JP2010068035A - Electrostatic vibrator - Google Patents

Electrostatic vibrator Download PDF

Info

Publication number
JP2010068035A
JP2010068035A JP2008229978A JP2008229978A JP2010068035A JP 2010068035 A JP2010068035 A JP 2010068035A JP 2008229978 A JP2008229978 A JP 2008229978A JP 2008229978 A JP2008229978 A JP 2008229978A JP 2010068035 A JP2010068035 A JP 2010068035A
Authority
JP
Japan
Prior art keywords
vibrator
oxide film
vibration
electrostatic
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008229978A
Other languages
Japanese (ja)
Other versions
JP5231907B2 (en
Inventor
Fumio Kimura
文雄 木村
Yoshifumi Yoshida
宜史 吉田
Hiroshi Takahashi
寛 高橋
Ryuta Hikarisue
竜太 光末
Ryohei Kamiya
亮平 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP2008229978A priority Critical patent/JP5231907B2/en
Publication of JP2010068035A publication Critical patent/JP2010068035A/en
Application granted granted Critical
Publication of JP5231907B2 publication Critical patent/JP5231907B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a structure of an electrostatic vibrator whose frequency is adjustable without employing a PLL system, and to provide a frequency adjusting method therefor. <P>SOLUTION: The electrostatic vibrator, in which both ends of vibration portions 102 and 103 of an MEMS type electrostatic drive bending vibrator having a vibration boundary condition of a both-end fixed type, and other structures are formed in one body, has a silicon oxide film formed on at least the structure, and compressive stress due to thermoelastic stress of the structure is applied to the vibration portions 102 and 103. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、各種電子機器の基準周波数発振器に使用される静電振動子に関する。   The present invention relates to an electrostatic vibrator used for a reference frequency oscillator of various electronic devices.

携帯電話等に代表される無線携帯機器や、パーソナルコンピュータ、時計等の電子機器の小型化と高精度化の要求が高まっている中で、このような電子機器には、小型でしかも安定な高周波信号源が必要不可欠である。この要求を満足させるための代表的な電子部品がATカット水晶振動子(以下、単にATカットと略す)である。   While there is an increasing demand for miniaturization and high precision of wireless portable devices such as mobile phones, and electronic devices such as personal computers and watches, such electronic devices have small and stable high frequency. A signal source is essential. A typical electronic component for satisfying this requirement is an AT cut crystal resonator (hereinafter simply referred to as AT cut).

ATカットは、良好な結晶の安定性から、発振素子としての品質の指標である共振先鋭度すなわちQ値が極めて大きく、10000を超えることが知られている。これが、無線携帯機器、パーソナルコンピュータ等の安定な高周波信号源として、広くATカットが利用されている理由である。しかし、このATカットは、近年の強い小型化の要求に関しては、十分に満足させることができないことも明らかになってきている。   It is known that the AT cut has a very high resonance sharpness, that is, a Q value, which is an index of quality as an oscillation element, because of good crystal stability, and exceeds 10,000. This is the reason why AT cut is widely used as a stable high-frequency signal source for wireless portable devices and personal computers. However, it has become clear that this AT cut cannot be satisfactorily satisfied with respect to the recent demand for strong downsizing.

すなわち、周知のとおり、ATカット以外の高周波電子部品は、シリコンのMEMS(Micro-Electro-Mechanical-System)技術の飛躍的な向上と共に、ICとの一体形成及び接合形成が実現しており、ほぼワンチップ化されている。ところが、水晶単結晶とシリコン結晶の物理的接合が非常に困難であるために、一体形成や接合形成が不可能であるので、ATカットも含めたワンチップ化は実現できていない。以上が、ATカットが近年の小型化の要求を十分に満足させることができない理由である。   In other words, as is well known, high-frequency electronic components other than AT-cuts have been realized with integrated formation and bonding with ICs, along with dramatic improvements in silicon MEMS (Micro-Electro-Mechanical-System) technology. One chip. However, since it is very difficult to physically bond a crystal single crystal and a silicon crystal, it is impossible to form a single chip including AT cut because it is impossible to form a single crystal or a silicon crystal. The above is the reason why the AT cut cannot sufficiently satisfy the recent demand for miniaturization.

この問題を解決するために、近年とみに注目されている振動子が、シリコン単結晶とMEMS技術を用いた静電振動子である。この静電振動子は、シリコンより形成された振動子の高Q特性を持った機械振動を、静電力を介在して電気信号に変換する振動子であって、水晶振動子と同等な高Q特性を持つインピーダンス特性を実現することができると共にATカットに代表される水晶振動子では実現できないICとの一体形成及び接合形成が実現できるという、非常に優れた特徴を持った振動子である(例えば非特許文献1参照)。   In order to solve this problem, a vibrator that has been attracting attention in recent years is an electrostatic vibrator using a silicon single crystal and MEMS technology. This electrostatic vibrator is a vibrator that converts a mechanical vibration having a high Q characteristic of a vibrator formed of silicon into an electric signal through an electrostatic force, and has a high Q equivalent to a quartz vibrator. It is a vibrator with very excellent characteristics that it can realize impedance characteristics with characteristics, and can realize integral formation and junction formation with ICs that cannot be realized with crystal resonators typified by AT cut ( For example, refer nonpatent literature 1).

