JP2010065634A - High temperature member for gas turbine - Google Patents

High temperature member for gas turbine Download PDF

Info

Publication number
JP2010065634A
JP2010065634A JP2008234157A JP2008234157A JP2010065634A JP 2010065634 A JP2010065634 A JP 2010065634A JP 2008234157 A JP2008234157 A JP 2008234157A JP 2008234157 A JP2008234157 A JP 2008234157A JP 2010065634 A JP2010065634 A JP 2010065634A
Authority
JP
Japan
Prior art keywords
gas
cooling
porous
high temperature
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008234157A
Other languages
Japanese (ja)
Inventor
Hisato Tagawa
久人 田川
Yasuhiro Horiuchi
康広 堀内
Tetsuro Morisaki
哲郎 森崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008234157A priority Critical patent/JP2010065634A/en
Publication of JP2010065634A publication Critical patent/JP2010065634A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the heat efficiency of a gas turbine by reducing the amount of cooling air in comparison with film cooling, in a high temperature member for the gas turbine. <P>SOLUTION: A surface of structural material 1 exposed to high-temperature gas is covered with a plurality of porous metals 2, 3, 4 having different porosities, partition boards 6 are provided among the porous metals 2, 3, 4, the surfaces of the porous metals 2, 3, 4 are coated with a porous ceramic layer 5, the structural material 1 is formed with cooling gas supply holes 7 for supplying cooling gas from the structural material 1 to the porous metals 2, 3, 4, and the cooling gas is oozed from the surface of the porous ceramic layer 5 to cool a member. The porosities of the porous metals 2, 3, 4 are changed according to a change in high-temperature gas pressure of the surface of the member, and the amount of cooling gas oozed from the porous ceramic layer 5 is controlled. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高温ガスに晒され、冷却を必要とするガスタービン設備の高温部材に関する。   The present invention relates to a high temperature member of a gas turbine facility that is exposed to a high temperature gas and requires cooling.

ガスタービンは圧縮機で圧縮した空気を燃料と混合して燃焼器で燃焼させ、発生した高温ガスでタービンに仕事をさせて動力を得るため、高温ガスに晒される部材を冷却する必要がある。冷却には圧縮機で圧縮された空気を一部抽気して使用するが、冷却空気の割合が増加するとシステムの熱効率が低下するため、できるだけ少ない冷却空気量で必要な冷却性能を達成する必要がある。   In a gas turbine, air compressed by a compressor is mixed with fuel and combusted in a combustor. The generated high-temperature gas causes the turbine to work to obtain power, and therefore, a member exposed to the high-temperature gas needs to be cooled. For cooling, a part of the air compressed by the compressor is extracted and used, but if the proportion of cooling air increases, the thermal efficiency of the system decreases, so it is necessary to achieve the required cooling performance with as little cooling air as possible. is there.

ガスタービン翼に代表されるように外部からの熱負荷が大きい部材の冷却には、従来からフィルム冷却と呼ばれる冷却方法が用いられている。フィルム冷却は部材に冷却媒体の噴出し孔を設け、冷却媒体を作動ガスである高温ガス中に流出して部材表面を覆うことにより、高温ガスからの入熱量を低減する。   Conventionally, a cooling method called film cooling has been used for cooling a member having a large external heat load as represented by a gas turbine blade. In film cooling, a cooling medium jet hole is provided in a member, and the cooling medium flows out into a high-temperature gas that is a working gas to cover the surface of the member, thereby reducing the amount of heat input from the high-temperature gas.

フィルム冷却効率を向上させ、必要な冷却空気量を低減するため、フィルム冷却孔形状の最適化が試みられてきた。例えば、特開2005−180339号公報,特開2007−138794号公報,特開2006−307842号公報などに記載の技術がある。   In order to improve film cooling efficiency and reduce the amount of cooling air required, optimization of the film cooling hole shape has been attempted. For example, there are techniques described in JP-A-2005-180339, JP-A-2007-138794, JP-A-2006-307842, and the like.

