JP2010065081A - Novel polymer and method for producing the same - Google Patents

Novel polymer and method for producing the same Download PDF

Info

Publication number
JP2010065081A
JP2010065081A JP2008230172A JP2008230172A JP2010065081A JP 2010065081 A JP2010065081 A JP 2010065081A JP 2008230172 A JP2008230172 A JP 2008230172A JP 2008230172 A JP2008230172 A JP 2008230172A JP 2010065081 A JP2010065081 A JP 2010065081A
Authority
JP
Japan
Prior art keywords
group
monovalent organic
following formula
organic group
carbon atoms
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008230172A
Other languages
Japanese (ja)
Other versions
JP5206255B2 (en
Inventor
Takeshi Endo
剛 遠藤
Shimon Tanaka
斎文 田中
Haruo Nishida
治男 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2008230172A priority Critical patent/JP5206255B2/en
Publication of JP2010065081A publication Critical patent/JP2010065081A/en
Application granted granted Critical
Publication of JP5206255B2 publication Critical patent/JP5206255B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Abstract

<P>PROBLEM TO BE SOLVED: To provide a novel polymer and to provide a method for producing the novel polymer. <P>SOLUTION: An end-modified polymer represented by formula (1) is provided (wherein R<SP>1</SP>and R<SP>2</SP>each independently represent a monovalent organic group or R<SP>1</SP>and R<SP>2</SP>may combine to form a ring structure with an adjacent carbon atom; R<SP>4</SP>is a hydrogen atom or a methyl group and R<SP>5</SP>represents a monovalent organic group; R<SP>6</SP>represents a monovalent organic group; R represents a hydrogen atom or a protective group; l represents a number of 1-10; m represents a number of 10-1,000; and n represents a number of 1-5). <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、新規重合体及びその製造方法に関する。   The present invention relates to a novel polymer and a method for producing the same.

ラジカル重合の制御に関する研究に多大な努力がなされ、近年、可逆的付加開裂連鎖移動重合(RAFT)(非特許文献1−5)や原子移動ラジカル重合(ATRP)(非特許文献6,7)等の方法が報告されている。RAFT重合は、機能的なポリマーの合成法として広く使用されており、そのほとんど全てが、重合の後に、それぞれの末端鎖にチオカルボニルチオ基を有する。チェン(Chen)らは、クマリン系色素のような機能性モノマー単位をRAFT剤に導入し、このような独特のRAFT重合法を使って、機能的な各種モノマー単位がポリマー鎖における末端ユニットとして挿入されることを報告している(非特許文献8)。
チェンらは、例えば、水素結合、相溶化、マクロ相分離、表面改質等のポリマーの力学的性質を正確にコントロールするための様々な方法について検討している。そして水素結合間の相互作用は、擬似架橋点と見なされ、温度変化を通して動的にも可逆的にもコントロールされることがわかっている。
Y. K. Chong, J. Krstina, T. P. T. Le, G. Moad, A. Postma, E. Rizzardo, S. H. Thang, Macromolecules 2003, 36, 2256-2272. J. Chiefari, R. T. A. Mayadunne, C. L. Moad, G. Moad, E. Rizzardo, A. Postma, M. A. Skidmore, S. H. Thang, Macromoleules 2003, 36, 2273-2283. R. T. A. Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina, G. Moad, A. Postma, S. H. Thang, Macromolecules 2000, 33, 243-245. J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jeffery, T. P. T. Le, R. T. A. Mayadunne, G. F. Meijs, C. L. Moad, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1998, 31, 5559-5562. Y. K. Chong, T. P. T. Le, G. Moad, E. Rizzardo, S. H. Thang, Macromolecules 1999, 32, 2071-2074. K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921. M. Kamigaito, T. Ando, M. Sawamoto, Chem. Rev. 2001, 101, 3689. M. Chen, K. P. Ghiggino, A. W. H. Mau, E. Rizzardo, W. H. F. Sasse, S. H. Thang, G. J. Wilson, Macromolecules 2004, 37, 5479-5481.
A great deal of efforts have been made to control radical polymerization, and in recent years, reversible addition-fragmentation chain transfer polymerization (RAFT) (Non-Patent Documents 1-5), atom transfer radical polymerization (ATRP) (Non-Patent Documents 6 and 7), etc. The method has been reported. RAFT polymerization is widely used as a method for synthesizing functional polymers, almost all of which have a thiocarbonylthio group in each terminal chain after polymerization. Chen et al. Introduced functional monomer units such as coumarin dyes into RAFT agents, and using these unique RAFT polymerization methods, various functional monomer units were inserted as terminal units in the polymer chain. (Non-Patent Document 8).
Chen et al. Are studying various methods for precisely controlling the mechanical properties of polymers such as hydrogen bonding, compatibilization, macrophase separation, surface modification, and the like. And it is known that the interaction between hydrogen bonds is regarded as a pseudo-cross-linking point and can be controlled both dynamically and reversibly through temperature change.
YK Chong, J. Krstina, TPT Le, G. Moad, A. Postma, E. Rizzardo, SH Thang, Macromolecules 2003, 36, 2256-2272. J. Chiefari, RTA Mayadunne, CL Moad, G. Moad, E. Rizzardo, A. Postma, MA Skidmore, SH Thang, Macromoleules 2003, 36, 2273-2283. RTA Mayadunne, E. Rizzardo, J. Chiefari, J. Krstina, G. Moad, A. Postma, SH Thang, Macromolecules 2000, 33, 243-245. J. Chiefari, YK Chong, F. Ercole, J. Krstina, J. Jeffery, TPT Le, RTA Mayadunne, GF Meijs, CL Moad, G. Moad, E. Rizzardo, SH Thang, Macromolecules 1998, 31, 5559-5562 . YK Chong, TPT Le, G. Moad, E. Rizzardo, SH Thang, Macromolecules 1999, 32, 2071-2074. K. Matyjaszewski, J. Xia, Chem. Rev. 2001, 101, 2921. M. Kamigaito, T. Ando, M. Sawamoto, Chem. Rev. 2001, 101, 3689. M. Chen, KP Ghiggino, AWH Mau, E. Rizzardo, WHF Sasse, SH Thang, GJ Wilson, Macromolecules 2004, 37, 5479-5481.

本発明は、新規な重合体及びその製造方法を提供することを目的とする。   An object of this invention is to provide a novel polymer and its manufacturing method.

斯かる実情に鑑み、本発明者らは、下記式(1)で表される末端修飾重合体の合成に成功し、さらにこの製造方法、製造中間体を見出し、本発明を完成した。
即ち、本発明は、下記式(1)で表される末端修飾重合体を提供するものである。
In view of such circumstances, the present inventors have succeeded in synthesizing a terminal-modified polymer represented by the following formula (1), and further have found this production method and production intermediate, thereby completing the present invention.
That is, this invention provides the terminal modification polymer represented by following formula (1).

Figure 2010065081
Figure 2010065081

(式中、R1及びR2は1価の有機基を示すか、又はR1とR2が結合して隣接する炭素原子と共に環構造を形成してもよい。R4は水素原子またはメチル基であり、R5は1価の有機基を示す。R6は1価の有機基を示す。Rは水素原子又は保護基を表す。lは1〜10の数を示し、mは10〜1000の数を示し、nは1〜5の数を示す。) (Wherein R 1 and R 2 represent a monovalent organic group, or R 1 and R 2 may combine to form a ring structure with adjacent carbon atoms. R 4 represents a hydrogen atom or methyl. R 5 represents a monovalent organic group, R 6 represents a monovalent organic group, R represents a hydrogen atom or a protecting group, l represents a number of 1 to 10, and m represents 10 to 10 1000 represents a number, and n represents a number from 1 to 5.)