この静電振動子の製造は、図7にて示すSOIウェハを用いて製造される。図7は前記SOIウェハの模式図である。SOIウェハはシリコン基板701、このシリコン基板701上に形成された酸化シリコン層すなわちボックス層702、このボックス層702上にされたシリコン層703の三層構造を持つウェハである。本発明に係る静電振動子は、DRIE等のMEMS技術を用いて図7記載のシリコン層703部にて形成されている。
T.Mattila et al.,“14MHz Micromechanical Oscillator”,TRANSDUCERS'01 EUROSENSORS XV,The 11th International Conference on Solid-State Sensors and Actuators,Munich,Germany,2001
This electrostatic vibrator is manufactured using the SOI wafer shown in FIG. FIG. 7 is a schematic diagram of the SOI wafer. The SOI wafer is a wafer having a three-layer structure of a silicon substrate 701, a silicon oxide layer formed on the silicon substrate 701, that is, a box layer 702, and a silicon layer 703 formed on the box layer 702. The electrostatic vibrator according to the present invention is formed of the silicon layer 703 shown in FIG. 7 by using MEMS technology such as DRIE.
T. Mattila et al., “14MHz Micromechanical Oscillator”, TRANSDUCERS'01 EUROSENSORS XV, The 11th International Conference on Solid-State Sensors and Actuators, Munich, Germany, 2001

しかし、従来の静電振動子には、以下で説明するような問題があった。図8は従来の静電振動子の代表的な構造を示す斜視図であって、屈曲振動型静電振動子の斜視図である。固定部803と振動部804は、シリコン基板801上のボックス層802を介在して一体形成されている。二対の励振電極805は、振動部804において屈曲振動変位806を誘発するように配置されており、ボックス層802上に形成されている。ちなみに振動部804の長さ寸法はL、幅寸法はaである。この時、この静電振動子の固有周波数Fは、以下の(1)式で決定される。   However, the conventional electrostatic vibrator has problems as described below. FIG. 8 is a perspective view showing a typical structure of a conventional electrostatic vibrator, and is a perspective view of a bending vibration type electrostatic vibrator. The fixed portion 803 and the vibrating portion 804 are integrally formed with a box layer 802 on the silicon substrate 801 interposed. The two pairs of excitation electrodes 805 are arranged on the vibration layer 804 so as to induce a bending vibration displacement 806, and are formed on the box layer 802. Incidentally, the vibration part 804 has a length dimension of L and a width dimension of a. At this time, the natural frequency F of the electrostatic vibrator is determined by the following equation (1).

Figure 2010068035
ここで、E、ρはそれぞれシリコンのヤング率と密度であり、a、Lは、図8記載の振動子の幅寸法と長さ寸法である。
Figure 2010068035
Here, E and ρ are the Young's modulus and density of silicon, respectively, and a and L are the width and length dimensions of the vibrator shown in FIG.

無線携帯機器、パーソナルコンピュータ等の安定な高周波信号源として利用される場合、そのデバイスの持つ固有周波数は目標周波数に対して、数十ppm以内で一致している事が必要である。本発明に係るシリコンを用いた静電振動子や前述のATカット水晶振動子においては、その振動部の機械的加工精度では、目標周波数に対する固有周波数のズレを数十ppm以内に収める事は不可能である。この問題を解決するために、ATカット水晶振動子においては、振動部に直接形成された励振電極をイオンミーリング等の方法で削る事によって、励振電極の質量を変化させ、固有周波数を微調整している。ところが、本発明に係る静電振動子においては、ATカット水晶振動子と同一の高周波帯域においては、(1)式にて示すように、振動部804の面積が非常に小さくなるので、振動部804の質量を微調整する事が非常に困難である。   When used as a stable high-frequency signal source for wireless portable devices, personal computers, etc., the natural frequency of the device must match the target frequency within several tens of ppm. In the electrostatic vibrator using silicon according to the present invention and the AT-cut quartz crystal vibrator described above, the deviation of the natural frequency from the target frequency is within tens of ppm in terms of the mechanical processing accuracy of the vibrator. Is possible. In order to solve this problem, in AT-cut quartz resonators, the excitation electrode directly formed on the vibrating part is shaved by a method such as ion milling to change the mass of the excitation electrode and finely adjust the natural frequency. ing. However, in the electrostatic vibrator according to the present invention, in the same high frequency band as the AT-cut crystal vibrator, the area of the vibration part 804 becomes very small as shown by the equation (1). It is very difficult to fine-tune the mass of 804.

この周波数調整の問題を解決するめに、従来のシリコン製静電振動子においては、その機械的固有周波数を調整するのではなく、発振回路にて出力させた周波数をPLL(Phase Locked Loop)を用いて規定の周波数に制御するという電気回路的な周波数調整方法が提案されている。図9は、この従来の静電振動子の周波数調整方法を示すブロック図である。図9記載の周波数調整方法は、静電振動子901と発振回路902にて発生した発振周波数はPLL部903に入力され、前もって外部入力されている周波数情報に基づいて、周波数調整されて信号が出力される。しかし、この従来の静電振動子の周波数調整方法にては、PLL方式を採用していたために、回路規模が非常に大きくなり、LSIのコストが高くなるばかりか、位相雑音特性の劣化、大きな消費電流等の問題があった。それゆえ、この静電振動子は前述の如く、非常に優れた特徴を持っているにもかかわらず、いまだに実用化が困難な状況である。すなわち、本発明は、PLL方式を採用せずとも周波数を調整できる静電振動子の構造とその周波数調整方法を提供する事を目的とする。   In order to solve this frequency adjustment problem, the conventional silicon electrostatic vibrator does not adjust its mechanical natural frequency, but uses a PLL (Phase Locked Loop) for the frequency output by the oscillation circuit. Thus, there has been proposed an electric circuit frequency adjustment method of controlling to a specified frequency. FIG. 9 is a block diagram showing a frequency adjusting method for this conventional electrostatic vibrator. In the frequency adjustment method shown in FIG. 9, the oscillation frequency generated in the electrostatic vibrator 901 and the oscillation circuit 902 is input to the PLL unit 903, and the frequency is adjusted based on the frequency information input in advance from the outside to obtain a signal. Is output. However, since the frequency adjustment method of the conventional electrostatic vibrator employs the PLL method, the circuit scale becomes very large, the cost of the LSI increases, and the phase noise characteristic deteriorates greatly. There were problems such as current consumption. Therefore, as described above, this electrostatic vibrator still has a very excellent feature, but is still difficult to put into practical use. That is, an object of the present invention is to provide a structure of an electrostatic vibrator capable of adjusting a frequency without adopting a PLL method and a frequency adjusting method thereof.

