JP2010068910A - Sugar chain fixed polymer substrate for hiv adsorption, and method of manufacturing the same - Google Patents

Sugar chain fixed polymer substrate for hiv adsorption, and method of manufacturing the same Download PDF

Info

Publication number
JP2010068910A
JP2010068910A JP2008237849A JP2008237849A JP2010068910A JP 2010068910 A JP2010068910 A JP 2010068910A JP 2008237849 A JP2008237849 A JP 2008237849A JP 2008237849 A JP2008237849 A JP 2008237849A JP 2010068910 A JP2010068910 A JP 2010068910A
Authority
JP
Japan
Prior art keywords
polymer substrate
sugar chain
group
represented
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008237849A
Other languages
Japanese (ja)
Inventor
Toshinori Nishiyama
俊徳 西山
Kenichi Hatanaka
研一 畑中
Masayuki Fujino
真之 藤野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
National Institute of Infectious Diseases
University of Tokyo NUC
Original Assignee
DIC Corp
National Institute of Infectious Diseases
University of Tokyo NUC
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DIC Corp, National Institute of Infectious Diseases, University of Tokyo NUC, Dainippon Ink and Chemicals Co Ltd filed Critical DIC Corp
Priority to JP2008237849A priority Critical patent/JP2010068910A/en
Publication of JP2010068910A publication Critical patent/JP2010068910A/en
Pending legal-status Critical Current

Links

Landscapes

  • External Artificial Organs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sugar chain-fixed polymer substrate for HIV absorption having high stability and blood compatibility for fixing a glucide to a polymer substrate without using an alkaline treatment and a compound having strong toxicity such as bromoacetate, 1,4-butanediol diglycidyl ether and the like, and a method of manufacturing the same. <P>SOLUTION: There are provided a sugar chain-fixed polymer substrate for HIV absorption having a sugar chain obtained by bringing a polymer substrate having a methylene group in a main chain in contact with a polymerizing compound having an ethylene unsaturated bond and a sugar chain or a polymerizing composition containing the polymerizing compound and then by irradiating it with an ionizing radiation ray, or polymer substrate irradiating it with the ionizing radiation ray and then bringing it in contacted with the polymerizing compound or the polymerizing composition containing the polymerizing compound, and a method of manufacturing the same. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明はHIV(ヒト免疫不全ウイルス)を除去するための糖質固定化高分子基材及び電離放射線グラフト重合を用いた糖質固定化高分子基材の製造方法に関する。
本発明は、「平成18年度、新エネルギー・産業技術総合開発機構委託研究、産業技術力強化法第19条の適用を受ける特許出願」(旧「平成18年度、新エネルギー・産業技術総合開発機構委託研究、産業活力再生特別措置法第30条の適用を受ける特許出願」)である。
The present invention relates to a carbohydrate-immobilized polymer substrate for removing HIV (human immunodeficiency virus) and a method for producing a carbohydrate-immobilized polymer substrate using ionizing radiation graft polymerization.
The present invention is based on "patent application subject to Article 19 of the New Energy and Industrial Technology Development Organization Commissioned Research, Industrial Technology Strengthening Act Article 19" (formerly "2006 New Energy and Industrial Technology Development Organization Patent application subject to Article 30 of the Contract Research and Industrial Revitalization Special Measures Law ").

ある種の糖質は、毒素、ウイルスなどの病原体に特異的に相互作用し、このような糖質を高分子に結合してなる糖質高分子はクラスター効果によってウイルスやタンパク質などの病原体と結合することにより、毒性、感染性が阻害されることが知られている。例えば、インフルエンザウイルスは、シアリルラクトースをポリマーに結合した糖質高分子と結合し、また、ベロ毒素は、ガラクトシルラクトースをポリマーに結合した糖質高分子と結合し、また、HIVは硫酸化多糖類に結合する。   Certain carbohydrates interact specifically with toxins, viruses and other pathogens, and carbohydrate macromolecules formed by binding such carbohydrates to macromolecules bind to pathogens such as viruses and proteins by the cluster effect. By doing so, it is known that toxicity and infectivity are inhibited. For example, influenza virus binds sialyl lactose to a carbohydrate polymer linked to a polymer, verotoxin binds to a galactosyl lactate linked to a polymer, and HIV is a sulfated polysaccharide. To join.

このように病原体と特異的に相互作用する糖質を固定化することでさまざまな用途に適用可能な高分子素材となる。例えば、糖質高分子を中空糸や不織布、ビーズに固定し体外循環用カラムとすることでウイルスや毒素の除去や、毒素やウイルスの分離や精製といった用途にも適用可能である。   Thus, by immobilizing a carbohydrate that specifically interacts with a pathogen, it becomes a polymer material applicable to various uses. For example, by fixing a carbohydrate polymer to a hollow fiber, non-woven fabric, or bead to form a column for extracorporeal circulation, it can be applied to uses such as removal of viruses and toxins, and separation and purification of toxins and viruses.

このようなウイルスや毒素の除去の例として、高分子に糖鎖を結合してなる糖質高分子を中空糸内面に化学結合してなる病原性微粒子吸着性中空糸が知られている(特許文献1および非特許文献1参照)。例えば、特許文献1には、再生セルロースを始めとする高分子基材に水酸化ナトリウム水溶液を加え、次に1,4−ブタンジオールグリシジルエーテルの水−ジメチルスルフォキシド混合溶液を加え、高分子基材を活性化させた後、先に合成したアクリルアミドを主鎖とする糖質高分子の溶液と接触させることにより、基材に糖鎖を導入する方法が記載されている。また、非特許文献1にはセルロース表面を水酸化ナトリウムを用いて活性化しておき、ブロモ酢酸と反応させて表面にカルボキシ基を導入し、先に合成したアクリルアミドを主鎖とする糖質高分子と表面のカルボキシ基をWSC(Water Soluble Carbodiimide)を用いて縮合し、基材に糖鎖を導入する方法が記載されている。   As an example of the removal of such viruses and toxins, pathogenic fine particle-adsorbing hollow fibers formed by chemically bonding a carbohydrate polymer formed by binding a sugar chain to a polymer to the inner surface of the hollow fiber are known (patents). Reference 1 and Non-Patent Document 1). For example, in Patent Document 1, a sodium hydroxide aqueous solution is added to a polymer base material such as regenerated cellulose, and then a water-dimethyl sulfoxide mixed solution of 1,4-butanediol glycidyl ether is added. A method is described in which a sugar chain is introduced into a substrate by activating the substrate and then bringing it into contact with a sugar polymer solution having acrylamide as the main chain synthesized earlier. Non-Patent Document 1 discloses a carbohydrate polymer whose main chain is an acrylamide synthesized previously by activating the cellulose surface with sodium hydroxide, reacting with bromoacetic acid to introduce a carboxy group on the surface. And a method in which a carboxy group on the surface is condensed using WSC (Water Soluble Carbodiimide) and a sugar chain is introduced into a substrate.

しかしこれらの方法は、糖鎖を固定化するまでに数工程を要し、各工程において目的とする表面処理が確実に行われていることを表面分析などを用いて確認する必要があることから煩雑であった。   However, these methods require several steps to immobilize the sugar chain, and it is necessary to confirm by using surface analysis or the like that the target surface treatment is reliably performed in each step. It was complicated.

更にこれらの方法は、アルカリ処理が必要な上、ブロモ酢酸や1,4−ブタンジオールジグリシジルエーテルなどの毒性(アレルギー性皮膚炎、皮膚炎、粘膜炎症性など)の強い化合物を用いなければならないことから、安全性を確保する為に徹底した洗浄処理が必要であった。   Furthermore, these methods require alkali treatment and must use highly toxic compounds (allergic dermatitis, dermatitis, mucosal inflammation, etc.) such as bromoacetic acid and 1,4-butanediol diglycidyl ether. Therefore, a thorough cleaning process was necessary to ensure safety.

また、体外循環による吸着除去に用いる場合には、血液を体外に置かれた中空糸モジュールに通液後、連続的に血液を体内に戻すことが必要となるため、吸着除去にあたって血液が凝固しないことが必須となるものの、基材表面へ水酸基や官能基を導入すると、糖質高分子と結合しなかった水酸基や官能基が未反応のまま基材表面に残り、その結果、血液凝固系因子である補体がこれら水酸基、官能基によって活性化されることから(非特許文献2参照)、血液適合性を低下させる要因にもなっていた。   In addition, when used for adsorption removal by extracorporeal circulation, it is necessary to continuously return the blood to the body after passing through the hollow fiber module placed outside the body, so that the blood does not coagulate during the adsorption removal. However, when a hydroxyl group or functional group is introduced to the substrate surface, the hydroxyl group or functional group that did not bind to the carbohydrate polymer remains unreacted on the substrate surface, resulting in blood coagulation factors. Is activated by these hydroxyl groups and functional groups (see Non-Patent Document 2), it has also been a factor of lowering blood compatibility.

