JP2010065691A - Steam turbine member including ceramic matrix composite material (cmc) - Google Patents

Steam turbine member including ceramic matrix composite material (cmc) Download PDF

Info

Publication number
JP2010065691A
JP2010065691A JP2009205403A JP2009205403A JP2010065691A JP 2010065691 A JP2010065691 A JP 2010065691A JP 2009205403 A JP2009205403 A JP 2009205403A JP 2009205403 A JP2009205403 A JP 2009205403A JP 2010065691 A JP2010065691 A JP 2010065691A
Authority
JP
Japan
Prior art keywords
steam turbine
cmc
oxide
carbide
sic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009205403A
Other languages
Japanese (ja)
Inventor
David Ernest Welch
デビッド・アーネスト・ウェルチ
Yogesh Kesrinath Potdar
ヨゲッシュ・ケスリナス・ポットダール
Shu Ching Quek
シュー・チン・クエック
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of JP2010065691A publication Critical patent/JP2010065691A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/284Selection of ceramic materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D9/00Stators
    • F01D9/02Nozzles; Nozzle boxes; Stator blades; Guide conduits, e.g. individual nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/21Oxide ceramics
    • F05D2300/2112Aluminium oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/224Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/226Carbides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/614Fibres or filaments

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a steam turbine member including a ceramic matrix composite material (CMC) regarding a steam turbine. <P>SOLUTION: The steam turbine member includes the ceramic matrix composite material CMC 110. The steam turbine member may be made wholly or partially of the CMC 110. The CMC 110 eliminates the possibility of oxidation, and thus increases availability and reliability of the steam turbine. The steam turbine member for a steam turbine including the ceramic matrix composite material and a fixing member are provided at a first embodiment. The steam turbine including members containing the ceramic matrix composite material is provided at a second embodiment. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は広義には蒸気タービンに関する。具体的には、本発明はセラミックマトリックス複合材(CMC)を含む蒸気タービン部材に関する。   The present invention relates generally to steam turbines. Specifically, the present invention relates to a steam turbine member comprising a ceramic matrix composite (CMC).

蒸気タービンでは、弁でタービンのセクション間の開口部を開閉し、圧力下で蒸気に暴露される。蒸気タービンの設計基準の一つは信頼性(reliability)であり、次いで有用性(availability)及び操作性(operability)である。弁軸(通例ニッケル合金製)は全蒸気圧力及び温度に付される。これらの圧力及び温度は現在の設計では24.8MPa(3600psi)及び621℃(1150°F)に達することもある。しかし、次世代の蒸気タービンでは29.6MPa(4300psi)及び760℃(1400°F)に達すると予測されている。こうした条件下では、ニッケル合金製の弁軸は酸化されて、酸化物が堆積する。弁軸は、同様の材料でできたブッシング内で上下運動をすると期待される。従って、弁軸とブッシングの両方で酸化物が成長しかねない。信頼性を保つには、軸の主要オーバーホール及び/又は交換(通例5〜10年)を実施するまで軸が滑らかに作動できるように、設計及び製造段階で十分なクリアランス(間隙)を維持する必要がある。この問題を解決する1つのアプローチは、酸化物のための追加のクリアランスを設けることである。残念ながら、過度のクリアランスを設けると、蒸気が漏れて性能が損なわれる。さらに、高い蒸気温度では、ニッケル基超合金上の酸化物の堆積のためにおそらく2〜4年以内に適度なエンジニアリングクリアランス(例えば半径方向で10mm)が消失して、弁軸のバインディング(固着)が起きて、弁が機能しなくなるおそれがある。軸が正常な弁開放条件でバインディングすると、その事象のために蒸気の流れを遮断できなくなり、タービンの過速度を生じるおそれがある。   In steam turbines, valves open and close openings between sections of the turbine and are exposed to steam under pressure. One of the design criteria for steam turbines is reliability, followed by availability and operability. The valve stem (usually made of a nickel alloy) is subjected to full steam pressure and temperature. These pressures and temperatures can reach 24.8 MPa (3600 psi) and 621 ° C. (1150 ° F.) in current designs. However, next generation steam turbines are expected to reach 29.6 MPa (4300 psi) and 760 ° C. (1400 ° F.). Under these conditions, the nickel alloy valve stem is oxidized and oxide is deposited. The valve stem is expected to move up and down within a bushing made of similar material. Therefore, oxide can grow on both the valve stem and the bushing. To maintain reliability, sufficient clearance (gap) must be maintained during the design and manufacturing stages so that the shaft can operate smoothly until a major overhaul and / or replacement (typically 5-10 years) of the shaft is performed. There is. One approach to solving this problem is to provide additional clearance for the oxide. Unfortunately, providing excessive clearance will result in steam leakage and performance degradation. In addition, at high vapor temperatures, moderate engineering clearance (eg, 10 mm in radial direction) disappears, possibly within 2-4 years, due to oxide deposition on the nickel-base superalloy, and valve shaft binding. May occur and the valve may not function. If the shaft binds under normal valve opening conditions, the event will prevent the steam flow from being interrupted, which may result in turbine overspeed.