本発明は、上記の課題を解決するためになされたもので、両端固定型の振動境界条件をもったMEMS型静電駆動屈曲振動子の振動部の両端部と応力印加構造が一体形成されると共に、少なくとも前記応力印加構造部には酸化シリコン膜が形成されている構造を採用した事を特徴とする。   The present invention has been made to solve the above-described problems, and both ends of a vibrating portion of a MEMS electrostatic drive bending vibrator having a vibration boundary condition of both ends fixed type are integrally formed with a stress applying structure. In addition, a structure in which a silicon oxide film is formed at least in the stress applying structure portion is employed.

両端固定型の振動境界条件をもったMEMS型静電駆動屈曲振動子の振動部の両端部と応力印加構造が一体形成された構造において、酸化シリコン膜生成前後に生じる応力印加構造部の熱弾性変形に伴う残留応力を酸化シリコン膜のトリミングによって変化させると、振動部に印加される応力が変化し、その結果、振動部の固有周波数が変化する。この振動子構造を採用すれば、酸化シリコン膜が形成された応力印加構造部の面積は振動部の面積に比較して大きくする事ができるので、相対的にトリミングのスポット面積との比を小さくすることができる。それゆえ固有周波数の微調整が可能となり、静電振動子の固有周波数自体の周波数調整ができる。その結果、従来のPLL型の周波数調整方法に比較して回路規模が極めて小さくなるばかりか、消費電流も低減できる。さらには、PLL制御が必要ないので、位相ノイズも低減できる。   Thermoelasticity of the stress application structure that occurs before and after the formation of the silicon oxide film in a structure in which both ends of the vibration part and stress application structure of the MEMS electrostatic drive bending vibrator with fixed both-end vibration boundary conditions are integrally formed When the residual stress accompanying deformation is changed by trimming the silicon oxide film, the stress applied to the vibration part changes, and as a result, the natural frequency of the vibration part changes. If this vibrator structure is adopted, the area of the stress applying structure portion on which the silicon oxide film is formed can be made larger than the area of the vibrating portion, so the ratio with the spot area of trimming is relatively small. can do. Therefore, the natural frequency can be finely adjusted, and the natural frequency of the electrostatic vibrator itself can be adjusted. As a result, the circuit scale is significantly reduced as compared with the conventional PLL type frequency adjustment method, and the current consumption can also be reduced. Furthermore, since PLL control is not necessary, phase noise can be reduced.

以下、図面を参照し、本発明の実施形態とその作用を説明する。図1は、本発明の第一の実施形態による静電振動子の構造を示す斜視図である。シリコン基板101には、振動境界条件が両端固定型の二本の同一形状寸法の振動部よりなる長さL、幅aの振動子が形成されている。この前記二本の振動部がそれぞれ振動部102と振動部103である。   Hereinafter, an embodiment of the present invention and its operation will be described with reference to the drawings. FIG. 1 is a perspective view showing the structure of the electrostatic vibrator according to the first embodiment of the present invention. On the silicon substrate 101, a vibrator having a length L and a width a, which is composed of two vibrating parts having the same boundary dimensions and having a vibration boundary condition fixed at both ends, is formed. The two vibrating parts are a vibrating part 102 and a vibrating part 103, respectively.

振動子は固定部104と固定部105と一体形成されている。周波数調整ビーム106が第二のビームとして振動部102と振動部103中間位置に形成されており、さらにこれらの周波数調整ビーム106、振動部102及び振動部103は、固定部104と固定部105を介在して一体形成されている。固定部104はボックス層107を介在してシリコン基板101上に固定されている。それに対して固定部105とシリコン基板101との間は、ボックス層107の厚みに相当する空隙108が存在する。   The vibrator is integrally formed with the fixed portion 104 and the fixed portion 105. A frequency adjustment beam 106 is formed as a second beam at an intermediate position between the vibration unit 102 and the vibration unit 103, and the frequency adjustment beam 106, the vibration unit 102, and the vibration unit 103 are connected to the fixed unit 104 and the fixed unit 105. It is formed integrally with interposition. The fixing portion 104 is fixed on the silicon substrate 101 with a box layer 107 interposed therebetween. On the other hand, a gap 108 corresponding to the thickness of the box layer 107 exists between the fixed portion 105 and the silicon substrate 101.