また、糖鎖を基材に固定化する例として、Galα1→4Galβ1→4Glc(Gb)又はGalα1→4Galβ1(Gb)で表される糖鎖を、市販の「BIACORE CM5」の様なカルボキシメチルデキストラン鎖を有するチップ表面にカルボキシル基を介して固定化するものや、金表面に1−チオ−アルカン−ω−アミン、1−チオ−アルカン−ω−カルボン酸、リポ酸、システミンなどを表面処理して、それらのアミノ基やカルボキシ基を介してチップ表面に固定化するものが知られている(特許文献2)。しかし、これらは、高真空下で金を加熱して蒸着させる工程が必要であるため原材料費や製造コストがかかり、かつ工程も煩雑であった。また、得られた糖鎖固定化基材も、センサー用途であるため糖鎖密度が非常に少なく、その結果、吸着除去効果が非常に小さいものであった。また、BIACORE CM5は、デキストラン鎖自身の立体障害により、毒素やウイルスを接触させてもデキストラン鎖内部へ浸透しづらく、センサーチップ表面でしか相互作用しないため、センサー機能を発揮するには充分量であっても、吸着除去効果は発揮できなかった。 As an example of immobilizing a sugar chain on a substrate, a sugar chain represented by Galα1 → 4Galβ1 → 4Glc (Gb 3 ) or Galα1 → 4Galβ1 (Gb 2 ) is used as a commercially available carboxymethyl such as “BIACORE CM5”. Surface treatment with dextran chain-immobilized chip surface via carboxyl group, gold surface with 1-thio-alkane-ω-amine, 1-thio-alkane-ω-carboxylic acid, lipoic acid, cysteamine, etc. And what is fix | immobilized on the chip | tip surface via those amino groups and carboxy groups is known (patent document 2). However, these require a step of heating and depositing gold under a high vacuum, so that raw material costs and manufacturing costs are required, and the steps are complicated. Moreover, since the obtained sugar chain immobilization base material is also used for sensors, the sugar chain density is very low, and as a result, the adsorption removal effect is very small. In addition, BIACORE CM5 is difficult to permeate into the dextran chain even if it is brought into contact with a toxin or virus due to steric hindrance of the dextran chain itself, and interacts only on the surface of the sensor chip. Even if it existed, the adsorption removal effect was not able to be exhibited.

特開2003−135596号公報JP 2003-135596 A 特開2003−226697号公報JP 2003-226697 A A. Miyagawa et al Biomaterials, 27, 3304 (2006)A. Miyagawa et al Biomaterials, 27, 3304 (2006) 岩田博夫著、高分子学会編「バイオマテリアル」共立出版、2005年Published by Hiroo Iwata, edited by the Society of Polymer Science, “Biomaterials”, Kyoritsu Publishing, 2005

そこで、本発明が解決しようとする課題は、アルカリ処理やブロモ酢酸、ブロモ酢酸や1,4−ブタンジオールジグリシジルエーテルといった毒性の強い化合物を用いずに糖質を高分子基体に固定化する、安全性が高く且つ血液適合性の高いHIV吸着用糖鎖固定化高分子基材、およびその製造方法を提供することにある。   Therefore, the problem to be solved by the present invention is to fix a saccharide to a polymer substrate without using a toxic compound such as alkali treatment, bromoacetic acid, bromoacetic acid or 1,4-butanediol diglycidyl ether, An object of the present invention is to provide a sugar chain-immobilized polymer substrate for HIV adsorption having high safety and high blood compatibility, and a method for producing the same.

本発明者等は上記課題を解決するため鋭意研究した結果、糖鎖を有する重合性化合物を、高分子基材へ、放射線照射によって発生するラジカル種を開始剤としてグラフト重合により重合、固定化することによって、アルカリ処理やブロモ酢酸といった毒性の強い化合物を用いずに糖鎖を高分子基体に固定化することができることを見出し、本発明を完成するに至った。   As a result of diligent research to solve the above-mentioned problems, the present inventors polymerize and immobilize a polymerizable compound having a sugar chain on a polymer substrate by graft polymerization using a radical species generated by radiation irradiation as an initiator. Thus, it was found that sugar chains can be immobilized on a polymer substrate without using a highly toxic compound such as alkali treatment or bromoacetic acid, and the present invention has been completed.

すなわち、本発明は、主鎖にメチレン基を有する高分子基材に、一般式(1)   That is, the present invention provides a polymer base material having a methylene group in the main chain with the general formula (1)

(1) (1)

〔式中、Rは水素原子またはメチル基を表し、WおよびXは各々独立して2価の連結基を表し、Gは糖鎖を表す〕で表される重合性化合物、または該重合性化合物を含む重合性組成物を接触させる工程(1)と、前記高分子基材に前記一般式(1)で表される重合性化合物を接触させた状態で電離放射線を照射する工程(2)とをこの順で、または、
前記高分子基材に電離放射線を照射する工程(3)と、電離放射線を照射した前記高分子基材に前記重合性化合物、または該重合性化合物を含む重合性組成物を接触させる工程(4)とをこの順で行うことを特徴とするHIV吸着用糖鎖固定化高分子基材の製造方法を提供する。
Wherein R 1 represents a hydrogen atom or a methyl group, W and X each independently represent a divalent linking group, and G represents a sugar chain, or the polymerizable compound A step (1) of contacting a polymerizable composition containing a compound, and a step (2) of irradiating ionizing radiation in a state where the polymerizable compound represented by the general formula (1) is brought into contact with the polymer substrate. And in this order, or
The step (3) of irradiating the polymer substrate with ionizing radiation, and the step of contacting the polymerizable compound or a polymerizable composition containing the polymerizable compound with the polymer substrate irradiated with ionizing radiation (4) ) In this order, a method for producing a sugar chain-immobilized polymer substrate for HIV adsorption is provided.

また、本発明は、主鎖にメチレン基を有する高分子基材に、一般式(3)で表される繰り返し単位(M)   The present invention also provides a polymer base material having a methylene group in the main chain, the repeating unit (M) represented by the general formula (3).

(3) (3)

(式中、Rは水素原子またはメチル基を表し、Wは−CONH−、−CO−O−または−R−CONH−(但しRは芳香族基を表す)を表し、Xはアルキレン基、または−R−Z−R−(但しR及びRはアルキレン基を表し、Zは−O−、−NH−、−NR−(但しRは水素原子または炭素原子数1〜4のアルキル基を表す)又は−S−を表す)で表される基を表し、Gは糖鎖を表す)が結合しているか、または、前記一般式(3)で表される繰り返し単位(M)と一般式(4)で表される繰り返し単位(L) (Wherein R 1 represents a hydrogen atom or a methyl group, W represents —CONH—, —CO—O—, or —R 2 —CONH— (wherein R 2 represents an aromatic group), and X represents alkylene. A group, or —R 3 —Z—R 4 — (wherein R 3 and R 4 represent an alkylene group, Z represents —O—, —NH—, —NR 0 — (where R 0 represents a hydrogen atom or a carbon atom number); 1 represents an alkyl group of 1 to 4) or represents -S-), G represents a sugar chain), or a repeating group represented by the general formula (3) The repeating unit (L) represented by the unit (M) and the general formula (4)

(4) (4)

(式中、Rは水素原子またはメチル基を表し、Vは−COOH、−COOR(但し、Rはアルキル基を表す)または−CONHを表す)とが結合しているHIV吸着用糖鎖固定化高分子基材を提供する。 (Wherein R 5 represents a hydrogen atom or a methyl group, and V represents —COOH, —COOR 6 (where R 6 represents an alkyl group) or —CONH 2 ). A sugar chain-immobilized polymer base material is provided.

本発明の糖鎖固定化高分子基材の製造方法は、アルカリ処理やブロモ酢酸や1,4−ブタンジオールジグリシジルエーテルといった毒性の強い化合物を用いずに糖質を高分子基体に固定化することができる。このため、安全性の高い糖鎖固定化高分子基材を提供することができる。また、本発明の糖鎖固定化高分子基材の製造方法は、基材表面へ水酸基や官能基を導入する必要がないため、血液凝固系因子である補体を活性化させる原因を取り除くことができ、その結果、基材自身がもともと有している血液適合性を維持することができるため、高い血液適合性を有する糖鎖固定化高分子基材を提供することができる。   In the method for producing a sugar chain-immobilized polymer substrate of the present invention, a carbohydrate is immobilized on a polymer substrate without using an alkali treatment or a toxic compound such as bromoacetic acid or 1,4-butanediol diglycidyl ether. be able to. For this reason, a highly safe sugar chain-immobilized polymer substrate can be provided. In addition, the method for producing a sugar chain-immobilized polymer substrate of the present invention eliminates the cause of activating complement, which is a blood coagulation factor, because it is not necessary to introduce a hydroxyl group or a functional group to the substrate surface. As a result, the blood compatibility inherent in the substrate itself can be maintained, so that a sugar chain-immobilized polymer substrate having high blood compatibility can be provided.

・糖鎖固定化高分子基材の製造方法
本発明の糖鎖固定化高分子基材の製造方法は、主鎖にメチレン基を有する高分子基材に、一般式(1)
-Method for producing sugar chain-immobilized polymer substrate The method for producing a sugar chain-immobilized polymer substrate according to the present invention comprises a polymer substrate having a methylene group in the main chain, represented by the general formula (1)


(1)

(1)

〔式中、Rは水素原子またはメチル基を表し、WおよびXは各々独立して2価の連結基を表し、Gは糖鎖を表す〕で表される重合性化合物、または該重合性化合物を含む重合性組成物を接触させる工程(1)と、前記高分子基材に前記一般式(1)で表される重合性化合物を接触させた状態で電離放射線を照射する工程(2)とをこの順で、または、
前記高分子基材に電離放射線を照射する工程(3)と、電離放射線を照射した前記高分子基材に前記重合性化合物、または該重合性化合物を含む重合性組成物を接触させる工程(4)とをこの順で行うことを特徴とする。
Wherein R 1 represents a hydrogen atom or a methyl group, W and X each independently represent a divalent linking group, and G represents a sugar chain, or the polymerizable compound A step (1) of contacting a polymerizable composition containing a compound, and a step (2) of irradiating ionizing radiation in a state where the polymerizable compound represented by the general formula (1) is brought into contact with the polymer substrate. And in this order, or
A step (3) of irradiating the polymer substrate with ionizing radiation, and a step (4) of bringing the polymerizable compound or a polymerizable composition containing the polymerizable compound into contact with the polymer substrate irradiated with ionizing radiation. ) In this order.