蒸気タービン部材はセラミックマトリックス複合材(CMC)を含む。本部材は全体がCMCでできていても、一部がCMCでできていてもよい。CMCは、部分的又は完全な酸化物系セラミック/繊維複合材の層の下での酸化の可能性をなくし、蒸気タービンの有用性と信頼性を向上させる。   The steam turbine member includes a ceramic matrix composite (CMC). This member may be made entirely of CMC or partly of CMC. CMC eliminates the possibility of oxidation under partial or complete oxide-based ceramic / fiber composite layers and improves the usefulness and reliability of steam turbines.

本発明の第1の態様では、セラミックマトリックス複合材を含む蒸気タービン用蒸気タービン部材、固定部材を提供する。   In a first aspect of the present invention, a steam turbine member and a fixing member for a steam turbine including a ceramic matrix composite material are provided.

本発明の第2の態様では、セラミックマトリックス複合材を含む部材を含む蒸気タービンを提供する。   In a second aspect of the invention, a steam turbine is provided that includes a member that includes a ceramic matrix composite.

図1は、蒸気タービンの部分切欠き斜視図である。FIG. 1 is a partially cutaway perspective view of a steam turbine. 図2は、完全にセラミックマトリックス複合材(CMC)からなる弁軸の形態の蒸気タービン部材の断面図である。FIG. 2 is a cross-sectional view of a steam turbine member in the form of a valve stem made entirely of ceramic matrix composite (CMC). 図3は、部分的にCMCからなる弁軸の形態の蒸気タービン部材の断面図である。FIG. 3 is a cross-sectional view of a steam turbine member in the form of a valve stem partially made of CMC. 図4は、蒸気に暴露される表面だけがCMCでできた弁軸の形態の蒸気タービン部材の断面図である。FIG. 4 is a cross-sectional view of a steam turbine member in the form of a valve stem in which only the surface exposed to steam is made of CMC. 図5は、テクスチャー外面を有するCMCでできた弁軸の形態の蒸気タービン部材の断面図である。FIG. 5 is a cross-sectional view of a steam turbine member in the form of a valve stem made of CMC having a textured outer surface.

以下、蒸気タービンに関する用途及び作動を例にとって、本発明の1以上の実施形態について説明する。ただし、本発明が適宜どのようなタービン及び/又はエンジンにも同様に応用できることは、本明細書の教示内容に接した当業者には明らかであろう。本発明の実施形態では、固定部材がセラミックマトリックス複合材(CMC)を含む蒸気タービン部材を提供する。   In the following, one or more embodiments of the present invention will be described taking applications and operations relating to a steam turbine as an example. However, it will be apparent to those skilled in the art, given the teachings herein, that the present invention is equally applicable to any turbine and / or engine as appropriate. In an embodiment of the invention, a steam turbine member is provided in which the stationary member comprises a ceramic matrix composite (CMC).

