JP2010065609A - Control method of engine with egr device and its air supply device - Google Patents

Control method of engine with egr device and its air supply device Download PDF

Info

Publication number
JP2010065609A
JP2010065609A JP2008232738A JP2008232738A JP2010065609A JP 2010065609 A JP2010065609 A JP 2010065609A JP 2008232738 A JP2008232738 A JP 2008232738A JP 2008232738 A JP2008232738 A JP 2008232738A JP 2010065609 A JP2010065609 A JP 2010065609A
Authority
JP
Japan
Prior art keywords
egr
air
engine
combustion chamber
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008232738A
Other languages
Japanese (ja)
Other versions
JP5148423B2 (en
Inventor
Kazuro Hotta
和郎 堀田
Kengo Tanaka
健吾 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2008232738A priority Critical patent/JP5148423B2/en
Publication of JP2010065609A publication Critical patent/JP2010065609A/en
Application granted granted Critical
Publication of JP5148423B2 publication Critical patent/JP5148423B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce NOx by supply of EGR gas, and to restrain generation of soot in combustion gas, in a diesel engine with an EGR device. <P>SOLUTION: Supply air is turned by a means for turning the supply air in the specific direction in an air supply port 108, and is supplied to a combustion chamber 103 of the engine. Gas of the low EGR concentration is held by distributing the supply air in an outer peripheral near part of the combustion chamber 103 by centrifugal force generated by turning of the supply air. The EGR gas is input to a central part of the combustion chamber 103, and the EGR concentration of the central part is held in the higher concentration than the outer peripheral near part. and fuel is sprayed thereby in a nonuniform air-fuel mixture from the combustion chamber central part by forming the nonuniform air-fuel mixture in the EGR concentration of the supply air and the EGR gas in the combustion chamber 103. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、主としてEGR(排気再循環)装置付きディーゼルエンジンに適用され、エンジンの排気ガスの一部を抽出して給気ポートに還流するEGR通路を設けてなるシリンダヘッド内のEGR装置付きエンジン及びかかるEGR装置付きエンジンの制御方法に関する。   The present invention is mainly applied to a diesel engine with an EGR (exhaust gas recirculation) device, and an engine with an EGR device in a cylinder head provided with an EGR passage for extracting a part of the exhaust gas of the engine and returning it to an air supply port. The present invention also relates to a method for controlling such an engine with an EGR device.

図8は、特許文献1(特許第4108061号公報)等に用いられているEGR(排気再循環)装置付きディーゼルエンジンの全体構成を示す構成図である。
図8において、符号100で示されるディーゼルエンジン(以下エンジンという)で燃焼された排気ガスは、各シリンダの排気弁(図示省略)及び排気ポート(図示省略)及び排気管109sを通ってから、排気ターボ過給機122の排気タービン120に送りこまれて該排気タービン120を駆動する。
FIG. 8 is a configuration diagram showing the overall configuration of a diesel engine with an EGR (exhaust gas recirculation) device used in Patent Document 1 (Japanese Patent No. 4108061) and the like.
In FIG. 8, exhaust gas combusted by a diesel engine (hereinafter referred to as engine) denoted by reference numeral 100 passes through an exhaust valve (not shown), an exhaust port (not shown) and an exhaust pipe 109s of each cylinder, and then exhausted. It is sent to the exhaust turbine 120 of the turbocharger 122 to drive the exhaust turbine 120.

一方、排気タービン120に同軸駆動されるコンプレッサ121によって圧縮された空気は、給気管125を通り、空気冷却器134で冷却されて、スロットル弁123を経て各シリンダの給気ポート(図示省略)に入り、該給気ポートを通して給気弁(図示省略)に入る。
また、排気管109sから、エンジンの排気ガスの一部を抜き出してEGR通路110及びEGRクーラ124を通して、前記スロットル弁123下流側の給気管125に還流する。該EGR通路110の通路面積はEGR弁111aによって調整される。
On the other hand, the air compressed by the compressor 121 driven coaxially to the exhaust turbine 120 passes through the air supply pipe 125, is cooled by the air cooler 134, passes through the throttle valve 123, and is supplied to an air supply port (not shown) of each cylinder. And enters an air supply valve (not shown) through the air supply port.
Further, a part of the exhaust gas of the engine is extracted from the exhaust pipe 109s and returned to the air supply pipe 125 on the downstream side of the throttle valve 123 through the EGR passage 110 and the EGR cooler 124. The passage area of the EGR passage 110 is adjusted by the EGR valve 111a.

かかる、EGR装置付きディーゼルエンジンの一例を示す前記特許文献1(特許第4108061号公報)においては、
たとえば同公報の図5に示すように(同公報の符号で示す)、エンジンの給気圧力は、排気ターボ過給機102付きエンジンの場合、エンジンの排気圧力よりも高いときが多いので、スロットル弁108の開度を絞って給気圧力を下げ、EGRガスが給気ポートに流入し易いように調整している。
また、かかるEGR装置付きディーゼルエンジンでは、前記のように、低酸素濃度のEGRガスを給気側に混入させ、シリンダ内で低酸素濃度燃焼を行わせるようになっており、このため、前記EGRガスの混入により給気中の酸素濃度が低下すると、煤の増加が大きくなるという問題を抱えている。
In Patent Document 1 (Patent No. 4108061) showing an example of such a diesel engine with an EGR device,
For example, as shown in FIG. 5 of the same publication (indicated by the reference numeral of the same publication), the engine air supply pressure is often higher than the engine exhaust pressure in the case of the engine with the exhaust turbocharger 102. The opening of the valve 108 is throttled to reduce the supply air pressure so that EGR gas can easily flow into the supply port.
In the diesel engine with the EGR device, as described above, the low-oxygen concentration EGR gas is mixed into the supply side, and low-oxygen concentration combustion is performed in the cylinder. When the oxygen concentration in the supply air decreases due to gas mixing, there is a problem that the increase in soot increases.

また、特許文献2(特開2008−111374号公報)には、同公報の図1に示すように(同公報の符号で示す)シリンダヘッド1aの排気ポート32より上方に開口するEGRガス出口通路10bと、給気ポート33より上方に開口するEGRガス入口通路10EGRガス入口通路10aを設け、該EGRガス出口通路10bとEGRガス入口通路10aの入口通路33aとの間を、弁腕室カバー31に形成したガス還流通路10によって連通している。   Further, Patent Document 2 (Japanese Patent Laid-Open No. 2008-111374) discloses an EGR gas outlet passage that opens above the exhaust port 32 of the cylinder head 1a as shown in FIG. 10b and an EGR gas inlet passage 10a that opens upward from the air supply port 33. An EGR gas inlet passage 10a is provided between the EGR gas outlet passage 10b and the inlet passage 33a of the EGR gas inlet passage 10a. Are communicated by a gas reflux passage 10 formed in

特許第4108061号公報Japanese Patent No. 4108061 特開2008−111374号公報JP 2008-111374 A

EGR装置付きディーゼルエンジンでは、低酸素濃度のEGRガスを給気側に混入させ、シリンダ内で低酸素濃度燃焼を行わせるようになっている。
かかるEGR装置付きのディーゼルエンジンでは、前記EGRガスの混入により給気中の酸素濃度が低下すると、煤の増加が大きくなる。かかる煤の増加を防止するには、給気を燃焼室の全体に万遍なく分布させて、EGRガスによるNOx低減とともにEGRガスの偏った燃焼を回避する必要がある。
In a diesel engine with an EGR device, low-oxygen concentration EGR gas is mixed into the supply side, and low-oxygen concentration combustion is performed in the cylinder.
In such a diesel engine with an EGR device, when the oxygen concentration in the supply air decreases due to mixing of the EGR gas, soot increases greatly. In order to prevent such an increase in soot, it is necessary to distribute the supply air evenly throughout the combustion chamber to avoid the uneven combustion of EGR gas as well as NOx reduction by EGR gas.