・高分子基材
本発明に用いる高分子基材は、電離放射線照射によってラジカルを生成することから主鎖にメチレン基を有するような高分子化合物であれば良い。このような高分子化合物としては血液適合性の高いものであれば種々のものを用いることができるが、例えば、オレフィン系樹脂、スチレン系樹脂、スルホン系樹脂、アクリル系樹脂、ウレタン系樹脂、エステル系樹脂、エーテル系樹脂またはセルロースアセテートが挙げられ、より具体的にはポリエチレンテレフタレート、エチレンビニルアルコール共重合体、ポリメチルメタクリレート、ポリスルホン、ポリエーテルスルホン、ポリアクリロニトリル、ポリエチレン、ポリプロピレンまたはポリ−4−メチルペンテン等を例示できる。
-Polymer substrate The polymer substrate used in the present invention may be a polymer compound having a methylene group in the main chain because radicals are generated by irradiation with ionizing radiation. As such a polymer compound, various compounds having high blood compatibility can be used. For example, olefin resin, styrene resin, sulfone resin, acrylic resin, urethane resin, ester Resin, ether resin or cellulose acetate, and more specifically, polyethylene terephthalate, ethylene vinyl alcohol copolymer, polymethyl methacrylate, polysulfone, polyether sulfone, polyacrylonitrile, polyethylene, polypropylene or poly-4-methyl. An example is pentene.

高分子基材の形状は特に限定はなく、中空糸膜、ビーズ、不織布など種々の形態のものとして用いることができる。体外循環への適用時には血液が滞留する構造を持つビーズや不織布として用いることも可能であるが、ビーズや不織布は滞留部において血栓の発生が多くなることから、このような用途を目的とする場合は中空糸膜を使用することが望ましい。また、中空糸膜をろ過膜として使用しないのであれば、多孔質である必要もない為、用途に応じて中空糸の形態は選択すればよい。 The shape of the polymer substrate is not particularly limited, and can be used in various forms such as hollow fiber membranes, beads, and nonwoven fabrics. When applied to extracorporeal circulation, it can be used as beads or non-woven fabrics with a structure in which blood stays. It is desirable to use a hollow fiber membrane. Further, if the hollow fiber membrane is not used as a filtration membrane, it is not necessary to be porous, and therefore the form of the hollow fiber may be selected according to the application.

・重合性化合物
本発明に用いる重合性化合物は、一般式(1)
Polymerizable compound The polymerizable compound used in the present invention is represented by the general formula (1).

(1) (1)

で表される。式中、Rは水素原子またはメチル基を表す。
また、式中、Wは2価の連結基を表し、病原体や後述する糖鎖の種類によって一般には異なるが、−CONH−、−CO−O−、または−R−CONH−を表す。但し、Rは芳香族基、例えば、フェニレン基、ナフチレン基などの2価の芳香族基を表す。
It is represented by In the formula, R 1 represents a hydrogen atom or a methyl group.
In the above formula, W represents a divalent linking group, but different in general the type of sugar chains pathogens and later, -CONH -, - CO-O- , or an -R 2 -CONH-. R 2 represents an aromatic group, for example, a divalent aromatic group such as a phenylene group or a naphthylene group.

また、式中、Xは2価の連結基を表し、病原体や後述する糖鎖の種類によって一般には異なるが、アルキレン基、任意の位置が単一または複数の炭素以外の元素(酸素原子、窒素原子、硫黄原子など)で置換されたアルキレン基などが挙げられる。具体的に前記Xとしては炭素原子数1〜30のアルキレン基、または−R−Z−R−で表される基が挙げられる。但し、R及びRはアルキレン基、具体的には炭素原子数1〜30のアルキレン基を表し、Zは−O−、−NH−、−NR−(但しRは水素原子または炭素原子数1〜4のアルキル基を表す)又は−S−を表す。 In addition, in the formula, X represents a divalent linking group, and generally varies depending on the pathogen and the type of sugar chain described below, but an alkylene group, an element at any position other than a single or plural carbon (oxygen atom, nitrogen) An alkylene group substituted with an atom or a sulfur atom). As specifically the X alkylene group or -R 3 -Z-R 4, 1 to 30 carbon atoms - for example, a group represented by. Where R 3 and R 4 represent an alkylene group, specifically an alkylene group having 1 to 30 carbon atoms, Z represents —O—, —NH—, —NR 0 — (where R 0 represents a hydrogen atom or carbon Represents an alkyl group having 1 to 4 atoms) or -S-.

さらに、式中、Gは糖鎖を表す。本発明に用いる糖鎖は、種々の糖質、その組合せからなり、吸着対象となるウイルスに応じて優れた吸着活性を有する糖質を適宜選択すればよいが、本発明で対象とするHIVの場合は、下記一般式(2)で表される   Further, in the formula, G represents a sugar chain. The sugar chain used in the present invention is composed of various sugars and combinations thereof, and a sugar having excellent adsorption activity may be appropriately selected according to the virus to be adsorbed. The case is represented by the following general formula (2)

(2) (2)

(式中、nは0〜1の整数を表す)で表されるガラクトシルラクトース(Gb3、Pサッカライド)、ガラクトシルガラクトース(Gb2)等が特に好ましい。 Galactosyl lactose (Gb3, Pk saccharide) represented by the formula (wherein n represents an integer of 0 to 1 ), galactosylgalactose (Gb2) and the like are particularly preferable.

・重合性組成物
また、本発明には、上述した重合性化合物のうち、糖鎖の異なる重合性化合物を2種以上用いた重合性組成物を用いることもできる。さらに、最適な糖鎖密度に調整するために、または高分子基材への固定化量を増加させるため、上述した重合性化合物に加えて他の重合性化合物も併用することができる。その様な他の重合性化合物としては、血液適合性の高いものが好ましく、エチレン性不飽和結合を有する重合性化合物が挙げられ、例えば、アクリル酸、アクリル酸エステル、メタクリル酸、メタクリル酸エステル、アクリルアミド、メタクリルアミドなどが挙げられる。
-Polymerizable composition Moreover, the polymeric composition which used 2 or more types of polymeric compounds from which sugar chain differs among the polymeric compounds mentioned above can also be used. Furthermore, in order to adjust to an optimal sugar chain density or to increase the amount of immobilization to the polymer substrate, other polymerizable compounds can be used in combination with the above-described polymerizable compound. As such other polymerizable compounds, those having high blood compatibility are preferred, and examples thereof include polymerizable compounds having an ethylenically unsaturated bond, such as acrylic acid, acrylic acid ester, methacrylic acid, methacrylic acid ester, Examples include acrylamide and methacrylamide.

・接触方法
前記高分子基材と前記重合性化合物または前記重合性組成物との接触方法は、前記重合性化合物または前記重合性組成物を水系溶媒に溶解させて水溶液とした上で、上記高分子基材と接触させればよい。本発明においては、前記高分子基体表面におけるグラフト重合を優先的に進行させることから、水溶液中の前記重合性化合物または前記重合性組成物の濃度は低い方が好ましい。あまり高い濃度、例えば20質量%以上では、重合の容易な重合性化合物、例えばアクリル酸、アクリルアミドといった低分子量の重合性化合物を使用した場合、ラジカルが溶液中に拡散し溶液中で重合反応が同時進行する場合がある。具体的には、使用する重合性化合物各々の溶解度により上限が限定され、0.1質量%以上、好ましくは0.1〜20質量%、より好ましくは0.1〜15質量%の範囲である。
-Contact method The contact method between the polymer substrate and the polymerizable compound or the polymerizable composition is a method in which the polymerizable compound or the polymerizable composition is dissolved in an aqueous solvent to form an aqueous solution, What is necessary is just to make it contact with a molecular base material. In the present invention, since the graft polymerization on the surface of the polymer substrate proceeds preferentially, the concentration of the polymerizable compound or the polymerizable composition in the aqueous solution is preferably lower. At a very high concentration, for example, 20% by mass or more, when a polymerizable compound that is easily polymerized, for example, a low molecular weight polymerizable compound such as acrylic acid or acrylamide is used, radicals diffuse into the solution and the polymerization reaction occurs simultaneously in the solution. May progress. Specifically, the upper limit is limited by the solubility of each polymerizable compound to be used, and is 0.1% by mass or more, preferably 0.1 to 20% by mass, more preferably 0.1 to 15% by mass. .

・電離放射線の照射
本発明では、前記高分子基材に電離放射線を照射して発生させたラジカルにより、前記重合性化合物が有するエチレン性不飽和結合部位を高分子基材にグラフト重合させる。グラフト重合に際して用いる電離放射線源としては、α線、β線、γ線、加速電子線、X線等があげられ、実用的にはγ線、加速電子線が望ましい。
-Irradiation of ionizing radiation In this invention, the ethylenically unsaturated bond part which the said polymeric compound has is graft-polymerized to a polymer base material by the radical which generate | occur | produced by irradiating the said polymer base material with ionizing radiation. Examples of the ionizing radiation source used in the graft polymerization include α rays, β rays, γ rays, accelerated electron rays, X rays, and the like. Practically, γ rays and accelerated electron rays are preferable.