振動部102と振動部103の振動変位はそれぞれ、振動変位109及び振動変位110であり、その振動振幅は互いに等しく、その位相は180°異なっている。このような振動変位を励起させるための励振電極が、図記載の励振電極111、励振電極112、励振電極113及び励振電極114であり、これらの励振電極もボックス層107を介在してシリコン基板101と一体形成されている。励振電極111と励振電極113は同一極性であり、励振電極112と励振電極114は励振電極111及び励振電極113に対して反転極性を持っている。また本発明に係る静電振動子の製造プロセスにおいては、少なくとも周波数調整ビーム106にはシリコン酸化膜が形成されている。   The vibration displacements of the vibration unit 102 and the vibration unit 103 are a vibration displacement 109 and a vibration displacement 110, respectively, and their vibration amplitudes are equal to each other and their phases are different by 180 °. Excitation electrodes for exciting such vibration displacements are the excitation electrode 111, the excitation electrode 112, the excitation electrode 113, and the excitation electrode 114 shown in the figure. These excitation electrodes are also provided on the silicon substrate 101 with the box layer 107 interposed therebetween. And is integrally formed. The excitation electrode 111 and the excitation electrode 113 have the same polarity, and the excitation electrode 112 and the excitation electrode 114 have an inverted polarity with respect to the excitation electrode 111 and the excitation electrode 113. In the manufacturing process of the electrostatic vibrator according to the present invention, at least the frequency adjustment beam 106 is formed with a silicon oxide film.

本図記載の静電振動子においては、イオンミーリング加工等を用いて選択的に周波数調整ビーム106に形成されたシリコン酸化膜をトリミングすることで、振動部102及び振動部103の固有周波数を調整する事ができる。シリコン基板101に設けられた空隙部115は、周波数調整ビーム106に形成された酸化膜を除去する際に用いられる空隙であって、周波数調整ビーム106の裏面の酸化膜をイオンミーリング加工等によって除去する際に必要な空隙である。   In the electrostatic vibrator shown in the figure, the natural frequency of the vibration unit 102 and the vibration unit 103 is adjusted by selectively trimming the silicon oxide film formed on the frequency adjustment beam 106 using ion milling or the like. I can do it. The gap 115 provided in the silicon substrate 101 is a gap used when removing the oxide film formed on the frequency adjustment beam 106, and the oxide film on the back surface of the frequency adjustment beam 106 is removed by ion milling or the like. This is a necessary gap.

図2は、本発明に係る図1記載の静電振動子において、熱弾性変形が圧縮応力として振動部に印加される機構を説明するための図である。本図は、図1記載の本発明に係る振動部102、振動部103と、この振動部と固定部104と固定部105を介在して両振動部の中間位置に形成され、かつシリコン酸化膜が形成された周波数調整ビーム106よりなる静電振動子の正面図である。本図において周波数調整ビーム106に形成されているシリコン酸化膜をイオンビーム203によってトリミングする事によって、周波数調整ビーム106には熱弾性変形応力201が発生すると同時に振動部102と振動部103にも、振動部熱弾性応力202が発生する。この時、図1記載の静電振動子の固有周波数Fは、近似的に以下の(2)式で決定される。   FIG. 2 is a diagram for explaining a mechanism in which thermoelastic deformation is applied as a compressive stress to the vibrating portion in the electrostatic vibrator shown in FIG. 1 according to the present invention. This figure shows the vibration part 102, the vibration part 103 according to the present invention shown in FIG. 1, and is formed at an intermediate position between the vibration parts, the fixed part 104, and the fixed part 105, and the silicon oxide film. It is a front view of the electrostatic vibrator which consists of the frequency adjustment beam 106 with which was formed. In this figure, by trimming the silicon oxide film formed on the frequency adjustment beam 106 with the ion beam 203, a thermoelastic deformation stress 201 is generated in the frequency adjustment beam 106, and at the same time, in the vibration unit 102 and the vibration unit 103, The vibration part thermoelastic stress 202 is generated. At this time, the natural frequency F of the electrostatic vibrator shown in FIG. 1 is approximately determined by the following equation (2).

Figure 2010068035
ここで、E、ρはそれぞれシリコンのヤング率と密度であり、W、aは、図1記載の振動子の幅寸法と長さ寸法である。さらにσ0は図2記載の熱弾性応力202の大きさである。この応力は圧縮応力であるので負の値である。またkは比例定数であって、振動部におけるシリコン酸化膜の有無によってその大きさは相違するが、本発明の作用には大きく影響しないので詳細説明は省略する。
Figure 2010068035
Here, E and ρ are the Young's modulus and density of silicon, respectively, and W and a are the width and length dimensions of the vibrator shown in FIG. Further, σ 0 is the magnitude of the thermoelastic stress 202 shown in FIG. Since this stress is a compressive stress, it is a negative value. Further, k is a proportional constant, and the size thereof varies depending on the presence or absence of the silicon oxide film in the vibration part, but since it does not greatly affect the operation of the present invention, detailed description thereof is omitted.

図3は、図2記載の熱弾性応力202の大きさとシリコン酸化膜のトリミング量の関係を示した特性図であって、縦軸は熱弾性応力202の大きさσ0、横軸はシリコン酸化膜のトリミング量Mである。本図は図1記載の振動部102、振動部103及び周波数調整ビーム106にシリコン酸化膜が熱焼成によって形成されている場合の特性図である。この場合、トリミング前、すなわちトリミング量が0のときは、熱弾性応力は発生せず、トリミング量の増加にしたがって、熱弾性応力は負の側に増加していく。この挙動を示したのが特性曲線301である。なお、熱焼成においては、本発明に係る振動部、周波数調整ビーム以外のシリコン基板101、励振電極111、励振電極112、励振電極113、励振電極114の表面にもシリコン酸化膜が形成されるが、本発明が課題とする周波数調整に関しては、大きな影響を与えないので、本図の説明に関しては図示する事を省略している。 FIG. 3 is a characteristic diagram showing the relationship between the magnitude of the thermoelastic stress 202 shown in FIG. 2 and the trimming amount of the silicon oxide film. The vertical axis represents the magnitude σ 0 of the thermoelastic stress 202 and the horizontal axis represents the silicon oxide. This is a film trimming amount M. This figure is a characteristic diagram in the case where a silicon oxide film is formed on the vibrating portion 102, the vibrating portion 103, and the frequency adjusting beam 106 shown in FIG. In this case, before trimming, that is, when the trimming amount is 0, no thermoelastic stress is generated, and as the trimming amount increases, the thermoelastic stress increases to the negative side. The characteristic curve 301 shows this behavior. In the thermal firing, a silicon oxide film is also formed on the surfaces of the silicon substrate 101, the excitation electrode 111, the excitation electrode 112, the excitation electrode 113, and the excitation electrode 114 other than the vibration part and the frequency adjustment beam according to the present invention. The frequency adjustment, which is a problem of the present invention, does not have a great influence, and therefore the illustration of this figure is omitted.