また、本発明は、下記式(3)と下記式(4)で表される化合物とを反応させ下記式(2)で表される化合物を得、次いで下記式(2)で表される化合物と下記式(5)で表される化合物とを反応させた後に、必要に応じてR3で示される保護基を水素原子に置換することを特徴とする、上記式(1)で表される末端修飾重合体の製造方法を提供するものである。 Moreover, this invention reacts the compound represented by following formula (3) and the following formula (4), the compound represented by following formula (2) is obtained, and then the compound represented by following formula (2) And the compound represented by the following formula (5) are reacted, and then the protecting group represented by R 3 is substituted with a hydrogen atom, if necessary, represented by the above formula (1). A method for producing a terminal-modified polymer is provided.

Figure 2010065081
Figure 2010065081

(式中、R1、R2、R6、l及びnは前記と同じものを示し、R3は保護基を示す。) (Wherein R 1 , R 2 , R 6, l and n represent the same as described above, and R 3 represents a protecting group.)

Figure 2010065081
Figure 2010065081

(式中、R4は水素原子またはメチル基であり、R5は1価の有機基を示す。) (In the formula, R 4 represents a hydrogen atom or a methyl group, and R 5 represents a monovalent organic group.)

本発明の末端修飾重合体は、ポリ(アルキルメタクリレート)等の熱可塑性樹脂と混和性が良く、また本発明の製造法によれば、該末端修飾ポリスチレンを工業的に有利に製造することができる。   The terminal-modified polymer of the present invention has good miscibility with thermoplastic resins such as poly (alkyl methacrylate), and according to the production method of the present invention, the terminal-modified polystyrene can be advantageously produced industrially. .

本発明の末端修飾重合体は、下記式(1)で表される。 The terminal-modified polymer of the present invention is represented by the following formula (1).

Figure 2010065081
Figure 2010065081

(式中、R1及びR2は1価の有機基を示すか、又はR1とR2が結合して隣接する炭素原子と共に環構造を形成してもよい。R4は水素原子またはメチル基であり、R5は1価の有機基を示す。R6は、1価の有機基を示す。Rは水素原子又は保護基を表す。lは1〜10の数を示し、mは10〜1000の数を示し、nは1〜5の数を示す) (Wherein R 1 and R 2 represent a monovalent organic group, or R 1 and R 2 may combine to form a ring structure with adjacent carbon atoms. R 4 represents a hydrogen atom or methyl. a group, .R 6 R 5 is showing a monovalent organic group, .R showing a monovalent organic group is a number of .l 1 to 10 representing a hydrogen atom or a protecting group, m is 10 ~ Indicates a number of 1000, n indicates a number of 1-5)

式(1)中、R1及びR2、はそれぞれ独立して1価の有機基を示すが、該有機基としては、炭化水素基、アミド基、アシル基、アルコキシ基が挙げられる。このうち炭化水素基としては、炭素数1〜30の脂肪族炭化水素基、炭素数3〜30の脂環族炭化水素基、または炭素数6〜30の芳香族炭化水素基が好ましく、炭素数1〜12のアルキル基、炭素数2〜12のアルケニル基、炭素数6〜10の芳香族炭化水素基等がより好ましく、メチル基、エチル基、フェニル基等が特に好ましい。また、アミド基としては、アミド基の水素原子の1又は2個がアルキル基で置換された炭素数が2〜21、好ましくは2〜11、より好ましくは2〜7の直鎖状、分枝状又は環状の置換アミド基が挙げられ、より具体的には、例えば、ジメチルアミド基、ジエチルアミド基、ジn−プロピルアミド基、ジイソプロピルアミド基、ジn−ブチルアミド基、ジt−ブチルアミド基等が挙げられ、アシル基としては、アセチル基、プロピオニル基、ブチリル基、バレリル基、ベンゾイル基、トリオイル基、カプロイル基等が挙げられ、アルコキシ基としては、例えば、炭素数が1〜20、好ましくは1〜10、より好ましくは1〜6の直鎖状、分枝状又は環状のアルコキシ基 が挙げられ、より具体的には、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、第二級ブトキシ基、第三級ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられる。
また、R1とR2が結合して隣接する炭素原子と共に形成する環としては、炭素数5〜8の飽和又は不飽和の環状炭化水素基が挙げられ、具体的には、シクロペンチル、シクロヘキシル基等が挙げられる。
4は、水素原子またはメチル基を示す。
5は、1価の有機基を示すが、該有機基としては、炭化水素基、アルコキシ基、アリールオキシ基が挙げられる。このうち炭化水素基としては、炭素数1〜30の脂肪族炭化水素基、炭素数3〜30の脂環族炭化水素基、または炭素数6〜30の芳香族炭化水素基が好ましく、炭素数1〜12のアルキル基、炭素数2〜12のアルケニル基、炭素数6〜10の芳香族炭化水素基等がより好ましく、メチル基、エチル基、イソプロピル基、n−ブチル基、sec−ブチル基、t−ブチル基、フェニル基、ベンジル基等が特に好ましい。アルコキシ基としては、例えば、炭素数が1〜20、好ましくは1〜10、直鎖状、分枝状又は環状のアルコキシ基が挙げられ、より具体的には、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられる。また、アリールオキシ基としては、炭素数が6〜30、好ましくは6〜12であることが好ましく、フェノキシ基、2−メチルフェノキシ基、4−メチルフェノキシ基、4−メトキシフェノキシ基、3−フェノキシフェノキシ基が特に好ましい。
6は、1価の有機基を示すが、該有機基としては、炭化水素基、アルコキシ基、アリールオキシ基が挙げられる。このうち炭化水素基としては、炭素数1〜30の脂肪族炭化水素基、炭素数3〜30の脂環族炭化水素基、または炭素数6〜30の芳香族炭化水素基が好ましく、炭素数1〜12のアルキル基、炭素数2〜12のアルケニル基、炭素数6〜10の芳香族炭化水素基等がより好ましく、メチル基、エチル基、フェニル基、ベンジル基等が特に好ましい。アルコキシ基としては、例えば、炭素数が1〜20、好ましくは1〜10、より好ましくは1〜6の直鎖状、分枝状又は環状のアルコキシ基 が挙げられ、より具体的には、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、t−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基等が挙げられる。また、アリールオキシ基としては、炭素数が6〜30、好ましくは6〜12であることが好ましく、フェノキシ基、2−メチルフェノキシ基、4−メチルフェノキシ基、4−メトキシフェノキシ基、3−フェノキシフェノキシ基が特に好ましい。
lの値は1〜10の数を示すが、1〜5であることがより好ましく、1であることが特に好ましい。mの値は10〜1000の数を示すが、得られる新規重合体を他の樹脂と相溶させて用いる場合には、混和性の観点から10〜200であることが好ましく、特に20〜100であることが好ましい。nは1〜5の数を示すが、1が好ましい。
In formula (1), R 1 and R 2 each independently represent a monovalent organic group, and examples of the organic group include a hydrocarbon group, an amide group, an acyl group, and an alkoxy group. Of these, the hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 3 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms. An alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms, and the like are more preferable, and a methyl group, an ethyl group, a phenyl group, and the like are particularly preferable. In addition, the amide group is a linear or branched group having 2 to 21, preferably 2 to 11, more preferably 2 to 7 carbon atoms in which one or two hydrogen atoms of the amide group are substituted with an alkyl group. And more specifically, for example, a dimethylamide group, a diethylamide group, a di-n-propylamide group, a diisopropylamide group, a di-n-butylamide group, a di-t-butylamide group, and the like. Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, a valeryl group, a benzoyl group, a trioyl group, and a caproyl group. Examples of the alkoxy group include 1 to 20 carbon atoms, preferably 1 To 10 and more preferably 1 to 6 linear, branched or cyclic alkoxy groups. More specifically, for example, methoxy group, ethoxy group, propoxy group Examples thereof include a xy group, an isopropoxy group, a butoxy group, a secondary butoxy group, a tertiary butoxy group, a pentyloxy group, and a hexyloxy group.
Examples of the ring formed by combining R 1 and R 2 together with the adjacent carbon atom include a saturated or unsaturated cyclic hydrocarbon group having 5 to 8 carbon atoms, specifically, cyclopentyl and cyclohexyl groups. Etc.
R 4 represents a hydrogen atom or a methyl group.
R 5 represents a monovalent organic group, and examples of the organic group include a hydrocarbon group, an alkoxy group, and an aryloxy group. Of these, the hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 3 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms. More preferred are an alkyl group having 1 to 12, an alkenyl group having 2 to 12 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms, and a methyl group, an ethyl group, an isopropyl group, an n-butyl group, a sec-butyl group. , T-butyl group, phenyl group, benzyl group and the like are particularly preferable. Examples of the alkoxy group include a linear, branched or cyclic alkoxy group having 1 to 20, preferably 1 to 10, carbon atoms, and more specifically, for example, a methoxy group, an ethoxy group, Examples thereof include a propoxy group, an isopropoxy group, an n-butoxy group, a sec-butoxy group, a t-butoxy group, a pentyloxy group, and a hexyloxy group. The aryloxy group has 6 to 30 carbon atoms, preferably 6 to 12 carbon atoms, and is preferably a phenoxy group, 2-methylphenoxy group, 4-methylphenoxy group, 4-methoxyphenoxy group, 3-phenoxy group. A phenoxy group is particularly preferred.
R 6 represents a monovalent organic group, and examples of the organic group include a hydrocarbon group, an alkoxy group, and an aryloxy group. Of these, the hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 30 carbon atoms, an alicyclic hydrocarbon group having 3 to 30 carbon atoms, or an aromatic hydrocarbon group having 6 to 30 carbon atoms. An alkyl group having 1 to 12 carbon atoms, an alkenyl group having 2 to 12 carbon atoms, an aromatic hydrocarbon group having 6 to 10 carbon atoms, and the like are more preferable, and a methyl group, an ethyl group, a phenyl group, a benzyl group, and the like are particularly preferable. Examples of the alkoxy group include linear, branched or cyclic alkoxy groups having 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms. Methoxy group, ethoxy group, propoxy group, isopropoxy group, n-butoxy group, sec-butoxy group, t-butoxy group, pentyloxy group, hexyloxy group and the like. The aryloxy group has 6 to 30 carbon atoms, preferably 6 to 12 carbon atoms, and is preferably a phenoxy group, 2-methylphenoxy group, 4-methylphenoxy group, 4-methoxyphenoxy group, 3-phenoxy group. A phenoxy group is particularly preferred.
The value of l represents a number of 1 to 10, more preferably 1 to 5, and particularly preferably 1. Although the value of m shows the number of 10-1000, when using the novel polymer obtained by making it compatible with other resin, it is preferable that it is 10-200 from a miscibility viewpoint, and especially 20-100. It is preferable that n represents a number of 1 to 5, but 1 is preferable.