グラフト重合法は前記高分子基材と重合性化合物とを接触させて電離放射線を照射する同時照射グラフト重合法と高分子基材を予め照射した後、重合性化合物と接触させる前照射グラフト重合法のいずれでも可能であり、目的に合わせて選択できる。   The graft polymerization method is a simultaneous irradiation graft polymerization method in which the polymer base material and the polymerizable compound are brought into contact with each other and irradiated with ionizing radiation, and a pre-irradiation graft polymerization method in which the polymer base material is pre-irradiated and then contacted with the polymerizable compound. Either of these is possible and can be selected according to the purpose.

本発明に用いる電離放射線を用いたグラフト重合法において、照射線量や加速電圧は高分子基材によって異なるため一概には範囲を決めることができず、高分子基材の素材、形態、厚みなどを考慮し適宜調整することが必要である。たとえば、照射量が多いと帯電による絶縁破壊が発生し、照射量が少ないと重合反応が進まない。このため、高分子基材の材質や形態などを考慮し、帯電による絶縁破壊が発生せず、かつ重合反応が充分に進む照射量を適宜調整すればよい。また、加速電圧は透過性に関係し、高分子基材の厚みによって異なる。フィルムなどの薄い形態の場合、加速電圧は一般には小さくて済み、高分子基材の形態によって選択すればよい。   In the graft polymerization method using ionizing radiation used in the present invention, the irradiation dose and acceleration voltage differ depending on the polymer base material, so the range cannot be determined unconditionally. It is necessary to consider and adjust accordingly. For example, when the irradiation amount is large, dielectric breakdown due to charging occurs, and when the irradiation amount is small, the polymerization reaction does not proceed. For this reason, in consideration of the material and form of the polymer base material, the amount of irradiation with which the dielectric breakdown due to charging does not occur and the polymerization reaction sufficiently proceeds may be appropriately adjusted. Further, the acceleration voltage is related to the permeability and varies depending on the thickness of the polymer substrate. In the case of a thin form such as a film, the acceleration voltage is generally small and may be selected depending on the form of the polymer substrate.

たとえば、高分子基材が4−メチル−1−ペンテンからなる厚さ0.1(μm)〜10(μm)の中空糸の場合においては、10(kGy)以上、300(kGy)以下であり、さらに望ましくは90(kGy)以下である。また、加速電圧は0.1(kV)以上、10〔kV〕以下、好ましくは5(kV)以下である。   For example, in the case of a hollow fiber having a thickness of 0.1 ([mu] m) to 10 ([mu] m) made of 4-methyl-1-pentene as the polymer base material, it is 10 (kGy) or more and 300 (kGy) or less. More desirably, it is 90 (kGy) or less. The acceleration voltage is 0.1 (kV) or more and 10 [kV] or less, preferably 5 (kV) or less.

前記接触工程と前記電離放射線照射工程の順に特に限定はない。例えば、前記高分子基材に前記一般式(1)で表される重合性化合物または該重合性化合物を含む重合性組成物を接触させた後(工程1)、この状態で電離放射線を照射する工程(2)とをこの順で行っても良いし、逆に、前記高分子基材に電離放射線を先に照射し(工程(3))、その後該高分子基材に前記一般式(1)で表される重合性化合物または該重合性化合物を含む重合性組成物を接触させる工程(4)とをこの順で行ってもよい。本発明においては、どちらの方法であっても、糖鎖を前記高分子基体に固定化させることができる。   There is no particular limitation in the order of the contact step and the ionizing radiation irradiation step. For example, after contacting the polymerizable compound represented by the general formula (1) or the polymerizable composition containing the polymerizable compound with the polymer base material (step 1), irradiation with ionizing radiation is performed in this state. The step (2) may be performed in this order, or conversely, the polymer substrate is first irradiated with ionizing radiation (step (3)), and then the polymer substrate is subjected to the general formula (1). And the step (4) of contacting the polymerizable compound represented by (1) or the polymerizable composition containing the polymerizable compound may be performed in this order. In the present invention, the sugar chain can be immobilized on the polymer substrate by either method.

前記照射グラフト重合において、照射後の基材中のラジカルは温度の上昇、酸素との接触によって速やかに不活化される。従って、照射後は十分に酸素を除いた状態で低温にて貯蔵し、速やかに固定化を行うことが好ましい。また前記の理由から、固定化においては脱酸素下、または不活性ガス下で実施することが望ましい。
重合後の糖鎖固定化高分子基材は、水洗など種々の方法で未反応の重合性化合物を除去すればよい。未反応の重合性化合物はもともと水溶性であること、かつ、ある程度高分子量化したものを基材と接触させて結合させるため、アルカリ処理やブロモ酢酸や1,4−ブタンジオールジグリシジルエーテルを用いた化学結合法に比べるとより簡便な洗浄工程で構わない。
In the irradiation graft polymerization, radicals in the substrate after irradiation are quickly inactivated by temperature increase and contact with oxygen. Therefore, after irradiation, it is preferable to store it at a low temperature in a state where oxygen is sufficiently removed, and to quickly fix it. For the above reasons, the immobilization is preferably carried out under deoxygenation or in an inert gas.
What is necessary is just to remove the unreacted polymeric compound by various methods, such as water washing, to the sugar_chain | carbohydrate fixed polymer base material after superposition | polymerization. The unreacted polymerizable compound is originally water-soluble, and is used with alkali treatment, bromoacetic acid or 1,4-butanediol diglycidyl ether in order to bond the polymer having a higher molecular weight to the substrate. Compared with the conventional chemical bonding method, a simpler washing process may be used.

なお、高分子基材の形状が中空糸膜であり、該中空糸膜へ前記重合性化合物または重合性組成物を固定化する場合には、実施形態に応じて糸の内面、外面のどちらかまたは両方に固定化することを選択できるが、例えば中空糸内部に血液を還流させる時は中空糸内部に、前記重合性化合物または重合性組成物を中空糸内部に接触させ糖鎖を固定化すれば良く、逆に、外部還流時には中空糸外部に前記重合性化合物ないし重合性組成物を接触させ糖鎖を固定化すれば良い。さらに中空糸膜をろ過膜として使用する場合には両面に接触させ糖鎖を固定化すれば良い。 When the polymer base material is a hollow fiber membrane and the polymerizable compound or the polymerizable composition is fixed to the hollow fiber membrane, either the inner surface or the outer surface of the yarn is used depending on the embodiment. Alternatively, for example, when blood is refluxed inside the hollow fiber, the sugar chain is immobilized by contacting the polymerizable compound or polymerizable composition inside the hollow fiber. Conversely, at the time of external reflux, the polymerizable compound or polymerizable composition may be brought into contact with the outside of the hollow fiber to immobilize the sugar chain. Furthermore, when a hollow fiber membrane is used as a filtration membrane, the sugar chain may be immobilized by contacting both surfaces.

・糖鎖固定化高分子基材
次に、本発明の糖鎖固定化高分子基材について説明する。本発明の糖鎖固定化高分子基材は主鎖にメチレン基を有する高分子基材に、一般式(3)で表される繰り返し単位(M)
-Sugar chain-immobilized polymer substrate Next, the sugar chain-immobilized polymer substrate of the present invention will be described. The sugar chain-immobilized polymer substrate of the present invention has a repeating unit (M) represented by the general formula (3) on a polymer substrate having a methylene group in the main chain.

(3) (3)

(式中、Rは水素原子またはメチル基を表し、Wは−CONH−、−CO−O−または−R−CONH−(但しRは芳香族基を表す)を表し、Xはアルキレン基、または−R−Z−R−(但しR及びRはアルキレン基を表し、Zは−O−、−NH−、−NR−(但しRは水素原子または炭素原子数1〜4のアルキル基を表す)又は−S−を表す)で表される基を表し、Gは糖鎖を表す)が結合しているか、
または、前記一般式(3)で表される繰り返し単位(M)と一般式(4)で表される繰り返し単位(L)
(Wherein R 1 represents a hydrogen atom or a methyl group, W represents —CONH—, —CO—O—, or —R 2 —CONH— (wherein R 2 represents an aromatic group), and X represents alkylene. A group, or —R 3 —Z—R 4 — (wherein R 3 and R 4 represent an alkylene group, Z represents —O—, —NH—, —NR 0 — (where R 0 represents a hydrogen atom or a carbon atom number); Represents an alkyl group of 1 to 4) or represents -S-), and G represents a sugar chain).
Alternatively, the repeating unit (M) represented by the general formula (3) and the repeating unit (L) represented by the general formula (4)

(4) (4)

(式中、Rは水素原子またはメチル基を表し、Vは−COOH、−COOR(但しRはアルキル基を表す)または−CONHを表す)とが結合していることを特徴とする。 (Wherein R 5 represents a hydrogen atom or a methyl group, V represents —COOH, —COOR 6 (wherein R 6 represents an alkyl group) or —CONH 2 ), and To do.

但し、Rは前記一般式(1)で表される重合性化合物で説明したものと同様の芳香族基を表し、R及びRは一般式(1)で表される重合性化合物で説明したものと同様のアルキレン基を表す。また、Rはアルキル基、好ましくは炭素原子数1〜30のアルキル基を表す。また、Gも前記一般式(1)で表される重合性化合物で説明したものと同様の糖鎖を表す。 However, R 2 represents the same aromatic group as described for the polymerizable compound represented by the general formula (1), and R 3 and R 4 are polymerizable compounds represented by the general formula (1). Represents the same alkylene group as described. R 6 represents an alkyl group, preferably an alkyl group having 1 to 30 carbon atoms. G also represents the same sugar chain as described for the polymerizable compound represented by the general formula (1).