特開2005−180339号公報JP 2005-180339 A 特開2007−138794号公報JP 2007-138794 A 特開2006−307842号公報JP 2006-307842 A

しかし、フィルム冷却では部材表面を冷却空気で均一に覆うことが難しく、冷却効率を向上するためにフィルム冷却孔を増やすと、冷却空気量が増加して作動ガスの温度低下や空力損失の増大により熱効率が低下する。また部材強度が低下し、寿命の縮小や信頼性の低下につながる。   However, in film cooling, it is difficult to cover the surface of the member uniformly with cooling air. If the number of film cooling holes is increased in order to improve cooling efficiency, the amount of cooling air increases, resulting in a decrease in working gas temperature and an increase in aerodynamic loss. Thermal efficiency decreases. Further, the strength of the member is reduced, leading to a reduction in life and a decrease in reliability.

本発明の目的は、部材強度の低下を抑制した上で、必要な冷却空気量を低減して熱効率を向上することができるガスタービンの高温部材を提供することにある。   An object of the present invention is to provide a high-temperature member for a gas turbine capable of improving the thermal efficiency by reducing a necessary amount of cooling air while suppressing a decrease in member strength.

高温ガスにさらされる構造材の表面を多孔質金属で被い、該多孔質金属の表面を多孔質セラミック層で被い、前記構造材に冷却ガスの供給孔を設けた。   The surface of the structural material exposed to the high-temperature gas was covered with a porous metal, the surface of the porous metal was covered with a porous ceramic layer, and a cooling gas supply hole was provided in the structural material.

本発明によれば、ガスタービンの高温部材において、部材強度の低下を抑制をした上で、必要な冷却空気量を低減して熱効率を向上することができるガスタービンの高効率化を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, in the high temperature member of a gas turbine, after suppressing the fall of member strength, the high efficiency improvement of the gas turbine which can reduce the amount of required cooling air and can improve thermal efficiency can be provided.

(実施例1)
図1は、本発明の一実施形態を示すガスタービンの高温部材の断面図である。本実施形態の高温部材では、高温ガスにさらされる構造材1の表面を気孔率の異なる複数の多孔質金属2,3,4で被い、多孔質金属の間に仕切り板6を設け、さらに多孔質金属の表面を多孔質セラミック層5で被覆し、構造材に冷却ガスの供給孔7を設けている。本実施形態の高温部材は、構造材側から多孔質金属2,3,4へ冷却ガスを供給して、多孔質セラミック層5の表面から冷却ガスをしみ出させて部材を冷却することに特徴がある。
Example 1
FIG. 1 is a cross-sectional view of a high temperature member of a gas turbine showing an embodiment of the present invention. In the high temperature member of the present embodiment, the surface of the structural material 1 exposed to the high temperature gas is covered with a plurality of porous metals 2, 3, 4 having different porosity, and a partition plate 6 is provided between the porous metals, The surface of the porous metal is covered with a porous ceramic layer 5 and a cooling gas supply hole 7 is provided in the structural material. The high temperature member of the present embodiment is characterized in that the cooling gas is supplied from the structural material side to the porous metals 2, 3, 4 and the cooling gas is oozed from the surface of the porous ceramic layer 5 to cool the member. There is.

冷却ガス量は高温ガスと冷却ガス供給口の圧力差と部材内部の流動抵抗で決定される。多孔質金属の気孔率を大きくすれば流動抵抗が小さくなって冷却ガス量は増加し、気孔率を小さくすれば流動抵抗が大きくなって冷却ガス量は減少する。したがって、部材表面の高温ガス圧力の変化に応じて多孔質金属の気孔率を変化させれば、高温ガスの圧力によらず多孔質セラミック層からしみ出してくる冷却ガス量を制御することができる。また、気孔率の異なる多孔質金属2,3,4を仕切り板6で分離していることにより、流動抵抗を決定する気孔率の設定が容易になる。   The amount of cooling gas is determined by the pressure difference between the high temperature gas and the cooling gas supply port and the flow resistance inside the member. Increasing the porosity of the porous metal decreases the flow resistance and increases the amount of cooling gas, and decreasing the porosity decreases the flow resistance and decreases the amount of cooling gas. Therefore, if the porosity of the porous metal is changed in accordance with the change in the high temperature gas pressure on the surface of the member, the amount of the cooling gas that exudes from the porous ceramic layer can be controlled regardless of the pressure of the high temperature gas. . In addition, since the porous metals 2, 3, and 4 having different porosities are separated by the partition plate 6, the porosity that determines the flow resistance can be easily set.