図面を参照すると、図1は蒸気タービン10の部分切欠き斜視図を示す。蒸気タービン10は、回転シャフト14と複数の軸方向に離隔したロータホイール18とを備えるロータ12を含む。複数の回転動翼20が、各ロータホイール18に機械的に結合される。具体的には、動翼20は各ロータホイール18の周方向の列として配置される。複数の固定静翼22がシャフト14の周囲に周方向に配置され、軸方向には隣接動翼20列の間に位置する。固定静翼22は動翼20と協働してタービン段を形成し、タービン10を通る蒸気流路の一部を形成する。   Referring to the drawings, FIG. 1 shows a partially cutaway perspective view of a steam turbine 10. The steam turbine 10 includes a rotor 12 that includes a rotating shaft 14 and a plurality of axially spaced rotor wheels 18. A plurality of rotating blades 20 are mechanically coupled to each rotor wheel 18. Specifically, the moving blades 20 are arranged as a circumferential row of the rotor wheels 18. A plurality of stationary stator blades 22 are arranged around the shaft 14 in the circumferential direction, and are positioned between the adjacent blades 20 in the axial direction. The stationary stationary blade 22 forms a turbine stage in cooperation with the moving blade 20 and forms a part of a steam flow path through the turbine 10.

作動中に、蒸気24はタービン10の入口26に流入し、固定静翼22を通って流れる。静翼22は蒸気24を下流の動翼20に向ける。蒸気24は残りの段を通過し、動翼20に力を与えてシャフト14を回転させる。タービン10の少なくとも一端は軸方向にロータ12と遠位方向に延在していてもよく、特に限定されないが、発電機その他のタービンのような負荷又は機械(図示せず)に取付けることができる。   During operation, the steam 24 flows into the inlet 26 of the turbine 10 and flows through the stationary vanes 22. The stationary blade 22 directs the steam 24 toward the downstream moving blade 20. The steam 24 passes through the remaining stages and applies a force to the rotor blade 20 to rotate the shaft 14. At least one end of the turbine 10 may extend distally with the rotor 12 in the axial direction and may be attached to a load or machine (not shown) such as, but not limited to, a generator or other turbine. .

図1に示す本発明の一実施形態では、タービン10は5つの段を含む。5段は、L0、L1、L2、L3及びL4として示す。L4段は第1段であり、5段のうちで最小(半径方向に)のものである。L3段は第2段であり、軸方向に次の段である。L2段は第3段であり、5段のうちの中央に位置するものとして示す。L1段は第4段であり、最後から2番目の段である。L0段は最終段であり、最大(半径方向に)のものである。5つの段は一例にすぎず、低圧タービンの段の数は4以下でも、6以上でもよい。また、本明細書に記載する通り、本発明の教示内容は複数段のタービンが必須というわけでもない。   In one embodiment of the invention shown in FIG. 1, the turbine 10 includes five stages. The five stages are shown as L0, L1, L2, L3 and L4. The L4 stage is the first stage and is the smallest (in the radial direction) of the five stages. The L3 stage is the second stage and is the next stage in the axial direction. The L2 stage is the third stage and is shown as being located at the center of the five stages. The L1 stage is the fourth stage, which is the second stage from the end. The L0 stage is the final stage and is the maximum (in the radial direction). The five stages are only an example, and the number of stages in the low-pressure turbine may be 4 or less, or 6 or more. Also, as described herein, the teachings of the present invention do not necessarily require a multi-stage turbine.