即ち、EGR装置を備えたエンジンにあっては、NOx低減のためのEGRガスが燃焼室内の一角、特にその外周部位に滞留することが多く、この部分に新気(給気)が不足し易く、このためNOx低減のために供給したEGRガスの燃焼によって、この部分に煤が発生し易い。
しかしながら、前記特許文献1及び特許文献2には、煤の発生を防止する手段は開示されていない。
That is, in an engine equipped with an EGR device, EGR gas for reducing NOx often stays in one corner of the combustion chamber, particularly in the outer periphery thereof, and fresh air (supply air) tends to be insufficient in this portion. Therefore, soot is likely to be generated in this portion due to the combustion of the EGR gas supplied to reduce NOx.
However, Patent Document 1 and Patent Document 2 do not disclose means for preventing wrinkles.

本発明はかかる従来技術の課題に鑑み、EGR装置付きディーゼルエンジンにおいて、EGRガスの供給によりNOx低減を成すとともに、燃焼ガス中の煤の発生を防止して燃焼を促進することを目的とする。   The present invention has been made in view of the above-described problems of the prior art, and an object of the diesel engine with an EGR device is to promote NOx reduction by supplying EGR gas and to promote combustion by preventing generation of soot in the combustion gas.

本発明はかかる課題を解決するもので、エンジンのシリンダ中心部に燃料噴射弁を備え、排気ガスの一部を抽出して給気ポートに還流するEGR通路を備えてなるシリンダヘッド内のEGR装置付きエンジンの制御方法において、給気を一定方向に旋回させる手段により給気を旋回させてエンジンの燃焼室に供給し、前記燃焼室の前記シリンダ中心部に対して外周寄りの部位に前記給気の旋回により発生する遠心力によって該給気を分布させて低EGR濃度のガスを保持し、該燃焼室の中央部位にはEGRガスを投入して該中央部位のEGR濃度を前記外周寄りの部位よりも高濃度に保持させることにより、前記燃焼室に前記給気とEGRガスとのEGR濃度が不均一な混合気を形成し、該不均一な混合気中に燃料噴霧を行うことを特徴とする(請求項1)。   The present invention solves such a problem, and an EGR device in a cylinder head having a fuel injection valve at the center of a cylinder of an engine and an EGR passage for extracting a part of exhaust gas and returning it to an intake port. In the attached engine control method, the supply air is swirled by means for swirling the supply air in a fixed direction and supplied to the combustion chamber of the engine, and the supply air is supplied to a portion of the combustion chamber closer to the outer periphery than the center of the cylinder. The supply air is distributed by the centrifugal force generated by the swirling of the gas to hold the gas having a low EGR concentration, and the EGR gas is injected into the central portion of the combustion chamber so that the EGR concentration at the central portion is closer to the outer periphery. A mixture having a non-uniform EGR concentration of the supply air and the EGR gas is formed in the combustion chamber, and fuel spraying is performed in the non-uniform mixture. You (Claim 1).

そして、次の装置が、前記EGR装置付きエンジンの制御方法に用いられる。
(1)エンジンのシリンダ中心部に燃料噴射弁を備え、排気ガスの一部を抽出して給気ポートに還流するEGR通路を備えてなるシリンダヘッド内のEGR装置付きエンジンにおいて、
燃焼室内で給気を一定方向に旋回させる旋回流生成手段を有し、前記給気ポート内を給気流がエンジンの燃焼室に向けて層状に流動するとともに、前記EGR通路を、EGRガスが前記層状の給気流と同一方向に且つ該層状の給気流に対して混合せずに一部が分離した状態で前記燃焼室に向けて流動するように前記給気ポートに接続したことを特徴とする(請求項2)。
The following device is used in the method for controlling the engine with the EGR device.
(1) In an engine with an EGR device in a cylinder head, which is provided with a fuel injection valve at the center of the cylinder of the engine, and an EGR passage that extracts a part of exhaust gas and recirculates it to an air supply port.
A swirl flow generating means for swirling the supply air in a fixed direction in the combustion chamber, and the supply air flow flows in layers in the supply port toward the combustion chamber of the engine, and the EGR gas passes through the EGR passage. The air supply port is connected to the air supply port so as to flow toward the combustion chamber in the same direction as the layered air supply air and in a state where the layered air supply air is partly separated without mixing with the layered air supply air. (Claim 2).

(2)エンジンのシリンダ中心部に燃料噴射弁を備え、排気ガスの一部を抽出して給気ポートに還流するEGR通路を備えてなるシリンダヘッド内のEGR装置付きエンジンにおいて、燃焼室内で給気を一定方向に旋回させる旋回流生成手段を有し、前記EGR通路を、EGRガスが前記給気流と合流するように前記給気ポート内に開口するとともに、前記給気ポート内に前記開口部に対応して他の部分よりも面積を絞った絞り部を形成し、該絞り部のベンチュリ効果により前記開口部からのEGRガスの吸入を促進したことを特徴とする(請求項3)。
かかる発明において、好ましくは、前記絞り部は、前記開口部に対向する前記給気ポート内の周壁の一部を突設した突起部に形成される(請求項4)。
(2) In an engine with an EGR device in a cylinder head, which is provided with a fuel injection valve in the center of the cylinder of the engine and which has an EGR passage that extracts a part of exhaust gas and recirculates it to an intake port, Swirling flow generating means for swirling air in a fixed direction, and opening the EGR passage into the air supply port so that EGR gas merges with the air supply air, and the opening into the air supply port. A throttle portion having a smaller area than the other portions is formed corresponding to the above, and the intake of EGR gas from the opening portion is promoted by the venturi effect of the throttle portion (claim 3).
In this invention, it is preferable that the throttle portion is formed in a protruding portion that projects a part of the peripheral wall in the air supply port that faces the opening.

また、装置発明において、好ましくは、給気弁及び排気弁を各2個並べて設け、前記EGR通路を、前記一列の排気弁の1個に連通する排気ポートから導出して、他列の給気弁の1個に連通する給気ポートの注入口に接続したことを特徴とする(請求項5)。   Further, in the device invention, preferably, two supply valves and two exhaust valves are provided side by side, and the EGR passage is led out from an exhaust port communicating with one of the one row of exhaust valves, so It is connected to an inlet of an air supply port communicating with one of the valves (Claim 5).

本発明方法によれば、排気ガスの一部を抽出して給気ポートに還流するEGR通路を設けたEGR装置付きエンジンの制御方法であって、
(1)給気ポート内において給気を一定方向に旋回させる手段により給気を旋回させてエンジンの燃焼室に供給する。
(2)燃焼室の前記シリンダ中心部に対して外周寄りの部位に給気の旋回により発生する遠心力によって該給気を分布させて低EGR濃度のガスを保持する。
(3)燃焼室の中央部位にはEGRガスを投入して該中央部位のEGR濃度を前記外周寄りの部位よりも高濃度に保持させる。
(4)燃焼室に給気とEGRガスとのEGR濃度が不均一な混合気を形成する。
(5)不均一な混合気中に燃料噴霧を行う。
の5段階の作動で、EGR装置付きエンジンの制御を行う(請求項1)。
According to the method of the present invention, there is provided a control method for an engine with an EGR device provided with an EGR passage that extracts a part of exhaust gas and recirculates it to an intake port.
(1) The supply air is swirled by means for swirling the supply air in a fixed direction in the supply port and supplied to the combustion chamber of the engine.
(2) The supply air is distributed by centrifugal force generated by the rotation of the supply air in a portion closer to the outer periphery with respect to the cylinder central portion of the combustion chamber to hold a gas having a low EGR concentration.
(3) EGR gas is introduced into the central part of the combustion chamber to maintain the EGR concentration at the central part at a higher concentration than the part near the outer periphery.
(4) An air-fuel mixture having a non-uniform EGR concentration between the supply air and the EGR gas is formed in the combustion chamber.
(5) Spraying fuel in a non-uniform air-fuel mixture.
The engine with the EGR device is controlled by the five-stage operation (claim 1).