図4は、図2記載の熱弾性応力202の大きさとシリコン酸化膜のトリミング量の関係を示した第二の特性図であって、縦軸は熱弾性応力202の大きさσ0、横軸はシリコン酸化膜のトリミング量Mである。本図は図1記載の周波数調整ビーム106のみにシリコン酸化膜が形成されている場合の特性図である。この場合のシリコン酸化膜はCVD等の薄膜形成法で形成されている。なお、この薄膜形成においては膜形成時の温度条件によって、前述の熱弾性応力の大きさが変化するが、これは単なるプロセスの条件設定事項にすぎない。 FIG. 4 is a second characteristic diagram showing the relationship between the magnitude of the thermoelastic stress 202 shown in FIG. 2 and the trimming amount of the silicon oxide film. The vertical axis represents the magnitude σ 0 of the thermoelastic stress 202 and the horizontal axis. Is the trimming amount M of the silicon oxide film. This figure is a characteristic diagram when a silicon oxide film is formed only on the frequency adjustment beam 106 shown in FIG. In this case, the silicon oxide film is formed by a thin film forming method such as CVD. In this thin film formation, the magnitude of the aforementioned thermoelastic stress changes depending on the temperature conditions during film formation, but this is merely a process condition setting item.

本図において、トリミング前、すなわちトリミング量が0のとき熱弾性応力は負の値σ1であり、トリミング量の増加にしたがって、熱弾性応力は正の側に増加し、完全にシリコン酸化膜が除去されるとその値は0になる。この挙動を示したのが特性曲線401である。以上の特性曲線301及び特性曲線401と(2)式から、本発明に係る静電振動子は、図1及び図2記載の周波数調整ビーム106に形成されているシリコン酸化膜をトリミングすると、周波数が変化する事が判明する。すなわち、図1記載の振動部102、振動部103及び周波数調整ビーム106にシリコン酸化膜が形成されている場合は、シリコン酸化膜のトリミングによって固有周波数は減少、図1記載の周波数調整ビーム106のみにシリコン酸化膜が形成されている場合は、シリコン酸化膜のトリミングによって固有周波数は増加する。本発明に係る酸化シリコン膜が形成された周波数調整ビームの面積は振動部の面積に比較して大きくする事ができるので、相対的にトリミングビームのスポット面積との比を小さくすることができる。それゆえ固有周波数の微調整が可能となり、静電振動子の固有周波数自体の周波数調整ができる。 In this figure, before trimming, that is, when the trimming amount is 0, the thermoelastic stress is a negative value σ 1 , and as the trimming amount increases, the thermoelastic stress increases to the positive side and the silicon oxide film is completely removed. When removed, its value becomes zero. It is the characteristic curve 401 that shows this behavior. From the above characteristic curve 301 and characteristic curve 401 and the equation (2), the electrostatic vibrator according to the present invention has a frequency when the silicon oxide film formed on the frequency adjustment beam 106 shown in FIGS. 1 and 2 is trimmed. It turns out that changes. That is, when the silicon oxide film is formed on the vibration unit 102, the vibration unit 103, and the frequency adjustment beam 106 illustrated in FIG. 1, the natural frequency is reduced by trimming the silicon oxide film, and only the frequency adjustment beam 106 illustrated in FIG. In the case where a silicon oxide film is formed, the natural frequency is increased by trimming the silicon oxide film. Since the area of the frequency adjustment beam on which the silicon oxide film according to the present invention is formed can be made larger than the area of the vibration part, the ratio of the trimming beam to the spot area can be made relatively small. Therefore, the natural frequency can be finely adjusted, and the natural frequency of the electrostatic vibrator itself can be adjusted.

