JP2010065993A - Environmental conditioning system and environmental conditioning method - Google Patents

Environmental conditioning system and environmental conditioning method Download PDF

Info

Publication number
JP2010065993A
JP2010065993A JP2009177308A JP2009177308A JP2010065993A JP 2010065993 A JP2010065993 A JP 2010065993A JP 2009177308 A JP2009177308 A JP 2009177308A JP 2009177308 A JP2009177308 A JP 2009177308A JP 2010065993 A JP2010065993 A JP 2010065993A
Authority
JP
Japan
Prior art keywords
air
evaporator
compressor
environmental harmony
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009177308A
Other languages
Japanese (ja)
Other versions
JP5156706B2 (en
Inventor
Louis J Bruno
ジェイ.ブルーノ ルイス
Douglas L Christians
エル.クリスチャンズ ダグラス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamilton Sundstrand Corp
Original Assignee
Hamilton Sundstrand Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Sundstrand Corp filed Critical Hamilton Sundstrand Corp
Publication of JP2010065993A publication Critical patent/JP2010065993A/en
Application granted granted Critical
Publication of JP5156706B2 publication Critical patent/JP5156706B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0618Environmental Control Systems with arrangements for reducing or managing bleed air, using another air source, e.g. ram air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0644Environmental Control Systems including electric motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D13/00Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft
    • B64D13/06Arrangements or adaptations of air-treatment apparatus for aircraft crew or passengers, or freight space, or structural parts of the aircraft the air being conditioned
    • B64D2013/0603Environmental Control Systems
    • B64D2013/0674Environmental Control Systems comprising liquid subsystems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/50On board measures aiming to increase energy efficiency

Abstract

<P>PROBLEM TO BE SOLVED: To provide an effective environmental conditioning system used for an aircraft. <P>SOLUTION: The environmental conditioning system 10 for the aircraft includes a compressor 11, an air flow passage 18, a turbine 22, an evaporator 26, a heat exchanger 30, a water removal device 34 and a reheater 38. The air from an air supply source 58 passes through the air flow passage 18, and is compressed by the compressor 11, and is delivered to the heat exchanger 30 to be cooled. After that, the air is delivered from the heat exchanger 30 to the reheater 38 and then to the first evaporator 26. The air from the first evaporator 26 serves as the heat sink for the reheater 38 which reduces the heat transfer required by the evaporator 26. The air is cooled by the first evaporator 26, and moisture in the air is condensed. This moisture is removed by the water removal device 34, and then, the air is reheated by the reheater 38, and is directed to a passenger compartment 54 through the air flow passage 18. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、航空機などの乗物用の環境調和システムに関する。   The present invention relates to an environmental harmony system for a vehicle such as an aircraft.

飛行中、航空機は、調和空気をタービンエンジンの圧縮機から得ている。抽気は、圧縮機から高温で出力され、熱交換器を通流して低温になる。この空気は、最終的に客室に供給される。このような圧縮機からの空気の調和プロセスは、エアサイクルとして周知である。   During flight, the aircraft obtains conditioned air from the compressor of the turbine engine. The bleed air is output from the compressor at a high temperature and flows through the heat exchanger to a low temperature. This air is finally supplied to the cabin. This process of conditioning the air from the compressor is known as the air cycle.

しかし、この空気調和方法は、空気を調和するために要する以上のエネルギーが使用されるため効率的ではない。これは、圧縮機によってもたらされる圧力が、大部分の運転点において適切な調和に要求される圧力を超えるためである。このように不必要な圧力を生じさせることは、出力の非効率的な使用につながる。環境調和システムを非効率的に使用することにより、必要以上の燃料が航空機によって消費されるため望ましくない。   However, this air conditioning method is not efficient because it uses more energy than is necessary to harmonize the air. This is because the pressure provided by the compressor exceeds the pressure required for proper harmony at most operating points. Creating unnecessary pressure in this way leads to inefficient use of the output. Inefficient use of environmentally conscious systems is undesirable because more fuel is consumed by the aircraft.

したがって、航空機に使用されるより効率的な環境調和システムが必要とされている。   Therefore, there is a need for a more efficient environmental harmonization system used for aircraft.

環境調和システムは、空気流路内の空気を圧縮する圧縮機を有する。圧縮機はタービンに連結されており、タービンによって駆動される。圧縮機は、空気流路を介して蒸発器と連通している。蒸発器は、圧縮機からの空気を冷却するように構成されている。   The environmental harmony system has a compressor which compresses air in an air channel. The compressor is connected to and driven by the turbine. The compressor is in communication with the evaporator via an air flow path. The evaporator is configured to cool the air from the compressor.