本実施例の高温部材は、高温ガスにさらされる構造材1の表面を多孔質金属2,3,4で被い、多孔質金属2,3,4の表面を多孔質セラミック層5で被い、構造材1に冷却ガス供給孔7が設けられている。このように構成されていることにより、冷却ガスを、しみ出させるように部材表面全体に流すことができ、フィルム冷却のように部分的に冷却ガスが過剰に流れることなく冷却性能の向上が図れ、冷却ガス量を低減してガスタービンの熱効率を向上することができる。さらに、冷却ガスは多孔質金属2,3,4の内部で分散されるため、構造材1に開いている冷却ガス供給孔7はフィルム冷却の場合に比べて少なくすることができ、部材の構造強度が向上する。   In the high temperature member of this embodiment, the surface of the structural material 1 exposed to the high temperature gas is covered with the porous metals 2, 3, 4, and the surface of the porous metal 2, 3, 4 is covered with the porous ceramic layer 5. The structural material 1 is provided with a cooling gas supply hole 7. By being configured in this way, the cooling gas can flow over the entire surface of the member so as to ooze out, and the cooling performance can be improved without the cooling gas partially flowing excessively as in film cooling. The amount of cooling gas can be reduced and the thermal efficiency of the gas turbine can be improved. Further, since the cooling gas is dispersed inside the porous metals 2, 3, 4, the cooling gas supply holes 7 opened in the structural material 1 can be reduced as compared with the film cooling, and the structure of the member Strength is improved.

また本実施例の高温部材は、冷却ガス供給孔7と高温ガス雰囲気との間の部材である多孔質金属2,3,4の流動抵抗を異ならしめるよう構成されている。具体的には、多孔質金属2,3,4の気孔率が異ならしめられている。これにより、多孔質セラミック層5からの冷却ガスのしみ出し量を所望の傾向とするように異ならしめることができ、部材表面の熱負荷に応じて、必要な量の冷媒を効率よく供給することができる。さらに、気孔率の異なる複数の多孔質金属2,3,4を用い、これらの異なる多孔質金属の間に仕切り板6が設けられていることにより、多孔質金属2,3,4や多孔質セラミック層5の損傷を抑制することができる。   Further, the high temperature member of the present embodiment is configured to make the flow resistances of the porous metals 2, 3 and 4 which are members between the cooling gas supply hole 7 and the high temperature gas atmosphere different. Specifically, the porosity of the porous metals 2, 3, and 4 is made different. As a result, the amount of cooling gas that oozes out from the porous ceramic layer 5 can be made different so as to have a desired tendency, and a necessary amount of refrigerant can be efficiently supplied according to the thermal load on the surface of the member. Can do. Further, by using a plurality of porous metals 2, 3, 4 having different porosities, and a partition plate 6 is provided between these different porous metals, the porous metals 2, 3, 4 and porous metals Damage to the ceramic layer 5 can be suppressed.

以上説明した実施例1は平板に関するものであるが、図2に示したように部材が曲率を持っていても同様の効果が得られる。特に高温ガスの圧力変化が大きいこのような形状に対して、本発明の効果はさらに有効となる。また多孔質金属の気孔率の種類は特に限定されるものではない。   The first embodiment described above relates to a flat plate, but the same effect can be obtained even if the member has a curvature as shown in FIG. In particular, the effect of the present invention is further effective for such a shape in which the pressure change of the high-temperature gas is large. The kind of porosity of the porous metal is not particularly limited.