式(1)で表される末端修飾重合体は、例えば、下記式(3)と下記式(4)で表される化合物とを反応させ下記式(2)で表される化合物を得る工程と(工程1)、次いで下記式(2)で表される化合物と下記式(5)で表される化合物とを反応させて下記式(1−1)で表される化合物を得て(工程2−1)、必要に応じてR3で示される保護基を水素原子に置換して下記式(1−2)で表される化合物を得ること(工程2−2)により製造することができる。 The terminal-modified polymer represented by the formula (1) includes, for example, a step of obtaining a compound represented by the following formula (2) by reacting a compound represented by the following formula (3) and the following formula (4): Next, the compound represented by the following formula (1-1) is obtained by reacting the compound represented by the following formula (2) with the compound represented by the following formula (5) (step 2). -1) If necessary, the protective group represented by R 3 can be substituted with a hydrogen atom to obtain a compound represented by the following formula (1-2) (step 2-2).

Figure 2010065081
Figure 2010065081

(式中、R1、R2、R6、l及びnは前記と同じものを示す。R3は水素原子又は保護基を示す。)
ここで、R3で示される保護基としては、アルキル基、アシル基、アルキルシリル基、脂環族基等が挙げられる。アルキル基としては、炭素数1〜10の直鎖状もしくは分岐状のアルキル基が挙げられ、i−プロピル基、sec−ブチル基、tert−ブチル基、1,1−ジメチルプロピル基、1−メチルブチル基、1,1−ジメチルブチル基等が好ましい。
また、アシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、ヘプタノイル基、ヘキサノイル基、バレリル基、ピバロイル基、イソバレリル基、ラウリロイル基、ミリストイル基、パルミトイル基、ステアロイル基、オキサリル基、マロニル基、スクシニル基、グルタリル基、アジポイル基、ピペロイル基、スベロイル基、アゼラオイル基、セバコイル基、アクリロイル基、プロピオロイル基、メタクリロイル基、クロトノイル基、オレオイル基、マレオイル基、フマロイル基、メサコノイル基、カンホロイル基、ベンゾイル基、フタロイル基、イソフタロイル基、テレフタロイル基、ナフトイル基、トルオイル基、ヒドロアトロポイル基、アトロポイル基、シンナモイル基、フロイル基、テノイル基、ニコチノイル基、イソニコチノイル基、p−トルエンスルホニル基、メシル基等を挙げることができる。
アルキルシリル基としては、トリメチルシリル基、トリエチルシリル基、トリ−i−プロピルシリル基、ジメチル−i−プロピルシリル基、ジエチル−i−プロピルシリル基、ジメチルエチルシリル基、t−ブチルジメチルシリル基、t−ブチルジフェニルシリル基、トリベンジルシリル基、トリ−p−キシリルシリル基、トリフェニルシリル基、ジフェニルメチルシリル基、t−ブチルメトキシフェニルシリル基等が挙げられる。
脂環族基としては、シクロプロピル基、シクロペンチル基、1−メチルシクロペンチル基、1−エチルシクロペンチル基、シクロヘキシル基、1−メチルシクロヘキシル基、1−エチルシクロヘキシル基、シクロヘキセニル基、p−メトキシシクロヘキシル基、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基、3−ブロモテトラヒドロピラニル基、4−メトキシテトラヒドロピラニル基、4−メトキシテトラヒドロチオピラニル基、3−テトラヒドロチオフェン−1,1−ジオキシド基、2−メチル−2−アダマンチル基、2−エチル−2−アダマンチル基等シクロプロピル基、シクロペンチル基、1−メチルシクロペンチル基、1−エチルシクロペンチル基、シクロヘキシル基、1−メチルシクロヘキシル基、1−エチルシクロヘキシル基、シクロヘキセニル基、p−メトキシシクロヘキシル基、テトラヒドロピラニル基、テトラヒドロフラニル基、テトラヒドロチオピラニル基、テトラヒドロチオフラニル基、3−ブロモテトラヒドロピラニル基、4−メトキシテトラヒドロピラニル基、4−メトキシテトラヒドロチオピラニル基、3−テトラヒドロチオフェン−1,1−ジオキシド基、2−メチル−2−アダマンチル基、2−エチル−2−アダマンチル基等を挙げることができる。
(In the formula, R 1 , R 2 , R 6 , l and n are the same as described above. R 3 represents a hydrogen atom or a protecting group.)
Here, examples of the protecting group represented by R 3 include an alkyl group, an acyl group, an alkylsilyl group, and an alicyclic group. Examples of the alkyl group include linear or branched alkyl groups having 1 to 10 carbon atoms, i-propyl group, sec-butyl group, tert-butyl group, 1,1-dimethylpropyl group, 1-methylbutyl. Group, 1,1-dimethylbutyl group and the like are preferable.
Examples of the acyl group include an acetyl group, a propionyl group, a butyryl group, a heptanoyl group, a hexanoyl group, a valeryl group, a pivaloyl group, an isovaleryl group, a laurylyl group, a myristoyl group, a palmitoyl group, a stearoyl group, an oxalyl group, and a malonyl group. Succinyl group, glutaryl group, adipoyl group, piperoyl group, suberoyl group, azelaoil group, sebacoyl group, acryloyl group, propioyl group, methacryloyl group, crotonoyl group, oleoyl group, maleoyl group, fumaroyl group, mesaconoyl group, canphoroyl group, Benzoyl, phthaloyl, isophthaloyl, terephthaloyl, naphthoyl, toluoyl, hydroatropoyl, atropoyl, cinnamoyl, furoyl, thenoyl, nicotinoyl, Nicotinoyl group, p- toluenesulfonyl group, and mesyl group.
Examples of the alkylsilyl group include trimethylsilyl group, triethylsilyl group, tri-i-propylsilyl group, dimethyl-i-propylsilyl group, diethyl-i-propylsilyl group, dimethylethylsilyl group, t-butyldimethylsilyl group, t -Butyldiphenylsilyl group, tribenzylsilyl group, tri-p-xylylsilyl group, triphenylsilyl group, diphenylmethylsilyl group, t-butylmethoxyphenylsilyl group and the like can be mentioned.
As the alicyclic group, cyclopropyl group, cyclopentyl group, 1-methylcyclopentyl group, 1-ethylcyclopentyl group, cyclohexyl group, 1-methylcyclohexyl group, 1-ethylcyclohexyl group, cyclohexenyl group, p-methoxycyclohexyl group , Tetrahydropyranyl group, tetrahydrofuranyl group, tetrahydrothiopyranyl group, tetrahydrothiofuranyl group, 3-bromotetrahydropyranyl group, 4-methoxytetrahydropyranyl group, 4-methoxytetrahydrothiopyranyl group, 3-tetrahydro Thiophene-1,1-dioxide group, 2-methyl-2-adamantyl group, 2-ethyl-2-adamantyl group and the like cyclopropyl group, cyclopentyl group, 1-methylcyclopentyl group, 1-ethylcyclopentyl group, cyclohexyl Group, 1-methylcyclohexyl group, 1-ethylcyclohexyl group, cyclohexenyl group, p-methoxycyclohexyl group, tetrahydropyranyl group, tetrahydrofuranyl group, tetrahydrothiopyranyl group, tetrahydrothiofuranyl group, 3-bromotetrahydropyrani group Group, 4-methoxytetrahydropyranyl group, 4-methoxytetrahydrothiopyranyl group, 3-tetrahydrothiophene-1,1-dioxide group, 2-methyl-2-adamantyl group, 2-ethyl-2-adamantyl group, etc. Can be mentioned.