当業者であれば、以下に記載する、発明を実施するための形態から本発明の種々の特徴および利点を理解されるであろう。発明を実施するための形態に伴う図面について以下に簡単に説明する。   Those skilled in the art will appreciate various features and advantages of the invention from the following detailed description. BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings that accompany the detailed description are briefly described below.

圧縮機、タービンおよび蒸発器を含む本発明の環境調和システムの概略図。1 is a schematic diagram of an environmental harmony system of the present invention including a compressor, a turbine and an evaporator. 図1のシステムに付加的な蒸発器を加えた環境調和システムの概略図。The schematic of the environmental harmony system which added the additional evaporator to the system of FIG.

図1を参照すると、航空機などの乗り物用の環境調和システム10が概略的に示されている。図示するように、空気は、空気供給源58から空気流路18を通って、客室54に使用するために調和される。空気流路18には、圧縮機11、熱交換器30、再熱器38、蒸発器26、水分除去器34およびタービン22が接続されている。圧縮機11は、シャフト12によってタービン22に接続されている。圧縮機11は、タービン22により駆動され、モータ42から動力を受ける。   Referring to FIG. 1, an environmental harmony system 10 for a vehicle such as an aircraft is schematically shown. As shown, the air is conditioned for use in the cabin 54 from the air supply 58 through the air flow path 18. The compressor 11, the heat exchanger 30, the reheater 38, the evaporator 26, the moisture remover 34, and the turbine 22 are connected to the air flow path 18. The compressor 11 is connected to the turbine 22 by a shaft 12. The compressor 11 is driven by the turbine 22 and receives power from the motor 42.

外部空気供給源や他の圧縮機(図示せず)からの抽気など空気供給源58からの空気は、圧縮機11へと供給される。圧縮機11は空気を圧縮し、したがって、空気流路18内の空気を加熱して、この空気を熱交換器30へと送る。熱交換器30は、ヒートシンクへと廃熱して、圧縮機11からの空気の温度を低下させる。熱交換器30は、1つまたは複数の熱交換器から構成されてもよい。ヒートシンクは、周囲空気によって冷却されてもよい。次いで、空気は、熱交換器30から再熱器38に送られ、その後、第1の蒸発器26へと送られる。第1の蒸発器26からの空気は、再熱器38のヒートシンクとして作用し、これにより、蒸発器26に要求される伝熱が低下する。   Air from the air supply source 58 such as bleed air from an external air supply source or another compressor (not shown) is supplied to the compressor 11. The compressor 11 compresses air, thus heating the air in the air flow path 18 and sending this air to the heat exchanger 30. The heat exchanger 30 wastes heat to the heat sink and lowers the temperature of the air from the compressor 11. The heat exchanger 30 may be composed of one or more heat exchangers. The heat sink may be cooled by ambient air. The air is then sent from the heat exchanger 30 to the reheater 38 and then to the first evaporator 26. The air from the first evaporator 26 acts as a heat sink for the reheater 38, which reduces the heat transfer required for the evaporator 26.

第1の蒸発器26において、空気流路18内の空気の温度は、効果的に著しく低下する。第1の蒸発器26は、冷媒を伴うベーパサイクル型の蒸発器(vapor cycle evaporator)である。冷媒圧縮機および凝縮器(図示せず)により、第1の蒸発器26に冷媒ガスが供給され、周知のように第1の蒸発器26が冷却される。第1の蒸発器26は、空気流路18内の空気を冷却し、その結果、空気内の蒸気が凝縮される。この蒸気は、次いで、水分除去器34によって除去される。その後、空気は、再熱器38を通って再加熱される。次いで、タービン22は、空気流路18に通して空気を客室54へと流すとともに、空気を膨張させて、さらに空気の温度および圧力を低下させる。   In the first evaporator 26, the temperature of the air in the air flow path 18 is effectively significantly reduced. The first evaporator 26 is a vapor cycle evaporator with a refrigerant. Refrigerant gas is supplied to the first evaporator 26 by a refrigerant compressor and a condenser (not shown), and the first evaporator 26 is cooled as is well known. The 1st evaporator 26 cools the air in the air flow path 18, As a result, the vapor | steam in air is condensed. This vapor is then removed by the moisture remover 34. The air is then reheated through a reheater 38. The turbine 22 then passes the air through the air flow path 18 to the cabin 54 and expands the air to further reduce the temperature and pressure of the air.