自明であろうが、蒸気タービン10は多数の部材を含む。便宜上、図2〜図4に示す固定弁軸102を参照して本発明を説明する。その他の固定部材としては、例えば、固定弁ブッシング104(図2〜図3)、ノズル、ケーシングなどが挙げられる。また、本発明の教示内容が弁頭又はローター動翼のような可動部材にも適用できることも自明であろう。部材100はセラミックマトリックス複合材(CMC)を含む。CMCは酸化に耐えることのできるセラミック材料であればよく、強化繊維又は織物を含んでいることもある。一実施形態では、CMCは、酸化をなくす作用をもつ酸化物系マトリックスを含む。例えば、CMC110は酸化アルミニウム(Al23)マトリックスを含む。別の実施形態では、CMC110は、硬さを増すため炭化ケイ素(SiC)繊維を含む。別の実施形態では、CMC110は酸化物系マトリックスとセラミック系繊維とを含む。例えば、酸化物系マトリックスは、酸化アルミニウム(Al23)、ホウ化チタン(TiB)及び炭化ケイ素(SiC)を含む。別の例では、酸化物系マトリックスは、Al23、二ホウ化チタン(TiB2)、炭化白金(PtC)又は炭化ケイ素(SiC)を含む。セラミック系繊維としては、上述の酸化物系マトリックスのいずれか又は炭化ケイ素(SiC)のようなセラミック系材料が挙げられる。その他のマトリックスとして、例えば、炭化ジルコニウム(ZrC)、炭化ハフニウム(HfC)、炭化チタン(TiC)、炭化タンタル(TaC)、及び炭化ニオブ(NbC)、並びにジルコニウム・ケイ素・炭素(Zr−Si−C)、ハフニウム・ケイ素・炭素(Hf−Si−C)又はチタン・ケイ素・炭素(Ti−Si−C)のような混合炭化物が挙げられる。その他の繊維としては、例えば、炭化ケイ素(SiC)、炭素(C)、並びに酸化イットリウム(Y23)及び酸化ジルコニウム(ZrO2)添加物を含むα−Al23、又はこれらの変形が挙げられる。いずれにせよ、CMC110は、部材100の延性又は材料系でのエネルギー吸収、さらには蒸気腐食耐性及び摩耗耐性を増大させるように作用すべきであり、場合によってはCMC110上に層又は繊維を設けてもよい。 As will be appreciated, the steam turbine 10 includes a number of members. For convenience, the present invention will be described with reference to the fixed valve shaft 102 shown in FIGS. Examples of other fixing members include a fixed valve bushing 104 (FIGS. 2 to 3), a nozzle, and a casing. It will also be apparent that the teachings of the present invention can be applied to movable members such as valve heads or rotor blades. Member 100 includes a ceramic matrix composite (CMC). The CMC may be any ceramic material that can withstand oxidation and may include reinforcing fibers or fabrics. In one embodiment, the CMC includes an oxide-based matrix that acts to eliminate oxidation. For example, CMC 110 includes an aluminum oxide (Al 2 O 3 ) matrix. In another embodiment, CMC 110 includes silicon carbide (SiC) fibers to increase hardness. In another embodiment, CMC 110 includes an oxide-based matrix and ceramic-based fibers. For example, the oxide-based matrix includes aluminum oxide (Al 2 O 3 ), titanium boride (TiB), and silicon carbide (SiC). In another example, the oxide-based matrix includes Al 2 O 3 , titanium diboride (TiB 2 ), platinum carbide (PtC), or silicon carbide (SiC). Ceramic fibers include any of the oxide matrices described above or ceramic materials such as silicon carbide (SiC). Other matrices include, for example, zirconium carbide (ZrC), hafnium carbide (HfC), titanium carbide (TiC), tantalum carbide (TaC), niobium carbide (NbC), and zirconium silicon silicon (Zr-Si-C). ), Mixed carbides such as hafnium-silicon-carbon (Hf-Si-C) or titanium-silicon-carbon (Ti-Si-C). Other fibers include, for example, silicon carbide (SiC), carbon (C), and α-Al 2 O 3 containing yttrium oxide (Y 2 O 3 ) and zirconium oxide (ZrO 2 ) additives, or variations thereof. Is mentioned. In any case, the CMC 110 should act to increase the ductility of the member 100 or energy absorption in the material system, as well as steam corrosion resistance and wear resistance, possibly with layers or fibers on the CMC 110. Also good.