即ち、本方法発明によれば、給気ポート内に羽根を設けて羽根により給気の旋回力を与える、または、給気ポートを湾曲させて給気に旋回力を与える、等の公知の手段により、シリンダ中心周りに給気を旋回させて、エンジンの燃焼室に供給する。
そして、前記燃焼室においては、燃焼室中心部から噴射された燃料は、燃焼室の中心部近傍においては、予混合的燃焼状態となり高温燃焼状態となり、中央部及び該中央部よりも外側部位では拡散燃焼状態となり、シリンダライナ内壁面寄りの外周部位では低酸素濃度となっている。
この燃焼室中心部分では予混合的燃焼状態となりそれより外側の外周部位では拡散燃焼状態となる燃焼は、シリンダボア径が150mmを超えるような中、大型のディーゼルエンジンの燃焼において顕著になる。
That is, according to the method of the present invention, known means such as providing blades in the air supply port to give the air turning force by the blades, or curving the air supply port to give the air turning force, etc. Thus, the supply air is swirled around the center of the cylinder and supplied to the combustion chamber of the engine.
In the combustion chamber, the fuel injected from the center of the combustion chamber becomes a premixed combustion state in the vicinity of the center of the combustion chamber, becomes a high temperature combustion state, and in the central portion and the outer portion of the central portion. It becomes a diffusion combustion state, and has a low oxygen concentration at the outer peripheral portion near the inner wall surface of the cylinder liner.
The combustion in which the combustion chamber is in a premixed combustion state in the central portion of the combustion chamber and is in a diffusion combustion state in the outer peripheral portion outside it becomes remarkable in the combustion of a large diesel engine whose cylinder bore diameter exceeds 150 mm.

かかる燃焼室内の状態で、本発明によれば、前記給気ポート内における給気の旋回により発生する遠心力によって、密度が大きい低温の空気が外周部に集まるため、外周寄りの低酸素濃度の部位を給気リッチにして低EGR濃度のガスを保持する。これにより、燃焼室の外周寄りの部位は低EGR濃度の酸素リッチのガスで充満され、よって燃焼が促進されて煤の発生が回避される。
一方、前記燃焼室の燃焼室の中心部近傍においては予混合的燃焼域で高温であり、この部位に、EGR通路からのEGRガスを投入し、該中央部位のEGR濃度を前記外周寄りの部位よりも高濃度に保持させ、燃焼を緩慢にして高温化を抑制する。これにより、NOxが生成され易く高温の燃焼室の中央部位近傍は、外周寄りの部位よりもEGRガスを高濃度に保持し、燃焼を緩慢にして高温化を抑制して、NOxの発生を防止する。
In such a state in the combustion chamber, according to the present invention, low-temperature air having a high density gathers at the outer peripheral portion due to the centrifugal force generated by the swirling of the supply air in the supply port. The portion is made rich in the supply air to hold a gas with a low EGR concentration. As a result, the portion near the outer periphery of the combustion chamber is filled with the oxygen-rich gas with a low EGR concentration, and thus combustion is promoted and soot generation is avoided.
On the other hand, in the vicinity of the center of the combustion chamber of the combustion chamber, the temperature is high in the premixed combustion zone, and EGR gas from the EGR passage is introduced into this portion, and the EGR concentration in the central portion is set near the outer periphery. The concentration is kept higher than that, and the combustion is slowed down to suppress the high temperature. As a result, NOx is easily generated, and the EGR gas in the vicinity of the central part of the high-temperature combustion chamber is kept at a higher concentration than the part near the outer periphery, slowing the combustion and suppressing the temperature rise, thereby preventing the generation of NOx. To do.

そして、前記により、燃焼室の外周寄りの部位には酸素リッチの構成で、且つ燃焼室の中央部位にはEGRガスリッチの構成とよりなるEGR濃度が不均一な混合気を形成し、かかる不均一な混合気中に燃料噴霧を行って、燃焼させる。
従って、燃焼室の外周寄りの部位は酸素リッチで低EGR濃度の燃焼となって、煤の発生が回避される。また、燃焼室の中央部位近傍はEGRガスリッチで燃焼が緩慢になり、高温化が抑制されNOxの発生が回避される。
As described above, an air-fuel mixture having a non-uniform EGR concentration is formed in the portion near the outer periphery of the combustion chamber, and the EGR gas-rich constitution is formed in the central portion of the combustion chamber. The fuel is sprayed into a simple mixture and burned.
Therefore, the portion near the outer periphery of the combustion chamber becomes oxygen rich and low EGR concentration combustion, and soot generation is avoided. In addition, the vicinity of the central portion of the combustion chamber is rich in EGR gas and the combustion becomes slow, so that the temperature rise is suppressed and the generation of NOx is avoided.

そして、前記制御方法に実施するための第1の装置発明によれば、
燃焼室内で給気を一定方向に旋回させる旋回流生成手段を有し、前記給気ポート内を給気流がエンジンの燃焼室に向けて層状に流動するとともに、前記EGR通路を、EGRガスが前記層状の給気流と同一方向に且つ該層状の給気流に対して混合せずに一部が分離した状態で前記燃焼室に向けて流動するように前記給気ポートに接続するので(請求項2)、
給気ポート内をエンジンの燃焼室に向けて層状に流動する給気に、EGRガスを前記層状の給気流と同一方向に且つ該層状の給気流に対して混合せずに一部が分離した状態で前記燃焼室に向けて流動するように前記給気ポートに接続することにより、EGRガスが給気と全て混合せずに一部が分離した状態で前記燃焼室に向けて流動する。
すなわち、吸気ポート内の短い距離であるため、EGRガスと給気とが完全に混合してしまうことなく、さらに、前記のように同一方向に層状に流れるため、EGRガスが給気と一部が分離した状態で層状に合流して燃焼室に導入される。
これにより、燃焼室にはEGRガスが給気と層状になって合流した不均一な混合気が導入されて、かかる不均一な混合気のため、給気に与えられた旋回流によって、密度が大きい低温の空気が外周部に集まる作用が一層効果的に得られる。
従って、燃焼室の外周寄りの部位は酸素リッチで低EGR濃度の燃焼となって、煤の発生が回避され、また、燃焼室の中央部位近傍はEGRガスリッチで燃焼が緩慢になり、高温化が抑制され、NOxの発生を回避できる。
And according to the first device invention for carrying out the control method,
A swirl flow generating means for swirling the supply air in a fixed direction in the combustion chamber, and the supply air flow flows in layers in the supply port toward the combustion chamber of the engine, and the EGR gas passes through the EGR passage. Since it is connected to the air supply port so as to flow toward the combustion chamber in the same direction as the layered airflow and in a state of being partly separated without mixing with the layered airflow (Claim 2). ),
A portion of the supply air that flows in layers in the supply port toward the combustion chamber of the engine was separated without mixing EGR gas in the same direction as the layered supply airflow and with the layered supply airflow. By connecting to the supply port so as to flow toward the combustion chamber in a state, the EGR gas flows toward the combustion chamber in a state where it is partly separated without being mixed with the supply air.
That is, since the distance is short in the intake port, the EGR gas and the supply air are not mixed completely, and further flow in layers in the same direction as described above. Are separated into a layer and introduced into the combustion chamber.
As a result, a non-uniform air-fuel mixture in which EGR gas is layered with the supply air and introduced into the combustion chamber is introduced into the combustion chamber. Due to the non-uniform air-fuel mixture, the swirl flow given to the air supply causes the density to increase. The action of gathering large low-temperature air at the outer peripheral portion can be obtained more effectively.
Therefore, the portion near the outer periphery of the combustion chamber becomes oxygen rich and low EGR concentration combustion, soot generation is avoided, and the vicinity of the central portion of the combustion chamber is rich in EGR gas and the combustion becomes slow, and the temperature rises. It is suppressed and generation | occurrence | production of NOx can be avoided.