タービン22は、タービンエンジンの圧縮機(図示せず)の抽気から動力を受ける。モータ42は、シャフト12に接続されており、タービンエンジンからの抽気の圧力が十分でない場合に圧縮機11およびタービン22に付加的な動力を供給する。モータ42は、制御ユニット46によって制御される。制御ユニット46は、シャフト12の回転速度を制御するように機能し、したがって、圧縮機11およびタービン22の回転速度を制御する。このように、客室54に供給される空気量が制御される。   Turbine 22 receives power from the bleed of a turbine engine compressor (not shown). The motor 42 is connected to the shaft 12 and supplies additional power to the compressor 11 and the turbine 22 when the pressure of the bleed air from the turbine engine is not sufficient. The motor 42 is controlled by the control unit 46. The control unit 46 functions to control the rotational speed of the shaft 12 and thus controls the rotational speed of the compressor 11 and the turbine 22. In this way, the amount of air supplied to the cabin 54 is controlled.

モータ42、したがって、圧縮機11およびタービン22の速度が増すと、客室54への空気流が増加し、モータの速度が減少すると、客室54への空気流が減少する。圧縮機11およびタービン22に対する利用可能な余剰な出力がある場合には、この付加的な出力を熱交換器30のラム空気ヒートシンクを駆動させるために使用してもよい。   Increasing the speed of the motor 42 and thus the compressor 11 and the turbine 22 increases the air flow to the passenger compartment 54, and decreasing the motor speed decreases the air flow to the passenger compartment 54. This additional output may be used to drive the ram air heat sink of the heat exchanger 30 if there is excess power available to the compressor 11 and the turbine 22.

この設計の結果、多くのエネルギーを消費することなく第1の蒸発器26によって多くの熱が除去されるため、客室54への空気を調和するのに要する出力が最適化される。熱交換器とともに蒸発器を用いることにより、エアサイクルによる調和とベーパサイクルによる調和との間に効率的なバランスが実現する。さらに、再熱器38および第1の蒸発器26は、所望の供給温度および相対的な湿度で調和空気を供給するように設計される。   As a result of this design, the first evaporator 26 removes a lot of heat without consuming a lot of energy, thus optimizing the output required to harmonize the air to the cabin 54. By using an evaporator with a heat exchanger, an efficient balance is achieved between air cycle harmony and vapor cycle harmony. Furthermore, the reheater 38 and the first evaporator 26 are designed to supply conditioned air at the desired supply temperature and relative humidity.

また、空気供給源の圧力が冷却に最も効果的な場合、空気供給源の圧力を用いてもよく、そうでない場合には、モータ42からの出力を介して空気供給源の圧力を増加させてもよい。このように、圧縮機11からの空気を、最大冷却条件を満たすように非設計条件(off−design condition)で過度に加圧する必要がない。モータ42からシャフト12への出力によって環境調和システム10を通流する空気の量を制御することができる。   Also, if the pressure of the air supply source is most effective for cooling, the pressure of the air supply source may be used, otherwise, the pressure of the air supply source is increased via the output from the motor 42. Also good. Thus, it is not necessary to excessively pressurize the air from the compressor 11 under non-design conditions so as to satisfy the maximum cooling condition. The amount of air flowing through the environmental harmony system 10 can be controlled by the output from the motor 42 to the shaft 12.

図2を参照すると、環境調和システム10に加えられた付加的な蒸発器、つまり第2の蒸発器50が図示されている。第2の蒸発器50は、冷媒を伴うベーパサイクル型の蒸発器である。図示されているように、第2の蒸発器50は、客室54から空気を得ている。第2の蒸発器50は、別のベーパサイクル蒸発プロセスを介して客室54からの空気の過度の熱を除去する。このように、客室54から再循環された空気は、調和され、空気供給源58からの新鮮な空気と混合され、これにより、新鮮な空気と再循環空気が効果的に組み合わされる。ある割合の新鮮な空気が再循環空気とともに供給されるため、環境調和システム10が多くのエネルギーを消費することなく、客室54内に良質な空気が保たれる。   Referring to FIG. 2, an additional evaporator, or second evaporator 50, added to the environmental conditioning system 10 is illustrated. The second evaporator 50 is a vapor cycle type evaporator with a refrigerant. As illustrated, the second evaporator 50 obtains air from the cabin 54. The second evaporator 50 removes excess heat from the air from the cabin 54 through another vapor cycle evaporation process. In this way, the air recirculated from the cabin 54 is conditioned and mixed with the fresh air from the air source 58, thereby effectively combining the fresh and recirculated air. Since a certain proportion of fresh air is supplied together with the recirculated air, the environmentally friendly system 10 does not consume much energy, and good quality air is maintained in the cabin 54.