(実施例2)
図3は、本発明の他の実施形態を示すガスタービンの高温部材の断面図である。本実施形態の高温部材では、多孔質金属202,203,204の間の仕切り板がない点が実施例1の高温部材と異なっており、構造が簡略化されたことにより製作性が向上する。ただし、多孔質金属間に冷却ガスの移動が発生し、多孔質セラミック層205からの冷却ガスのしみ出し量の制御が実施例1より難しくなる。したがって、本実施形態の構造は、高温ガスの圧力分布に大きな変動がなく、製作コストを削減したい場合に採用するのが効果的である。
(Example 2)
FIG. 3 is a cross-sectional view of a high-temperature member of a gas turbine showing another embodiment of the present invention. The high temperature member of this embodiment is different from the high temperature member of Example 1 in that there is no partition plate between the porous metals 202, 203, and 204, and the productivity is improved by simplifying the structure. However, the movement of the cooling gas occurs between the porous metals, and it becomes more difficult to control the amount of cooling gas oozing out from the porous ceramic layer 205 than in the first embodiment. Therefore, the structure of the present embodiment is effective when it is desired to reduce the manufacturing cost because there is no large fluctuation in the pressure distribution of the hot gas.

また構造材にフィルム冷却孔を開けた場合に比べ、冷却ガスの供給孔を少なくすることができるので、構造強度が向上する。さらに仕切り板がないので構造材の形状がシンプルで済み、実施例1の高温部材よりも構造材の構造強度をさらに向上させることができる。   Further, since the cooling gas supply holes can be reduced as compared with the case where the film cooling holes are formed in the structural material, the structural strength is improved. Furthermore, since there is no partition plate, the shape of the structural material is simple, and the structural strength of the structural material can be further improved as compared with the high temperature member of the first embodiment.

(実施例3)
図4は、本発明の他の実施形態を示すガスタービンの高温部材の断面図である。本実施形態の高温部材では、多孔質金属302の気孔率が連続的に変化しており、また多孔質金属の間の仕切り板がない点で実施例1の高温部材と異なっている。このような構造の場合、多孔質セラミック層305からの冷却ガスのしみ出し量をより細かく適切に制御できる。
(Example 3)
FIG. 4 is a sectional view of a high-temperature member of a gas turbine showing another embodiment of the present invention. The high temperature member of this embodiment is different from the high temperature member of Example 1 in that the porosity of the porous metal 302 is continuously changed and there is no partition plate between the porous metals. In the case of such a structure, the amount of cooling gas oozing out from the porous ceramic layer 305 can be controlled more finely and appropriately.

実施例2の高温部材と同様に、構造が簡略化されたことにより部材の製作性が向上する。また構造材にフィルム冷却孔を開けた場合に比べ、冷却ガスの供給孔を少なくすることができるので、構造強度が向上する。さらに仕切り板がないので構造材の形状がシンプルで済み、実施例1の高温部材よりも構造材の構造強度をさらに向上させることができる。   Similar to the high-temperature member of Example 2, the structure is simplified, so that the manufacturability of the member is improved. Further, since the cooling gas supply holes can be reduced as compared with the case where the film cooling holes are formed in the structural material, the structural strength is improved. Furthermore, since there is no partition plate, the shape of the structural material is simple, and the structural strength of the structural material can be further improved as compared with the high temperature member of the first embodiment.