また、前記制御方法に実施するための第2の装置発明によれば、
前記EGR装置付きエンジンにおいて、燃焼室内で給気を一定方向に旋回させる旋回流生成手段を有し、EGR通路を、EGRガスが給気流と合流するように給気ポート内に開口するとともに、給気ポート内に前記開口部に対応して他の部分よりも面積を絞った絞り部を形成し、該絞り部のベンチュリ効果により前記開口部からのEGRガスの吸入を促進するように構成し(請求項3)、且つ好ましくは、前記絞り部は、前記開口部に対向する給気ポート内の周壁の一部を突設した突起部に形成するので(請求項4)、前記突起部により構成される絞り部で、給気ポート内の他の部分よりも面積を絞ることにより、該絞り部のベンチュリ効果によって、EGRガスが給気流と合流するように給気ポート内に開口する開口部からのEGRガスの吸入を促進するようにしたので、絞り部近傍の静圧が低くなってEGRガスの吸入が促進される。
その結果、給気の流速の増加とEGRガスの吸入促進によって、さらに吸気ポート内の短い距離内においての給気とEGRガスとの完全な混合がなされず、給気とEGRガスとの不均一な分離状態のまま燃焼室に流入することとなる。これにより、不均一な混合気が導入されて、かかる不均一な混合気のため、給気に与えられた旋回流によって、密度が大きい低温の空気が外周部に集まる作用が一層効果的に得られる。
従って、燃焼室の中央部に、EGR効率が上昇したEGRガスを集めることができ、中央部近傍ではEGRガスリッチでNOxの発生を回避できる。
そして、その反面で燃焼室の外周寄りの部位は酸素リッチとなって低EGR濃度となるため燃焼が促進されて煤の発生が回避される。
According to the second device invention for carrying out the control method,
The engine with the EGR device has a swirl flow generating means for swirling the supply air in a fixed direction in the combustion chamber, and the EGR passage opens into the intake port so that the EGR gas merges with the supply air flow. A throttle part having a smaller area than that of the other part is formed in the air port corresponding to the opening part, and is configured to promote the suction of EGR gas from the opening part by the venturi effect of the throttle part ( (Claim 3), and preferably, since the throttle part is formed in a projecting part projecting a part of the peripheral wall in the air supply port facing the opening (Claim 4), the projecting part is constituted by the projecting part. By restricting the area of the throttle portion to other portions in the air supply port, the vent portion of the throttle portion causes the EGR gas to merge with the air supply air from the opening that opens into the air supply port. Of EGR gas Since so as to facilitate entry, inhalation of EGR gas is promoted static pressure in the vicinity of the throttle portion becomes lower.
As a result, the increase in the flow rate of the supply air and the promotion of the intake of the EGR gas do not completely mix the supply air and the EGR gas within a short distance in the intake port, and the supply air and the EGR gas are not uniform. It will flow into the combustion chamber in a separate state. As a result, a non-uniform air-fuel mixture is introduced, and because of this non-uniform air-fuel mixture, the swirl flow imparted to the supply air can more effectively obtain the action of collecting low-temperature air having a high density at the outer periphery. It is done.
Therefore, EGR gas with increased EGR efficiency can be collected in the central portion of the combustion chamber, and generation of NOx can be avoided due to EGR gas rich in the vicinity of the central portion.
On the other hand, the portion near the outer periphery of the combustion chamber becomes rich in oxygen and has a low EGR concentration, so that combustion is promoted and soot generation is avoided.

また、本発明において、好ましくは、給気弁及び排気弁を各2個並べて設け、前記EGR通路を、前記一列の排気弁の1個に連通する排気ポートから導出して、他列の給気弁の1個に連通する給気ポートの注入口に接続するとよい(請求項5)、一列の排気弁の1個から他列の給気弁の1個のみにEGRガスを供給することで、給気2弁による燃焼室内の強旋回流の生成が可能になるとともに、片側の1個の給気弁からのEGRガスの供給によって燃焼室内におけるEGRガスの流入に片寄りを生じさせ、燃焼室内における給気とEGRガスとの不均一性を高めて、強旋回流による密度が大きい低温の空気が外周部に集まる作用が一層効果的に得られる。
従って、燃焼室の外周寄りの部位は酸素リッチで低EGR濃度の燃焼となって、煤の発生が回避され、また、燃焼室の中央部位近傍はEGRガスリッチで燃焼が緩慢になり、高温化が抑制され、NOxの発生を回避できる。
In the present invention, it is preferable that two intake valves and two exhaust valves are provided side by side, and the EGR passage is led out from an exhaust port communicating with one of the exhaust valves in one row, so It may be connected to an inlet of an air supply port communicating with one of the valves (Claim 5). By supplying EGR gas from one of the exhaust valves in one row to only one of the intake valves in the other row, A strong swirl flow in the combustion chamber can be generated by the two air supply valves, and the supply of EGR gas from one air supply valve on one side causes a shift in the inflow of EGR gas in the combustion chamber. This improves the non-uniformity between the air supply and the EGR gas in the air and more effectively obtains the action of collecting low-temperature air having a high density due to the strong swirling flow at the outer peripheral portion.
Therefore, the portion near the outer periphery of the combustion chamber becomes oxygen rich and low EGR concentration combustion, soot generation is avoided, and the vicinity of the central portion of the combustion chamber is rich in EGR gas and the combustion becomes slow, and the temperature rises. It is suppressed and generation of NOx can be avoided.

以下、本発明を図に示した実施例を用いて詳細に説明する。但し、この実施例に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
(第1実施例)
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this example are not intended to limit the scope of the present invention only to specific examples unless otherwise specified. Only.
(First embodiment)

図1は本発明の第1実施例に係るEGR装置付きディーゼルエンジンのシリンダ周りの給、排気構成を示す断面図(図2のB−B線断面図)である。図2は図1のA−A矢視図である。図3は本発明の第1実施例に係る給気およびEGRガスの燃焼室内における作動説明図である。図4は図3のD−D矢視図である。   FIG. 1 is a cross-sectional view (a cross-sectional view taken along line BB in FIG. 2) showing a supply and exhaust configuration around a cylinder of a diesel engine with an EGR device according to a first embodiment of the present invention. FIG. 2 is an AA arrow view of FIG. FIG. 3 is an operation explanatory diagram of the supply air and EGR gas in the combustion chamber according to the first embodiment of the present invention. 4 is a view taken along the line DD in FIG.