さらに前記一般式(3)における繰り返し単位(M)は1以上であり、好ましくは1〜10000、より好ましくは100〜1000の範囲である。また、前記一般式(4)における繰り返し単位(L)は1以上であり、好ましくは1〜10000、より好ましくは100〜1000の範囲である。
また、前記一般式(3)における繰り返し単位(M)と前記一般式(4)で表される繰り返し単位(L)の比率は特に限定されるものではなく、最適な糖鎖密度に調整したり、または高分子基材への固定化量を増加させる場合に応じて、適宜調節すればよい。
Furthermore, the repeating unit (M) in the said General formula (3) is 1 or more, Preferably it is 1-10000, More preferably, it is the range of 100-1000. Moreover, the repeating unit (L) in the said General formula (4) is 1 or more, Preferably it is 1-10000, More preferably, it is the range of 100-1000.
Further, the ratio of the repeating unit (M) in the general formula (3) to the repeating unit (L) represented by the general formula (4) is not particularly limited, and can be adjusted to an optimum sugar chain density. Or, it may be appropriately adjusted according to the case where the amount immobilized on the polymer substrate is increased.

また、本発明における糖鎖固定化高分子基材に用いる高分子基材としては、一般式(1)と同様のものが挙げられる。   In addition, examples of the polymer substrate used for the sugar chain-immobilized polymer substrate in the present invention include the same as those in the general formula (1).

本発明の糖鎖固定化高分子基材は、前記製造方法により容易に得ることができる。この場合、前記繰り返し単位(M)、(L)の、基材と逆側の片末端は上述した重合性化合物残基である。 The sugar chain-immobilized polymer substrate of the present invention can be easily obtained by the production method. In this case, one end of the repeating units (M) and (L) on the side opposite to the substrate is the polymerizable compound residue described above.

・用途
本発明の糖鎖固定化高分子基材の製造方法は高分子素材の材質や形態に関して広範囲に適用できることから、目的、用途に応じた糖質固定化高分子素材を得ることができ、上記用途以外にも病原体の精製、分離に用いることができる。
-Use Since the method for producing a sugar chain-immobilized polymer base material of the present invention can be applied in a wide range with respect to the material and form of the polymer material, a sugar-immobilized polymer material according to the purpose and application can be obtained, In addition to the above uses, it can be used for purification and separation of pathogens.

また、本発明の糖鎖固定化高分子基材はHIV吸着性を有し糖質に応じて目的とするHIVを吸着除去することができ、HIVの体外循環用吸着除去カラムに適用できる。特に、Wで表される糖鎖が下記一般式(2)   In addition, the sugar chain-immobilized polymer base material of the present invention has HIV adsorptivity and can adsorb and remove the target HIV according to the saccharide, and can be applied to an adsorption removal column for extracorporeal circulation of HIV. In particular, the sugar chain represented by W is represented by the following general formula (2)

(2) (2)

(式中、nは0〜1の整数を表す)で表されるガラクトシルラクトース(Gb3、Pサッカライド)、ガラクトシルガラクトース(Gb2)である場合には、HIVなどの各種ウイルスを吸着除去する用途に特に好ましく用いることができる。 (Wherein n represents an integer of 0 to 1), galactosyl lactose (Gb3, Pk saccharide) and galactosylgalactose (Gb2) It can be particularly preferably used.

・・医療器具および使用方法
糖鎖固定化高分子基材の使用方法は血液、血漿、血清等の体液と接触させて、体液中のHIVを吸着除去することができればいずれの方法でもよいが、例えば以下の方法を挙げることができる。
(1)中空糸内部に吸着材を担持させておき、これに体液を流す方法。
(2)体液の入口と出口とを有し、その出口に体液は通過するが吸着材は通過しないフィルターを装着した容器に吸着材を充填し、これに体液を流す方法。
(3)体液を取り出してバック等に貯留し、これを吸着材に混合してHIVを吸着除去した後、吸着材を濾別してHIVが除去された体液を得る方法。
・ ・ Medical device and method of use Any method may be used as long as the method of using the sugar chain-immobilized polymer substrate can be brought into contact with a body fluid such as blood, plasma, serum, etc., and can absorb and remove HIV in the body fluid, For example, the following method can be mentioned.
(1) A method in which an adsorbent is supported inside a hollow fiber and a body fluid is caused to flow through the adsorbent.
(2) A method in which an adsorbent is filled in a container equipped with a filter having an inlet and an outlet for bodily fluid, through which the bodily fluid passes but no adsorbent passes, and the bodily fluid flows through the container.
(3) A method in which body fluid is taken out and stored in a bag or the like, mixed with an adsorbent to remove HIV, and then adsorbent is filtered to obtain a body fluid from which HIV has been removed.

いずれの方法を用いることもできるが、(1)や(2)の方法は操作が簡単である点で好ましく、対外循環回路に組み込むことにより患者の体液から効率よくオンラインでHIVを除去することが可能である。このうちさらに、(1)による方法が最も好ましい方法として挙げられる。(2)や(3)の方法では、血液の凝固を防止するため、血液を血球と血漿に分離し、血漿のみを処理する必要があるが、(1)の方法ではこのような分離を必要とせず、操作が最も簡便でかつ患者への負担が少ないためである。また、中空糸表面には凹凸があり、平滑な表面を持つ他の基材と比較して高い表面積を持つことから、血液との接触面積が大きくなり、血液中のHIVを効率良く吸着することができる。 Either method can be used, but the methods (1) and (2) are preferable because they are easy to operate. By incorporating them into an external circulation circuit, HIV can be efficiently removed from a patient's body fluid online. Is possible. Among these, the method according to (1) is the most preferable method. In the methods (2) and (3), it is necessary to separate blood into blood cells and plasma and treat only the plasma in order to prevent blood coagulation, but the method (1) requires such separation. This is because the operation is the simplest and the burden on the patient is small. In addition, the hollow fiber surface has irregularities and has a high surface area compared to other substrates with a smooth surface, so the contact area with blood is increased and HIV in blood can be adsorbed efficiently. Can do.

本発明の糖鎖固定化高分子基材を用いた医療器具の一例をその概略断面図に基づき説明する。   An example of a medical device using the sugar chain-immobilized polymer substrate of the present invention will be described based on the schematic cross-sectional view.

図6に示す容器には、液体の流入口または流出口1、液体の流出口または流入口2、本発明の 糖鎖3が内壁に固定化された高分子基材からなる中空糸4が束になって内部に収納されている。また、中空糸の端面部はウレタン封止剤などからなる隔壁6により封止されている。この容器の形状及び材質は特に限定されないが、体外循環に適用する場合、好ましくは、内部液量10〜400mLの範囲であり、外径は2〜10cm程度の筒状容器である。もっとも好ましくは、内部液量20〜200mLの範囲であり、外径は2.5〜4cm程度の筒状容器である。   The container shown in FIG. 6 includes a bundle of hollow fibers 4 made of a polymer base material having a liquid inlet / outlet 1, a liquid outlet / inlet 2, and a sugar chain 3 of the present invention immobilized on the inner wall. It is stored inside. Moreover, the end surface part of the hollow fiber is sealed with a partition wall 6 made of a urethane sealant or the like. The shape and material of the container are not particularly limited, but when applied to extracorporeal circulation, the container is preferably a cylindrical container having an internal liquid amount of 10 to 400 mL and an outer diameter of about 2 to 10 cm. Most preferably, it is a cylindrical container having an inner liquid amount of 20 to 200 mL and an outer diameter of about 2.5 to 4 cm.

以下に、中空糸への固定化、HIVの吸着について、糖質としてGb3を用い、高分子基材としてポリ4−メチル−1−ペンテン中空糸膜、病原体としてHIVを用いた例でさらに詳しく説明する。 Hereinafter, the immobilization to the hollow fiber and the adsorption of HIV will be described in more detail with an example using Gb3 as a carbohydrate, a poly-4-methyl-1-pentene hollow fiber membrane as a polymer base material, and HIV as a pathogen. To do.

(参考例1) (Reference Example 1)

上記化学式で示される6−[2−(N−Acryloylamino)ethylthio]hexyl 4−O−[4−O−(α−D−galactopyranosyl)−β−D−galactopyranosyl]−β−D−glucopyranoside(以下、Gb3モノマーという)を文献(V.P.Kamath et al,Carbohydrate Research,339,1141(2004),K.Matsuoka et al,Tetrahedoron Lett.,40,7839(1999),P.B.van Seeventer et al,Carbohydrate Research,300,369(1997),特開2005−289907号公報)記載の方法に準じて合成した(図1)。以下、詳述する。   6- [2- (N-Acryloylamino) ethylthio] hexyl 4-O- [4-O- (α-D-galactopylanosyl) -β-D-galactopylanosyl] -β-D-glucopyroxide (hereinafter referred to as the following chemical formula) Gb3 monomer) has been published in the literature (VP Kamath et al, Carbohydrate Research, 339, 1141 (2004), K. Matsuoka et al, Tetrahedron Lett., 40, 7839 (1999), P. B. van Sevent. , Carbohydrate Research, 300, 369 (1997), Japanese Patent Application Laid-Open No. 2005-289907) (FIG. 1). . Details will be described below.