(実施例4)
図5は、本発明の他の実施形態を示すガスタービンの高温部材の断面図である。本実施形態の高温部材では、高温ガスにさらされる構造材401の表面を多孔質金属402で覆い、さらに多孔質金属402の表面を多孔質セラミック層405で被覆し、構造材401に冷却ガスの供給孔407を設けている。構造材側から多孔質金属402へ冷却ガスを供給して、多孔質セラミック層405の表面から冷却ガスをしみ出させて部材を冷却することは実施例1の高温部材と同様であるが、多孔質金属402の厚みを位置ごとに変えていることに特徴がある。本実施例の高温部材は、部材の流動抵抗を異ならしめる手段として、多孔質金属402の厚みを異ならしめることにより、多孔質セラミック層405からの冷却ガスのしみ出し量が所望の傾向となるように異ならしめることができ、部材表面の熱負荷に応じて、必要な量の冷媒を効率よく供給することができる。
Example 4
FIG. 5 is a cross-sectional view of a high-temperature member of a gas turbine showing another embodiment of the present invention. In the high-temperature member of this embodiment, the surface of the structural material 401 exposed to the high-temperature gas is covered with the porous metal 402, and the surface of the porous metal 402 is further covered with the porous ceramic layer 405. A supply hole 407 is provided. Although the cooling gas is supplied from the structural material side to the porous metal 402 and the cooling gas is oozed from the surface of the porous ceramic layer 405 to cool the member, it is the same as the high-temperature member of the first embodiment. It is characterized in that the thickness of the quality metal 402 is changed for each position. In the high-temperature member of the present embodiment, the amount of cooling gas oozing out from the porous ceramic layer 405 becomes a desired tendency by making the thickness of the porous metal 402 different as a means for making the flow resistance of the member different. The required amount of refrigerant can be efficiently supplied according to the thermal load on the surface of the member.

冷却ガス量は高温ガスと冷却ガス供給口の圧力差と部材内部の流動抵抗で決定される。多孔質金属402の厚みを薄くすれば流動抵抗が小さくなって冷却ガス量は増加し、厚みを厚くすれば流動抵抗が大きくなって冷却ガス量は減少する。したがって、部材表面の高温ガス圧力の変化に応じて多孔質金属の厚みを変化させれば、高温ガスの圧力によらず多孔質セラミック層405からしみ出してくる冷却ガス量を制御することができる。   The amount of cooling gas is determined by the pressure difference between the high temperature gas and the cooling gas supply port and the flow resistance inside the member. If the thickness of the porous metal 402 is reduced, the flow resistance is decreased and the amount of cooling gas is increased. If the thickness is increased, the flow resistance is increased and the amount of cooling gas is decreased. Therefore, if the thickness of the porous metal is changed in accordance with the change in the high-temperature gas pressure on the member surface, the amount of the cooling gas that exudes from the porous ceramic layer 405 can be controlled regardless of the pressure of the high-temperature gas. .

この方法は、多孔質金属の気孔率を変えて冷却ガスのしみ出し量を制御する方法よりもさらに簡便な方法であるが、多孔質金属の厚みを変えることで高温ガスの流路形状が変化するため、高温ガスの流れが影響を受けても問題ないような場所への適用が好ましい。   This method is simpler than the method of changing the porosity of the porous metal to control the amount of cooling gas oozing, but the flow path shape of the high-temperature gas changes by changing the thickness of the porous metal. Therefore, application to a place where there is no problem even if the flow of the hot gas is affected is preferable.

以上の方法によると、部材表面の熱負荷に応じて、必要な冷却ガスを部材表面全体に流すことができ、かつフィルム冷却のように部分的に冷却ガスが過剰に流れることなく冷却性能の向上が図れ、冷却ガス量を低減してガスタービンの熱効率を向上することができる。   According to the above method, the required cooling gas can be made to flow over the entire surface of the member according to the heat load on the surface of the member, and the cooling performance is improved without excessive cooling gas partially flowing like film cooling. Therefore, the amount of cooling gas can be reduced and the thermal efficiency of the gas turbine can be improved.

さらに、冷却ガスは多孔質金属402の内部で分散されるため、構造材に開いている冷却ガス供給孔はフィルム冷却の場合に比べて少なくすることができ、部材の構造強度を向上させることができる。   Further, since the cooling gas is dispersed inside the porous metal 402, the number of cooling gas supply holes opened in the structural material can be reduced as compared with the film cooling, and the structural strength of the member can be improved. it can.