Figure 2010065081
Figure 2010065081

(式中、R1、R2、R3、R4、R5、R6、l、m及びnは前記と同じものを示す。) (In the formula, R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , l, m and n are the same as described above.)

工程1
化合物(3)は、文献1(Y. K. Chong, J. Krstina, T. P. T. Le, G. Moad, A. Postma, E. Rizzardo, S. H. Thang, Macromolecules 2003, 36, 2256-2272)に記載の手順を参考にして、例えばジチオ安息香酸クミルとアゾイソブチロニトリル(AIBN)から合成することができる。化合物(2)は、化合物(3)に対して、化合物(4)を0.8〜1.2モル、好ましくは等モル反応させることが好ましい。触媒としては、アゾビスイソブチロニトリル(AIBN)、1,1’−アゾビスシクロヘキサン−1−カルボニトリル等公知のものを用いることができる。また、溶媒としては、クロロベンゼン、トルエン、ベンゼン等公知のものを用いることができる。また、反応温度は、好ましくは室温〜100℃、特に好ましくは50℃〜90℃で、反応時間は好ましくは1〜50時間、特に好ましくは、10〜20時間である。
なお、ここで得られた化合物(2)は、新規化合物であり、化合物(1)を得るための製造中間体として重要である。
Process 1
Compound (3) was obtained by referring to the procedure described in Reference 1 (YK Chong, J. Krstina, TPT Le, G. Moad, A. Postma, E. Rizzardo, SH Thang, Macromolecules 2003, 36, 2256-2272). For example, it can be synthesized from cumyl dithiobenzoate and azoisobutyronitrile (AIBN). In the compound (2), the compound (4) is preferably reacted in an amount of 0.8 to 1.2 mol, preferably equimolar to the compound (3). As the catalyst, known ones such as azobisisobutyronitrile (AIBN), 1,1′-azobiscyclohexane-1-carbonitrile can be used. Moreover, as a solvent, well-known things, such as chlorobenzene, toluene, and benzene, can be used. The reaction temperature is preferably room temperature to 100 ° C, particularly preferably 50 ° C to 90 ° C, and the reaction time is preferably 1 to 50 hours, particularly preferably 10 to 20 hours.
In addition, the compound (2) obtained here is a novel compound and is important as a production intermediate for obtaining the compound (1).

工程2
ここでは、記式(2)で表される化合物と下記式(5)で表される化合物とを反応させて下記式(1−1)で表される化合物を得て(工程2−1)、必要に応じてR3で示される保護基を水素原子に置換して下記式(1−2)で表される化合物を得る(工程2−2)。
化合物(5)の例としては、スチレン、α−メチルスチレン、m−メチルスチレン、p−メチルスチレン、ビニルトルエン、p−メトキシスチレン、アリルベンゼン等の芳香族ビニル類;1−プロペン、1−ブテン、1−ペンテン等の脂肪族ビニル類; ビニルシクロペンタン、ビニルシクロヘキサン等の脂環族ビニル類; メチルビニルエーテル、エチルビニルエーテル、プロピルビニルエーテル、ブチルビニルエーテル等の脂肪族ビニルエーテル類;シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル等の脂環族ビニルエーテル類;フェニルビニルエーテル、ベンジルビニルエーテル等の芳香族ビニルエーテル類;等が挙げられる。
化合物(2)と化合物(5)の反応は、上記化合物(3)と化合物(4)の反応と同様の触媒及び溶媒を使用することができる。
化合物(5)の量は、目的物の化合物(1)の繰り返し単位数であるmによって適宜決定すればよいが、化合物(2)に対し、好ましくは10〜1000倍モル、特に好ましくは、50〜200倍モルである。また、反応温度は、好ましくは50〜180℃、特に好ましくは80℃〜150℃で、反応時間は好ましくは1〜80時間、特に好ましくは、10〜50時間である。
Process 2
Here, the compound represented by the following formula (1-1) is obtained by reacting the compound represented by the formula (2) with the compound represented by the following formula (5) (step 2-1). If necessary, the protecting group represented by R 3 is substituted with a hydrogen atom to obtain a compound represented by the following formula (1-2) (step 2-2).
Examples of the compound (5) include aromatic vinyls such as styrene, α-methylstyrene, m-methylstyrene, p-methylstyrene, vinyltoluene, p-methoxystyrene, and allylbenzene; 1-propene, 1-butene Aliphatic vinyls such as 1-pentene; Alicyclic vinyls such as vinylcyclopentane and vinylcyclohexane; Aliphatic vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, propyl vinyl ether and butyl vinyl ether; Cyclopentyl vinyl ether and cyclohexyl vinyl ether Alicyclic vinyl ethers; Aromatic vinyl ethers such as phenyl vinyl ether and benzyl vinyl ether;
For the reaction of compound (2) and compound (5), the same catalyst and solvent as in the reaction of compound (3) and compound (4) can be used.
The amount of the compound (5) may be appropriately determined according to m which is the number of repeating units of the target compound (1), but is preferably 10 to 1000 moles, particularly preferably 50, with respect to the compound (2). ~ 200 times mole. The reaction temperature is preferably 50 to 180 ° C., particularly preferably 80 ° C. to 150 ° C., and the reaction time is preferably 1 to 80 hours, particularly preferably 10 to 50 hours.

この反応の後、R3で示される保護基を脱離する。脱離方法はR3の種類によって異なるが、例えば、常法により加水分解すればよい。
このようにして得られた反応物は、常法により精製することができる。
After this reaction, the protecting group represented by R 3 is removed. The desorption method varies depending on the type of R 3 , but may be hydrolyzed by a conventional method, for example.
The reaction product thus obtained can be purified by a conventional method.