図2に示す一実施形態では、部材100は完全にCMCからなる。図3に示す別の実施形態では、部材100は部分的にCMCからなる。この例では、部材100は、金属コア114(鋼など)の上にCMC層112を含んでいる。この場合、熱膨張率の差を均衡させるためCMC層112と金属コア114の間に熱均衡接合部116が必要とされることもあろう。熱均衡接合部116としては、例えば、CMC層112と金属コア114の間のコンプライアント層が挙げられる。或いは、図4に示すように、部材100のうち蒸気に暴露される表面118だけがCMC110を含んでいてもよい。自明であろうが、本発明の技術的範囲内で様々な構成を用いることができる。   In one embodiment shown in FIG. 2, member 100 consists entirely of CMC. In another embodiment shown in FIG. 3, member 100 is partially composed of CMC. In this example, member 100 includes a CMC layer 112 over a metal core 114 (such as steel). In this case, a thermal balance junction 116 may be required between the CMC layer 112 and the metal core 114 to balance the difference in coefficient of thermal expansion. Examples of the heat balance junction 116 include a compliant layer between the CMC layer 112 and the metal core 114. Alternatively, as shown in FIG. 4, only the surface 118 of the member 100 that is exposed to vapor may contain the CMC 110. As will be apparent, various configurations can be used within the scope of the present invention.

部材100は現在公知の技術又は今後開発される技術のいずれを用いても形成することができる。例えば、強化材料のプリプレグを自立部材として又は金属コア114に固定した状態(図3)で作成し、プリプレグに繰返しセラミックを含浸し、セラミックを硬化させる。   The member 100 can be formed using any currently known technique or a technique developed in the future. For example, a reinforcing material prepreg is prepared as a self-supporting member or fixed to the metal core 114 (FIG. 3), the prepreg is repeatedly impregnated with ceramic, and the ceramic is cured.

図5を参照すると、代替的な実施形態では、部材100の外面120はテクスチャー面120を含んでいてもよい。テクスチャー面120は、例えば、織物をプリプレグの外側部分として設け、織物によってテクスチャー面120が生じるようにすればよい。テクスチャー面120によって蒸気通路の表面積が増大すると、漏れが低減して効率が増大し得る。   With reference to FIG. 5, in an alternative embodiment, the outer surface 120 of the member 100 may include a textured surface 120. For the texture surface 120, for example, a woven fabric may be provided as an outer portion of the prepreg so that the texture surface 120 is generated by the woven fabric. Increasing the surface area of the vapor passageway by the textured surface 120 can reduce leakage and increase efficiency.

蒸気タービン用の弁軸に関して本発明の様々な実施形態を説明してきたが、本発明は蒸気タービン用の弁軸に限定されるものではない。特に、本発明は酸化が制限要因となる蒸気タービンのあらゆる部材に応用できる。例えば、本発明の教示内容はノズル、ケーシングなども適用できる。   Although various embodiments of the present invention have been described with respect to a valve shaft for a steam turbine, the present invention is not limited to a valve shaft for a steam turbine. In particular, the present invention can be applied to any member of a steam turbine where oxidation is a limiting factor. For example, the teachings of the present invention can be applied to nozzles, casings and the like.

本発明は、酸化物の成長速度の低減を介して、次世代蒸気タービンに対する蒸気タービンの有用性を増大させる。   The present invention increases the utility of steam turbines for next generation steam turbines through a reduction in oxide growth rate.

本明細書における「第1の」、「第2の」などの用語は、順序、数量又は重要性を意味するものではなく、ある要素を別の要素から区別するためのものである。数量に関して用いる「約」という修飾語は、その数値を包含し、かつ文脈によって決まる意味を有する(例えば、その数量の測定に付随する誤差を含む。)。本明細書に記載された範囲は、上下限を含み、独立に組合せ自在である(例えば、「約25%以下、特に約5%〜約20%」との記載は「約5%〜約25%」の上下限及びあらゆる中間値を含む。)。   The terms “first”, “second”, etc. herein do not imply order, quantity or importance, but are to distinguish one element from another. The modifier “about” used in relation to a quantity encompasses the numerical value and has a meaning that depends on the context (eg, including errors associated with the measurement of that quantity). The ranges described in this specification include upper and lower limits and can be combined independently (for example, the description of “about 25% or less, especially about 5% to about 20%” is “about 5% to about 25%”. % "And includes any intermediate value.)