(合成例1)<6−[2−(N−Acryloylamino)ethylthio]hexyl 4−O−[4−O−(2,3,4,6−tetra−O−acetyl−α−D−galactopyranosyl)−2,3,6−tri−O−actyl−β−D−galactopyranosyl]−2,3,6−tri−O−acetyl−β−D−glucopyranoside(2)の合成> Synthesis Example 1 <6- [2- (N-Acryloylamino) ethylthio] hexyl 4-O- [4-O- (2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl)- Synthesis of 2,3,6-tri-O-actyl-β-D-galactopylanoyl] -2,3,6-tri-O-acetyl-β-D-glucopyroxide (2)>

n−hexenyl 4−O−[4−O−(2,3,4,6−tetra−O−acetyl−α−D−galactopyranosyl)−2,3,6−tri−O−acetyl−β−D−galactopyranosyl]−2,3,6−tri−O−acetyl−β−D−glucopyranoside(1)50mg(0.05mmol)およびアミノエタンチオール塩酸塩28mg(0.25mmol)をTHF2mLに溶解、懸濁し、AIBN2mgを加えて減圧窒素置換後、油浴温度70℃で加熱撹拌した。反応の進行はTLC(ヘキサン/酢酸エチル=1/2)で確認した。原料消失後、酢酸エチルと炭酸水素ナトリウム水溶液を加えて分液し、酢酸エチル層に無水硫酸ナトリウムを加えて乾燥、ろ過後、次工程にそのまま用いた。 n-hexenyl 4-O- [4-O- (2,3,4,6-tetra-O-acetyl-α-D-galactopyranosyl) -2,3,6-tri-O-acetyl-β-D- galactopyranosyl] -2,3,6-tri-O-acetyl-β-D-glucopyranoside (1) 50 mg (0.05 mmol) and aminoethanethiol hydrochloride 28 mg (0.25 mmol) were dissolved and suspended in 2 mL of THF, and AIBN 2 mg After substituting with nitrogen under reduced pressure, the mixture was heated and stirred at an oil bath temperature of 70 ° C. The progress of the reaction was confirmed by TLC (hexane / ethyl acetate = 1/2). After disappearance of the raw materials, ethyl acetate and an aqueous sodium hydrogen carbonate solution were added for liquid separation, and anhydrous ethyl sulfate was added to the ethyl acetate layer, dried, filtered, and used as it was in the next step.

酢酸エチル溶液にトリエチルアミン12mg(0.12mmol)を加えて氷冷下、アクリル酸クロリド5.4mg(0.06mmol)を滴下した。10分後、TLC(酢酸エチル/メタノール=1/2)で原料の消失を確認した。水を加えて分液、後処理を行い、シリカゲルカラムクロマト(トルエン/酢酸エチル=1/3)で精製した。収量51.4mg、収率90%。   To the ethyl acetate solution, 12 mg (0.12 mmol) of triethylamine was added, and 5.4 mg (0.06 mmol) of acrylic acid chloride was added dropwise under ice cooling. After 10 minutes, the disappearance of the raw materials was confirmed by TLC (ethyl acetate / methanol = 1/2). Water was added to perform liquid separation and post-treatment, and purification was performed by silica gel column chromatography (toluene / ethyl acetate = 1/3). Yield 51.4 mg, yield 90%.

H−NMR(300MHz,CDCl)δ=6.29(dd,1H),6.13(br,1H),6.12(dd,1H),5.65(dd,1H),5.58(d,1H),5.39(dd,1H),5.23−5.16(m,2H),5.11(dd,1H),4.99(d,1H),4.88(dd,1H),4.74(dd,1H),4.53−4.40(m,5H),4.20−4.08(m,4H),4.01(d,1H),3.84−3.45(m,7H),2.69(t,2H),2.52(t,2H),2.13−1.86(m,30H),1.58−1.35(m,8H) 1 H-NMR (300 MHz, CDCl 3 ) δ = 6.29 (dd, 1H), 6.13 (br, 1H), 6.12 (dd, 1H), 5.65 (dd, 1H), 5. 58 (d, 1H), 5.39 (dd, 1H), 5.23-5.16 (m, 2H), 5.11 (dd, 1H), 4.99 (d, 1H), 4.88 (Dd, 1H), 4.74 (dd, 1H), 4.53-4.40 (m, 5H), 4.20-4.08 (m, 4H), 4.01 (d, 1H), 3.84-3.45 (m, 7H), 2.69 (t, 2H), 2.52 (t, 2H), 2.13-1.86 (m, 30H), 1.58-1. 35 (m, 8H)

13C−NMR(75MHz,CDCl)δ=170.58,170.37,170.00,169.64,169.47,168.82,165.45,130.73,126.46,101.03,100.50,99.55,76.58,76.44,73.09,72.76,72.51,71.79,69.87,69.00,68.81,67.90,67.11,67.06,62.19,61.33,60.26,38.38,31.71,31.55,29.39,29.19,28.31,25.32,20.84,20.80,20.64,20.55,20.51,20.44 13 C-NMR (75 MHz, CDCl 3 ) δ = 170.58, 170.37, 170.00, 169.64, 169.47, 168.82, 165.45, 130.73, 126.46, 101. 03, 100.50, 99.55, 76.58, 76.44, 73.09, 72.76, 72.51, 71.79, 69.87, 69.00, 68.81, 67.90, 67.11, 67.06, 62.19, 61.33, 60.26, 38.38, 31.71, 31.55, 29.39, 29.19, 28.31, 25.32, 20. 84, 20.80, 20.64, 20.55, 20.51, 20.44

(合成例2)<6−[2−(N−Acryloylamino)ethylthio]hexyl 4−O−[4−O−(α−D−galactopyranosyl)−β−D−galactopyranosyl]−β−D−glucopyranoside(Gb3モノマー)の合成> (Synthesis Example 2) <6- [2- (N-Acryloylamino) ethylthio] hexyl 4-O- [4-O- (α-D-galactopyranoylyl) -β-D-galactopyranoylyl] -β-D-glucopyroxide (Gb3 Monomer)>

合成例1で得られた化合物51.4mg(0.0452mmol)をメタノール1mLに溶解し、MeONa 2.4mg(0.0452mmol)を加えて室温で撹拌した。LC(MeOH/HO=20/80)で反応の進行を確認した。イオン交換樹脂で中和し、濃縮乾固して目的物を得た。収量30.5mg、収率90% 51.4 mg (0.0452 mmol) of the compound obtained in Synthesis Example 1 was dissolved in 1 mL of methanol, 2.4 mg (0.0452 mmol) of MeONa was added, and the mixture was stirred at room temperature. The progress of the reaction was confirmed by LC (MeOH / H 2 O = 20/80). The product was neutralized with an ion exchange resin and concentrated to dryness. Yield 30.5mg, Yield 90%

H−NMR(300MHz,DO)δ=6.21−6.05(m,2H),5.65(d,1H),4.84(d,1H),4.40(d,1H),4.39(d,1H),4.24(t,1H),3.92−3.18(m,21H),2.63(t,2H),2.49(t,2H),1.51−1.40(m,4H),1.31−1.22(m,4H) 1 H-NMR (300 MHz, D 2 O) δ = 6.21-6.05 (m, 2H), 5.65 (d, 1H), 4.84 (d, 1H), 4.40 (d, 1H), 4.39 (d, 1H), 4.24 (t, 1H), 3.92-3.18 (m, 21H), 2.63 (t, 2H), 2.49 (t, 2H) ), 1.51-1.40 (m, 4H), 1.31-1.22 (m, 4H)

13C−NMR(75MHz,DO)δ=169.45,130.81,128.26,104.14,102.87,101.20,79.63,78.26,76.29,75.66,75.40,73.81,73.08,71.83,71.74,71.43,70.02,69.84,69.44,61.42,61.25,60.99,39.71,31.90,31.19,29.48,28.46,25.45 13 C-NMR (75 MHz, D 2 O) δ = 169.45, 130.81, 128.26, 104.14, 102.87, 101.20, 79.63, 78.26, 76.29, 75 .66, 75.40, 73.81, 73.08, 71.83, 71.74, 71.43, 70.02, 69.84, 69.44, 61.42, 61.25, 60.99 , 39.71, 31.90, 31.19, 29.48, 28.46, 25.45.

なお、参考例1で調製されたGb3モノマーの構造は、H−NMR,13C−NMRから文献記載のデータと一致することを確認した。 In addition, it confirmed that the structure of the Gb3 monomer prepared in Reference Example 1 was consistent with the data described in the literature from 1 H-NMR and 13 C-NMR.

(実施例1)
Gb3モノマー0.2gをイオン交換水1.8gに溶解して10質量%水溶液とし、撹拌しながら減圧することで水溶液中の溶存酸素を除去した。
Example 1
Gb3 monomer 0.2g was melt | dissolved in the ion-exchange water 1.8g, and it was set as 10 mass% aqueous solution, and dissolved oxygen in the aqueous solution was removed by reducing pressure while stirring.

次に、23℃で、ポリ−4−メチルペンテン製の中空糸束(中空糸表面積:30cm、DIC(株)製)をガラス製試験管に入れ、ゴム栓にて密閉し、試験管内部を窒素置換してから、RDI社製の電子線照射装置「ダイナミトロン5MeV―150kW」にて4.8(MeV)の加速エネルギーで90(kGy)の電子線を照射した。 Next, at 23 ° C., a hollow fiber bundle made of poly-4-methylpentene (hollow fiber surface area: 30 cm 2 , manufactured by DIC Corporation) is put in a glass test tube and sealed with a rubber stopper. Was replaced with nitrogen, and then an electron beam of 90 (kGy) was irradiated with an acceleration energy of 4.8 (MeV) with an electron beam irradiation apparatus “DYNAMICRON 5 MeV-150 kW” manufactured by RDI.