第2の蒸発器50に存在する冷媒は、所望のレベルの加熱度に制御される。冷媒は、冷媒流路86を通って第1の蒸発器26に供給され、次いで、冷媒圧縮機70に供給される。この冷媒圧縮機70は、環境調和システム10のベーパサイクルの一部である。冷媒圧縮機70は、第1の蒸発器26および第2の蒸発器50のために冷媒を圧縮する。圧縮された冷媒は、次いで、冷媒凝縮器72、または補助冷却器(subcooler)に送られ、冷媒凝縮器72は、第1の蒸発器26および第2の蒸発器50の一方に冷媒を戻す。第1のバルブ78および第2のバルブ82が配設されており、第1および第2のバルブは、バルブ制御ユニット90により制御される。バルブ制御ユニット90は、どの程度の割合で冷媒凝縮器72を第1の蒸発器26および第2の蒸発器50に戻すかを決定する。このようにして、第1の蒸発器26と第2の蒸発器50との間の冷却要求がつり合う。第1の蒸発器26および第2の蒸発器50が冷媒流路86に沿って直列に整列しているため、要求される全冷媒流が最小となる。また、第1の蒸発器26は、通常、より高温の空気に曝されるため、所望であればシステムに実質的な加熱度を加えるように用いてもよい。加熱度は、ベーパサイクル冷媒圧縮機70の排出温度を上昇させるように利用することができ、より効率的な運転を実現する。   The refrigerant present in the second evaporator 50 is controlled to a desired level of heating. The refrigerant is supplied to the first evaporator 26 through the refrigerant flow path 86 and then supplied to the refrigerant compressor 70. The refrigerant compressor 70 is a part of the vapor cycle of the environmental harmony system 10. The refrigerant compressor 70 compresses the refrigerant for the first evaporator 26 and the second evaporator 50. The compressed refrigerant is then sent to a refrigerant condenser 72 or a subcooler, which returns the refrigerant to one of the first evaporator 26 and the second evaporator 50. A first valve 78 and a second valve 82 are provided, and the first and second valves are controlled by a valve control unit 90. The valve control unit 90 determines the rate at which the refrigerant condenser 72 is returned to the first evaporator 26 and the second evaporator 50. In this way, the cooling requirements between the first evaporator 26 and the second evaporator 50 are balanced. Since the first evaporator 26 and the second evaporator 50 are aligned in series along the refrigerant flow path 86, the total refrigerant flow required is minimized. Also, since the first evaporator 26 is typically exposed to hotter air, it may be used to add a substantial degree of heating to the system if desired. The degree of heating can be used to increase the discharge temperature of the vapor cycle refrigerant compressor 70, thereby realizing more efficient operation.

上記の記載は、例示的なものであり、限定的なものではない。したがって、当業者であれば、本発明の趣旨から逸脱することなく、開示された実施例に対して種々の修正および変更がなされることを理解されるであろう。本発明に付与される法的保護の範囲は、以下の特許請求の範囲を検討することによって決定することができる。   The above description is illustrative and not restrictive. Accordingly, one of ordinary skill in the art appreciates that various modifications and changes can be made to the disclosed embodiments without departing from the spirit of the invention. The scope of legal protection given to this invention can be determined by studying the following claims.

10 環境調和システム
11 圧縮機
12 シャフト
18 空気流路
22 タービン
26 第1の蒸発器
30 熱交換器
34 水分除去器
38 再熱器
42 モータ
46 制御ユニット
50 第2の蒸発器
54 客室
58 空気供給源
70 冷媒圧縮機
72 冷媒凝縮器
78 第1のバルブ
82 第2のバルブ
86 冷媒流路
90 バルブ制御ユニット
DESCRIPTION OF SYMBOLS 10 Environment harmonization system 11 Compressor 12 Shaft 18 Air flow path 22 Turbine 26 1st evaporator 30 Heat exchanger 34 Dehydrator 38 Reheater 42 Motor 46 Control unit 50 2nd evaporator 54 Guest room 58 Air supply source 70 Refrigerant compressor 72 Refrigerant condenser 78 First valve 82 Second valve 86 Refrigerant flow path 90 Valve control unit

