様によれば、メタン発酵の性能低下に対して迅速に対応ができ、安定した発行状態でメタン発酵を長期間継続することができる。
( Where A total is the alkalinity of the fermentation broth, [NH 4 + ] is the ammoniacal nitrogen concentration of the fermentation broth, VFA total is the total organic acid concentration, and pH 1 is the pH of the fermentation broth. EC 1 is the electrical conductivity of the fermentation broth, EC 2 is the electrical conductivity of the slurry, and a to f are constants.)
Further, the methane fermentation apparatus of the present invention outputs an alarm when any one of the calculated alkalinity, ammoniacal nitrogen concentration, and total organic acid concentration of the fermentation broth deviates from a predetermined value and / or Or it is preferable that it is comprised so that the slurry density | concentration in a methane fermenter may be reduced. According to this aspect, it is possible to quickly cope with a decrease in performance of methane fermentation, and methane fermentation can be continued for a long time in a stable issuance state.

本発明によれば、特に複雑な操作や、高価な測定器具を用いなくとも、発酵液のアルカリ度、アンモニア性窒素濃度、及び全有機酸濃度を常時監視でき、メタン発酵の発酵性能低下に対してより迅速に対処することができる。   According to the present invention, it is possible to constantly monitor the alkalinity, ammoniacal nitrogen concentration, and total organic acid concentration of the fermentation broth without using complicated operations and expensive measuring instruments. Can be dealt with more quickly.

以下、本発明について図面を参照して更に詳細に説明する。図1には、本発明のメタン発酵装置の概略構成図が示されている。   Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 shows a schematic configuration diagram of the methane fermentation apparatus of the present invention.

このメタン発酵装置は、有機性廃棄物をスラリー化して貯留するスラリー調整槽11と、メタン発酵槽12とで主に構成されている。   This methane fermentation apparatus is mainly composed of a slurry adjustment tank 11 for storing organic waste in a slurry state and a methane fermentation tank 12.

スラリー調整槽11の側壁には、有機性廃棄物の供給源から伸びた配管L1が接続している。   A pipe L <b> 1 extending from an organic waste supply source is connected to the side wall of the slurry adjustment tank 11.

スラリー調整槽11の側壁からは、ポンプP1の配置された配管L2が伸びて、メタン発酵槽12の側壁に接続している。   From the side wall of the slurry adjustment tank 11, a pipe L <b> 2 where the pump P <b> 1 is arranged extends and is connected to the side wall of the methane fermentation tank 12.

スラリー調整槽11の内部には、第1の電気伝導率計21が配置され、槽内に貯留されたスラリーの電気伝導率(EC)を測定して、測定データを演算機30に出力するように構成されている。 A first electric conductivity meter 21 is arranged inside the slurry adjustment tank 11, measures the electric conductivity (EC 2 ) of the slurry stored in the tank, and outputs measurement data to the calculator 30. It is configured as follows.

メタン発酵槽12には、図示しないメタン菌等の嫌気性微生物が付着・担持された固定化担体を充填した固定ろ床等が設置されており、ここでスラリーがメタン発酵されて、有機性廃棄物が分解される。   The methane fermentation tank 12 is provided with a fixed filter bed or the like filled with an immobilization support on which anaerobic microorganisms such as methane bacteria (not shown) are attached and supported. Things are broken down.

メタン発酵槽12の内部には、第2の電気伝導率計22と、pHメータ23とが配置され、メタン発酵槽12内の発酵液の電気伝導率(EC)及びpH(pH)を測定して、測定データを演算機30に出力するように構成されている。 A second electric conductivity meter 22 and a pH meter 23 are arranged inside the methane fermentation tank 12, and the electric conductivity (EC 1 ) and pH (pH 1 ) of the fermentation liquid in the methane fermentation tank 12 are measured. It is configured to measure and output the measurement data to the calculator 30.

メタン発酵槽12の上部には、ポンプP2が途中に配置された配管L3が接続しており、配管L3から希釈水を供給してメタン発酵槽12内の発酵液を希釈するように構成されている。なお、希釈水としては、廃水処理槽(図示せず)で脱窒素処理した廃水、あるいは外部からの供給水が利用される。また、メタン発酵槽12の上部には、オーバーフローした発酵液を排出する配管L4が設けられている。更に、メタン発酵槽12の上部からは、発生したバイオガスを取出すための配管L5が伸びて、図示しないガスホルダーと接続している。   The upper part of the methane fermentation tank 12 is connected to a pipe L3 in which a pump P2 is disposed in the middle, and is configured to supply dilution water from the pipe L3 to dilute the fermentation liquid in the methane fermentation tank 12. Yes. As dilution water, waste water denitrified in a waste water treatment tank (not shown) or externally supplied water is used. In addition, a pipe L4 for discharging the overflowed fermentation broth is provided at the upper part of the methane fermentation tank 12. Further, a pipe L5 for taking out the generated biogas extends from the upper part of the methane fermentation tank 12 and is connected to a gas holder (not shown).

メタン発酵槽12の下部からは、ポンプP3が途中に配置された配管L6が伸びて、槽内に蓄積した発酵汚泥を排出するように構成されている。   From the lower part of the methane fermentation tank 12, a pipe L6 in which the pump P3 is arranged is extended to discharge the fermentation sludge accumulated in the tank.

演算機30は、ポンプP2、表示器41及び警報機42と電気的に接続している。   The calculator 30 is electrically connected to the pump P2, the display 41, and the alarm device 42.

この演算機30は、図2に示すように、アルカリ度演算部31と、塩由来のアルカリ度演算部32と、アンモニア性窒素濃度演算部33と、アンモニア由来のアルカリ度演算部34と、全有機酸濃度演算部35と、比較部36とを有している。   As shown in FIG. 2, the calculator 30 includes an alkalinity calculator 31, a salt-derived alkalinity calculator 32, an ammoniacal nitrogen concentration calculator 33, an ammonia-derived alkalinity calculator 34, An organic acid concentration calculation unit 35 and a comparison unit 36 are included.

演算機30による演算処理及び制御を図2を用いて説明する。   Arithmetic processing and control by the arithmetic unit 30 will be described with reference to FIG.