図1および従来技術を示す図8において、符号100で示されるディーゼルエンジン(以下エンジンという)において、シリンダヘッド111の中央部に装着された燃料噴射弁107(図2参照)からの燃料噴射により燃焼された後の排気ガスは、各シリンダに2つ設けられた排気弁104及び排気ポート109を通ってから、排気ターボ過給機122(図8参照)の排気タービン120に送りこまれて該排気タービン120を駆動する。   1 and FIG. 8 showing the prior art, in a diesel engine (hereinafter referred to as an engine) denoted by reference numeral 100, combustion is performed by fuel injection from a fuel injection valve 107 (see FIG. 2) mounted at the center of a cylinder head 111. The exhaust gas after being passed through the exhaust valve 104 and the exhaust port 109 provided in two in each cylinder and then sent to the exhaust turbine 120 of the exhaust turbocharger 122 (see FIG. 8). 120 is driven.

一方、排気タービン120(図8参照)に同軸駆動されるコンプレッサ121によって圧縮された空気は、給気管125を通り、空気冷却器134で冷却されて、スロットル弁123を経て、給気ポート108に入り、該給気ポート108及び給気弁105を通って燃焼室103に入り、燃焼を行いピストンリング106が嵌挿されたピストン101を、シリンダライナ102の内面に沿って押し下げる。   On the other hand, the air compressed by the compressor 121 coaxially driven by the exhaust turbine 120 (see FIG. 8) passes through the air supply pipe 125, is cooled by the air cooler 134, passes through the throttle valve 123, and is supplied to the air supply port 108. Enters the combustion chamber 103 through the air supply port 108 and the air supply valve 105, burns down, and pushes down the piston 101 into which the piston ring 106 is inserted along the inner surface of the cylinder liner 102.

以上の構成は、従来公知の2弁式EGR装置付きディーゼルエンジンと同様である。本発明は、EGR装置を備えた給気装置の制御方法及びその装置に関するものである。   The above configuration is the same as that of a conventionally known diesel engine with a two-valve EGR device. The present invention relates to a method for controlling an air supply device provided with an EGR device and the device.

図1において、前記排気ポート109の分岐点110aからエンジンの排気ガスの一部を抜き出してEGRガスとし、該EGRガスを、シリンダヘッド111に設けられたEGR通路110を通して、給気ポート108の合流部110bに還流する(この例のように、給気弁105及び排気弁104は、各2個の2弁式給、排気弁であるが、給気弁105及び排気弁104が1つの場合について説明する)。   In FIG. 1, a part of the engine exhaust gas is extracted from the branch point 110 a of the exhaust port 109 to become EGR gas, and this EGR gas is joined to the intake port 108 through the EGR passage 110 provided in the cylinder head 111. (As in this example, the supply valve 105 and the exhaust valve 104 are two two-valve supply / exhaust valves, but the supply valve 105 and the exhaust valve 104 are one. explain).

本発明の第1実施例によれば、まず給気ポート108内において、図3に示すように、給気に一定の旋回力を与えた旋回流1aを、図2のように、給気ポート108内に形成する。
該旋回流1aの形成方法は、給気ポート108内に羽根を設けて該羽根により給気の旋回力を与える、あるいは給気ポートを湾曲させて給気に旋回力を与える、等の公知の手段によって、給気を旋回1aさせる。
かかる給気ポート108内の旋回流1aにより、エンジンの燃焼室103(図1参照)内には旋回流1が形成される。
According to the first embodiment of the present invention, first, in the air supply port 108, as shown in FIG. 3, the swirling flow 1a in which a constant swirling force is applied to the air supply is changed into an air supply port as shown in FIG. 108.
The swirling flow 1a is formed by a known method such as providing blades in the air supply port 108 to give the air turning force by the blades, or bending the air supply port to give the air turning force. By means, the supply air is swirled 1a.
The swirl flow 1a in the air supply port 108 forms a swirl flow 1 in the combustion chamber 103 (see FIG. 1) of the engine.

ここで、前記燃焼室103においては、図4に示すように、火炎が、燃焼室103の中心部100a近傍の中央部位107cでは予混合的燃焼域で高温であり、中央部及び該中央部よりも外側部位では拡散燃焼域であり、そしてシリンダライナ102内壁面寄りの外周部位107bでは低酸素濃度となっている。
このような燃焼室103内の燃焼状態で、本発明方法によれば、前記給気ポート108内における給気の旋回を、公知の手段により、給気を旋回させて旋回流1aを形成し(図2参照)、エンジンの燃焼室103に供給して旋回流1(図3参照)を形成する。
かかる旋回1aにより発生する遠心力によって、密度が大きい低温の空気が外周部に集まるので、給気を外周寄りの部位107bに分布させて、該外周寄りの部位107bにおいて低EGR濃度のガスを保持せしめる。
これにより、燃焼室103の外周寄りの部位107bは低EGR濃度の酸素リッチのガスで充満され、よって煤の発生が回避される。
Here, in the combustion chamber 103, as shown in FIG. 4, the flame is hot in the premixed combustion zone at the central portion 107c in the vicinity of the central portion 100a of the combustion chamber 103. Also, the outer region is a diffusion combustion region, and the outer peripheral region 107b near the inner wall surface of the cylinder liner 102 has a low oxygen concentration.
In such a combustion state in the combustion chamber 103, according to the method of the present invention, the swirling of the air supply in the air supply port 108 is swirled by known means to form the swirling flow 1a ( 2) and is supplied to the combustion chamber 103 of the engine to form a swirling flow 1 (see FIG. 3).
Due to the centrifugal force generated by the swirl 1a, low-temperature air having a high density gathers at the outer peripheral portion, so that the supply air is distributed to the portion 107b near the outer periphery, and a gas with a low EGR concentration is held in the portion 107b near the outer periphery. Let me.
As a result, the portion 107b near the outer periphery of the combustion chamber 103 is filled with the oxygen-rich gas having a low EGR concentration, and thus generation of soot is avoided.

さらに、一方、図4に示すように、前記燃焼室103の中心部近傍の中央部位107cでは予混合的燃焼域で高温になり易く、この部位にEGR通路110からのEGRガスを投入し、該中央部位107cのEGR濃度を前記外周寄りの部位107bよりも高濃度に保持させることにより燃焼を緩慢にして高温化を抑制する。
これにより、高温でNOxが生成され易い燃焼室103の中央部位107c近傍は、外周寄りの部位107bよりもEGRガスを高濃度に保持し、燃焼を緩慢にして高温化を抑制して、NOxの発生を防止する。
Further, on the other hand, as shown in FIG. 4, the central portion 107c in the vicinity of the center portion of the combustion chamber 103 is likely to become high temperature in the premixed combustion zone, and the EGR gas from the EGR passage 110 is introduced into this portion, By maintaining the EGR concentration in the central portion 107c at a higher concentration than that in the portion 107b near the outer periphery, the combustion is slowed and the temperature rise is suppressed.
As a result, the vicinity of the central portion 107c of the combustion chamber 103 where NOx is likely to be generated at a high temperature maintains the EGR gas at a higher concentration than the portion 107b near the outer periphery, slows the combustion and suppresses the high temperature, and reduces NOx. Prevent occurrence.