Claims (20)

空気流路内の空気を圧縮する圧縮機と、
圧縮機に接続され、圧縮機を駆動するタービンと、
圧縮機からの空気を受ける第1の蒸発器と、
を備え、
第1の蒸発器は、圧縮機からの空気を冷却するように構成されることを特徴とする環境調和システム。
A compressor for compressing air in the air flow path;
A turbine connected to the compressor and driving the compressor;
A first evaporator that receives air from the compressor;
With
An environmental harmony system, wherein the first evaporator is configured to cool air from a compressor.
圧縮機と第1の蒸発器との間で空気流路に配置され、圧縮機からの空気を冷却するように構成される熱交換器を備えることを特徴とする請求項1に記載の環境調和システム。   The environmental harmony of claim 1, comprising a heat exchanger disposed in the air flow path between the compressor and the first evaporator and configured to cool air from the compressor. system. 空気流路から水を除去する水分除去器を備えることを特徴とする請求項1に記載の環境調和システム。   The environment harmony system according to claim 1 provided with a moisture remover which removes water from an air channel. 水分除去器が、第1の蒸発器の下流に配設されることを特徴とする請求項3に記載の環境調和システム。   The environmental harmony system according to claim 3, wherein the moisture remover is disposed downstream of the first evaporator. 第1の蒸発器の上流から下流へと熱を移動させる再熱器を備えることを特徴とする請求項1に記載の環境調和システム。   The environmental harmony system according to claim 1 provided with the reheater which moves heat from the upper stream of the 1st evaporator to the lower stream. 第1の蒸発器が、再熱器のヒートシンクであることを特徴とする請求項5に記載の環境調和システム。   The environmental harmony system according to claim 5, wherein the first evaporator is a heat sink of a reheater. タービンが、第1の蒸発器の下流で空気流路に配設されることを特徴とする請求項1に記載の環境調和システム。   The environmental harmony system according to claim 1, wherein the turbine is disposed in the air flow path downstream of the first evaporator. 圧縮機およびタービンに接続されるモータを備えることを特徴とする請求項1に記載の環境調和システム。   The environmental harmony system according to claim 1 provided with a motor connected to a compressor and a turbine. モータを制御する制御ユニットを備え、該制御ユニットは、モータの速度を制御するように構成されることを特徴とする請求項8に記載の環境調和システム。   9. The environmental harmony system according to claim 8, further comprising a control unit for controlling the motor, wherein the control unit is configured to control the speed of the motor. 第1の蒸発器の下流に位置し、客室から空気を受けるように構成される第2の蒸発器を備えることを特徴とする請求項1に記載の環境調和システム。   The environmental harmony system of Claim 1 provided with the 2nd evaporator located downstream from the 1st evaporator and comprised so that air may be received from a guest room. 圧縮機は、客室の外部に位置する空気供給源から空気を受けるように構成されることを特徴とする請求項10に記載の環境調和システム。   11. The environmental harmony system according to claim 10, wherein the compressor is configured to receive air from an air supply source located outside the cabin. 空気流路の空気を圧縮する圧縮機と、
圧縮機に接続され、圧縮機を駆動するタービンと、
圧縮機と連通し、圧縮機からの空気を冷却するように構成される第1の蒸発器と、
第1の蒸発器の下流に位置し、空気を加熱する再熱器と、
を備え、
タービンは、第1の蒸発器の下流で空気流路に配設され
再熱器は、第1の蒸発器の下流の空気を加熱するために、圧縮機から熱を得るように構成されることを特徴とする環境調和システム。
A compressor for compressing air in the air flow path;
A turbine connected to the compressor and driving the compressor;
A first evaporator in communication with the compressor and configured to cool air from the compressor;
A reheater located downstream of the first evaporator to heat the air;
With
The turbine is disposed in the air flow path downstream of the first evaporator and the reheater is configured to obtain heat from the compressor to heat the air downstream of the first evaporator. Environmentally friendly system characterized by
圧縮機と第1の蒸発器との間で空気流路に配置され、圧縮機からの空気を冷却するように構成される熱交換器を備えることを特徴とする請求項12に記載の環境調和システム。   The environmental harmony of claim 12, comprising a heat exchanger disposed in the air flow path between the compressor and the first evaporator and configured to cool the air from the compressor. system. 空気流路から水を除去する水分除去器を備えることを特徴とする請求項12に記載の環境調和システム。   The environment harmony system according to claim 12 provided with a moisture remover which removes water from an air channel. 水分除去器は、第1の蒸発器とタービンとの間で空気流路に配設されることを特徴とする請求項14に記載の環境調和システム。   15. The environmental harmony system according to claim 14, wherein the moisture remover is disposed in the air flow path between the first evaporator and the turbine. 圧縮機およびタービンに接続されるモータを備えることを特徴とする請求項12に記載の環境調和システム。   The environment-conscious system according to claim 12, further comprising a motor connected to the compressor and the turbine. モータを制御する制御ユニットを備え、該制御ユニットは、モータの速度を制御するように構成されることを特徴とする請求項16に記載の環境調和システム。   17. The environmental harmony system according to claim 16, comprising a control unit for controlling the motor, the control unit being configured to control the speed of the motor. 第1の蒸発器の下流に位置し、乗物の客室から空気を受けるように構成される第2の蒸発器を備えることを特徴とする請求項12に記載の環境調和システム。   13. The environmental harmony system of claim 12, comprising a second evaporator positioned downstream of the first evaporator and configured to receive air from a vehicle cabin. 圧縮機は、客室の外部に位置する空気供給源から空気を受けるように構成されることを特徴とする請求項18に記載の環境調和システム。   The environmental harmony system according to claim 18, wherein the compressor is configured to receive air from an air supply source located outside the cabin. タービンによって駆動される圧縮機を介して空気を圧縮するステップと、
熱を除去するように空気を蒸発させるステップと、
空気を再加熱するステップと、
再加熱された空気をタービンを通して乗物の客室に放出するステップと、
を含むことを特徴とする環境調和方法。
Compressing air through a compressor driven by a turbine;
Evaporating air to remove heat;
Reheating the air;
Releasing the reheated air through the turbine into the vehicle cabin;
Environmental harmony method characterized by including.
JP2009177308A 2008-09-12 2009-07-30 Environmental harmony system and environmental harmony method Active JP5156706B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/209,389 2008-09-12
US12/209,389 US8915095B2 (en) 2008-09-12 2008-09-12 Hybrid environmental conditioning system