アルカリ度演算部31では、pHメータ23で計測した発酵液のpH(pH)を読み込み、下式(1)に基づき発酵液のアルカリ度(Atotal)を算出する。 The alkalinity calculation unit 31 reads the pH (pH 1 ) of the fermentation broth measured by the pH meter 23 and calculates the alkalinity (A total ) of the fermentation broth based on the following equation (1).

(式中、Atotalは発酵液のアルカリ度であり、pHは発酵液のpHであり、a、bは定数である。)
図3に、発酵液のアルカリ度とpHとの関係図を示すが、アルカリ度とpHとの間には、ほぼ正の相関がある。したがって、アルカリ度とpHとは、上式(1)で近似して表すことができる。図中の横軸はpH値であり、縦軸はアルカリ度の対数値である。なお、上式(1)の定数aは、図3に示す発酵液のアルカリ度とpHとの関係図から求めた傾きの値であり、定数bは、切片の値である。そして、図3においては、a=0.27、b=1.85である。この定数a,bは、発酵液の種類や性状によらず、ほぼ一定の値を示すことが多いが、検出精度を向上させるため、定数a、bは、発酵液毎にアルカリ度とpHとの関係をあらかじめ調べて決定することが好ましい。
(In the formula, A total is the alkalinity of the fermentation broth, pH 1 is the pH of the fermentation broth, and a and b are constants.)
FIG. 3 shows a relationship between the alkalinity and pH of the fermentation broth, and there is a substantially positive correlation between the alkalinity and pH. Accordingly, the alkalinity and pH can be approximated by the above equation (1). The horizontal axis in the figure is the pH value, and the vertical axis is the logarithmic value of alkalinity. In addition, the constant a of the above formula (1) is a slope value obtained from the relationship between the alkalinity and pH of the fermentation broth shown in FIG. 3, and the constant b is an intercept value. In FIG. 3, a = 0.27 and b = 1.85. These constants a and b often show almost constant values regardless of the type and properties of the fermentation broth, but in order to improve the detection accuracy, the constants a and b are determined by alkalinity and pH for each fermentation broth. It is preferable to determine the relationship by examining the relationship in advance.

そして、アルカリ度演算部31での演算結果(Atotal)は、全有機酸濃度演算部35、比較部36に送る。また、表示器41に送り、発酵液のアルカリ度を表示する。 Then, the calculation result (A total ) in the alkalinity calculation unit 31 is sent to the total organic acid concentration calculation unit 35 and the comparison unit 36. Moreover, it sends to the indicator 41 and displays the alkalinity of a fermented liquor.

塩由来のアルカリ度演算部32では、第1の電気伝導率計21で計測したスラリー調整槽11内のスラリーの電気伝導率(EC)を読み込み、下式(4)に基づいて発酵液の塩濃度由来のアルカリ度(A)を算出する。 In the salt-derived alkalinity calculation unit 32, the electrical conductivity (EC 2 ) of the slurry in the slurry adjustment tank 11 measured by the first electrical conductivity meter 21 is read, and based on the following formula (4), The alkalinity (A 2 ) derived from the salt concentration is calculated.

(式中、Aは発酵液の塩由来アルカリ度であり、ECはスラリーの電気伝導度であり、eは定数である。)
図4は、アンモニア以外の塩の、電気伝導度とアルカリ度の関係を示すが、有機物分解が進行していないスラリー調整層の電気伝導率ECとアルカリ度が、アンモニア以外の塩のものに該当する。従って、図4は、スラリーのアルカリ度とスラリーの電気伝導率との関係図を示すことになり、アルカリ度と電気伝導率との間には正の相関がある。また、スラリーの電気伝導率は、発酵液のアンモニア性窒素濃度以外の成分(Na,K,Ca,Mgなどの塩)の電気伝導率とみなすことができるので、発酵液の塩由来のアルカリ度(A)は、上式(4)で近似して表すことができる。図中の横軸はスラリーの電気伝導率(mS/cm)であり、縦軸はスラリーのアルカリ度(mg/L)である。なお、上式(4)の定数eは、図4に示すスラリーのアルカリ度とスラリーの電気伝導率との関係図から求めた傾きの値である。そして、図4においては、e=332であるが、定数eは、メタン発酵処理に用いた有機性廃棄物に含まれる塩の種類等によって変動する場合がある。このため、測定精度を向上させるため、定数eは、スラリー毎にアルカリ度と電気伝導率との関係をあらかじめ調べて決定することが好ましい。
(In the formula, A 2 is the salt-derived alkalinity of the fermentation broth, EC 2 is the electrical conductivity of the slurry, and e is a constant.)
4, the salts other than ammonia, but shows the electrical conductivity and alkalinity relationship, electrical conductivity EC 2 and alkalinity of the slurry adjusting layer organic decomposition is not in progress are those of salts other than ammonia Applicable. Therefore, FIG. 4 shows a relationship diagram between the alkalinity of the slurry and the electrical conductivity of the slurry, and there is a positive correlation between the alkalinity and the electrical conductivity. Moreover, since the electrical conductivity of a slurry can be considered as electrical conductivity of components (salts, such as Na, K, Ca, Mg) other than the ammoniacal nitrogen density | concentration of a fermentation liquid, the alkalinity derived from the salt of a fermentation liquid (A 2 ) can be approximated by the above equation (4). The horizontal axis in the figure is the electrical conductivity (mS / cm) of the slurry, and the vertical axis is the alkalinity (mg / L) of the slurry. In addition, the constant e of the above formula (4) is a slope value obtained from the relationship diagram between the alkalinity of the slurry and the electrical conductivity of the slurry shown in FIG. In FIG. 4, e = 332, but the constant e may vary depending on the type of salt contained in the organic waste used for the methane fermentation treatment. For this reason, in order to improve the measurement accuracy, the constant e is preferably determined by examining the relationship between alkalinity and electrical conductivity in advance for each slurry.

そして、塩由来のアルカリ度演算部32での演算結果(A)は、全有機酸濃度演算部35に送る。 Then, the calculation result (A 2 ) in the salt-derived alkalinity calculation unit 32 is sent to the total organic acid concentration calculation unit 35.