本明細書では、様々な実施形態について説明してきたが、本発明の技術的範囲内で様々な要素の組合せ、変更及び改良を当業者がなし得ることは本明細書の記載から明らかであろう。また、本発明の技術的範囲内で、特定の状況又は材料を本発明の教示内容に適合させるための数多くの変更を行うこともできる。従って、本発明は、本発明を実施するための最良の実施形態として開示した特定の実施形態に限定されるものではなく、特許請求の範囲に記載された技術的範囲に属するあらゆる実施形態を包含する。   While various embodiments have been described herein, it will be apparent from the description herein that various combinations, modifications, and improvements may be made by those skilled in the art within the scope of the present invention. . Many modifications may be made to adapt a particular situation or material to the teachings of the invention within the scope of the invention. Therefore, the present invention is not limited to the specific embodiment disclosed as the best mode for carrying out the present invention, and includes all embodiments belonging to the technical scope described in the claims. To do.

蒸気タービン 10
ローター 12
回転軸 14
ローターホイール 18
回転動翼 20
固定静翼 22
蒸気 24
入口 26
弁軸 102
弁ブッシング 104
部材 100
CMC 110
CMC層 112
金属コア 114
接合部 116
表面 118
テクスチャー面 120
Steam turbine 10
Rotor 12
Rotating shaft 14
Rotor wheel 18
Rotating blade 20
Fixed vane 22
Steam 24
Entrance 26
Valve stem 102
Valve bushing 104
Member 100
CMC 110
CMC layer 112
Metal core 114
Junction 116
Surface 118
Texture surface 120

Claims (13)

セラミックマトリックス複合材(CMC)を含んでなる蒸気タービン(10)部材。 A steam turbine (10) member comprising a ceramic matrix composite (CMC). CMC(110)が金属コア(114)上の層である、請求項1記載の蒸気タービン(10)部材。 The steam turbine (10) member of claim 1, wherein the CMC (110) is a layer on a metal core (114). さらに、CMC(110)と金属コア(114)との間に熱均衡接合部(116)を含む、請求項2記載の蒸気タービン(10)部材。 The steam turbine (10) member of claim 2, further comprising a heat balance junction (116) between the CMC (110) and the metal core (114). CMC(110)が酸化物系CMC(110)を含む、請求項1記載の蒸気タービン(10)部材。 The steam turbine (10) member of claim 1, wherein the CMC (110) comprises an oxide-based CMC (110). 酸化物系CMC(110)が酸化アルミニウム(Al23)を含む、請求項4記載の蒸気タービン(10)部材。 Oxide CMC (110) comprises aluminum oxide (Al 2 O 3), a steam turbine (10) according to claim 4, wherein members. CMC(110)がさらに炭化ケイ素(SiC)を含む、請求項5記載の蒸気タービン(10)部材。 The steam turbine (10) member of claim 5, wherein the CMC (110) further comprises silicon carbide (SiC). CMC(110)が酸化物系マトリックス及びセラミック系繊維を含む、請求項1記載の蒸気タービン(10)固定部材。 The steam turbine (10) stationary member of claim 1, wherein the CMC (110) comprises an oxide-based matrix and ceramic-based fibers. 酸化物系マトリックスが酸化アルミニウム(Al23)、ホウ化チタン(TiB)及び炭化ケイ素(SiC)を含む、請求項7記載の蒸気タービン(10)固定部材。 Oxide-based matrix of aluminum oxide (Al 2 O 3), comprising titanium boride (TiB) and silicon carbide (SiC), according to claim 7, wherein the steam turbine (10) fixing member. 酸化物系マトリックスが酸化アルミニウム(Al23)、二ホウ化チタン(TiB2)、炭化白金(PtC)及び炭化ケイ素(SiC)を含む、請求項7記載の蒸気タービン(10)部材。 The steam turbine (10) member of claim 7, wherein the oxide-based matrix comprises aluminum oxide (Al 2 O 3 ), titanium diboride (TiB 2 ), platinum carbide (PtC), and silicon carbide (SiC). CMC(110)が、
炭化ジルコニウム(ZrC)、炭化ハフニウム(HfC)、炭化チタン(TiC)、炭化タンタル(TaC)、炭化ニオブ(NbC)、ジルコニウム・ケイ素・炭素(Zr−Si−C)、ハフニウム・ケイ素・炭素(Hf−Si−C)及びチタン・ケイ素・炭素(Ti−Si−C)からなる群から選択されるマトリックス、並びに
炭化ケイ素(SiC)、炭素(C)、並びに酸化イットリウム(Y23)及び酸化ジルコニウム(ZrO2)を含むα−Al23からなる群から選択される繊維
を含む、請求項1記載の蒸気タービン(10)部材。
CMC (110)
Zirconium carbide (ZrC), hafnium carbide (HfC), titanium carbide (TiC), tantalum carbide (TaC), niobium carbide (NbC), zirconium-silicon-carbon (Zr-Si-C), hafnium-silicon-carbon (Hf) -Si-C) and titanium-silicon-carbon (matrix selected from Ti-SiC) made from the group, as well as silicon carbide (SiC), carbon (C), as well as yttrium oxide (Y 2 O 3) and oxidation zirconium comprising fibers selected from the group consisting of α-Al 2 O 3 containing (ZrO 2), according to claim 1 the steam turbine (10) member according.
部材の外面がテクスチャー面(120)を含む、請求項1記載の蒸気タービン(10)部材。 The steam turbine (10) member of claim 1, wherein the outer surface of the member includes a textured surface (120). 部材が固定部材を含む、請求項1記載の蒸気タービン(10)部材。 The steam turbine (10) member of claim 1, wherein the member comprises a stationary member. 固定部材が、弁軸(102)、ノズル、及びブッシングからなる群から選択される、請求項12載の蒸気タービン(10)部材。 The steam turbine (10) member of claim 12, wherein the stationary member is selected from the group consisting of a valve stem (102), a nozzle, and a bushing.
JP2009205403A 2008-09-09 2009-09-07 Steam turbine member including ceramic matrix composite material (cmc) Withdrawn JP2010065691A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12/206,844 US20100061847A1 (en) 2008-09-09 2008-09-09 Steam turbine part including ceramic matrix composite (cmc)