図5は、本発明の第二の実施形態による静電振動子の構造を示す斜視図である。シリコン基板501には、振動境界条件が両端固定型の二本の同一形状寸法の振動部よりなる長さL、幅aの振動子が形成されている。この前記二本の振動部がそれぞれ。振動部502と振動部503である。前記振動子は固定部504と固定部505と一体形成されている。また一対の周波数調整ビーム506が第二のビームとして振動部502と振動部503に対して平行な位置に形成されており、さらにこれらの周波数調整ビーム506、振動部502及び振動部503は、固定部504と固定部505を介在して一体形成されている。固定部504はボックス層507を介在してシリコン基板501上に固定されている。それに対して固定部505とシリコン基板501との間は、ボックス層507の厚みに相当する空隙508が存在する。振動部502と振動部503の振動変位はそれぞれ、振動変位509及び振動変位510であり、その振動振幅は互いに等しく、その位相は180°異なっている。   FIG. 5 is a perspective view showing the structure of the electrostatic vibrator according to the second embodiment of the present invention. The silicon substrate 501 is provided with a vibrator having a length L and a width a, which is composed of two vibration parts having the same boundary dimensions and the vibration boundary condition being fixed at both ends. These two vibrating parts are respectively. The vibration unit 502 and the vibration unit 503. The vibrator is integrally formed with a fixed portion 504 and a fixed portion 505. A pair of frequency adjustment beams 506 is formed as a second beam in a position parallel to the vibration unit 502 and the vibration unit 503, and the frequency adjustment beam 506, the vibration unit 502, and the vibration unit 503 are fixed. It is integrally formed with a part 504 and a fixed part 505 interposed. The fixing portion 504 is fixed on the silicon substrate 501 with the box layer 507 interposed therebetween. On the other hand, a gap 508 corresponding to the thickness of the box layer 507 exists between the fixed portion 505 and the silicon substrate 501. The vibration displacements of the vibration part 502 and the vibration part 503 are vibration displacement 509 and vibration displacement 510, respectively, and their vibration amplitudes are equal to each other and their phases are different by 180 °.

このような振動変位を励起させるための励振電極が、図記載の励振電極511と励振電極512であり、この両励振電極もボックス層507を介在してシリコン基板501と一体形成されている。振動部502と振動部503の外側にある一対の励振電極511と前記両振動部の内側にある励振電極512は互いに極性が異なるように電気的に接続されている。また本発明に係る静電振動子の製造プロセスにおいては、少なくとも一対の周波数調整ビーム506にはシリコン酸化膜が形成されている。   Excitation electrodes for exciting such vibration displacement are the excitation electrode 511 and the excitation electrode 512 shown in the figure, and both the excitation electrodes are integrally formed with the silicon substrate 501 with the box layer 507 interposed therebetween. The pair of excitation electrodes 511 outside the vibration part 502 and the vibration part 503 and the excitation electrodes 512 inside the both vibration parts are electrically connected so as to have different polarities. In the manufacturing process of the electrostatic vibrator according to the present invention, a silicon oxide film is formed on at least the pair of frequency adjustment beams 506.

図6は、本発明に係る図5記載の静電振動子において、熱弾性変形が圧縮応力として振動部に印加される機構を説明するための図である。本図は、振動部502、振動部503と、この振動部と固定部504と固定部505を介在して平行な位置に一体形成された一対の周波数調整ビーム506よりなる静電振動子の正面図である。本図において周波数調整ビーム506に形成されているシリコン酸化膜をイオンビーム603でトリミングする事によって、周波数調整ビーム506には熱弾性変形応力601が発生すると同時に振動部502と振動部503にも、振動部熱弾性応力602が発生する。この時、図5記載の静電振動子の固有周波数Fは、図1記載の静電振動子と同じく先の(2)式で決定される。   FIG. 6 is a diagram for explaining a mechanism in which thermoelastic deformation is applied as a compressive stress to the vibrating portion in the electrostatic vibrator according to the present invention shown in FIG. This figure is a front view of an electrostatic vibrator comprising a vibrating portion 502, a vibrating portion 503, and a pair of frequency adjustment beams 506 integrally formed in parallel positions with the vibrating portion, a fixing portion 504, and a fixing portion 505 interposed therebetween. FIG. In this figure, by trimming the silicon oxide film formed on the frequency adjustment beam 506 with the ion beam 603, a thermoelastic deformation stress 601 is generated in the frequency adjustment beam 506, and at the same time, the vibration unit 502 and the vibration unit 503 are also affected. A vibration portion thermoelastic stress 602 is generated. At this time, the natural frequency F of the electrostatic vibrator shown in FIG. 5 is determined by the above equation (2) as in the electrostatic vibrator shown in FIG.

図5記載の振動部502、振動部503及び周波数調整ビーム506にシリコン酸化膜が熱焼成によって形成されている場合、周波数調整ビーム506のトリミング前、すなわちトリミング量が0のときは、振動部502及び振動部503には熱弾性応力は発生せず、トリミング量の増加にしたがって熱弾性応力は負の側に増加していく。この挙動は、先に示した本発明に係る第一の実施例の機構を説明する図3記載の特性曲線301と同じとなる。なお、熱焼成においては、本発明に係る振動部、周波数調整ビーム以外のシリコン基板501、励振電極511及び励振電極512の表面にもシリコン酸化膜が形成されるが、本発明が課題とする周波数温度特性の改善に関しては、おおきな影響を与えないので、本図の説明に関しては図示する事を省略している。また、図5記載の周波数調整ビーム506のみにシリコン酸化膜が、CVD等の薄膜形成法で形成されている場合、周波数調整ビーム506のトリミング量が0のとき熱弾性応力は負の値であり、トリミング量の増加にしたがって、熱弾性応力は正の側に増加し、完全にシリコン酸化膜が除去されるとその値は0になる。この挙動は、先に示した、本発明に係る第一の実施例の機構を説明する図4記載の特性曲線401と同じとなる。なお、本図に係る薄膜形成においても、膜形成時の温度条件によって、前述の熱弾性応力の大きさが変化するが、図4の説明と同じく、単なるプロセスの条件設定事項にすぎない。   In the case where the silicon oxide film is formed on the vibrating unit 502, the vibrating unit 503, and the frequency adjusting beam 506 shown in FIG. 5 by thermal baking, the vibrating unit 502 is trimmed before the frequency adjusting beam 506 is trimmed, that is, when the trimming amount is zero. In addition, no thermoelastic stress is generated in the vibrating portion 503, and the thermoelastic stress increases to the negative side as the trimming amount increases. This behavior is the same as the characteristic curve 301 shown in FIG. 3 for explaining the mechanism of the first embodiment according to the present invention. In the thermal firing, a silicon oxide film is also formed on the surface of the silicon substrate 501, the excitation electrode 511, and the excitation electrode 512 other than the vibration part and the frequency adjustment beam according to the present invention. The improvement of the temperature characteristic does not have a great influence, and therefore the illustration is omitted for the explanation of this figure. In addition, when the silicon oxide film is formed only on the frequency adjustment beam 506 shown in FIG. 5 by a thin film formation method such as CVD, the thermoelastic stress is a negative value when the trimming amount of the frequency adjustment beam 506 is zero. As the trimming amount increases, the thermoelastic stress increases to the positive side, and the value becomes 0 when the silicon oxide film is completely removed. This behavior is the same as the characteristic curve 401 shown in FIG. 4 for explaining the mechanism of the first embodiment according to the present invention. In the thin film formation according to this figure, the magnitude of the thermoelastic stress described above varies depending on the temperature conditions during film formation. However, as in the explanation of FIG.