アンモニア性窒素濃度演算部33では、第1の電気伝導率計21で計測したスラリー調整槽11内のスラリーの電気伝導率(EC)と、第2の電気伝導率計22で計測したメタン発酵槽12内の発酵液の電気伝導率(EC)とを読み込み、下式(2)に基づいて発酵液のアンモニア性窒素濃度([NH ])を算出する。 In the ammonia nitrogen concentration calculator 33, the electrical conductivity (EC 2 ) of the slurry in the slurry adjustment tank 11 measured by the first electrical conductivity meter 21 and the methane fermentation measured by the second electrical conductivity meter 22. The electrical conductivity (EC 1 ) of the fermentation liquid in the tank 12 is read, and the ammoniacal nitrogen concentration ([NH 4 + ]) of the fermentation liquid is calculated based on the following equation (2).

(式中、[NH ]は発酵液のアンモニア性窒素濃度であり、ECは発酵液の電気伝導率であり、ECはスラリーの電気伝導率であり、cは定数である。)
図5に、発酵液の電気伝導率とアンモニア性窒素濃度との関係図を示すが、発酵液の電気伝導率とアンモニア性窒素濃度との間には、ほぼ正の相関がある。また、発酵液の電気伝導率は、アンモニア性窒素以外の塩類(例えば、Na,K,Ca,Mg)にも関係しているため、発酵液の電気伝導率(EC)から、スラリーの電気伝導率(EC)を減ずることで、アンモニア性窒素濃度と相関の取れた電気伝導率値が得られる。したがって、発酵液のアンモニア性窒素濃度([NH ])は、上式(2)で近似して表すことができる。図中の横軸は発酵液のアンモニア性窒素濃度(mg/L)であり、縦軸は発酵液の電気伝導率(mS/cm)である。なお、上式(2)の定数cは、図5に示す電気伝導率とアンモニア性窒素濃度との関係図から求めた傾きの逆数値である。そして、図5においては、c=(1/0.0036)≒280である。この定数cは、発酵液の種類や性状によらず、ほぼ一定の値を示すことが多いが、検出精度を向上させる場合、発酵液毎にアンモニア性窒素濃度と電気伝導率との関係をあらかじめ調べて決定することが好ましい。
(Where [NH 4 + ] is the ammoniacal nitrogen concentration of the fermentation broth, EC 1 is the electrical conductivity of the fermentation broth, EC 2 is the electrical conductivity of the slurry, and c is a constant.)
FIG. 5 shows a relationship diagram between the electrical conductivity of the fermentation broth and the ammoniacal nitrogen concentration, and there is a substantially positive correlation between the electrical conductivity of the fermentation broth and the ammoniacal nitrogen concentration. In addition, since the electrical conductivity of the fermentation broth is related to salts other than ammonia nitrogen (for example, Na, K, Ca, Mg), the electrical conductivity of the slurry is determined from the electrical conductivity (EC 1 ) of the fermentation broth. By reducing the conductivity (EC 2 ), an electrical conductivity value correlated with the ammoniacal nitrogen concentration can be obtained. Therefore, the ammoniacal nitrogen concentration ([NH 4 + ]) of the fermentation broth can be approximated by the above equation (2). The horizontal axis in the figure is the ammoniacal nitrogen concentration (mg / L) of the fermentation broth, and the vertical axis is the electrical conductivity (mS / cm) of the fermentation broth. The constant c in the above equation (2) is an inverse value of the slope obtained from the relationship diagram between the electrical conductivity and the ammonia nitrogen concentration shown in FIG. In FIG. 5, c = (1 / 0.0036) ≈280. This constant c often shows a substantially constant value regardless of the type and properties of the fermentation broth, but when improving the detection accuracy, the relationship between the ammoniacal nitrogen concentration and the electrical conductivity is previously determined for each fermentation broth. It is preferable to check and determine.

そして、アンモニア性窒素濃度演算部33での演算結果([NH ])は、アンモニア由来のアルカリ度演算部34、比較部36に送る。また、表示器41に送り、発酵液のアンモニア性窒素濃度を表示する。 Then, the calculation result ([NH 4 + ]) in the ammonia nitrogen concentration calculation unit 33 is sent to the alkalinity calculation unit 34 and the comparison unit 36 derived from ammonia. Moreover, it sends to the indicator 41 and displays the ammoniacal nitrogen concentration of a fermented liquor.

アンモニア由来のアルカリ度演算部34では、アンモニア性窒素濃度演算部33での演算結果([NH ])を読み込み、下式(5)に基づいて、アンモニア由来のアルカリ度(A)を算出する。 The ammonia-derived alkalinity calculation unit 34 reads the calculation result ([NH 4 + ]) in the ammonia nitrogen concentration calculation unit 33, and calculates the ammonia-derived alkalinity (A 1 ) based on the following equation (5). calculate.

(式中、Aは発酵液のアンモニア由来アルカリ度であり、[NH ]は発酵液のアンモニア性窒素塩濃度であり、dは定数である。)
ここで、アルカリ度は、炭酸カルシウム[CaCO]への換算濃度で示され、発酵液のアンモニアの形態を炭酸アンモニウム[(NHCO]とすると、炭酸アンモニウム[(NHCO]1等量は、炭酸カルシウム[CaCO]1等量に相当するので、分子量96g/molの炭酸アンモニウム[(NHCO]中の窒素量は、14×2=28g/molであり、炭酸カルシウム[CaCO]の分子量は、100g/molなので、窒素1g当たりの炭酸カルシウム[CaCO]は、3.57(100/28=3.57)であり、定数dは3.57となる。また、アンモニア性窒素濃度と、アンモニア由来のアルカリ度との間には、相関があることが報告されており(「嫌気性バイオテクノロジー」 技報道出版 p208)、また、定数dは、理論値として3.57であることも報告されている。
(In the formula, A 1 is the ammonia-derived alkalinity of the fermentation broth, [NH 4 + ] is the ammoniacal nitrogen salt concentration of the fermentation broth, and d is a constant.)
Here, alkalinity is indicated by reduced concentration of the calcium carbonate [CaCO 3], the form of ammonia fermentations ammonium carbonate When [(NH 4) 2 CO 3 ], ammonium carbonate [(NH 4) 2 Since 1 equivalent of CO 3 ] corresponds to 1 equivalent of calcium carbonate [CaCO 3 ], the amount of nitrogen in ammonium carbonate [(NH 4 ) 2 CO 3 ] having a molecular weight of 96 g / mol is 14 × 2 = 28 g / Since the molecular weight of calcium carbonate [CaCO 3 ] is 100 g / mol, calcium carbonate [CaCO 3 ] per 1 g of nitrogen is 3.57 (100/28 = 3.57), and the constant d is 3 .57. In addition, it has been reported that there is a correlation between the ammoniacal nitrogen concentration and the alkalinity derived from ammonia (“Anaerobic Biotechnology”, Technical Press Publication p208), and the constant d is a theoretical value. It is also reported that it is 3.57.