Publications (1)

Publication Number Publication Date
JP2010065691A true JP2010065691A (en) 2010-03-25

Family

ID=41349753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009205403A Withdrawn JP2010065691A (en) 2008-09-09 2009-09-07 Steam turbine member including ceramic matrix composite material (cmc)

Country Status (4)

Country Link
US (1) US20100061847A1 (en)
EP (1) EP2161414A1 (en)
JP (1) JP2010065691A (en)
RU (1) RU2009133731A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8770931B2 (en) * 2011-05-26 2014-07-08 United Technologies Corporation Hybrid Ceramic Matrix Composite vane structures for a gas turbine engine
JP5920856B2 (en) * 2012-01-26 2016-05-18 ゼネラル エレクトリック テクノロジー ゲゼルシャフト ミット ベシュレンクテル ハフツングGeneral Electric Technology GmbH Stator component with segmented inner ring for turbomachines
EP3514126A1 (en) * 2018-01-17 2019-07-24 Siemens Aktiengesellschaft Ceramic composite material having an interconnection layer made from a molybdenum titanium carbide composite material, component, gas turbine, and method
CN112374901B (en) * 2020-11-19 2022-08-05 航天特种材料及工艺技术研究所 Ablation-resistant modified C/SiC composite material and preparation method thereof
CN112409005B (en) * 2020-11-23 2022-03-29 航天特种材料及工艺技术研究所 Preparation method of net-size C/SiC ceramic matrix composite