以上、図3,図4,図5を用いて説明した実施例2,3,4は平板に関するものであるが、実施例1の図2で示したように部材が曲率を持っていても同様の効果が得られる。なお、冷却ガスのしみ出し量は、多孔質セラミックの外側に存在する高温ガスの圧力に影響を受ける。したがって、各実施例の高温部材において、高温ガスの圧力分布に応じて部材の流動抵抗を設定すれば、より適切に、各部に最適な量の冷却媒体を供給することができる。   As described above, the second, third, and fourth embodiments described with reference to FIGS. 3, 4, and 5 relate to the flat plate, but the same applies even if the member has a curvature as shown in FIG. 2 of the first embodiment. The effect is obtained. Note that the amount of the cooling gas oozing is affected by the pressure of the high-temperature gas existing outside the porous ceramic. Therefore, in the high temperature member of each embodiment, if the flow resistance of the member is set according to the pressure distribution of the high temperature gas, the optimum amount of the cooling medium can be supplied to each part more appropriately.

以上説明した各実施例の高温部材によると、高温ガスにさらされるガスタービンの高温部材において、供給孔から供給した冷却ガスを、多孔質金属を経由させて多孔質セラミック層からしみださせるようにして冷却しているため、フィルム冷却よりも少ない冷却ガス量で冷却性能の向上が図れ、ガスタービンの熱効率を向上することができる。   According to the high temperature member of each embodiment described above, in the high temperature member of the gas turbine exposed to the high temperature gas, the cooling gas supplied from the supply hole is allowed to ooze from the porous ceramic layer via the porous metal. Therefore, the cooling performance can be improved with a smaller amount of cooling gas than the film cooling, and the thermal efficiency of the gas turbine can be improved.

本発明の一実施形態を示すガスタービンの高温部材の断面図である。It is sectional drawing of the high temperature member of the gas turbine which shows one Embodiment of this invention. 本発明の一実施形態を示すガスタービンの高温部材の断面図である。It is sectional drawing of the high temperature member of the gas turbine which shows one Embodiment of this invention. 本発明の一実施形態を示すガスタービンの高温部材の断面図である。It is sectional drawing of the high temperature member of the gas turbine which shows one Embodiment of this invention. 本発明の一実施形態を示すガスタービンの高温部材の断面図である。It is sectional drawing of the high temperature member of the gas turbine which shows one Embodiment of this invention. 本発明の一実施形態を示すガスタービンの高温部材の断面図である。It is sectional drawing of the high temperature member of the gas turbine which shows one Embodiment of this invention.

符号の説明Explanation of symbols

1,101,201,301,401 構造材
2,3,4,102,103,104,202,203,204,302,402 多孔質金属
5,105,205,305,405 多孔質セラミック層
6,106 仕切り板
7,107,207,307,407 冷却ガス供給孔
1, 101, 201, 301, 401 Structural material 2, 3, 4, 102, 103, 104, 202, 203, 204, 302, 402 Porous metal 5, 105, 205, 305, 405 Porous ceramic layer 6, 106 Partition plate 7, 107, 207, 307, 407 Cooling gas supply hole

Claims (7)