そして、アンモニア由来のアルカリ度演算部34での演算結果(A)は、全有機酸濃度演算部35に送る。 Then, the calculation result (A 1 ) in the ammonia-derived alkalinity calculation unit 34 is sent to the total organic acid concentration calculation unit 35.

全有機酸濃度演算部35では、アルカリ度演算部31での演算結果(Atotal)と、塩由来のアルカリ度演算部32での演算結果(A)と、アンモニア由来のアルカリ度演算部34での演算結果(A)とを読み込み、下式(3)に基づいて、発酵液の全有機酸濃度(VFAtotal)を算出する。 In the total organic acid concentration calculator 35, the calculation result (A total ) in the alkalinity calculator 31, the calculation result (A 2 ) in the salt-derived alkalinity calculator 32, and the ammonia-derived alkalinity calculator 34. The calculation result (A 1 ) is read, and the total organic acid concentration (VFA total ) of the fermentation broth is calculated based on the following equation (3).

(式中、VFAtotalは発酵液の全有機酸濃度であり、Aは発酵液のアンモニア由来のアルカリ度であり、Aは発酵液の塩由来のアルカリ度であり、Atotalは発酵液のアルカリ度であり、fは定数である。)
発酵液のアルカリ度は、アンモニウムイオンにより形成される重炭酸アンモニウム(NHHCO)の他に、アンモニウムイオン以外の成分(塩)からも炭酸塩を形成して存在している。
(Where VFA total is the total organic acid concentration of the fermentation broth, A 1 is the alkalinity derived from the ammonia in the fermentation broth, A 2 is the alkalinity derived from the salt of the fermentation broth, and A total is the fermentation broth. And f is a constant.)
The alkalinity of the fermentation broth is present by forming carbonates from components (salts) other than ammonium ions in addition to ammonium bicarbonate (NH 4 HCO 3 ) formed by ammonium ions.

一方、発酵液の有機酸(酢酸、プロピオン酸などの揮発性脂肪酸)は、陰イオン(例えば酢酸イオン)と、水素イオンに解離する。このうち、陰イオンは、アンモニウムイオンや、アンモニア以外の成分(塩)と結合し、水素イオンは炭酸イオンと結合して水、二酸化炭素となる。   On the other hand, organic acids (volatile fatty acids such as acetic acid and propionic acid) in the fermentation broth dissociate into anions (for example, acetate ions) and hydrogen ions. Of these, anions are combined with ammonium ions and components (salts) other than ammonia, and hydrogen ions are combined with carbonate ions to form water and carbon dioxide.

したがって、発酵液のアンモニア由来のアルカリ度と塩由来のアルカリ度との合計から、発酵液のアルカリ度を減ずることで、有機酸との反応で消費されたアルカリ度が算出される。そして、有機酸との反応で消費されたアルカリ度と、発酵液の全有機酸濃度とは、図6に示すように、正の相関があるので、発酵液の全有機酸濃度(VFAtotal)は、上式(3)で近似して表すことができる。図6の横軸は有機酸との反応で消費されたアルカリ度(ml/L)であり、縦軸は発酵槽の有機酸を酢酸に換算した濃度(mg/L)である。なお、上式(3)の定数fは、図6に示す有機酸との反応で消費されたアルカリ度と、発酵液の全有機酸濃度との関係図から求めた傾きの値である。そして、図6では、f=1.2である。定数fは、ほぼ一定の値を示すことが多いが、検出精度を向上させる場合、発酵液毎にアルカリ度と全有機酸濃度との関係をあらかじめ調べて決定することが好ましい。 Therefore, the alkalinity consumed in the reaction with the organic acid is calculated by reducing the alkalinity of the fermentation broth from the sum of the alkalinity derived from ammonia and the salt-derived alkalinity of the fermentation broth. Then, the alkalinity consumed by reaction with organic acids, and the total organic acid concentration of the fermentation liquor, as shown in FIG. 6, there is a positive correlation, total organic acid concentration of the fermentation liquor (VFA total) Can be approximated by the above equation (3). The horizontal axis of FIG. 6 is the alkalinity (ml / L) consumed by the reaction with the organic acid, and the vertical axis is the concentration (mg / L) in which the organic acid in the fermenter is converted to acetic acid. In addition, the constant f of the above formula (3) is a slope value obtained from the relationship diagram between the alkalinity consumed in the reaction with the organic acid shown in FIG. 6 and the total organic acid concentration of the fermentation broth. In FIG. 6, f = 1.2. The constant f often shows a substantially constant value, but when improving the detection accuracy, it is preferable to determine the relationship between the alkalinity and the total organic acid concentration in advance for each fermentation broth.

そして、全有機酸濃度演算部35での演算結果(VFAtotal)は、比較部36に送る。また、表示器41に送り、発酵液の全有機酸濃度を表示する。 Then, the calculation result (VFA total ) in the total organic acid concentration calculation unit 35 is sent to the comparison unit 36. Moreover, it sends to the indicator 41 and displays the total organic acid density | concentration of a fermented liquor.