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6413589B1 (en) * 1988-11-29 2002-07-02 Chou H. Li Ceramic coating method
JPH1054204A (en) * 1996-05-20 1998-02-24 General Electric Co <Ge> Multi-component blade for gas turbine
US6197424B1 (en) * 1998-03-27 2001-03-06 Siemens Westinghouse Power Corporation Use of high temperature insulation for ceramic matrix composites in gas turbines
US6733907B2 (en) * 1998-03-27 2004-05-11 Siemens Westinghouse Power Corporation Hybrid ceramic material composed of insulating and structural ceramic layers
US6537654B1 (en) * 1999-11-04 2003-03-25 Sgl Technik Gmbh Protection products and armored products made of fiber-reinforced composite material with ceramic matrix
US6974624B2 (en) * 2000-12-04 2005-12-13 Advanced Ceramics Research, Inc. Aligned composite structures for mitigation of impact damage and resistance to wear in dynamic environments
US20030039542A1 (en) * 2001-08-21 2003-02-27 Cromer Robert Harold Transition piece side sealing element and turbine assembly containing such seal
US6709230B2 (en) * 2002-05-31 2004-03-23 Siemens Westinghouse Power Corporation Ceramic matrix composite gas turbine vane
US7093359B2 (en) * 2002-09-17 2006-08-22 Siemens Westinghouse Power Corporation Composite structure formed by CMC-on-insulation process
EP1559499A1 (en) * 2004-01-27 2005-08-03 Siemens Aktiengesellschaft Method of repairing a turbine component
EP1707650A1 (en) * 2005-03-31 2006-10-04 Siemens Aktiengesellschaft Matrix and coating system
EP1712745A1 (en) 2005-04-14 2006-10-18 Siemens Aktiengesellschaft Component of a steam turbine plant, steam turbine plant, use and production method of such a component.
US20070065672A1 (en) * 2005-09-19 2007-03-22 United Technologies Corporation Silicon based substrate with hafnium containing barrier layer
DE102006038713A1 (en) * 2006-05-10 2007-11-29 Schunk Kohlenstofftechnik Gmbh Pressure-resistant fluid-loaded body
US7771159B2 (en) * 2006-10-16 2010-08-10 General Electric Company High temperature seals and high temperature sealing systems

Also Published As

Publication number Publication date
US20100061847A1 (en) 2010-03-11
EP2161414A1 (en) 2010-03-10
RU2009133731A (en) 2011-03-20

Similar Documents

Publication Publication Date Title
US10392958B2 (en) Hybrid blade outer air seal for gas turbine engine
CN109424369B (en) Turbine blade including a coating system and method of forming a turbine blade
JP6340010B2 (en) Seal system for use in a turbomachine and method of making the same
EP2549061B1 (en) Turbine rotor non-metallic blade attachment
US9476316B2 (en) CMC turbine engine component
US9506355B2 (en) Turbine engine blade or vane made of composite material, turbine nozzle or compressor stator incorporating such vanes and method of fabricating same
US7500833B2 (en) Method for repairing a component of a turbomachine
US7229254B2 (en) Turbine blade with a reduced mass
CN106460193B (en) Lanthanum molybdate wear-resistant coating, method of forming the same and use thereof
US10794211B2 (en) Seal geometries for reduced leakage in gas turbines and methods of forming
EP3055509B1 (en) Ceramic matrix composite gas turbine blade with monolithic ceramic platform and dovetail
CN108730039B (en) Turbine nozzle segment and system for a gas turbine engine
US10941665B2 (en) Composite airfoil assembly for an interdigitated rotor
JP2010065691A (en) Steam turbine member including ceramic matrix composite material (cmc)
CN110439625B (en) Composite airfoil assembly for interdigitated rotors
EP3835553B1 (en) Non-metallic side plate seal assembly for a gas turbine engine
US10519779B2 (en) Radial CMC wall thickness variation for stress response
US20150345314A1 (en) Turbine bucket assembly and turbine system
US11359507B2 (en) Double box composite seal assembly with fiber density arrangement for gas turbine engine
GB2475850A (en) An Abrasive Layer and a Method Of Applying an Abrasive Layer on a Turbomachine Component
WO2019112662A1 (en) Wall structure with three dimensional interface between metal and ceramic matrix composite portions
EP3839095A1 (en) Barrier to prevent super alloy depletion into nickel-cbn blade tip coating
CN108730035B (en) Flow path assembly for a gas turbine engine and method of assembling the assembly
WO2020112076A1 (en) Reinforced ceramic matrix composite components
US11486263B1 (en) System for addressing turbine blade tip rail wear in rubbing and cooling

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20121204