次に、23℃で、電子線を照射した中空糸束入り試験管内を真空にしてから、脱酸素したGb3モノマー水溶液を加えた。23℃で4時間静置した後、中空糸束を取り出し、数回水洗して未反応のモノマーを除去して、Gb3を固定化した中空糸を得た。中空糸に固定化された糖鎖の量は島津製作所製のXPS(X−ray photo−electron Spectroscopy)「ESCA−800」(以下XPSと略す)にて確認し、日立製作所製の走査電子顕微鏡「S−800」(以下SEMと略す)にて表面形状の変化と固定化された糖鎖を確認した。結果を表1および図2に示す。   Next, at 23 ° C., the inside of the test tube containing the hollow fiber bundle irradiated with the electron beam was evacuated, and then the deoxygenated Gb3 monomer aqueous solution was added. After standing at 23 ° C. for 4 hours, the hollow fiber bundle was taken out and washed several times with water to remove unreacted monomers to obtain a hollow fiber having Gb3 immobilized thereon. The amount of sugar chain immobilized on the hollow fiber was confirmed by XPS (X-ray photoelectron Spectroscopy) “ESCA-800” (hereinafter abbreviated as XPS) manufactured by Shimadzu Corporation. Changes in surface shape and immobilized sugar chains were confirmed by “S-800” (hereinafter abbreviated as SEM). The results are shown in Table 1 and FIG.

XPSで未処理中空糸と比較し、Gb3モノマー由来の酸素が増加し、窒素、硫黄元素が検出されたことから、中空糸表面に固定化されたことが確認された。また、SEMから、表面から伸長したグラフト重合鎖が確認できた。   Compared with the untreated hollow fiber by XPS, oxygen derived from the Gb3 monomer increased, and nitrogen and sulfur elements were detected. Thus, it was confirmed that the hollow fiber surface was immobilized. Moreover, the graft polymerization chain extended | stretched from the surface has been confirmed from SEM.

(実施例2)
<ウイルスの調製>
・AD8およびNL43:FugeneHD(Roche社)にてHeLa細胞にpro virusをtransfectionした後、48時間後に上清を回収して使用、
・HXB2:ElectroporationにてMT2細胞にpro virusをtransfectionした後、経時的に上清を回収して最もウイルス量が多い(逆転者酵素活性が高い)時の上清を使用した。
<ウイルス数の測定>
PCR法(Roche社、AMPLICOR HIV MONITOR Test version1.5または、COBAS TaqMan)を用いて行なった。各実験室株(JRCSF、AD8、HXB2、NL43)のPBS溶液(ウイルス数3x10copies/mL、AD8のみ3x10)を実施例1で作製したGb3固定化中空糸5cmに対して1mL加えて、ローテートし、2時間と16時間でサンプルリングを行い、ウイルス数を測定した。
(Example 2)
<Preparation of virus>
AD8 and NL43: After transfecting pro virus to HeLa cells with FugeneHD (Roche), the supernatant was collected and used 48 hours later.
-HXB2: After transfecting pro virus to MT2 cells by Electroporation, the supernatant was collected over time, and the supernatant with the highest amount of virus (high reverser enzyme activity) was used.
<Measurement of virus count>
The PCR method (Roche, AMPLICOR HIV MONITOR Test version 1.5 or COBAS TaqMan) was used. 1 mL of PBS solution (virus number 3 × 10 3 copies / mL, AD8 only 3 × 10 4 ) of each laboratory strain (JRCSF, AD8, HXB2, NL43) was added to 5 cm 2 of the Gb3-immobilized hollow fiber prepared in Example 1. Rotate, sample at 2 and 16 hours, and count the number of viruses.

(比較例1)
比較例としてラクトース固定化中空糸5cmに対して同様に実験を行った。また、コントロールとして中空糸を加えずウイルス溶液のみをローテートして同様に実験を行った。
実施例及び比較例の結果を、図3〜図5に示す。
(Comparative Example 1)
As a comparative example, the same experiment was performed on 5 cm 2 of lactose-immobilized hollow fiber. Further, as a control, the same experiment was performed by rotating only the virus solution without adding the hollow fiber.
The result of an Example and a comparative example is shown in FIGS.

Gb3モノマーの合成経路を示すチャートである。It is a chart which shows the synthetic pathway of Gb3 monomer. 左図は固定化後の、右図は未処理の中空糸外面のSEM写真である。The left figure is an SEM photograph of the outer surface of the hollow fiber after immobilization, and the right figure is an untreated hollow fiber outer surface. AD8株における吸着を示す図である。It is a figure which shows adsorption | suction in AD8 stock | strain. HXB2株における吸着を示す図である。It is a figure which shows adsorption | suction in HXB2 stock | strain. NL43株における吸着を示す図である。It is a figure which shows adsorption | suction in NL43 stock | strain. 本発明の糖鎖固定化高分子基材を利用した吸着装置を示す概略断面図である。It is a schematic sectional drawing which shows the adsorption | suction apparatus using the sugar_chain | carbohydrate fixed polymer base material of this invention.

符号の説明Explanation of symbols

1 流出口
2 流入口
3 糖鎖
4 中空糸
5 容器
6 隔壁
1 Outlet 2 Inlet 3 Sugar chain 4 Hollow fiber 5 Container 6 Bulkhead

Claims (12)