比較部36では、アルカリ度演算部31での演算結果(Atotal)と、アンモニア性窒素濃度演算部33での演算結果([NH ])と、全有機酸濃度演算部35での演算結果(VFAtotal)とを読み込み、あらかじめ比較部36に入力しておいた設定値と比較し、Atotal、[NH ]、VFAtotalのいずれか一つが、設定値を逸脱した時、好ましくは、アンモニア性窒素濃度([NH ])が2000mg/L以上、アルカリ度(Atotal)が1000mg/L以下、全有機酸濃度(VFAtotal)が10000mg/L以上のいずれかの場合、警報機42に信号を送って警報を出力させ、また、ポンプP2に信号を送信して、ポンプP2の開度を制御させる。 In the comparison unit 36, the calculation result (A total ) in the alkalinity calculation unit 31, the calculation result ([NH 4 + ]) in the ammoniacal nitrogen concentration calculation unit 33, and the calculation in the total organic acid concentration calculation unit 35. The result (VFA total ) is read and compared with the set value input in advance to the comparison unit 36. When any one of A total , [NH 4 + ], and VFA total deviates from the set value, When the ammoniacal nitrogen concentration ([NH 4 + ]) is 2000 mg / L or more, the alkalinity (A total ) is 1000 mg / L or less, and the total organic acid concentration (VFA total ) is 10000 mg / L or more, A signal is sent to the alarm device 42 to output an alarm, and a signal is sent to the pump P2 to control the opening degree of the pump P2.

次に、本発明のメタン発酵装置を用いたメタン発酵処理方法について説明する。   Next, a methane fermentation treatment method using the methane fermentation apparatus of the present invention will be described.

まず、スラリー調整槽11に供給された糞尿、生ゴミ、食品加工残滓等の有機性廃棄物は、ここで適度な水で希釈されてスラリー化される。そして、このスラリー調整槽11に貯留されているスラリーが、ポンプP1により、配管L2を通ってメタン発酵槽12へ供給される。また、スラリー調整槽11に設けられた第1の電気伝導率計21で、槽内のスラリーの電気伝導率を計測して、スラリーの電気伝導率(EC)を演算機30に出力する。 First, organic waste such as manure, raw garbage, food processing residue and the like supplied to the slurry adjustment tank 11 is diluted with appropriate water to be slurried. Then, the slurry stored in the slurry adjustment tank 11 is supplied to the methane fermentation tank 12 through the pipe L2 by the pump P1. Further, the first electrical conductivity meter 21 provided in the slurry adjustment tank 11 measures the electrical conductivity of the slurry in the tank, and outputs the electrical conductivity (EC 2 ) of the slurry to the calculator 30.

メタン発酵槽12には、嫌気性細菌(主に、メタン菌)を担持する多数の接触担体が装填されており、供給されたスラリーは、メタン菌の作用によりメタンガスを含むバイオガスと水とに分解される。   The methane fermentation tank 12 is loaded with a large number of contact carriers carrying anaerobic bacteria (mainly methane bacteria), and the supplied slurry is converted into biogas containing methane gas and water by the action of methane bacteria. Disassembled.

メタン発酵処理により発生したバイオガスは、メタン発酵槽12の上部に配置されている配管L5を経て回収し、メタンガスを精製する。精製したメタンガスは発電利用、及び熱利用される。また、メタン発酵槽12の上部には配管L4が配置されており、この配管L4からメタン発酵槽12に貯留されている発酵液が排出される。この配管L4は、メタン発酵槽12に貯留されている発酵液の液面に配置されており、スラリー調整槽11からスラリーが供給されると、それと同じ量の上澄み液(発酵消化液)が排出されることになるため、液面は常に一定に保たれている。したがって、メタン発酵槽12の有効容積(発酵液で満たされている部分の容積)は常に一定となる。   The biogas generated by the methane fermentation treatment is recovered through the pipe L5 arranged at the upper part of the methane fermentation tank 12, and the methane gas is purified. The purified methane gas is used for power generation and heat. Moreover, the piping L4 is arrange | positioned at the upper part of the methane fermentation tank 12, The fermentation liquid stored in the methane fermentation tank 12 is discharged | emitted from this piping L4. This pipe L4 is arranged on the liquid level of the fermentation liquid stored in the methane fermentation tank 12, and when the slurry is supplied from the slurry adjustment tank 11, the same amount of supernatant liquid (fermented digestion liquid) is discharged. Therefore, the liquid level is always kept constant. Therefore, the effective volume of the methane fermenter 12 (the volume of the portion filled with the fermentation liquid) is always constant.

また、メタン発酵槽12に設けられた第2の電気伝導率計22及びpHメータ23により、槽内の発酵液の電気伝導率及びpHを計測して、発酵液の電気伝導率(EC)及びpH(pH)を演算機30に出力する。 Further, the electrical conductivity and pH of the fermentation broth in the tank are measured by the second electrical conductivity meter 22 and the pH meter 23 provided in the methane fermentation tank 12, and the electrical conductivity (EC 1 ) of the fermentation broth. And pH (pH 1 ) is output to the calculator 30.

演算機30では、第1の電気伝導率計21、第2の電気伝導率計22、pHメータ23でそれぞれ計測した、スラリーの電気伝導率(EC)と、発酵液の電気伝導率(EC)と、発酵液のpH(pH)に基づき、メタン発酵槽12内の発酵液のアルカリ度、アンモニア性窒素濃度、全有機酸濃度を算出して、算出結果を表示器41に表示する。また、算出結果のいずれかが、設定範囲を逸脱している場合、警報機42及びポンプP2に信号を送り警報を出力させると共に、ポンプP2の開度制御を行う。 In the calculator 30, the electrical conductivity of the slurry (EC 2 ) and the electrical conductivity of the fermentation broth (EC) measured by the first electrical conductivity meter 21, the second electrical conductivity meter 22, and the pH meter 23, respectively. 1 ) and the pH of the fermentation broth (pH 1 ), the alkalinity, ammonia nitrogen concentration, and total organic acid concentration of the fermentation broth in the methane fermentation tank 12 are calculated, and the calculation results are displayed on the display 41. . Further, when any of the calculation results is out of the set range, a signal is sent to the alarm device 42 and the pump P2 to output an alarm, and the opening degree of the pump P2 is controlled.