Publications (2)

Publication Number Publication Date
JP2010065993A true JP2010065993A (en) 2010-03-25
JP5156706B2 JP5156706B2 (en) 2013-03-06

Family

ID=41328553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009177308A Active JP5156706B2 (en) 2008-09-12 2009-07-30 Environmental harmony system and environmental harmony method

Country Status (3)

Country Link
US (1) US8915095B2 (en)
EP (1) EP2165931B1 (en)
JP (1) JP5156706B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150100627A (en) * 2012-11-19 2015-09-02 터보메카 Air conditioning method and system for aircraft

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9617005B1 (en) * 2013-07-31 2017-04-11 Peter Schiff System and method for replacing an engine powered air conditioning unit with an electric air conditioning unit in an aircraft
DE102015207447B4 (en) * 2015-04-23 2023-12-07 Airbus Operations Gmbh Aircraft air conditioning system that can be controlled depending on the operating phase and method for operating such an aircraft air conditioning system
CN107548369B (en) 2015-04-23 2021-01-29 空中客车作业有限公司 Aircraft air conditioning system and method for operating such an aircraft air conditioning system
DE102015207436A1 (en) * 2015-04-23 2016-10-27 Airbus Operations Gmbh Aircraft air conditioning system with recirculation air cooling and method for operating such an aircraft air conditioning system
DE102015207439B4 (en) * 2015-04-23 2023-09-28 Airbus Operations Gmbh Electrically driven aircraft air conditioning system and method for operating such an aircraft air conditioning system
US9783307B2 (en) * 2015-04-24 2017-10-10 Hamilton Sundstrand Corporation Environmental control system utilizing cabin discharge air to power a cycle
US9840333B2 (en) * 2015-04-24 2017-12-12 Hamilton Sundstrand Corporation Environmental control system mixing cabin discharge air with bleed air during a cycle
EP3303134A4 (en) 2015-06-08 2019-06-19 Hamilton Sundstrand Corporation No primary heat exchanger and bleed air (cabin discharge air) assist
DE102015222193A1 (en) * 2015-11-11 2017-05-11 Airbus Operations Gmbh Aircraft air conditioner with a cabin exhaust air turbine
US11459110B2 (en) * 2016-04-22 2022-10-04 Hamilton Sunstrand Corporation Environmental control system utilizing two pass secondary heat exchanger and cabin pressure assist
US10940951B2 (en) 2016-04-22 2021-03-09 Hamilton Sunstrand Corporation Environmental control system utilizing multiple mix points for recirculation air in accordance with pressure mode and motor assist
US10408501B2 (en) 2016-12-21 2019-09-10 Hamilton Sundstrand Corporation Environmental control system with ejector-enhanced cooling
US11427331B2 (en) 2017-04-13 2022-08-30 Hamilton Sundstrand Corporation Fresh air and recirculation air mixing optimization
US11148813B2 (en) 2018-04-03 2021-10-19 Hamilton Sundstrand Corporation Liquid reheater heat exchanger in an air cycle system
RU2689927C1 (en) * 2018-08-15 2019-05-29 Виктор Израилевич Думов Aircraft air conditioning system compressed air producer
EP4345006A1 (en) * 2022-09-28 2024-04-03 BAE SYSTEMS plc System and method for supplying cooled air in a vehicle
WO2024069129A1 (en) * 2022-09-28 2024-04-04 Bae Systems Plc System and method for supplying cooled air in a vehicle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344198A (en) * 1999-06-03 2000-12-12 Shimadzu Corp Air-conditioner for aircraft
JP2002115926A (en) * 2000-10-06 2002-04-19 Shimadzu Corp Air conditioning system
JP2002310523A (en) * 2001-04-13 2002-10-23 Mitsubishi Heavy Ind Ltd Refrigerating apparatus
JP2005067356A (en) * 2003-08-22 2005-03-17 Shimadzu Corp Air-conditioner
JP2007521183A (en) * 2003-09-22 2007-08-02 ハミルトン・サンドストランド・コーポレイション Aircraft cooking room cooling system