以上、図面を参照して本発明の実施形態について詳述してきたが、具体的な構成はこれらの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更等も含まれる。すなわち、両端固定型の振動境界条件をもったMEMS型静電駆動屈曲振動子の振動部の両端部と他の構造体が一体形成された静電振動子において、少なくとも前記構造体にはシリコン酸化膜が形成されると共に、前記構造体の熱弾性応力に起因する圧縮応力が前記振動部に印加される構造を採用する事によって、PLL方式を採用せずとも、周波数を調整できる静電振動子構造が提供できる。   As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and includes design changes and the like without departing from the gist of the present invention. . That is, in an electrostatic vibrator in which both ends of a vibrating portion of a MEMS electrostatic drive bending vibrator having a fixed both-end vibration boundary condition and another structure are integrally formed, at least the structure has silicon oxide. By adopting a structure in which a compressive stress due to the thermoelastic stress of the structure is applied to the vibrating part while forming a film, an electrostatic vibrator capable of adjusting the frequency without adopting a PLL method Structure can be provided.

本発明に係る第一の実施形態による静電振動子の構造を示す斜視図The perspective view which shows the structure of the electrostatic vibrator by 1st embodiment which concerns on this invention. 本発明に係る第一の実施形態における、圧縮応力印加機構を説明するための図The figure for demonstrating the compressive-stress application mechanism in 1st embodiment which concerns on this invention. 図2記載の熱弾性応力202の大きさとシリコン酸化膜のトリミング量の関係を示した特性図2 is a characteristic diagram showing the relationship between the magnitude of the thermoelastic stress 202 shown in FIG. 2 and the trimming amount of the silicon oxide film. 図2記載の熱弾性応力202の大きさとシリコン酸化膜のトリミング量の関係を示した第二の特性図Second characteristic diagram showing the relationship between the magnitude of the thermoelastic stress 202 shown in FIG. 2 and the trimming amount of the silicon oxide film 本発明の第二の実施形態による静電振動子の構造を示す斜視図The perspective view which shows the structure of the electrostatic vibrator by 2nd embodiment of this invention. 本発明の第二の実施形態における圧縮応力印加機構を説明するための図The figure for demonstrating the compression stress application mechanism in 2nd embodiment of this invention 静電振動子の製造に関するSOIウェハの概念図Conceptual diagram of SOI wafer for manufacturing of electrostatic vibrator 従来の静電振動子の構造を示す片端部固定型屈曲振動型静電振動子の斜視図Perspective view of a single-end fixed bending vibration type electrostatic vibrator showing the structure of a conventional electrostatic vibrator 従来の静電振動子の周波数調整方法を示すブロック図Block diagram showing frequency adjustment method of conventional electrostatic vibrator

符号の説明Explanation of symbols

101、501、701、801 シリコン基板
102、103、502、503、804 振動部
104、105、504、505、803 固定部
106、506 周波数調整ビーム
107、507、702、802 ボックス層
108、508 空隙
109、110、509、510 振動変位
111、112、113、114、511、512、805 励振電極
115 空隙部
201、202、601、602 熱弾性変形応力
203、603 イオンビーム
301、401 特性曲線
703 シリコン層
806 屈曲振動変位
101, 501, 701, 801 Silicon substrate 102, 103, 502, 503, 804 Vibrating part 104, 105, 504, 505, 803 Fixed part 106, 506 Frequency adjustment beam 107, 507, 702, 802 Box layer 108, 508 Air gap 109, 110, 509, 510 Vibration displacement 111, 112, 113, 114, 511, 512, 805 Excitation electrode 115 Cavity 201, 202, 601, 602 Thermoelastic deformation stress 203, 603 Ion beam 301, 401 Characteristic curve 703 Silicon Layer 806 Bending vibration displacement

Claims (5)