ここで、メタン発酵槽内の発酵液のアルカリ度は、1000mg/Lよりも低下すると、有機性廃棄物が分解したときに発生する有機酸によるpH低下を防ぐことができなくなる(緩衝能力が低下する)ことから、アルカリ度は1000mg/L以上が好ましい。また、アンモニア性窒素濃度は、2000mg/Lを超えるとメタン生成菌の活性を阻害し、発酵悪化が生じる傾向にあることから、アンモニア性窒素濃度は2000mg/L以下が好ましい。また、全有機酸濃度は高くなると発酵槽のpHを下げる方向に働くほか、発酵に関わる菌が有機酸(酢酸、プロピオン酸、酪酸などの基質)を分解処理できなくなっていることがあるため、10000mg/L以下が好ましい。   Here, when the alkalinity of the fermented liquid in the methane fermenter is lower than 1000 mg / L, it becomes impossible to prevent a pH drop due to an organic acid generated when the organic waste is decomposed (the buffer capacity is lowered Therefore, the alkalinity is preferably 1000 mg / L or more. In addition, when the ammoniacal nitrogen concentration exceeds 2000 mg / L, the activity of the methanogenic bacteria is inhibited and the fermentation tends to deteriorate. Therefore, the ammoniacal nitrogen concentration is preferably 2000 mg / L or less. In addition, when the total organic acid concentration increases, it works to lower the pH of the fermenter, and the bacteria involved in fermentation may not be able to decompose organic acids (substrates such as acetic acid, propionic acid, butyric acid) 10,000 mg / L or less is preferable.

したがって、好ましくは、アンモニア性窒素濃度が2000mg/L以上、アルカリ度が1000mg/L以下、全有機酸濃度が10000mg/L以上のいずれかの場合、警報機42及びポンプP2に信号を送り警報を出力させると共に、ポンプP2の開度制御を行う。   Therefore, preferably, when the ammoniacal nitrogen concentration is 2000 mg / L or more, the alkalinity is 1000 mg / L or less, and the total organic acid concentration is 10000 mg / L or more, a signal is sent to the alarm device 42 and the pump P2 to give an alarm. While outputting, the opening degree control of the pump P2 is performed.

このように、本発明によれば、スラリーの電気伝導率と、発酵液の電気伝導率及びpHから、メタン発酵の発酵性能を示す重要な指針となるアルカリ度、アンモニア性窒素濃度、及び全有機酸濃度を算出できるので、特に高価な検出器を用いなくともリアルタイムでの検出が可能であり、メタン発酵の処理性能の低下に対して、より迅速な対処を行うことができる。   Thus, according to the present invention, from the electrical conductivity of the slurry and the electrical conductivity and pH of the fermentation broth, the alkalinity, the ammoniacal nitrogen concentration, and the total organic content that are important guidelines for indicating the fermentation performance of methane fermentation Since the acid concentration can be calculated, it is possible to detect in real time without using an expensive detector, and it is possible to take a quicker action against a decrease in the processing performance of methane fermentation.

以下、実施例を挙げて本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to examples.

図1に示すメタン発酵装置を用いてメタン発酵処理を行った。メタン発酵槽12の容積は10Lのものを用いた。スラリーは、生ゴミを粉砕・破砕して固形分濃度(TS)10%のスラリーを用いた。発酵条件は、発酵温度を55℃とし、滞留時間(HRT)を10日とし、CODcr負荷を12g/L/dとした。 The methane fermentation process was performed using the methane fermentation apparatus shown in FIG. The volume of the methane fermenter 12 was 10L. As the slurry, a slurry having a solid content concentration (TS) of 10% obtained by pulverizing and crushing garbage was used. The fermentation conditions were a fermentation temperature of 55 ° C., a residence time (HRT) of 10 days, and a COD cr load of 12 g / L / d.

上記発酵条件でメタン発酵処理を行い、発酵状態が安定したところで、スラリー投入量を変化させて、CODcr負荷を10〜40g/L/dに変化させた。この時のpH、電気伝導率の値を計測し、スラリーの電気伝導率(EC)と、発酵液の電気伝導率(EC)と、発酵液のpH(pH)を演算機30に読み込ませで、下式(1’)〜(3’)に基づき、発酵液のアルカリ度(Atotal)、アンモニア性窒素濃度([NH ])、全有機酸濃度(VFAtotal)を演算した。 When the methane fermentation treatment was performed under the above fermentation conditions and the fermentation state was stabilized, the slurry input amount was changed, and the COD cr load was changed to 10 to 40 g / L / d. At this time, the values of pH and electrical conductivity are measured, and the electrical conductivity (EC 2 ) of the slurry, the electrical conductivity (EC 1 ) of the fermentation broth, and the pH (pH 1 ) of the fermentation broth are input to the calculator 30. By reading, the alkalinity (A total ), ammoniacal nitrogen concentration ([NH 4 + ]), and total organic acid concentration (VFA total ) of the fermentation broth are calculated based on the following formulas (1 ′) to (3 ′) did.

また、pH測定と同時刻の発酵液を、イオンクロマト法により、アルカリ度、アンモニア性窒素濃度、全有機酸濃度を測定した。結果を表1にまとめて示す。   Moreover, the alkalinity, the ammoniacal nitrogen concentration, and the total organic acid concentration of the fermentation broth at the same time as the pH measurement were measured by ion chromatography. The results are summarized in Table 1.

発酵液のアルカリ度(Atotal)、アンモニア性窒素濃度([NH ])、全有機酸濃度(VFAtotal)の演算値と実測値との間には、アルカリ度で900mg/L、アンモニア性窒素濃度で200mg/L、全有機酸濃度で1500mg/Lの差が最大認められたが、実用的な範囲であった。 Between the calculated value and the measured value of alkalinity (A total ), ammoniacal nitrogen concentration ([NH 4 + ]), total organic acid concentration (VFA total ) of the fermentation broth, the alkalinity is 900 mg / L, ammonia The maximum difference was found to be 200 mg / L for the basic nitrogen concentration and 1500 mg / L for the total organic acid concentration, but this was a practical range.