高温ガスにさらされる構造材の表面を多孔質金属で被い、該多孔質金属の表面を多孔質セラミック層で被い、前記構造材に冷却ガスの供給孔を設けたことを特徴とするガスタービンの高温部材。   A gas characterized by covering a surface of a structural material exposed to a high-temperature gas with a porous metal, covering the surface of the porous metal with a porous ceramic layer, and providing a cooling gas supply hole in the structural material. High temperature member of turbine. 請求項1に記載のガスタービンの高温部材において、
前記冷却ガス供給孔と高温ガス雰囲気との間の部材の流動抵抗を異ならしめたことを特徴とするガスタービンの高温部材。
In the high temperature member of the gas turbine according to claim 1,
A high-temperature member for a gas turbine, wherein the flow resistance of the member between the cooling gas supply hole and the high-temperature gas atmosphere is made different.
請求項1に記載のガスタービンの高温部材において、前記多孔質金属の気孔率を異ならしめたことを特徴とするガスタービンの高温部材。   The high temperature member for a gas turbine according to claim 1, wherein the porosity of the porous metal is made different. 請求項3に記載のガスタービンの高温部材において、気孔率の異なる複数の多孔質金属を用い、異なる該多孔質金属の間に仕切り板を設けたことを特徴とするガスタービンの高温部材。   The high-temperature member of a gas turbine according to claim 3, wherein a plurality of porous metals having different porosity are used, and a partition plate is provided between the different porous metals. 請求項1に記載のガスタービンの高温部材において、
前記多孔質金属の厚みを異ならしめたことを特徴とするガスタービンの高温部材。
In the high temperature member of the gas turbine according to claim 1,
A high-temperature member for a gas turbine, wherein the porous metal has a different thickness.
請求項2−5のいずれかに記載のガスタービンの高温部材において、前記高温ガスの圧力分布に応じて、前記冷却ガス供給孔と高温ガス雰囲気との間の部材の流動抵抗が設定されたことを特徴とするガスタービンの高温部材。   The high temperature member of the gas turbine according to any one of claims 2 to 5, wherein the flow resistance of the member between the cooling gas supply hole and the high temperature gas atmosphere is set according to the pressure distribution of the high temperature gas. A high-temperature member of a gas turbine characterized by 高温ガスにさらされる構造材の表面を多孔質金属で被い、該多孔質金属の表面を多孔質セラミック層で被覆し、前記構造材に冷却ガスの供給孔を設けたガスタービンの高温部材の冷却方法において、
前記供給孔から供給した冷却ガスを、該多孔質金属を経由させて該多孔質セラミック層からしみださせることを特徴とするガスタービンの高温部材の冷却方法。
The surface of a structural material exposed to a high temperature gas is covered with a porous metal, the surface of the porous metal is covered with a porous ceramic layer, and a cooling gas supply hole is provided in the structural material. In the cooling method,
A cooling method for a high-temperature member of a gas turbine, characterized in that the cooling gas supplied from the supply hole oozes from the porous ceramic layer through the porous metal.
JP2008234157A 2008-09-12 2008-09-12 High temperature member for gas turbine Pending JP2010065634A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008234157A JP2010065634A (en) 2008-09-12 2008-09-12 High temperature member for gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234157A JP2010065634A (en) 2008-09-12 2008-09-12 High temperature member for gas turbine

Publications (1)

Publication Number Publication Date
JP2010065634A true JP2010065634A (en) 2010-03-25

Family

ID=42191422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234157A Pending JP2010065634A (en) 2008-09-12 2008-09-12 High temperature member for gas turbine

Country Status (1)

Country Link
JP (1) JP2010065634A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011132217A1 (en) * 2010-04-20 2011-10-27 三菱重工業株式会社 Split-ring cooling structure and gas turbine
JP2013174245A (en) * 2013-05-10 2013-09-05 Mitsubishi Heavy Ind Ltd Split ring cooling structure and gas turbine
US8550778B2 (en) 2010-04-20 2013-10-08 Mitsubishi Heavy Industries, Ltd. Cooling system of ring segment and gas turbine
JP2013543550A (en) * 2010-09-21 2013-12-05 パルマー ラボ,エルエルシー Highly efficient power generation method, assembly, and system
EP2725120A1 (en) 2012-10-24 2014-04-30 Hitachi Ltd. High temperature components with thermal barrier coatings for gas turbine
WO2018101190A1 (en) * 2016-11-30 2018-06-07 三菱重工業株式会社 High-temperature component for gas turbine, gas turbine blade, and gas turbine
KR20190092521A (en) * 2017-01-12 2019-08-07 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Split ring surface side member, split ring support side member, split ring, stop side member unit and method
US10828816B1 (en) 2017-02-14 2020-11-10 University Of North Florida Board Of Trustees 3D printed injection mold coating to extend lifetime and performance