両端固定型の振動境界条件をもったMEMS型静電駆動屈曲振動子の振動部の両端部と他の構造体が一体形成された静電振動子において、少なくとも前記構造体にはシリコン酸化膜が形成されると共に、前記構造体の熱弾性応力に起因する圧縮応力が前記振動部に印加される構造を有するMEMS型静電振動子。   In an electrostatic vibrator in which both ends of a vibrating portion of a MEMS electrostatic drive bending vibrator having a fixed both-end vibration boundary condition and another structure are integrally formed, at least the structure has a silicon oxide film. A MEMS electrostatic vibrator having a structure in which a compressive stress caused by a thermoelastic stress of the structure is applied to the vibrating portion. 前記振動部と平行な位置に酸化膜が形成された第二のビームを有し、前記ビームの両端部と前記振動部の両端部が一体形成され、前記振動部の一方の端部のみがシリコン基板上に連結されている請求項1の静電振動子。   A second beam having an oxide film formed at a position parallel to the vibrating portion; both ends of the beam and both ends of the vibrating portion are integrally formed; and only one end of the vibrating portion is silicon The electrostatic vibrator according to claim 1 connected on a substrate. 前記シリコン酸化膜は熱焼成膜にて形成されている請求項1から請求項2いずれか1項に記載の静電振動子。   The electrostatic vibrator according to claim 1, wherein the silicon oxide film is formed of a heat-fired film. 前記シリコン酸化膜はCVD膜で形成されている請求項1から請求項2いずれか1項に記載の静電振動子。   The electrostatic vibrator according to claim 1, wherein the silicon oxide film is formed of a CVD film. 前記第二のビームに形成されている前記酸化膜をイオンミーリング等によって除去する事によって振動子の固有周波数を調整する請求項1から請求項4いずれか1項に記載の静電振動子。   5. The electrostatic vibrator according to claim 1, wherein the natural frequency of the vibrator is adjusted by removing the oxide film formed on the second beam by ion milling or the like. 6.
JP2008229978A 2008-09-08 2008-09-08 Electrostatic vibrator Active JP5231907B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008229978A JP5231907B2 (en) 2008-09-08 2008-09-08 Electrostatic vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008229978A JP5231907B2 (en) 2008-09-08 2008-09-08 Electrostatic vibrator

Publications (2)

Publication Number Publication Date
JP2010068035A true JP2010068035A (en) 2010-03-25
JP5231907B2 JP5231907B2 (en) 2013-07-10

Family

ID=42193269

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008229978A Active JP5231907B2 (en) 2008-09-08 2008-09-08 Electrostatic vibrator

Country Status (1)

Country Link
JP (1) JP5231907B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346785A (en) * 2013-06-19 2013-10-09 东南大学 Phase-locked loop based on micromechanical direct thermoelectric power sensors and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174569A (en) * 1993-12-16 1995-07-14 Murata Mfg Co Ltd Resonance-type vibrating element
JP2007005909A (en) * 2005-06-21 2007-01-11 Matsushita Electric Ind Co Ltd Electromechanical signal selection element, manufacturing method thereof, and electric apparatus using the method
JP2008066801A (en) * 2006-09-04 2008-03-21 Seiko Instruments Inc Electrostatic vibrator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07174569A (en) * 1993-12-16 1995-07-14 Murata Mfg Co Ltd Resonance-type vibrating element
JP2007005909A (en) * 2005-06-21 2007-01-11 Matsushita Electric Ind Co Ltd Electromechanical signal selection element, manufacturing method thereof, and electric apparatus using the method
JP2008066801A (en) * 2006-09-04 2008-03-21 Seiko Instruments Inc Electrostatic vibrator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103346785A (en) * 2013-06-19 2013-10-09 东南大学 Phase-locked loop based on micromechanical direct thermoelectric power sensors and preparation method thereof
CN103346785B (en) * 2013-06-19 2015-08-05 东南大学 Based on the phase-locked loop and preparation method thereof of micro-mechanical direct thermoelectric type power sensor

Also Published As

Publication number Publication date
JP5231907B2 (en) 2013-07-10

Similar Documents

Publication Publication Date Title
JP4930381B2 (en) Piezoelectric vibration device
EP2603976B1 (en) Micromechanical resonator and method for manufacturing thereof
JP2008211420A (en) Oscillator
JP2006203304A (en) Piezoelectric thin-film resonator, oscillator using the same, and semiconductor integrated circuit containing the same
JP2004200917A (en) Piezoelectric vibrating piece, piezoelectric device employing the same, cellular telephone device employing the piezoelectric device, and electronic equipment employing the piezoelectric device
JP2006148856A (en) Piezoelectric resonator element, piezoelectric device and gyro sensor
JP2007258917A (en) Piezoelectric device
JP2011155629A (en) Vibrating reed, vibrator, oscillator, electronic device, and frequency adjustment method
JP5105345B2 (en) Oscillator
JP5266437B2 (en) Crystal resonator, crystal unit, and crystal oscillator manufacturing method
JP2007163244A (en) Acceleration sensor element and acceleration sensor
JP4822212B2 (en) Electrostatic vibrator
JP5231907B2 (en) Electrostatic vibrator
JP5101410B2 (en) Resonant frequency variable MEMS vibrator
JP2008301111A (en) Edge mode piezoelectric vibration chip and frequency adjustment method thereof
JP5561959B2 (en) Electrostatic vibrator and electronic equipment
US20070024158A1 (en) Integrated resonators and time base incorporating said resonators
EP2725714A2 (en) Resonator element, resonator, oscillator, electronic apparatus, and moving object
JP7029114B2 (en) High Q MEMS resonator
JP2006311303A (en) Mode combined piezoelectric vibrator
WO2016098868A1 (en) Piezoelectric vibrator and piezoelectric vibration device
JP2002009579A (en) Piezo electric resonator and piezoelectric filter using the same
JP2004236008A (en) Piezo-electric oscillating member, piezo-electric device using the same, and cell phone unit and electric apparatus using piezo-electric device
JP2005114696A (en) Angular velocity sensor
JP4309814B2 (en) Method for adjusting vibrator for piezoelectric vibration gyro

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130322

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160329

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250