本発明のメタン発酵装置の概略構成図である。It is a schematic block diagram of the methane fermentation apparatus of this invention. 同メタン発酵装置に用いる制御装置での機能ブロック図である。It is a functional block diagram in the control apparatus used for the methane fermentation apparatus. 発酵液のアルカリ度とpHとの関係図である。It is a related figure of the alkalinity and pH of a fermented liquor. スラリーの電気伝導率とアルカリ度との関係図である。It is a related figure of the electrical conductivity of a slurry, and alkalinity. 発酵液の電気伝導率とアンモニア性窒素濃度との関係図である。It is a related figure of the electrical conductivity of fermentation liquid, and ammonia nitrogen concentration. 有機酸との反応で消費されたアルカリ度と、発酵液の全有機酸濃度との関係図である。It is a related figure of the alkalinity consumed by reaction with organic acid, and the total organic acid concentration of fermentation broth.

符号の説明Explanation of symbols

11:スラリー調整槽
12:メタン発酵槽
21:第1の電気伝導率計
22:第2の電気伝導率計
23:pHメータ
30:演算機
31:アルカリ度演算部
32:塩由来のアルカリ度演算部
33:アンモニア性窒素濃度演算部
34:アンモニア由来のアルカリ度演算部
35:全有機酸濃度演算部
36:比較部
41:表示器
42:警報機
L1〜L6:配管
P1〜P3:ポンプ
11: slurry adjustment tank 12: methane fermentation tank 21: first electric conductivity meter 22: second electric conductivity meter 23: pH meter 30: calculator 31: alkalinity calculation unit 32: alkalinity calculation derived from salt Unit 33: Ammonia nitrogen concentration calculation unit 34: Ammonia-derived alkalinity calculation unit 35: Total organic acid concentration calculation unit 36: Comparison unit 41: Indicator 42: Alarms L1 to L6: Pipes P1 to P3: Pump

Claims (4)

有機性廃棄物をスラリー化するスラリー調整槽と、前記スラリーをメタン発酵させるメタン発酵槽を備えたメタン発酵装置において、
前記メタン発酵槽は、メタン発酵槽内の発酵液のpHを測定するpHメータと、メタン発酵槽内の発酵液の電気伝導率を測定する電気伝導率計と、前記pHの測定値と前記電気伝導率の測定値とから前記発酵液のアルカリ度、アンモニア性窒素濃度、及び全有機酸濃度を演算する演算機とを備えてなることを特徴とするメタン発酵装置。
In a methane fermentation apparatus equipped with a slurry adjustment tank for slurrying organic waste and a methane fermentation tank for methane fermentation of the slurry,
The methane fermentation tank includes a pH meter for measuring the pH of the fermentation broth in the methane fermentation tank, an electrical conductivity meter for measuring the electrical conductivity of the fermentation broth in the methane fermentation tank, the measured value of the pH, and the electricity A methane fermentation apparatus comprising: a calculator that calculates the alkalinity, ammoniacal nitrogen concentration, and total organic acid concentration of the fermentation broth from the measured conductivity.
前記スラリー調整槽が、電気伝導率計を備え、前記スラリー調整槽内のスラリーの電気伝導率を前記演算機に出力できるように構成されており、
前記演算機が、前記スラリー調整槽内の電気伝導率の測定値からアンモニアに起因しない電気伝導率とアルカリ度を算出して、このアンモニアに起因しない電気伝導率とアルカリ度とで補正して前記発酵液のアルカリ度、アンモニア性窒素濃度、及び全有機酸濃度を演算するように構成されている請求項1に記載のメタン発酵装置。
The slurry adjustment tank includes an electric conductivity meter, and is configured to output the electric conductivity of the slurry in the slurry adjustment tank to the calculator.
The calculator calculates the electrical conductivity and alkalinity not attributed to ammonia from the measured value of electrical conductivity in the slurry adjustment tank, and corrects the electrical conductivity and alkalinity not attributed to ammonia to The methane fermentation apparatus of Claim 1 comprised so that the alkalinity of fermented liquor, ammonia nitrogen concentration, and a total organic acid density | concentration may be calculated.
前記pH測定値及び電気伝導率測定値に基づいて、下式(1)からメタン発酵槽内の発酵液のアルカリ度を算出し、下式(2)からアンモニア性窒素濃度を算出し、下式(3)から全有機酸濃度を算出する、請求項2に記載のメタン発酵装置。

(式中、Atotalは発酵液のアルカリ度であり、[NH ]は発酵液のアンモニア性窒素濃度であり、VFAtotalは全有機酸濃度であり、pHは発酵液のpHであり、ECは発酵液の電気伝導率であり、ECはスラリーの電気伝導率であり、a〜fは定数である。)
Based on the measured pH value and the measured electrical conductivity, the alkalinity of the fermentation broth in the methane fermentation tank is calculated from the following formula (1), the ammoniacal nitrogen concentration is calculated from the following formula (2), and the following formula The methane fermentation apparatus according to claim 2, wherein the total organic acid concentration is calculated from (3).

( Where A total is the alkalinity of the fermentation broth, [NH 4 + ] is the ammoniacal nitrogen concentration of the fermentation broth, VFA total is the total organic acid concentration, and pH 1 is the pH of the fermentation broth. EC 1 is the electrical conductivity of the fermentation broth, EC 2 is the electrical conductivity of the slurry, and a to f are constants.)
演算された前記発酵液のアルカリ度、アンモニア性窒素濃度、及び全有機酸濃度のいずれか一つの値が所定値を外れたとき、警報を出力する及び/又はメタン発酵槽内のスラリー濃度を低減させるように構成されている請求項1〜3のいずれか一つに記載のメタン発酵処理装置。   When any one of the calculated alkalinity, ammoniacal nitrogen concentration and total organic acid concentration of the fermentation broth deviates from a predetermined value, an alarm is output and / or the slurry concentration in the methane fermentation tank is reduced. The methane fermentation treatment apparatus according to any one of claims 1 to 3, wherein the methane fermentation treatment apparatus is configured to cause the methane fermentation treatment apparatus to operate.
JP2008239930A 2008-09-18 2008-09-18 Methane fermentation equipment Active JP4844608B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008239930A JP4844608B2 (en) 2008-09-18 2008-09-18 Methane fermentation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008239930A JP4844608B2 (en) 2008-09-18 2008-09-18 Methane fermentation equipment

Publications (2)

Publication Number Publication Date
JP2010069417A true JP2010069417A (en) 2010-04-02
JP4844608B2 JP4844608B2 (en) 2011-12-28