以下、実施例を挙げて、本発明の実施の形態をさらに具体的に説明する。但し、本発明は、下記実施例に限定されるものではない。   Hereinafter, the embodiment of the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

実施例1.末端修飾ポリスチレンの調製
(原料)
モノマー:スチレン(東京化学工業株式会社)および4-tert-ブトキシスチレン(北興化学工業株式会社)を、水相が完全に中和されるまで、5%水酸化ナトリウム水溶液および精製水で洗浄し、それから、硫酸マグネシウムを使って乾燥し、使用前に減圧下でCaH2を用いて蒸留した。
ブチルメタクリレート(東京化学工業株式会社)は使用前に蒸留された。
溶媒:クロロベンゼン(和光純薬工業株式会社)はCaH2で蒸留された。
開始剤:2,2−アゾビスイソブチロニトリル(AIBN、99%、和光純薬工業株式会社)はアセトンから再結晶化された。
連鎖移動剤:2−シアノプロピル−2−イル−ジチオ安息香酸塩(CTA1)(式(3)の化合物)は、文献1(Y. K. Chong, J. Krstina, T. P. T. Le, G. Moad, A. Postma, E. Rizzardo, S. H. Thang, Macromolecules 2003, 36, 2256-2272)に記載の手順に従って、ジチオ安息香酸クミルとAIBNから合成された。トルエン中、60℃で、ポリ(ブチルメタクリレート)は、ブチルメタクリレートとAIBNをフリーラジカル重合することにより合成された。
PBMAのMnとMw(分子数および平均分子量)は、サイズ排除クロマトグラフィーによって測定され、それぞれ82000、170000であった。
Example 1. Preparation of end-modified polystyrene (raw material)
Monomers: Styrene (Tokyo Chemical Industry Co., Ltd.) and 4-tert-butoxystyrene (Hokuko Chemical Co., Ltd.) were washed with 5% aqueous sodium hydroxide and purified water until the aqueous phase was completely neutralized. It was then dried using magnesium sulfate and distilled using CaH 2 under reduced pressure before use.
Butyl methacrylate (Tokyo Chemical Industry Co., Ltd.) was distilled before use.
Solvent: Chlorobenzene (Wako Pure Chemical Industries, Ltd.) was distilled with CaH 2 .
Initiator: 2,2-azobisisobutyronitrile (AIBN, 99%, Wako Pure Chemical Industries, Ltd.) was recrystallized from acetone.
Chain transfer agent: 2-cyanopropyl-2-yl-dithiobenzoate (CTA1) (compound of formula (3)) is described in Reference 1 (YK Chong, J. Krstina, TPT Le, G. Moad, A. Postma). , E. Rizzardo, SH Thang, Macromolecules 2003, 36, 2256-2272) and was synthesized from cumyl dithiobenzoate and AIBN. Poly (butyl methacrylate) was synthesized by free radical polymerization of butyl methacrylate and AIBN at 60 ° C. in toluene.
Mn and Mw (number of molecules and average molecular weight) of PBMA were measured by size exclusion chromatography and were 82000 and 170000, respectively.

同定方法:
ポリマーの分子量は、屈折率および紫外線検出器付のサイズ排除クロマトグラフィー(SEC)(TOSOH HLC-8220 SEC system)で測定され、溶出液としてクロロホルムを用いた。
分子数や分子量(MnおよびMw)は、低い多分散度を有するポリスチレンを基準とし検量線によって計算された。
示差走査熱量測定法(DSC)は、20mL/minで窒素をフローし、10℃/minの一定速度で加温する条件の下、Seiko DSC 6200により行った。
1Hおよび13C NMRスペクトルは、内部基準物質をテトラメチルシランとして、Varian UNITY INOVA 400で測定した。
UV可視スペクトルは、JASCO V-750紫外可視近赤外分光光度計によって測定した。
ブレンドフィルムの走査型電子顕微鏡法(SEM)は、加速電圧25kVで後方散乱電子(BSE)検出器を備え付けたHITACHI S3000N 走査型電子顕微鏡で行った。
Identification method:
The molecular weight of the polymer was measured by refractive index and size exclusion chromatography (SEC) with a UV detector (TOSOH HLC-8220 SEC system), and chloroform was used as the eluent.
The number of molecules and the molecular weight (Mn and Mw) were calculated by a calibration curve based on polystyrene having a low polydispersity.
Differential scanning calorimetry (DSC) was performed with Seiko DSC 6200 under the condition of flowing nitrogen at 20 mL / min and heating at a constant rate of 10 ° C./min.
1 H and 13 C NMR spectra were measured with a Varian UNITY INOVA 400 using tetramethylsilane as an internal reference material.
The UV-visible spectrum was measured with a JASCO V-750 UV-visible near-infrared spectrophotometer.
Scanning electron microscopy (SEM) of the blend film was performed with a HITACHI S3000N scanning electron microscope equipped with a backscattered electron (BSE) detector at an acceleration voltage of 25 kV.

工程1:連鎖移動剤-2(CTA2)(式(2)の化合物)の合成
tert-ブトキシスチレン(BSt)の1ユニットを含む連鎖移動剤(CTA2)を製造するためにチェン(Chen)らに報告された手順を適用した(スキーム 1)(文献8)。
Step 1: Synthesis of chain transfer agent-2 (CTA2) (compound of formula (2))
The procedure reported to Chen et al. was applied to produce a chain transfer agent (CTA2) containing 1 unit of tert-butoxystyrene (BSt) (Scheme 1) (Ref. 8).

Figure 2010065081
Figure 2010065081

CTA1(3.30g, 14.9 mmol)、BSt(2.62g, 14.9 mmol)、AIBN(0.048g,0.29 mmol)およびクロロベンゼン(10 ml)の混合物は、固体−圧縮−解凍の3サイクルを通して、密閉減圧下で脱ガスされ、70℃のオイルバスで24時間加熱した。
粗生成物をシリカゲルカラムクロマトグラフィー(ヘキサン/エチルアセテート(9/1(v/v))で分離精製し、橙色の固体として最終生成物(3.5g)を収率60%で得た。
A mixture of CTA1 (3.30 g, 14.9 mmol), BSt (2.62 g, 14.9 mmol), AIBN (0.048 g, 0.29 mmol) and chlorobenzene (10 ml) was subjected to 3 cycles of solid-compression-thawing under a closed vacuum. Degassed and heated in a 70 ° C. oil bath for 24 hours.
The crude product was separated and purified by silica gel column chromatography (hexane / ethyl acetate (9/1 (v / v)) to obtain the final product (3.5 g) as an orange solid in a yield of 60%.

1H NMR(400 MHz, CDCl3, ppm): δ 1.26(s, 3H, -CH3), 1.35(s, 9H, -C(CH3)3), 1.44(s, 3H, -CH3), 2.3-2.5(m, 2H, -CH2-), 5.3(q, 1H, -CH(Ar)-), 7.0(dd, 2H, Ar-H), 7.3-7.4 (m, 4H, Ar-H), 7.6(m, 1H, p-Ar-H(ジチオ安息香酸塩) ), 7.9(m, 2H, m-Ar-H(ジチオ安息香酸塩) ) 1 H NMR (400 MHz, CDCl 3 , ppm): δ 1.26 (s, 3H, -CH 3 ), 1.35 (s, 9H, -C (CH 3 ) 3 ), 1.44 (s, 3H, -CH 3 ) , 2.3-2.5 (m, 2H, -CH 2- ), 5.3 (q, 1H, -CH (Ar)-), 7.0 (dd, 2H, Ar-H), 7.3-7.4 (m, 4H, Ar- H), 7.6 (m, 1H, p-Ar-H (dithiobenzoate)), 7.9 (m, 2H, m-Ar-H (dithiobenzoate))