かかる作動により、燃焼室103に給気とEGRガスとのEGR濃度が不均一な混合気が形成される。そして、この不均一な混合気中に、エンジンの中央部から燃料噴射弁107によって燃料噴霧107aを行う(図3は燃料噴射弁107の噴口が6噴口の場合を示す)。
(第2実施例)
With this operation, an air-fuel mixture having a non-uniform EGR concentration between the supply air and the EGR gas is formed in the combustion chamber 103. Then, fuel spray 107a is performed in the non-uniform air-fuel mixture by the fuel injection valve 107 from the center of the engine (FIG. 3 shows the case where the fuel injection valve 107 has six injection holes).
(Second embodiment)

前記第1実施例の制御方法を実施する第1の手段として、図5に示す第2実施例の手段がある。図5(A)は前記第2実施例にかかるシリンダヘッドの部分断面図、(B)は(A)におけるC−C断面図である。
この第2実施例においては、前記給気ポート108内を給気流層状にエンジンの燃焼室103に向けて層状に流動するとともに、EGRガスを前記層状の給気流Wtと同一方向に且つ該層状の給気流Wtに対して混合せずに一部が分離した状態で流れるように(EGRガス流Wa)前記燃焼室103に向けて流動するように、前記給気ポート108に接続する。
As a first means for carrying out the control method of the first embodiment, there is a means of the second embodiment shown in FIG. FIG. 5A is a partial cross-sectional view of the cylinder head according to the second embodiment, and FIG. 5B is a cross-sectional view taken along the line CC in FIG.
In the second embodiment, the inside of the air supply port 108 flows in a layered manner toward the combustion chamber 103 of the engine in the form of a supply airflow layer, and the EGR gas flows in the same direction as the layered supply airflow Wt. The air supply port 108 is connected to the air supply port 108 so as to flow toward the combustion chamber 103 so that the air supply air flow Wt flows without being mixed (EGR gas flow Wa).

これにより、EGRガスWaが給気Wtと混合せずに一部が分離した状態で前記燃焼室103に向けて流動する。
すなわち、すなわち、吸気ポート108内の短い距離であるため、EGRガスWaが給気Wtと全て混合してしまうことなく、さらに、前記のように同一方向に層状に流れるため、EGRガスWaが給気Wtと一部が分離した状態で層状に合流して燃焼室103に導入される。
これにより、燃焼室103にはEGRガスWaが給気Wtと層状になって合流した不均一な混合気が導入されて、かかる不均一な混合気のため、給気Wtに与えられた旋回流によって、密度が大きい低温の空気が外周部に集まる作用が一層効果的に得られる。そして、かかる不均一な混合気中に燃料噴霧を行って燃焼させることとなる。
従って、燃焼室103の外周寄りの部位107bは給気リッチで低EGR濃度の燃焼となって、煤の発生が回避され、また、燃焼室103の中央部位107c近傍はEGRガスリッチで燃焼が緩慢になるため高温化が抑制され、NOxの発生を回避できる。
(第3実施例)
Thereby, the EGR gas Wa flows toward the combustion chamber 103 in a state where the EGR gas Wa is not mixed with the supply air Wt and is partially separated.
That is, since the EGR gas Wa does not mix with the supply air Wt and flows in layers in the same direction as described above because the distance is short in the intake port 108, the EGR gas Wa is supplied. The gas Wt and a part of the gas Wt are separated and joined in a layered manner and introduced into the combustion chamber 103.
As a result, the non-uniform air-fuel mixture in which the EGR gas Wa is combined with the supply air Wt in a layered manner is introduced into the combustion chamber 103, and the swirl flow given to the air supply Wt due to the non-uniform air-fuel mixture. Thus, the action of collecting low-temperature air having a high density at the outer peripheral portion can be obtained more effectively. Then, fuel spray is performed in the non-uniform air-fuel mixture and burned.
Therefore, the portion 107b near the outer periphery of the combustion chamber 103 becomes rich in the supply air and burns at a low EGR concentration, so that generation of soot is avoided, and the vicinity of the central portion 107c of the combustion chamber 103 is rich in EGR gas and the combustion is slow. Therefore, high temperature is suppressed and generation of NOx can be avoided.
(Third embodiment)

前記第1実施例の制御方法を実施する第2の手段として、図6に示す第3実施例の手段がある。図6は前記第3実施例にかかるシリンダヘッドの部分断面図である。
この第3実施例においては、EGR通路110を、EGRガスが給気Wtと合流するように給気ポート108内に開口する。
即ちEGR通路110の給気ポート108側開口部を、後述する絞り部3に対向するように向ける。このためEGR通路110を図6のように、開口部110sを屈曲させても良い。
該絞り部3は、前記開口部110sに対応して、給気ポート108内に他の部分よりも面積を絞って絞り部3を形成し、かかる絞り部3を形成するため、前記開口部110sに対向する給気ポート108内の周壁の一部を突設した突起部2に形成する。
As a second means for implementing the control method of the first embodiment, there is a means of the third embodiment shown in FIG. FIG. 6 is a partial sectional view of the cylinder head according to the third embodiment.
In the third embodiment, the EGR passage 110 is opened into the air supply port 108 so that the EGR gas merges with the air supply Wt.
That is, the opening portion on the supply port 108 side of the EGR passage 110 is directed so as to face the throttle portion 3 described later. Therefore, the opening portion 110s of the EGR passage 110 may be bent as shown in FIG.
The throttle portion 3 corresponds to the opening portion 110 s to form the throttle portion 3 with a smaller area than the other portions in the air supply port 108, and the opening portion 110 s is formed to form the throttle portion 3. A part of the peripheral wall in the air supply port 108 opposite to the air supply port 108 is formed on the protruding portion 2.

かかる第3実施例によれば、前記突起部2により構成される絞り部3で、給気ポート108内の他の部分よりも面積を絞ることにより(面積L)、該絞り部3のベンチュリ効果によって、EGRガスWaが給気Wtと合流するように、給気ポート108内に開口する開口部110sからのEGRガスWaの吸入を促進できる。   According to the third embodiment, by restricting the area of the restricting portion 3 constituted by the protruding portion 2 as compared with other portions in the air supply port 108 (area L), the venturi effect of the restricting portion 3 is achieved. Thus, the intake of the EGR gas Wa from the opening 110s opened in the supply port 108 can be promoted so that the EGR gas Wa merges with the supply air Wt.

従って、給気ポート108内の他の部分よりも面積を絞ることにより、該絞り部3のベンチュリ効果によって、絞り部近傍の静圧が低くなってEGRガスWaが給気Wtと合流するように給気ポート108内に開口する開口部110sからのEGRガスWaの吸入が促進される。
その結果、給気の流速の増加とEGRガスWaの吸入促進によって、さらに吸気ポート108内の短い距離内においての給気WtとEGRガスWaとの完全な混合がなされず、給気WtとEGRガスWaとの不均一な分離状態のまま燃焼室103に流入することとなる。これにより、不均一な混合気が導入されて、かかる不均一な混合気のため、給気に与えられた旋回流によって、密度が大きい低温の空気が外周部に集まる作用が一層効果的に得られる。
従って、燃焼室103の中央部に、EGR効率が上昇したEGRガスを集めることができ、中央部ではEGRガスリッチで燃焼が緩慢になるため高温化が抑制され、NOxの発生を回避できる。
そして、その反面で燃焼室103の外周寄りの部位は酸素リッチとなって燃焼が促進され、煤の発生が回避される。
(第4実施例)
Therefore, by narrowing the area more than the other part in the air supply port 108, the static pressure in the vicinity of the throttle part is lowered by the venturi effect of the throttle part 3, so that the EGR gas Wa merges with the air supply Wt. Inhalation of the EGR gas Wa from the opening 110s that opens into the air supply port 108 is promoted.
As a result, due to the increase in the flow rate of the supply air and the promotion of the intake of the EGR gas Wa, the supply air Wt and the EGR gas Wa are not completely mixed within a short distance in the intake port 108, and the supply air Wt and EGR are not mixed. The gas flows into the combustion chamber 103 in a non-uniform separation state from the gas Wa. As a result, a non-uniform air-fuel mixture is introduced, and because of this non-uniform air-fuel mixture, the swirl flow imparted to the supply air can more effectively obtain the action of collecting low-temperature air having a high density at the outer periphery. It is done.
Therefore, EGR gas with increased EGR efficiency can be collected in the central portion of the combustion chamber 103. In the central portion, EGR gas is rich and combustion becomes slow, so that the temperature rise is suppressed and generation of NOx can be avoided.
On the other hand, the portion near the outer periphery of the combustion chamber 103 becomes rich in oxygen and combustion is promoted, so that generation of soot is avoided.
(Fourth embodiment)