Family

ID=42201695

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008239930A Active JP4844608B2 (en) 2008-09-18 2008-09-18 Methane fermentation equipment

Country Status (1)

Country Link
JP (1) JP4844608B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200792A (en) * 2010-03-25 2011-10-13 Kobelco Eco-Solutions Co Ltd Apparatus and method for anaerobic treatment
KR101235666B1 (en) 2011-03-30 2013-02-22 허관용 Method for controlling start-up operating condition by seeding microorganism to anaerobic digester
JP2013248549A (en) * 2012-05-30 2013-12-12 Tokyo Gas Co Ltd Method for estimating density of ammonia gaseously dispersing into biogas, method for adjusting density of ammonia in fermentation liquid, and method and system for producing biogas
JP2021194592A (en) * 2020-06-12 2021-12-27 水ing株式会社 Water quality measurement method for treated water, water quality control method for treated water, water quality measurement apparatus for treated water, and water quality control system for treated water

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039039A (en) * 2001-07-30 2003-02-12 Toshiba Corp Treatment system for organic waste
JP2003245639A (en) * 2002-02-26 2003-09-02 Mitsubishi Heavy Ind Ltd Methane generation method and device of the same
JP2005152875A (en) * 2003-10-31 2005-06-16 Fuji Electric Holdings Co Ltd Methane fermentation treatment method
JP2005211712A (en) * 2004-01-27 2005-08-11 Fuji Electric Holdings Co Ltd Methane fermentation method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003039039A (en) * 2001-07-30 2003-02-12 Toshiba Corp Treatment system for organic waste
JP2003245639A (en) * 2002-02-26 2003-09-02 Mitsubishi Heavy Ind Ltd Methane generation method and device of the same
JP2005152875A (en) * 2003-10-31 2005-06-16 Fuji Electric Holdings Co Ltd Methane fermentation treatment method
JP2005211712A (en) * 2004-01-27 2005-08-11 Fuji Electric Holdings Co Ltd Methane fermentation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011200792A (en) * 2010-03-25 2011-10-13 Kobelco Eco-Solutions Co Ltd Apparatus and method for anaerobic treatment
KR101235666B1 (en) 2011-03-30 2013-02-22 허관용 Method for controlling start-up operating condition by seeding microorganism to anaerobic digester
JP2013248549A (en) * 2012-05-30 2013-12-12 Tokyo Gas Co Ltd Method for estimating density of ammonia gaseously dispersing into biogas, method for adjusting density of ammonia in fermentation liquid, and method and system for producing biogas
JP2021194592A (en) * 2020-06-12 2021-12-27 水ing株式会社 Water quality measurement method for treated water, water quality control method for treated water, water quality measurement apparatus for treated water, and water quality control system for treated water
JP7423433B2 (en) 2020-06-12 2024-01-29 水ing株式会社 Water quality measurement method for treated water, water quality control method for treated water, water quality measuring device for treated water, and water quality control system for treated water

Also Published As

Publication number Publication date
JP4844608B2 (en) 2011-12-28

Similar Documents

Publication Publication Date Title
Wang et al. Free ammonia enhances dark fermentative hydrogen production from waste activated sludge
Salomoni et al. Enhanced methane production in a two-phase anaerobic digestion plant, after CO2 capture and addition to organic wastes
Oh et al. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies
Wang et al. Effect of polyhydroxyalkanoates on dark fermentative hydrogen production from waste activated sludge
Charalambous et al. In situ biogas upgrading and enhancement of anaerobic digestion of cheese whey by addition of scrap or powder zero-valent iron (ZVI)
Nartker et al. Increasing biogas production from sewage sludge anaerobic co-digestion process by adding crude glycerol from biodiesel industry
Yu et al. Biogas-pH automation control strategy for optimizing organic loading rate of anaerobic membrane bioreactor treating high COD wastewater
JP4834021B2 (en) Methane fermentation treatment method
Montecchio et al. Hydrogen production dynamic during cheese whey dark fermentation: new insights from modelization
JP4844608B2 (en) Methane fermentation equipment
Prajapati et al. Kinetic modelling of methane production during bio-electrolysis from anaerobic co-digestion of sewage sludge and food waste
Ao et al. The role of oxidation-reduction potential as an early warning indicator, and a microbial instability mechanism in a pilot-scale anaerobic mesophilic digestion of chicken manure
Ye et al. Electrochemical pretreatment of waste activated sludge: effect of process conditions on sludge disintegration degree and methane production
Srivastava et al. Investigating leachate decontamination and biomethane augmentation through Co-disposal of paper mill sludge with municipal solid waste in simulated anaerobic landfill bioreactors
Zhang et al. Synergistic effects of anaerobic digestion from sewage sludge with lime mud
Massanet-Nicolau et al. Maximising biohydrogen yields via continuous electrochemical hydrogen removal and carbon dioxide scrubbing
Li et al. Anaerobic stabilization of waste activated sludge at different temperatures and solid retention times: Evaluation by sludge reduction, soluble chemical oxygen demand release and dehydration capability
Akhlaghi et al. Fermentative H2 production from food waste: parametric analysis of factor effects
Alavi et al. Enhanced biological hydrogen production through the separation of volatile fatty acids and ammonia based on microbial bipolar electrodialysis during thermal dark fermentation
Pastor-Poquet et al. Semi-continuous mono-digestion of OFMSW and Co-digestion of OFMSW with beech sawdust: Assessment of the maximum operational total solid content
Youn et al. Comparative performance between temperaturephased and conventional mesophilic two-phased processes in terms of anaerobically produced bioenergy from food waste
Wu et al. Stimulation of methane yield rate from food waste by aerobic pre-treatment
Jokhio et al. Enhanced bio-methane and bio-hydrogen production using banana plant waste and sewage sludge through anaerobic co-digestion
Guo et al. Enhancing two-phase anaerobic digestion of mixture of primary and secondary sludge by adding granular activated carbon (GAC): evaluating acidogenic and methanogenic efficiency
JP2005152851A (en) Power generation method using biogas and biogas power generation system

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20100714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110913

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4844608

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141021

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250