13C NMR(100 MHz, CDCl3, ppm): δ 26.8(CH3), 28.0(CH3), 28.9(OC(CH3)3), 31.8(C(CH3)2CN), 45.0(CCH2CH), 52.0(CH-Ar), 79.0(OC(CH3)3), 124.0(CN), 124.6,127.0, 128.4, 129.2, 132.7, 133.0, 144.8 (Ar), 155.8 (Ar-COC(CH3)3), 226.2(C=S)
UV-可視(CH2Cl2): λmax= 307, 496 nm.
融点:69.7℃
13 C NMR (100 MHz, CDCl 3 , ppm): δ 26.8 (CH 3 ), 28.0 (CH 3 ), 28.9 (OC (CH 3 ) 3 ), 31.8 (C (CH 3 ) 2 CN), 45.0 (CCH 2 CH), 52.0 (CH-Ar), 79.0 (OC (CH 3 ) 3 ), 124.0 (CN), 124.6, 127.0, 128.4, 129.2, 132.7, 133.0, 144.8 (Ar), 155.8 (Ar-COC (CH 3 ) 3 ), 226.2 (C = S)
UV-visible (CH 2 Cl 2 ): λ max = 307, 496 nm.
Melting point: 69.7 ℃

工程2:ドロキシスチレンα鎖末端1ユニットを有するポリスチレン(P−HS)の合成
次の手順はtert-ブトキシスチレンα末端基を有するポリスチレン(P−BS)を得るための典型的な方法である(スキーム 2)。
Step 2: Synthesis of polystyrene having 1 unit of droxystyrene α-chain end (P-HS) The following procedure is a typical method for obtaining polystyrene (P-BS) having tert-butoxystyrene α-end group. (Scheme 2).

Figure 2010065081
Figure 2010065081

スキーム 2. スチレンとCTA2のRAFT重合によるヒドロキシスチレンα‐末端基を1つ有するポリスチレン(P-HS)の合成および、それに続く脱保護化. Scheme 2. Synthesis of polystyrene with one hydroxystyrene α-terminal group by RAFT polymerization of styrene and CTA2 (P-HS) followed by deprotection.

ガラス製アンプル中にスチレン(14 ml, 12.614 g, 121 mmol)およびCTA 2(0.481g, 1.21 mmol)の混合物が固体−圧縮−解凍の3サイクルを通して、脱ガスされた。そのアンプルは減圧下で密閉され、110℃で、24時間加熱された。液体窒素によってすばやく冷却することによりポリマー化を停止し、反応混合物に過剰のメタノールを加えてポリマーを析出させ、ろ過により単離し、50℃で減圧乾燥した。ポリマー収率は、重量測定法により、メタノールに不溶のポリマー重量から算出された。
P−BSは、tert-ブトキシ基の加水分解によって、α鎖末端基にヒドロキシスチレンユニットを1つ有するポリスチレン(P−HS)に変換された。反応の代表的な手順は以下に記載される。
P−BS(Mn= 6700, 4.9 g, 0.73 mmol)を、トルエン/メタノール混合液(7・2(v/v))に溶かし、濃硫酸(97%, 0.39 g, 3.9 mmol)を加えた。窒素気流下、60℃でその混合物を一晩攪拌し、中和のために、50%乳酸ナトリウム水溶液(3 ml, 15.5 mmol)を加えた。生成したポリマーP−HSは、テトラヒドロフランに溶かし、メタノールで析出させるという2つのサイクルによって精製され、50℃で減圧乾燥された。
A mixture of styrene (14 ml, 12.614 g, 121 mmol) and CTA 2 (0.481 g, 1.21 mmol) in a glass ampoule was degassed through three solid-compression-thaw cycles. The ampoule was sealed under reduced pressure and heated at 110 ° C. for 24 hours. Polymerization was stopped by rapid cooling with liquid nitrogen, excess methanol was added to the reaction mixture to precipitate the polymer, isolated by filtration, and dried at 50 ° C. under reduced pressure. The polymer yield was calculated from the weight of the polymer insoluble in methanol by a gravimetric method.
P-BS was converted to polystyrene (P-HS) having one hydroxystyrene unit at the α chain end group by hydrolysis of the tert-butoxy group. A typical procedure for the reaction is described below.
P-BS (Mn = 6700, 4.9 g, 0.73 mmol) was dissolved in a toluene / methanol mixture (7.2 (v / v)), and concentrated sulfuric acid (97%, 0.39 g, 3.9 mmol) was added. The mixture was stirred overnight at 60 ° C. under a nitrogen stream, and 50% aqueous sodium lactate solution (3 ml, 15.5 mmol) was added for neutralization. The produced polymer P-HS was purified by two cycles of dissolving in tetrahydrofuran and precipitating with methanol, and dried under reduced pressure at 50 ° C.

製造例
ブレンドフィルムの合成:
組成比(50/50 (wt/wt))のポリマーブレンドは、溶媒としてジクロロメタンを用い、従来の溶液流延法により合成された。5 wt%のポリマー混合物を含有する溶液は、完全に溶解されるまで1時間攪拌され、ガラス製のペトリ皿の上に置かれた。溶液はゆっくり室温で24時間、濃縮され、生成したキャスト・フィルムは24時間、室温で減圧下、完全に乾燥された。
Production Example Blend Film Synthesis:
A polymer blend having a composition ratio (50/50 (wt / wt)) was synthesized by a conventional solution casting method using dichloromethane as a solvent. The solution containing 5 wt% polymer mixture was stirred for 1 hour until completely dissolved and placed on a glass petri dish. The solution was slowly concentrated at room temperature for 24 hours and the resulting cast film was completely dried under vacuum at room temperature for 24 hours.

α鎖末端基にヒドロキシスチレン1ユニットを有するポリスチレンの製造:
それぞれのα鎖末端に1つのtert-ブトキシスチレンを有するポリスチレン(P−BSと表記される)を、チオカルボニルチオ基を有する連鎖移動剤(CTA2)で、110℃でRAFT重合法により合成した。ポリマー化の結果を表1にまとめる。
Production of polystyrene having 1 unit of hydroxystyrene at the α-chain end group:
Polystyrene (indicated as P-BS) having one tert-butoxystyrene at each α chain end was synthesized by a RAFT polymerization method at 110 ° C. with a chain transfer agent (CTA2) having a thiocarbonylthio group. The polymerization results are summarized in Table 1.

Figure 2010065081
Figure 2010065081

このポリマー化の制御/本来の性質については動力学的(速度論的)に解析した。図1 (a)に、[M]0/[CTA 2]0=300/1([M]0と[CTA 2]0は、それぞれモノマーとCTA2の初期濃度、[M]tは時間tにおけるモノマーの濃度を表す)の条件において、ポリマー時間に対するln([M]0/[M]t)の変化を示す。ln([M]0/[M]t)のプロットは直線であり、一次速度式によく類似していた。SEC解析により平均分子量Mnを見積もると、Mnは変換率の増加に対して、直線的に増加し(図 1(b)、ポリマー化は制御されていることを表している。多分散度の値(PDI)、Mw/Mnはポリマー化の間、1.15以下に保持された。得られたP-BSの1H-NMRスペクトルは、ポリスチレン特有のシグナルと、αおよびω末端基由来のマイナーなシグナルを示し(図2)、これらのマイナーなシグナルは、表1で得られたMn値と同様のP−BSのMn値を表した。これらの結果から、開始剤としてのスチレンとCTA2のRAFT重合がよく進行し、低い多分散度である、1つのtert-ブトキシスチレン(α鎖末端)ユニットと1つのジチオ安息香酸(ω鎖末端基)を有するP−BSを得たことが分かった(スキーム 4)。 The control / original nature of this polymerization was analyzed kinetically (kinetically). FIG. 1 (a) shows that [M] 0 / [CTA 2] 0 = 300/1 ([M] 0 and [CTA 2] 0 are the initial concentrations of monomer and CTA2, respectively, and [M] t is at time t. 2 represents the change of ln ([M] 0 / [M] t) with respect to polymer time. The plot of ln ([M] 0 / [M] t) was a straight line and was very similar to the first order velocity equation. When the average molecular weight Mn is estimated by SEC analysis, Mn increases linearly with increasing conversion rate (Fig. 1 (b), indicating that polymerization is controlled. Polydispersity value) (PDI), Mw / Mn was kept below 1.15 during the polymerization, and the 1 H-NMR spectrum of the obtained P-BS shows a signal specific to polystyrene and a minor signal derived from α and ω end groups. These minor signals represented the Mn value of P-BS similar to the Mn value obtained in Table 1. From these results, RAFT polymerization of styrene and CTA2 as initiators It was found that P-BS with one tert-butoxystyrene (α-chain end) unit and one dithiobenzoic acid (ω-chain end group) was obtained, which proceeded well and had low polydispersity (Scheme) 4).

Figure 2010065081
Figure 2010065081

表1に示すように、[M]0/[CTA 2]0の比を変化させることにより、分子量2200-20100の各種P−BSを得た。表1のサンプル名は、合成P−BSの特性、つまり、平均分子量とαおよびω末端の化学構造をそれぞれ表しており、例えば、P−22BSは、Mn=2200、α鎖末端基としてtert-ブトキシスチレンユニット、ω鎖末端基としてジチオ安息香酸を有するポリマーを表している。
ポリスチレンのα鎖末端基であるtert-ブトキシスチレンは、酸性条件下、60℃でtert-ブチル基の脱保護化することにより、ヒドロキシスチレンに変換された。tert-ブチル保護基が完全に除去されたことは、13C-NMR解析により分かった。図3に、P−22BSを脱保護化する前後の13C NMRスペクトルを示す。29ppmにおけるシャープなシグナルは、tert-ブチル基の3つのメチル基の炭素原子に帰属するものであり、加水分解後、消失した。P−BSにおけるtert-ブチル基の脱保護化は、定量的に進行し、α鎖末端基に1つのヒドロキシスチレンを有するポリマー(P−HS)を得た。
As shown in Table 1, various P-BS having a molecular weight of 2200-20100 were obtained by changing the ratio of [M] 0 / [CTA 2] 0 . The sample names in Table 1 represent the characteristics of the synthetic P-BS, that is, the average molecular weight and the chemical structure of the α and ω terminals, respectively. For example, P-22BS has Mn = 2200, tert- It represents a polymer having a butoxystyrene unit and dithiobenzoic acid as the ω chain end group.
The tert-butoxystyrene, which is the α chain end group of polystyrene, was converted to hydroxystyrene by deprotecting the tert-butyl group at 60 ° C. under acidic conditions. It was found by 13 C-NMR analysis that the tert-butyl protecting group was completely removed. FIG. 3 shows 13 C NMR spectra before and after deprotecting P-22BS. A sharp signal at 29 ppm was attributed to the carbon atoms of the three methyl groups of the tert-butyl group and disappeared after hydrolysis. Deprotection of the tert-butyl group in P-BS proceeded quantitatively to obtain a polymer (P-HS) having one hydroxystyrene at the α chain end group.

試験例
ポリ(ブチルメタクリレート)とのブレンド:
α鎖末端基は異なるが、同様のω鎖末端(ジチオ安息香酸)を有するポリスチレンである、P−HS、P−BSおよびP−StS (スキーム4)を、ポリ(ブチルメタクリレート)(PBMA)と50/50(wt/wt)の配合比でブレンドした。PBMAはポリスチレンと比べてより長い鎖(Mn=82,000、Mw=170,000)を有する。ポリスチレン:P−22BS,P−22HS,P−25StSの場合、透明なフィルムが形成されることが分かった。一方、Mnが2,200−8,400であるP−HSとPBMSとのブレンドフィルムは透明であった。
Test example Blend with poly (butyl methacrylate):
P-HS, P-BS and P-StS (Scheme 4), which are polystyrenes with different α chain end groups but similar ω chain ends (dithiobenzoic acid), were combined with poly (butyl methacrylate) (PBMA). Blending was performed at a blending ratio of 50/50 (wt / wt). PBMA has longer chains (Mn = 82,000, Mw = 170,000) compared to polystyrene. In the case of polystyrene: P-22BS, P-22HS, P-25StS, it was found that a transparent film was formed. On the other hand, the blend film of P-HS and PBMS having Mn of 2,200-8,400 was transparent.

α末端にtert-ブトキシスチレン或いはヒドロキシスチレンを1ユニット有する特定のポリスチレン(P−BS或いはP−HS)は、特定の連鎖移動剤、CTA2を用いてスチレンのRAFT重合し、続く脱保護化反応によって合成された。制御された/無制御のポリマー化により、Mn値が2,200−20,100で低いPDI値(Mw/Mn=1.09-1.16)の特定のポリスチレンを得ることができる。   Specific polystyrene (P-BS or P-HS) having 1 unit of tert-butoxystyrene or hydroxystyrene at the α-terminal is subjected to RAFT polymerization of styrene using a specific chain transfer agent, CTA2, followed by deprotection reaction. Synthesized. By controlled / uncontrolled polymerization, specific polystyrenes with Mn values of 2,200-20,100 and low PDI values (Mw / Mn = 1.9-1.16) can be obtained.

スチレンのRAFT重合のポリマー化時間に対する一次速度式プロットを示す図である。It is a figure which shows the first-order rate equation plot with respect to the polymerization time of RAFT polymerization of styrene. ポリマーのNMRスペクトルを示す図である。It is a figure which shows the NMR spectrum of a polymer. ポリマーの13C-NMRスペクトルを示す図である。It is a figure which shows the 13 C-NMR spectrum of a polymer.

Claims (6)

下記式(1)で表される末端修飾重合体。
Figure 2010065081
(式中、R1及びR2は1価の有機基を示すか、又はR1とR2が結合して隣接する炭素原子と共に環構造を形成してもよい。R4は水素原子またはメチル基であり、R5は1価の有機基を示す。R6は1価の有機基を示す。Rは水素原子又は保護基を表す。lは1〜10の数を示し、mは10〜1000の数を示し、nは1〜5の数を示す。)
A terminal-modified polymer represented by the following formula (1).
Figure 2010065081
(Wherein R 1 and R 2 represent a monovalent organic group, or R 1 and R 2 may combine to form a ring structure with adjacent carbon atoms. R 4 represents a hydrogen atom or methyl. R 5 represents a monovalent organic group, R 6 represents a monovalent organic group, R represents a hydrogen atom or a protecting group, l represents a number of 1 to 10, and m represents 10 to 10 1000 represents a number, and n represents a number from 1 to 5.)
下記式(2)
Figure 2010065081
(式中、R1及びR2は1価の有機基を示すか、又はR1とR2が結合して隣接する炭素原子と共に環構造を形成してもよい。R3は保護基を示し、R6は、1価の有機基を示し、lは1〜10の数を示し、nは1〜5の数を示す。)
で表される化合物と下記式(5)で表される化合物とを反応させることを特徴とする、請求項1記載の末端修飾重合体の製造方法。
Figure 2010065081
(式中、R4は水素原子またはメチル基であり、R5は1価の有機基を示す。)
Following formula (2)
Figure 2010065081
(In the formula, R 1 and R 2 represent a monovalent organic group, or R 1 and R 2 may be bonded to form a ring structure with adjacent carbon atoms. R 3 represents a protecting group. And R 6 represents a monovalent organic group, l represents a number of 1 to 10, and n represents a number of 1 to 5.)
A method for producing a terminal-modified polymer according to claim 1, wherein the compound represented by formula (5) is reacted with a compound represented by the following formula (5).
Figure 2010065081
(In the formula, R 4 represents a hydrogen atom or a methyl group, and R 5 represents a monovalent organic group.)
さらに、R3で示される保護基を水素原子に置換することを特徴とする、請求項2記載の末端修飾重合体の製造方法。 Furthermore, the protective group shown by R < 3 > is substituted by the hydrogen atom, The manufacturing method of the terminal modified polymer of Claim 2 characterized by the above-mentioned. 下記式(2)で表される化合物が、下記式(3)と下記式(4)で表される化合物とを反応させて得られることを特徴とする、請求項1〜3のいずれかに記載の末端修飾重合体の製造方法。
Figure 2010065081
(式中、R1及びR2は1価の有機基を示すか、又はR1とR2が結合して隣接する炭素原子と共に環構造を形成してもよい。R3は保護基を示し、R6は、1価の有機基を示し、lは1〜10の数を示し、nは1〜5の数を示す。)
The compound represented by the following formula (2) is obtained by reacting the compound represented by the following formula (3) with the compound represented by the following formula (4). A method for producing the terminal-modified polymer as described.
Figure 2010065081
(In the formula, R 1 and R 2 represent a monovalent organic group, or R 1 and R 2 may be bonded to form a ring structure with adjacent carbon atoms. R 3 represents a protecting group. And R 6 represents a monovalent organic group, l represents a number of 1 to 10, and n represents a number of 1 to 5.)
下記式(2)で表される化合物。
Figure 2010065081
(式中、R1及びR2は1価の有機基を示すか、又はR1とR2が結合して隣接する炭素原子と共に環構造を形成してもよい。R3は保護基を示し、R6は、1価の有機基を示し、lは1〜10の数を示し、nは1〜5の数を示す。)
A compound represented by the following formula (2).
Figure 2010065081
(In the formula, R 1 and R 2 represent a monovalent organic group, or R 1 and R 2 may be bonded to form a ring structure with adjacent carbon atoms. R 3 represents a protecting group. And R 6 represents a monovalent organic group, l represents a number of 1 to 10, and n represents a number of 1 to 5.)
下記式(3)と下記式(4)で表される化合物とを反応させることを特徴とする下記式(2)で表される化合物の製造方法。
Figure 2010065081
(式中、R1及びR2は1価の有機基を示すか、又はR1とR2が結合して隣接する炭素原子と共に環構造を形成してもよい。R3は保護基を示し、R6は1価の有機基を示し、lは1〜10の数を示し、nは1〜5の数を示す。)
The manufacturing method of the compound represented by following formula (2) characterized by making the compound represented by following formula (3) and the following formula (4) react.
Figure 2010065081
(In the formula, R 1 and R 2 represent a monovalent organic group, or R 1 and R 2 may be bonded to form a ring structure with adjacent carbon atoms. R 3 represents a protecting group. And R 6 represents a monovalent organic group, l represents a number of 1 to 10, and n represents a number of 1 to 5.)
JP2008230172A 2008-09-08 2008-09-08 Novel polymer and process for producing the same Active JP5206255B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008230172A JP5206255B2 (en) 2008-09-08 2008-09-08 Novel polymer and process for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008230172A JP5206255B2 (en) 2008-09-08 2008-09-08 Novel polymer and process for producing the same

Publications (2)

Publication Number Publication Date
JP2010065081A true JP2010065081A (en) 2010-03-25
JP5206255B2 JP5206255B2 (en) 2013-06-12

Family

ID=42190945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008230172A Active JP5206255B2 (en) 2008-09-08 2008-09-08 Novel polymer and process for producing the same

Country Status (1)

Country Link
JP (1) JP5206255B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065084A (en) * 2008-09-08 2010-03-25 Jsr Corp Thermoplastic resin composition and method for producing the same
JP2013209601A (en) * 2012-03-30 2013-10-10 Yamagata Prefecture Comb type copolymer of methacrylic acid ester having thiocarbonate and sulfide skeleton, method for producing the same and uv cured product of the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536105A (en) * 2000-06-05 2003-12-02 ロディア・シミ Photosensitive composition for photoresist production
JP2004352989A (en) * 2003-05-08 2004-12-16 E I Du Pont De Nemours & Co Photoresist composition and method for preparing it
JP2007102070A (en) * 2005-10-07 2007-04-19 Jsr Corp Radiation-sensitive resin composition for spacer, spacer and method for forming the same
JP2007297502A (en) * 2006-04-28 2007-11-15 Tosoh Corp Soapless polychloroprene-based latex and method for producing the same
JP2008518051A (en) * 2004-10-25 2008-05-29 ザ ルブリゾル コーポレイション Methods for preparing polymers and compositions thereof
JP2008530326A (en) * 2005-02-04 2008-08-07 アグフア・グラフイクス・ナームローゼ・フエンノートシヤツプ Pigment dispersion comprising a copolymer comprising an ionic aromatic monomer
JP2008241737A (en) * 2007-03-23 2008-10-09 Kri Inc High-resolution positive type chemically amplified resist material and resist pattern forming method using the same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003536105A (en) * 2000-06-05 2003-12-02 ロディア・シミ Photosensitive composition for photoresist production
JP2004352989A (en) * 2003-05-08 2004-12-16 E I Du Pont De Nemours & Co Photoresist composition and method for preparing it
JP2008518051A (en) * 2004-10-25 2008-05-29 ザ ルブリゾル コーポレイション Methods for preparing polymers and compositions thereof
JP2008530326A (en) * 2005-02-04 2008-08-07 アグフア・グラフイクス・ナームローゼ・フエンノートシヤツプ Pigment dispersion comprising a copolymer comprising an ionic aromatic monomer
JP2007102070A (en) * 2005-10-07 2007-04-19 Jsr Corp Radiation-sensitive resin composition for spacer, spacer and method for forming the same
JP2007297502A (en) * 2006-04-28 2007-11-15 Tosoh Corp Soapless polychloroprene-based latex and method for producing the same
JP2008241737A (en) * 2007-03-23 2008-10-09 Kri Inc High-resolution positive type chemically amplified resist material and resist pattern forming method using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010065084A (en) * 2008-09-08 2010-03-25 Jsr Corp Thermoplastic resin composition and method for producing the same
JP2013209601A (en) * 2012-03-30 2013-10-10 Yamagata Prefecture Comb type copolymer of methacrylic acid ester having thiocarbonate and sulfide skeleton, method for producing the same and uv cured product of the same

Also Published As

Publication number Publication date
JP5206255B2 (en) 2013-06-12

Similar Documents

Publication Publication Date Title
US9676888B2 (en) Chain transfer agent and emulsion polymerization using the same
JP2003522816A (en) S, S′-bis- (α, α′-disubstituted-α ″ -acetic acid) -trithiocarbonates and their derivatives as initiators, chain transfer agents or chain terminators for controlled radical polymerization and How to make them
JP5000904B2 (en) Method for producing polyvinyl alcohol polymer having mercapto group at terminal
JP5206255B2 (en) Novel polymer and process for producing the same
JPS6241974B2 (en)
JP5695067B2 (en) N-substituted acrylamides, their preparation and use
JP5515256B2 (en) Thermoplastic resin composition and method for producing the same
JP6127521B2 (en) Process for producing block copolymer
JP6900663B2 (en) Copolymer
US20110144268A1 (en) Synthesis of arborescent polymers via controlled inimer-type reversible addition-fragmentation chain transfer (raft) polymerization
US6100373A (en) Functionalized diene monomers and polymers containing functionalized dienes and methods for their preparation
JPH0374683B2 (en)
JP2010013566A (en) Polymer containing terminal functional group, preparation method thereof and composition comprising the polymer
Zhang et al. A novel semi-fluorinated graft copolymer containing perfluorocyclobutyl aryl ether-based backbone
US2563776A (en) alpha-substituted acrylic acids and esters and polymers thereof
US2578950A (en) Unsaturated esters of t-butyl benzoic acid, their polymers, and compositions
US3431278A (en) Phenyl vinylene oxalates
JP2830947B2 (en) Bisphenol derivatives and their polymers
JP3426058B2 (en) Highly unsaturated lactone polymer and method for producing the same
KR20150134202A (en) Latex improving anti-impact and latex film manufacturing therefrom
JP2007297526A (en) Method for producing polymer
JPS6124588A (en) Polymerizable crown ether compound
Wu et al. Thiol-Michael Coupling and ROMP: Comparison of the Effects of Steric Hindrance with Functional Dendronized Polymer
JPH11228611A (en) Production of methacryl resin
JPS6357643A (en) Production of dimethyl siloxane block copolymer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160301

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5206255

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250