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4055946A (en) * 1976-03-29 1977-11-01 United Technologies Corporation Twin-spool gas turbine power plant with means to spill compressor interstage airflow
US4021215A (en) * 1976-05-03 1977-05-03 United Technologies Corporation Dual combined cycle air-conditioning system
US4236869A (en) * 1977-12-27 1980-12-02 United Technologies Corporation Gas turbine engine having bleed apparatus with dynamic pressure recovery
DE2834256C2 (en) * 1978-08-04 1985-05-23 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Arrangement for air conditioning of aircraft cabins
US4295518A (en) * 1979-06-01 1981-10-20 United Technologies Corporation Combined air cycle heat pump and refrigeration system
US4444018A (en) * 1980-07-25 1984-04-24 The Garrett Corporation Heat pump systems for residential use
US4445639A (en) * 1980-07-25 1984-05-01 The Garrett Corporation Heat pump systems for residential use
US4444021A (en) * 1980-07-25 1984-04-24 The Garrett Corporation Heat pump systems for residential use
US4347714A (en) * 1980-07-25 1982-09-07 The Garrett Corporation Heat pump systems for residential use
US4434624A (en) * 1981-03-27 1984-03-06 Lockheed Corporation Energy-efficient all-electric ECS for aircraft
US4829775A (en) * 1988-05-02 1989-05-16 United Technologies Corporation Filtered environmental control system
US5151022A (en) * 1991-10-03 1992-09-29 Allied-Signal Inc. Environmental control system with catalytic filter
US5313778A (en) * 1992-12-10 1994-05-24 United Technologies Corporation Automatic turbine engine bleed valve control for enhanced fuel management
US5555745A (en) * 1995-04-05 1996-09-17 Rotoflow Corporation Refrigeration system
GB9508043D0 (en) * 1995-04-20 1995-06-07 British Aerospace Environmental control system
DE19524733A1 (en) * 1995-07-07 1997-01-09 Bmw Rolls Royce Gmbh Aircraft gas turbine engine with a liquid-air heat exchanger
US5704218A (en) * 1996-04-08 1998-01-06 United Technologies Corporation Integrated environmental control system
WO1999002401A1 (en) * 1997-07-11 1999-01-21 Alliedsignal Inc. Air cycle environmental control system with vapor cycle system assisted condensation
US5921093A (en) * 1997-07-11 1999-07-13 Alliedsignal Inc. Air cycle environmental control system with energy regenerative high pressure water condensation and extraction
US5899085A (en) * 1997-08-01 1999-05-04 Mcdonnell Douglas Corporation Integrated air conditioning and power unit
US5956960A (en) * 1997-09-08 1999-09-28 Sundstrand Corporation Multiple mode environmental control system for pressurized aircraft cabin
GB2334094B (en) * 1998-02-05 2002-08-14 Howden Aircontrol Ltd Air environment control systems
US6199387B1 (en) * 1999-07-30 2001-03-13 Liebherr-Aerospace Lindenberg Gmbh Air-conditioning system for airplane cabin
US6427471B1 (en) * 2000-02-29 2002-08-06 Shimadzu Corporation Air cycle machine and air conditioning system using the same
US6457318B1 (en) * 2000-11-07 2002-10-01 Honeywell International Inc. Recirculating regenerative air cycle
US6681592B1 (en) * 2001-02-16 2004-01-27 Hamilton Sundstrand Corporation Electrically driven aircraft cabin ventilation and environmental control system
US6615606B2 (en) 2002-01-10 2003-09-09 Hamilton Sundstrand Dual turbine bootstrap cycle environmental control system
US6948331B1 (en) * 2003-09-12 2005-09-27 Norhrop Grumman Corporation Environmental control system for an aircraft
US7254961B2 (en) * 2004-02-18 2007-08-14 Denso Corporation Vapor compression cycle having ejector
US20080110193A1 (en) * 2006-11-10 2008-05-15 Honeywell International Inc. Environmental control system with adsorption based water removal

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344198A (en) * 1999-06-03 2000-12-12 Shimadzu Corp Air-conditioner for aircraft
JP2002115926A (en) * 2000-10-06 2002-04-19 Shimadzu Corp Air conditioning system
JP2002310523A (en) * 2001-04-13 2002-10-23 Mitsubishi Heavy Ind Ltd Refrigerating apparatus
JP2005067356A (en) * 2003-08-22 2005-03-17 Shimadzu Corp Air-conditioner
JP2007521183A (en) * 2003-09-22 2007-08-02 ハミルトン・サンドストランド・コーポレイション Aircraft cooking room cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150100627A (en) * 2012-11-19 2015-09-02 터보메카 Air conditioning method and system for aircraft
JP2016506328A (en) * 2012-11-19 2016-03-03 ターボメカTurbomeca Air conditioning method and system for aircraft
KR102129153B1 (en) * 2012-11-19 2020-07-01 사프란 헬리콥터 엔진스 Air conditioning method and system for aircraft

Also Published As

Publication number Publication date
EP2165931B1 (en) 2017-06-28
EP2165931A3 (en) 2012-05-30
JP5156706B2 (en) 2013-03-06
EP2165931A2 (en) 2010-03-24
US8915095B2 (en) 2014-12-23
US20100064701A1 (en) 2010-03-18

Similar Documents

Publication Publication Date Title
JP5156706B2 (en) Environmental harmony system and environmental harmony method
CN107531330B (en) Controllable aircraft air conditioning system with phase dependent operation and method for operating such an aircraft air conditioning system
JP4906225B2 (en) Environmental control device using two air cycle machines
US7762054B2 (en) Thermally powered turbine inlet air chiller heater
US9169024B2 (en) Environmental control system with closed loop pressure cycle
CN110576720B (en) Air conditioning system for a motor vehicle and method for operating an air conditioning system
KR101558823B1 (en) Air conditioning system for controlling the temperature of components and of an interior of a motor vehicle
EP1148220A2 (en) Combustion turbine cooling media supply system and related method
JP4587108B2 (en) Vehicle air conditioning unit and method of using the same
JP4489776B2 (en) Air cycle air conditioning with adaptive ram heat exchanger
JP4926978B2 (en) Air system
EP0045144A2 (en) Heat pump systems for residential use
JP2008049997A (en) Diffuser, air cycle device and environmental control system
WO2007135103A3 (en) Air-conditioning unit and method
CN101148197A (en) Cabin circumstance control system used for passenger plane
CN103373197A (en) Refrigerant circuit of an air conditioner with heat pump function and reheating function
JP2009286388A (en) Air conditioning system for motor vehicle, with an air cooling secondary circuit connectable to heating circuit
CN107074066A (en) Air conditioner for vehicles
US11465756B2 (en) Bootstrap air cycle with vapor power turbine
CN108128465A (en) Aircraft air-conditioning system and the method for operating aircraft air-conditioning system
JP2022098411A (en) Mobility integrated heat management system
JP2008056240A (en) Air conditioner for aircraft
JP2000203496A (en) Environment control device for aircraft
JP4023006B2 (en) Air conditioner for aircraft
JP2004268617A (en) Air-conditioning system for aircraft

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120313

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120611

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120611

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120611

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5156706

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250