図7は、本発明の第4実施例を示す図2対応図である。
この第4実施例は、前記エンジンの燃焼室103のシリンダ中心部に燃料噴射弁107を備えるとともに、給気弁105a,105b及び排気弁104a,104bを各2個横に並べて設けた配置となっている。
そして、シリンダヘッド111内に設けたEGR通路110を、前記一列の排気弁104aの1個に連通する排気ポート109aから導出して(分岐点110a)、他列の給気弁105bの1個に連通する給気ポート108bの合流部110bに接続する。
かかる第4実施例によれば、一列の排気弁104aの1個から他列の給気弁105bの1個のみにEGRガスを供給するので、給気2弁による燃焼室内の強旋回流の生成が可能になるとともに、片側の1個の給気弁105bからのEGRガスの供給によって燃焼室103内におけるEGRガスWaの流入に片寄りを生じさせ、燃焼室103内における給気とEGRガスとの不均一性を高めて、強旋回流による密度が大きい低温の空気が外周部に集まる作用が一層効果的に得られる。
尚、前記排気弁104bに連通する排気ポート109bと、給気弁105aに連通する給気ポート108aとを接続してもよい。
FIG. 7 is a block diagram corresponding to FIG. 2 showing a fourth embodiment of the present invention.
In the fourth embodiment, a fuel injection valve 107 is provided at the center of the cylinder of the combustion chamber 103 of the engine, and two supply valves 105a and 105b and two exhaust valves 104a and 104b are arranged side by side. ing.
Then, the EGR passage 110 provided in the cylinder head 111 is led out from the exhaust port 109a communicating with one of the exhaust valves 104a in one row (branch point 110a), and is connected to one of the intake valves 105b in the other row. It connects with the confluence | merging part 110b of the supply port 108b which connects.
According to the fourth embodiment, since the EGR gas is supplied from one of the exhaust valves 104a in one row to only one of the intake valves 105b in the other row, the strong swirling flow in the combustion chamber is generated by the two supply valves. The supply of EGR gas from one air supply valve 105b on one side causes a shift in the inflow of EGR gas Wa in the combustion chamber 103, and the supply air and EGR gas in the combustion chamber 103 are The non-uniformity is improved, and the action of collecting low-temperature air having a high density due to the strong swirling flow at the outer peripheral portion can be obtained more effectively.
Note that an exhaust port 109b communicating with the exhaust valve 104b and an air supply port 108a communicating with the air supply valve 105a may be connected.

本発明によれば、EGR装置付きディーゼルエンジンにおいて、EGRガスの供給によりNOx低減を成すとともに、燃焼ガス中の煤の発生を防止して完全燃焼をなさしめるディーゼルエンジンを提供できる。   According to the present invention, in a diesel engine with an EGR device, it is possible to provide a diesel engine that achieves complete combustion by reducing NOx by supplying EGR gas and preventing generation of soot in the combustion gas.

本発明の第1実施例に係るEGR装置付きディーゼルエンジンのシリンダ周りの給、排気構成を示す断面図(図2のB−B線断面図)である。It is sectional drawing (BB sectional drawing of FIG. 2) which shows the supply and exhaust structure around the cylinder of the diesel engine with an EGR apparatus which concerns on 1st Example of this invention. 本発明の第1実施例にかかる図1のA−A矢視図である。It is an AA arrow line view of FIG. 1 concerning 1st Example of this invention. 本発明の第1実施例に係る給気およびEGRガスの燃焼室内における作動説明図である。It is operation | movement explanatory drawing in the combustion chamber of the air supply and EGR gas which concern on 1st Example of this invention. 本発明の第1実施例に係る図3のD−D線矢視図である。FIG. 4 is a view taken along line DD of FIG. 3 according to the first embodiment of the present invention. (A)は前記第2実施例にかかるシリンダヘッドの部分断面図、(B)は(A)におけるC−C断面図である。(A) is a fragmentary sectional view of the cylinder head concerning the said 2nd Example, (B) is CC sectional drawing in (A). 本発明の第3実施例にかかるシリンダヘッドの部分断面図である。It is a fragmentary sectional view of the cylinder head concerning the 3rd example of the present invention. 本発明の第4実施例にかかる図2対応図である。FIG. 9 is a diagram corresponding to FIG. 2 according to a fourth embodiment of the present invention. 従来のEGR(排気再循環)装置付きディーゼルエンジンの全体構成を示す構成図である。It is a block diagram which shows the whole structure of the conventional diesel engine with an EGR (exhaust gas recirculation) apparatus.

符号の説明Explanation of symbols

1 旋回流
2 突起部
3 絞り部
100 エンジン(4サイクルディーゼルエンジン)
101 ピストン
102 シリンダライナ
103 燃焼室
104,104a,104b 排気弁
105,105a,105b 給気弁
107 燃料噴射弁
108,108a,108b 給気ポート
109,109a,109b 排気ポート
110 EGR通路
110b 合流部
111 シリンダヘッド
122 排気ターボ過給機
123 スロットル弁
DESCRIPTION OF SYMBOLS 1 Swirling flow 2 Protrusion part 3 Restriction part 100 Engine (4-cycle diesel engine)
DESCRIPTION OF SYMBOLS 101 Piston 102 Cylinder liner 103 Combustion chamber 104,104a, 104b Exhaust valve 105,105a, 105b Supply valve 107 Fuel injection valve 108,108a, 108b Supply port 109,109a, 109b Exhaust port 110 EGR passage 110b Merging part 111 Cylinder Head 122 Exhaust turbocharger 123 Throttle valve

Claims (5)