主鎖にメチレン基を有する高分子基材に、一般式(1)
(1)
〔式中、Rは水素原子またはメチル基を表し、WおよびXは各々独立して2価の連結基を表し、Gは糖鎖を表す〕で表される重合性化合物、または該重合性化合物を含む重合性組成物を接触させる工程(1)と、前記高分子基材に前記一般式(1)で表される重合性化合物を接触させた状態で電離放射線を照射する工程(2)とをこの順で、または、
前記高分子基材に電離放射線を照射する工程(3)と、電離放射線を照射した前記高分子基材に前記重合性化合物、または該重合性化合物を含む重合性組成物を接触させる工程(4)とをこの順で行うことを特徴とするHIV吸着用糖鎖固定化高分子基材の製造方法。
A polymer substrate having a methylene group in the main chain is represented by the general formula (1)
(1)
Wherein R 1 represents a hydrogen atom or a methyl group, W and X each independently represent a divalent linking group, and G represents a sugar chain, or the polymerizable compound A step (1) of contacting a polymerizable composition containing a compound, and a step (2) of irradiating ionizing radiation in a state where the polymerizable compound represented by the general formula (1) is brought into contact with the polymer substrate. And in this order, or
A step (3) of irradiating the polymer substrate with ionizing radiation, and a step (4) of bringing the polymerizable compound or a polymerizable composition containing the polymerizable compound into contact with the polymer substrate irradiated with ionizing radiation. ) In this order. A method for producing a sugar chain-immobilized polymer substrate for HIV adsorption.
前記Gで表される糖鎖が、一般式(2)
(2)
(式中、nは0〜1の整数を表す)で表される請求項1記載のHIV吸着用糖鎖固定化高分子基材の製造方法。
The sugar chain represented by G is represented by the general formula (2)
(2)
The manufacturing method of the sugar_chain | carbohydrate fixed polymer base material for HIV adsorption | suction of Claim 1 represented by (In formula, n represents the integer of 0-1).
前記Wで表される2価の連結基は、−CONH−、−CO−O−または−R−CONH−(但しRは芳香族基を表す)である請求項1記載のHIV吸着用糖鎖固定化高分子基材の製造方法。 The divalent linking group represented by W is, -CONH -, - CO-O- or -R 2 -CONH- (provided that R 2 represents an aromatic group) for HIV adsorption according to claim 1, wherein the A method for producing a sugar chain-immobilized polymer substrate. 前記Xで表される2価の連結基は、アルキレン基または−R−Z−R−(但しR及びRは各々独立してアルキレン基を表し、Zは−O−、−NH−、−NR−(但しRは水素原子または炭素原子数1〜4のアルキル基を表す)又は−S−を表す)である請求項1記載のHIV吸着用糖鎖固定化高分子基材の製造方法。 The divalent linking group represented by X is an alkylene group or —R 3 —ZR 4 — (wherein R 3 and R 4 each independently represents an alkylene group, Z is —O—, —NH The sugar chain-immobilized polymer group for HIV adsorption according to claim 1, which is-, -NR 0- (wherein R 0 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms) or -S-). A method of manufacturing the material. 前記高分子基材が、オレフィン系樹脂、スチレン系樹脂、スルホン系樹脂、アクリル系樹脂、ウレタン系樹脂、エステル系樹脂、エーテル系樹脂またはセルロースアセテートである請求項1記載のHIV吸着用糖鎖固定化高分子基材の製造方法。 2. The sugar chain fixing for HIV adsorption according to claim 1, wherein the polymer substrate is an olefin resin, styrene resin, sulfone resin, acrylic resin, urethane resin, ester resin, ether resin or cellulose acetate. Method for producing a polymer base material. 前記オレフィン系樹脂が、4−メチル−1−ペンテンの重合体である請求項5記載のHIV吸着用糖鎖固定化高分子基材の製造方法。 The method for producing a sugar chain-immobilized polymer substrate for HIV adsorption according to claim 5, wherein the olefin resin is a polymer of 4-methyl-1-pentene. 前記高分子基材が中空糸膜であって、該中空糸膜の内側に、前記重合性化合物を接触させる請求項1記載のHIV吸着用糖鎖固定化高分子基材の製造方法。 The method for producing a sugar chain-immobilized polymer substrate for HIV adsorption according to claim 1, wherein the polymer substrate is a hollow fiber membrane, and the polymerizable compound is brought into contact with the inside of the hollow fiber membrane. 電離放射線の照射強度が、電圧0.1〜5〔kV〕かつ吸収線量10〜300〔kGy〕の範囲である請求項1記載のHIV吸着用糖鎖固定化高分子基材の製造方法。 The method for producing a sugar chain-immobilized polymer substrate for HIV adsorption according to claim 1, wherein the irradiation intensity of ionizing radiation is in the range of a voltage of 0.1 to 5 [kV] and an absorbed dose of 10 to 300 [kGy]. 主鎖にメチレン基を有する高分子基材に、一般式(3)で表される繰り返し単位(M)
(3)
(式中、Rは水素原子またはメチル基を表し、Wは−CONH−、−CO−O−または−R−CONH−(但しRは芳香族基を表す)を表し、Xはアルキレン基、または−R−Z−R−(但しR及びRはアルキレン基を表し、Zは−O−、−NH−、−NR−(但しRは水素原子または炭素原子数1〜4のアルキル基を表す)又は−S−を表す)で表される基を表し、Gは糖鎖を表す)が結合しているか、
または、前記一般式(3)で表される繰り返し単位(M)と一般式(4)で表される繰り返し単位(L)
(4)
(式中、Rは水素原子またはメチル基を表し、Vは−COOH、−COOR(但しRはアルキル基を表す)または−CONHを表す)とが結合していることを特徴とするHIV吸着用糖鎖固定化高分子基材。
Repeating unit (M) represented by general formula (3) on a polymer substrate having a methylene group in the main chain
(3)
(Wherein R 1 represents a hydrogen atom or a methyl group, W represents —CONH—, —CO—O—, or —R 2 —CONH— (wherein R 2 represents an aromatic group), and X represents alkylene. A group, or —R 3 —Z—R 4 — (wherein R 3 and R 4 represent an alkylene group, Z represents —O—, —NH—, —NR 0 — (where R 0 represents a hydrogen atom or a carbon atom number); Represents an alkyl group of 1 to 4) or represents -S-), and G represents a sugar chain).
Alternatively, the repeating unit (M) represented by the general formula (3) and the repeating unit (L) represented by the general formula (4)
(4)
(Wherein R 5 represents a hydrogen atom or a methyl group, V represents —COOH, —COOR 6 (wherein R 6 represents an alkyl group) or —CONH 2 ), and A sugar chain-immobilized polymer substrate for HIV adsorption.
前記高分子基材が、オレフィン系樹脂、スチレン系樹脂、スルホン系樹脂、アクリル系樹脂、ウレタン系樹脂、エステル系樹脂、エーテル系樹脂またはセルロースアセテートである請求項9記載のHIV吸着用糖鎖固定化高分子基材。 The sugar chain fixing for HIV adsorption according to claim 9, wherein the polymer substrate is an olefin resin, a styrene resin, a sulfone resin, an acrylic resin, a urethane resin, an ester resin, an ether resin, or cellulose acetate. Polymer base material. 前記オレフィン系樹脂が4−メチル−1−ペンテンの重合体である請求項10記載のHIV吸着用糖鎖固定化高分子基材。 The sugar chain-immobilized polymer substrate for HIV adsorption according to claim 10, wherein the olefin resin is a polymer of 4-methyl-1-pentene. 前記高分子基材が中空糸膜である請求項9〜11のいずれかに記載のHIV吸着用糖鎖固定化高分子基材。 The sugar chain-immobilized polymer substrate for HIV adsorption according to any one of claims 9 to 11, wherein the polymer substrate is a hollow fiber membrane.
JP2008237849A 2008-09-17 2008-09-17 Sugar chain fixed polymer substrate for hiv adsorption, and method of manufacturing the same Pending JP2010068910A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008237849A JP2010068910A (en) 2008-09-17 2008-09-17 Sugar chain fixed polymer substrate for hiv adsorption, and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008237849A JP2010068910A (en) 2008-09-17 2008-09-17 Sugar chain fixed polymer substrate for hiv adsorption, and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010068910A true JP2010068910A (en) 2010-04-02

Family

ID=42201252

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008237849A Pending JP2010068910A (en) 2008-09-17 2008-09-17 Sugar chain fixed polymer substrate for hiv adsorption, and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010068910A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121073A1 (en) 2011-03-04 2012-09-13 Dic株式会社 Sugar-immobilized polymer substrate for removing viruses, and method for removing viruses

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221162A (en) * 1987-11-02 1989-09-04 Tokyo Baiteku Kenkyusho:Kk Hollow fiber membrane for cleaning blood and blood cleaning device
JPH1199362A (en) * 1997-06-28 1999-04-13 Huels Ag Bioactive coating method on base material surface and product composed of base material coated by the same way
JP2000351806A (en) * 1999-04-07 2000-12-19 Dainippon Ink & Chem Inc Polymerizable composition, production of porous body from same, and precision filter membrane prepared thereby
JP2003135596A (en) * 2001-11-08 2003-05-13 Foundation For The Promotion Of Industrial Science Adsorbent hollow fiber for adsorbing pathogenic particle and pathogenic particle eliminator
JP2003226697A (en) * 2001-11-28 2003-08-12 National Institute Of Advanced Industrial & Technology Sugar compound
JP2005041916A (en) * 2003-07-23 2005-02-17 Toray Ind Inc Photopolymerizable composition and sheet obtained using the same
JP2005289907A (en) * 2004-03-31 2005-10-20 Japan Science & Technology Agency Verotoxin neutralizer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01221162A (en) * 1987-11-02 1989-09-04 Tokyo Baiteku Kenkyusho:Kk Hollow fiber membrane for cleaning blood and blood cleaning device
JPH1199362A (en) * 1997-06-28 1999-04-13 Huels Ag Bioactive coating method on base material surface and product composed of base material coated by the same way
JP2000351806A (en) * 1999-04-07 2000-12-19 Dainippon Ink & Chem Inc Polymerizable composition, production of porous body from same, and precision filter membrane prepared thereby
JP2003135596A (en) * 2001-11-08 2003-05-13 Foundation For The Promotion Of Industrial Science Adsorbent hollow fiber for adsorbing pathogenic particle and pathogenic particle eliminator
JP2003226697A (en) * 2001-11-28 2003-08-12 National Institute Of Advanced Industrial & Technology Sugar compound
JP2005041916A (en) * 2003-07-23 2005-02-17 Toray Ind Inc Photopolymerizable composition and sheet obtained using the same
JP2005289907A (en) * 2004-03-31 2005-10-20 Japan Science & Technology Agency Verotoxin neutralizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012121073A1 (en) 2011-03-04 2012-09-13 Dic株式会社 Sugar-immobilized polymer substrate for removing viruses, and method for removing viruses
JP5140211B2 (en) * 2011-03-04 2013-02-06 Dic株式会社 Substrate for removing saccharide-immobilized virus and virus removal instrument

Similar Documents

Publication Publication Date Title
JP5282933B2 (en) Sugar chain-immobilized polymer substrate and production method thereof
Stannett Radiation grafting—state-of-the-art
JP5140211B2 (en) Substrate for removing saccharide-immobilized virus and virus removal instrument
JP2011522090A (en) Method for producing a ligand-functionalized substrate
CN101058058B (en) Surface fixed taurine ligand porous membrane material, preparation method and its application in blood fat adsorption separation
JP2011523965A (en) Ligand functionalized substrate
JP4064046B2 (en) Organic polymer material, method for producing the same, and heavy metal ion removing agent composed thereof
JP5413648B2 (en) Sugar chain-immobilized polymer substrate, method for producing the same, and medical device
CN101024150A (en) Porous film material fixed with heparin on surface, its preparing method and use
Segura et al. Radiation modification of silicone rubber with glycidylmethacrylate
RU2470951C2 (en) Material containing polyazacycloalkanes grafted on polypropylene fibre, method for production thereof and method of removing metal cations from liquid
WO2014034787A1 (en) Dialyzer capable of removing viruses
JP5467986B2 (en) Polymer substrate for removing botulinum toxin and medical device
JP2010068910A (en) Sugar chain fixed polymer substrate for hiv adsorption, and method of manufacturing the same
AU2011236772B2 (en) Substrate for ligand immobilization and method for producing same
JP2012187308A (en) Sulfated polysaccharide immobilizing base material and method for removing virus using the same
EP3274069B1 (en) Method of purifying a biological composition and article therefor
CN102977275A (en) Use of phosphorylcholine groups for improving biocompatibility of adsorption resin
WO2006104117A1 (en) Modified substrate and process for production thereof
Piacham et al. A simple method for creating molecularly imprinted polymer-coated bacterial cellulose nanofibers
JP5673894B2 (en) Sugar chain-immobilized hydrophilic resin compound, polymer substrate for virus removal, and biocompatible material
JP2011224350A (en) Sugar-immobilized polymer substrate and medical apparatus using the same
JP2006077136A (en) Method for producing biocompatible polymer
WO2012124619A1 (en) Polyanion-immobilized polymer substrate for removing viruses, and method for removing viruses
JPH06190032A (en) Anticoagulant method and anticoagualnt polymer material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130709