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5683573B2 (en) * 2010-04-20 2015-03-11 三菱重工業株式会社 Split ring cooling structure and gas turbine
JPWO2011132217A1 (en) * 2010-04-20 2013-07-18 三菱重工業株式会社 Split ring cooling structure and gas turbine
WO2011132217A1 (en) * 2010-04-20 2011-10-27 三菱重工業株式会社 Split-ring cooling structure and gas turbine
US8550778B2 (en) 2010-04-20 2013-10-08 Mitsubishi Heavy Industries, Ltd. Cooling system of ring segment and gas turbine
US10927679B2 (en) 2010-09-21 2021-02-23 8 Rivers Capital, Llc High efficiency power production methods, assemblies, and systems
JP2013543550A (en) * 2010-09-21 2013-12-05 パルマー ラボ,エルエルシー Highly efficient power generation method, assembly, and system
US11459896B2 (en) 2010-09-21 2022-10-04 8 Rivers Capital, Llc High efficiency power production methods, assemblies, and systems
US11859496B2 (en) 2010-09-21 2024-01-02 8 Rivers Capital, Llc High efficiency power production methods, assemblies, and systems
EP2725120A1 (en) 2012-10-24 2014-04-30 Hitachi Ltd. High temperature components with thermal barrier coatings for gas turbine
JP2013174245A (en) * 2013-05-10 2013-09-05 Mitsubishi Heavy Ind Ltd Split ring cooling structure and gas turbine
WO2018101190A1 (en) * 2016-11-30 2018-06-07 三菱重工業株式会社 High-temperature component for gas turbine, gas turbine blade, and gas turbine
KR20190092521A (en) * 2017-01-12 2019-08-07 미츠비시 히타치 파워 시스템즈 가부시키가이샤 Split ring surface side member, split ring support side member, split ring, stop side member unit and method
KR102238866B1 (en) * 2017-01-12 2021-04-09 미츠비시 파워 가부시키가이샤 Split ring surface side member, split ring support side member, split ring, stationary member unit, gas turbine, split ring cooling method and split ring manufacturing method
US11441447B2 (en) 2017-01-12 2022-09-13 Mitsubishi Heavy Industries, Ltd. Ring-segment surface-side member, ring-segment support-side member, ring segment, stationary-side member unit, and method
US10828816B1 (en) 2017-02-14 2020-11-10 University Of North Florida Board Of Trustees 3D printed injection mold coating to extend lifetime and performance

Similar Documents

Publication Publication Date Title
JP2010065634A (en) High temperature member for gas turbine
EP3499170B1 (en) Heat exchanger inlet
US9422828B2 (en) Bi-cast layered wall with a porous element for component cooling
JP4494444B2 (en) Coated turbine blade
US7241107B2 (en) Gas turbine airfoil with adjustable cooling air flow passages
US8535004B2 (en) Four-wall turbine airfoil with thermal strain control for reduced cycle fatigue
US8297926B2 (en) Turbine blade
US9051943B2 (en) Gas turbine engine heat exchanger fins with periodic gaps
US20100003142A1 (en) Airfoil with tapered radial cooling passage
US10100666B2 (en) Hot gas path component for turbine system
US20150064019A1 (en) Gas Turbine Components with Porous Cooling Features
CA2956983C (en) Engine casing with internal coolant flow patterns
US20130052037A1 (en) Airfoil with nonlinear cooling passage
JP2008051104A6 (en) Coated turbine blade
US9771827B2 (en) Damping device for being situated between a housing wall and a casing ring of a housing of a thermal gas turbine
JP3110338B2 (en) Combustor cooling structure with steam
WO2014149119A3 (en) Gas turbine engine combustor liner
JP2005299637A (en) Method and device for reducing turbine blade temperature
US20050076649A1 (en) Blade tip clearance control
JP2020097927A (en) Turbine airfoil with plurality of walls and internal thermal barrier coating
JP2006283606A (en) High temperature member for gas turbine
EP2719863B1 (en) Turbine blade
JP2012202335A (en) Impingement cooling structure and gas turbine stator blade using the same
EP3176371A1 (en) Component for a fluid flow engine and method
JP2015092074A (en) Hot gas component with impingement cooling and pedestal cooling