エンジンのシリンダ中心部に燃料噴射弁を備え、排気ガスの一部を抽出して給気ポートに還流するEGR通路を備えてなるEGR装置付きエンジンの制御方法において、
給気を一定方向に旋回させる手段により給気を旋回させてエンジンの燃焼室に供給し、前記燃焼室の前記シリンダ中心部に対して外周寄りの部位に前記給気の旋回により発生する遠心力によって該給気を分布させて低EGR濃度のガスを保持し、該燃焼室の中央部位にはEGRガスを投入して該中央部位のEGR濃度を前記外周寄りの部位よりも高濃度に保持させることにより、前記燃焼室に前記給気とEGRガスとのEGR濃度が不均一な混合気を形成し、該不均一な混合気中に燃料噴霧を行うことを特徴とするEGR装置付きエンジンの制御方法。
In a control method of an engine with an EGR device comprising a fuel injection valve in the center of a cylinder of an engine, and an EGR passage that extracts a part of exhaust gas and recirculates it to an air supply port.
Centrifugal force generated by swirling of the air supply at a portion closer to the outer periphery with respect to the center of the cylinder of the combustion chamber by swirling the air supply by means for swirling the air supply in a certain direction and supplying it to the combustion chamber of the engine Distributes the supply air to hold a gas having a low EGR concentration, and injects EGR gas into the central portion of the combustion chamber to keep the EGR concentration at the central portion higher than that near the outer periphery. Thus, the control of the engine with the EGR device is characterized in that an air-fuel mixture having a non-uniform EGR concentration of the supply air and the EGR gas is formed in the combustion chamber, and fuel spray is performed in the non-uniform air-fuel mixture. Method.
エンジンのシリンダ中心部に燃料噴射弁を備え、排気ガスの一部を抽出して給気ポートに還流するEGR通路を備えてなるEGR装置付きエンジンにおいて、
燃焼室内で給気を一定方向に旋回させる旋回流生成手段を有し、前記給気ポート内を給気流がエンジンの燃焼室に向けて層状に流動するとともに、前記EGR通路を、EGRガスが前記層状の給気流と同一方向に且つ該層状の給気流に対して混合せずに一部が分離した状態で前記燃焼室に向けて流動するように前記給気ポートに接続したことを特徴とするEGR装置付きエンジン。
In an engine with an EGR device comprising a fuel injection valve in the center of the cylinder of the engine and an EGR passage that extracts a part of the exhaust gas and recirculates it to the supply port,
A swirl flow generating means for swirling the supply air in a fixed direction in the combustion chamber, and the supply air flow flows in layers in the supply port toward the combustion chamber of the engine, and the EGR gas passes through the EGR passage. The air supply port is connected to the air supply port so as to flow toward the combustion chamber in the same direction as the layered air supply air and in a state where the layered air supply air is partly separated without mixing with the layered air supply air. Engine with EGR device.
エンジンのシリンダ中心部に燃料噴射弁を備え、排気ガスの一部を抽出して給気ポートに還流するEGR通路を備えてなるEGR装置付きエンジンにおいて、
燃焼室内で給気を一定方向に旋回させる旋回流生成手段を有し、前記EGR通路を、EGRガスが前記給気流と合流するように前記給気ポート内に開口するとともに、前記給気ポート内に前記開口部に対応して他の部分よりも面積を絞った絞り部を形成し、該絞り部のベンチュリ効果により前記開口部からのEGRガスの吸入を促進したことを特徴とするEGR装置付きエンジン。
In an engine with an EGR device comprising a fuel injection valve in the center of the cylinder of the engine and an EGR passage that extracts a part of the exhaust gas and recirculates it to the supply port,
A swirl flow generating means for swirling the supply air in a fixed direction in the combustion chamber; and opening the EGR passage into the supply port so that EGR gas merges with the supply air flow; A throttle part with a smaller area than the other part is formed corresponding to the opening part, and EGR gas suction from the opening part is promoted by the venturi effect of the throttle part. engine.
前記絞り部は、前記開口部に対向する前記給気ポート内の周壁の一部を突設した突起部に形成したことを特徴とする請求項3記載のEGR装置付きエンジン。   The engine with an EGR device according to claim 3, wherein the throttle portion is formed in a protruding portion that projects a part of a peripheral wall in the air supply port that faces the opening. 給気弁及び排気弁を各2個並べて設け、前記EGR通路を、前記一列の排気弁の1個に連通する排気ポートから導出して、他列の給気弁の1個に連通する給気ポートの注入口に接続したことを特徴とする請求項2または3に記載のEGR装置付きエンジン。   Two air supply valves and two exhaust valves are provided side by side, and the EGR passage is led out from an exhaust port communicating with one of the exhaust valves in the one row, and the air supply communicating with one of the air supply valves in the other row The engine with an EGR device according to claim 2, wherein the engine is connected to an inlet of a port.
JP2008232738A 2008-09-10 2008-09-10 Control method of diesel engine with EGR device Expired - Fee Related JP5148423B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008232738A JP5148423B2 (en) 2008-09-10 2008-09-10 Control method of diesel engine with EGR device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008232738A JP5148423B2 (en) 2008-09-10 2008-09-10 Control method of diesel engine with EGR device

Publications (2)

Publication Number Publication Date
JP2010065609A true JP2010065609A (en) 2010-03-25
JP5148423B2 JP5148423B2 (en) 2013-02-20

Family

ID=42191398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008232738A Expired - Fee Related JP5148423B2 (en) 2008-09-10 2008-09-10 Control method of diesel engine with EGR device

Country Status (1)

Country Link
JP (1) JP5148423B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130032123A1 (en) * 2011-08-01 2013-02-07 Denso Corporation Gas supply apparatus for internal combustion engine
WO2013021779A1 (en) * 2011-08-10 2013-02-14 本田技研工業株式会社 Egr device for internal combustion engine

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112158A (en) * 1997-06-13 1999-01-06 Nissan Motor Co Ltd Exhaust circulating device for stratified combustion engine
JP2004156519A (en) * 2002-11-06 2004-06-03 Mazda Motor Corp Combustion control device for engine
JP2004270632A (en) * 2003-03-11 2004-09-30 Yanmar Co Ltd Exhaust gas recirculation device for engine
JP2008196306A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH112158A (en) * 1997-06-13 1999-01-06 Nissan Motor Co Ltd Exhaust circulating device for stratified combustion engine
JP2004156519A (en) * 2002-11-06 2004-06-03 Mazda Motor Corp Combustion control device for engine
JP2004270632A (en) * 2003-03-11 2004-09-30 Yanmar Co Ltd Exhaust gas recirculation device for engine
JP2008196306A (en) * 2007-02-08 2008-08-28 Toyota Motor Corp Exhaust gas recirculation device for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130032123A1 (en) * 2011-08-01 2013-02-07 Denso Corporation Gas supply apparatus for internal combustion engine
JP2013032708A (en) * 2011-08-01 2013-02-14 Denso Corp Gas supply apparatus for internal combustion engine
US9062631B2 (en) 2011-08-01 2015-06-23 Denso Corporation Gas supply apparatus for internal combustion engine
WO2013021779A1 (en) * 2011-08-10 2013-02-14 本田技研工業株式会社 Egr device for internal combustion engine
JPWO2013021779A1 (en) * 2011-08-10 2015-03-05 本田技研工業株式会社 EGR device for internal combustion engine
US9435297B2 (en) 2011-08-10 2016-09-06 Honda Motor Co., Ltd. EGR device for internal combustion engine

Also Published As

Publication number Publication date
JP5148423B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
US8291881B2 (en) Piston for internal combustion engine
US9803538B2 (en) Ducted combustion systems utilizing duct structures
JP5811538B2 (en) 2-cycle engine
US11549429B2 (en) Engine mixing structures
EP2754874A1 (en) Direct-injection engine combustion chamber structure
US9915190B2 (en) Ducted combustion systems utilizing Venturi ducts
JP2013087720A (en) Venturi for egr
JP2009197704A (en) Sub-chamber type gas engine
JP2013530371A5 (en) Second water injection system for a diffusion combustion system
JP2005291504A5 (en)
US20140137565A1 (en) Combination air assist and pilot gaseous fuel circuit
JP5148423B2 (en) Control method of diesel engine with EGR device
JPS5830093Y2 (en) Internal combustion engine intake system
JP2004308449A (en) Diesel engine
JP6920826B2 (en) Internal combustion engine
JP2014084742A (en) Gas engine with auxiliary chamber
TWI755614B (en) Spark ignition engine unit and vehicle
JP2013092103A (en) Internal combustion engine
JP2010112350A (en) Piston of direct injection type diesel internal combustion engine
JP2009144647A (en) Premixed compression ignition diesel engine
JP6176279B2 (en) Exhaust system for multi-cylinder engine
JP2006307825A (en) Cylinder direct injection type internal combustion engine and fuel injection valve
JPS60218535A (en) Combustor for gas turbine
US20230015517A1 (en) Engine mixing structures
JP2008163918A (en) Combustion method for cylinder injection internal combustion engine, and cylinder injection internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110812

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121128

R151 Written notification of patent or utility model registration

Ref document number: 5148423

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees