JP2010064052A - Electrostatic atomization apparatus - Google Patents

Electrostatic atomization apparatus Download PDF

Info

Publication number
JP2010064052A
JP2010064052A JP2008235494A JP2008235494A JP2010064052A JP 2010064052 A JP2010064052 A JP 2010064052A JP 2008235494 A JP2008235494 A JP 2008235494A JP 2008235494 A JP2008235494 A JP 2008235494A JP 2010064052 A JP2010064052 A JP 2010064052A
Authority
JP
Japan
Prior art keywords
high voltage
frequency
output
switching
control means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008235494A
Other languages
Japanese (ja)
Other versions
JP5330780B2 (en
Inventor
Tatsuhiko Keishu
竜彦 慶秀
Osamu Imahori
修 今堀
Hidekiyo Uegaki
英聖 上垣
Kazutaka Suzuki
一敬 鈴木
Kenji Obata
健二 小幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008235494A priority Critical patent/JP5330780B2/en
Publication of JP2010064052A publication Critical patent/JP2010064052A/en
Application granted granted Critical
Publication of JP5330780B2 publication Critical patent/JP5330780B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic atomization apparatus capable of adjusting the variation of high voltage outputs caused by the variation of individual high voltage generating circuits and preventing an electric apparatus to be mounted from being erroneously operated. <P>SOLUTION: In the electrostatic atomization apparatus, a control means 4 is provided with: a high voltage adjusting means 11 that detects high voltage outputted by a high voltage generating circuit 3 and adjusts the high voltage to be a predetermined high voltage required for electrostatic atomization on the basis of a detected value; and a frequency adjusting means 12 that adjusts switching frequencies of high voltage control signals outputted from the control means 4 for the purpose of driving switching of the high voltage generating circuit 3. With the frequency adjusting means 12, the switching frequencies are adjusted so that they are within a specific frequency range as the high voltage outputted by the high voltage generating circuit 3 becomes the predetermined high voltage required for the electrostatic atomization, and that they are outside a receiving frequency range possessed by an infrared remote controlled receiver 14 in the electric equipment 13 in which the electrostatic atomization apparatus 5 is assembled. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、静電霧化現象を利用して帯電微粒子水を生成するための技術に関するものである。   The present invention relates to a technique for generating charged fine particle water by utilizing an electrostatic atomization phenomenon.

従来から、霧化電極と、霧化電極に水を供給する水供給手段と、霧化電極に高電圧を印加する高電圧発生回路とを備え、前記霧化電極に供給された水を前記高電圧の印加によって発生する高電界で静電霧化させて、ラジカルを含む帯電微粒子水を生成するようにした静電霧化装置が知られている。   Conventionally, an atomizing electrode, water supply means for supplying water to the atomizing electrode, and a high voltage generating circuit for applying a high voltage to the atomizing electrode, the water supplied to the atomizing electrode is 2. Description of the Related Art There is known an electrostatic atomizer that electrostatically atomizes with a high electric field generated by application of voltage to generate charged fine particle water containing radicals.

現在上記のような静電霧化装置を電気機器に搭載することが行われている。静電霧化装置により発生させるラジカルを含む帯電微粒子水は、ラジカルを含み且つ長寿命であるため、空気中への拡散を大量に行うことができ、悪臭成分などに効果的に作用して脱臭に有効であり、また、肌の保湿に対しても有効である。   Currently, the electrostatic atomizer as described above is mounted on an electric device. The charged fine particle water containing radicals generated by the electrostatic atomizer contains radicals and has a long life, so that it can be diffused in the air in large quantities, effectively acting on malodorous components, etc. and deodorizing. It is also effective for moisturizing the skin.

しかしながら、上記のような静電霧化装置は、高電圧発生回路の個体ばらつきにより高電圧発生回路から出力する高電圧の定格電圧に対するばらつきが大きいという問題がある。すなわち、高電圧発生回路は、使用する部品定数により高電圧の出力値が決まるため、使用する部品定数のばらつきが大きい場合、高電圧の定格電圧に対するばらつきが大きくなってしまう。高電圧のばらつきが大きすぎる高電圧発生回路は、脱臭と肌保湿に有効な帯電微粒子量を確保することができない。上記のような高電圧のばらつきが大きすぎる高電圧発生回路に対しては、部品の付け替えによる高電圧の調整をしなければならない。このため、高電圧の出力ばらつきを安定して定格電圧に調整したいという要望がある。   However, the electrostatic atomizer as described above has a problem that there is a large variation with respect to the rated voltage of the high voltage output from the high voltage generation circuit due to individual variation of the high voltage generation circuit. That is, in the high voltage generation circuit, since the output value of the high voltage is determined by the component constant used, when the variation of the component constant used is large, the variation of the high voltage with respect to the rated voltage becomes large. A high voltage generation circuit in which the variation in high voltage is too large cannot secure an amount of charged fine particles effective for deodorization and skin moisturization. For such a high voltage generation circuit where the variation in the high voltage is too large, the high voltage must be adjusted by replacing components. For this reason, there is a demand to stably adjust the output variation of high voltage to the rated voltage.

また、電気機器に組み込む静電霧化装置においては、高電圧を発生する際のスイッチング周波数が高電圧発生回路により任意に決定されるため、高電圧発生回路のスイッチング周波数が、静電霧化装置が組み込まれた家庭用エアコンなどの電気機器における赤外線リモコン受信部が持つ受信周波数と受信周波数が重なる場合があり、電気機器が誤動作するおそれがある。
特開2007−21370号公報
Moreover, in the electrostatic atomizer incorporated in the electric equipment, since the switching frequency when generating a high voltage is arbitrarily determined by the high voltage generator, the switching frequency of the high voltage generator is In some cases, the reception frequency of the infrared remote control receiving unit in an electric device such as a home air conditioner in which is embedded overlaps with the reception frequency, and the electric device may malfunction.
JP 2007-21370 A

本発明は上記の従来の問題点に鑑みて発明したものであって、高電圧発生回路の個体のばらつきによる高電圧出力のばらつきを調整し、且つ、搭載される電気機器を誤動作させることがない静電霧化装置を提供することを課題とするものである。   The present invention has been invented in view of the above-described conventional problems, and adjusts variations in high voltage output due to variations in individual high voltage generation circuits and does not cause malfunctions of mounted electrical equipment. An object of the present invention is to provide an electrostatic atomizer.

本発明に係る静電霧化装置5は、霧化電極1と、該霧化電極1に水を供給する水供給手段2と、制御手段4が出力する高電圧制御信号により高電圧を出力して前記霧化電極1に高電圧を印加する高電圧発生回路3とを備え、前記霧化電極1に供給された水を前記高電圧の印加によって発生する高電界で静電霧化させるものである。そして、本発明の特徴は、制御手段4に、前記高電圧発生回路3で出力する高電圧を検出して該検出値に基づいて前記高電圧が静電霧化に必要な所定の高電圧となるように調整する高電圧調整手段11と、高電圧発生回路3のスイッチングを駆動させための制御手段4から出力される高電圧制御信号のスイッチング周波数を調整するための周波数調整手段12とを設け、上記周波数調整手段11により、上記スイッチング周波数を、当該高電圧発生回路3で出力される高電圧が静電霧化に必要な所定の高電圧となるような特定周波数範囲に含まれ、且つ、前記静電霧化装置5が組み込まれる電気機器13における赤外線リモコン受信部14が持つ受信周波数範囲に入らない範囲に調整することである。   The electrostatic atomizer 5 according to the present invention outputs a high voltage by the atomization electrode 1, a water supply means 2 for supplying water to the atomization electrode 1, and a high voltage control signal output by the control means 4. A high voltage generating circuit 3 for applying a high voltage to the atomizing electrode 1, and electrostatically atomizing the water supplied to the atomizing electrode 1 with a high electric field generated by the application of the high voltage. is there. A feature of the present invention is that the control means 4 detects a high voltage output from the high voltage generation circuit 3 and, based on the detected value, the high voltage becomes a predetermined high voltage required for electrostatic atomization. A high voltage adjusting means 11 for adjusting the frequency and a frequency adjusting means 12 for adjusting the switching frequency of the high voltage control signal output from the control means 4 for driving the switching of the high voltage generating circuit 3 are provided. The switching frequency is included in the specific frequency range such that the high voltage output from the high voltage generation circuit 3 becomes a predetermined high voltage necessary for electrostatic atomization by the frequency adjusting means 11, and In other words, the adjustment is made so as not to fall within the reception frequency range of the infrared remote control receiver 14 in the electric device 13 in which the electrostatic atomizer 5 is incorporated.

このような構成とすることで、高電圧発生回路3の個体ばらつきによる高電圧発生回路3から出力する高電圧の定格電圧に対するばらつきを、制御手段4に設けた高電圧調整手段11により調整して高電圧発生回路3から出力する高電圧を定格電圧となるように調整することができる。また、周波数調整手段12により、高電圧発生回路3のスイッチングを駆動させための高電圧制御信号のスイッチング周波数を、当該高電圧発生回路3で出力される高電圧が静電霧化に必要な所定の高電圧となるような特定周波数範囲に含まれ、且つ、前記静電霧化装置5が組み込まれる電気機器13における赤外線リモコン受信部14が持つ受信周波数範囲に入らない範囲に調整するものであり、これにより、高電圧発生回路3のスイッチングが静電霧化装置5が組み込まれる電気機器13を誤動作しないようにできる。   With this configuration, the high voltage output from the high voltage generation circuit 3 due to individual variations in the high voltage generation circuit 3 is adjusted with respect to the rated voltage by the high voltage adjustment unit 11 provided in the control unit 4. The high voltage output from the high voltage generation circuit 3 can be adjusted to the rated voltage. Further, the frequency adjusting means 12 determines the switching frequency of the high voltage control signal for driving the switching of the high voltage generation circuit 3, and the high voltage output from the high voltage generation circuit 3 is a predetermined required for electrostatic atomization. Is adjusted to a range that does not fall within the reception frequency range included in the infrared remote control receiver 14 in the electrical device 13 in which the electrostatic atomizer 5 is incorporated. Thus, the switching of the high voltage generation circuit 3 can prevent the electric device 13 in which the electrostatic atomizer 5 is incorporated from malfunctioning.

また、制御手段4から出力される前記高電圧発生回路3を駆動させるための高電圧制御信号がパルス幅変調方式であることが好ましい。   The high voltage control signal for driving the high voltage generation circuit 3 output from the control means 4 is preferably a pulse width modulation system.

このような構成とすることで、高電圧発生回路3から出力する高電圧を固定した状態で制御することができる。   With this configuration, it is possible to control the high voltage output from the high voltage generation circuit 3 in a fixed state.

本発明は、上記のように構成したので、高電圧発生回路の固定ばらつきによる高電圧出力のばらつきを制御手段に設けた高電圧調整手段により調整して、高電圧の出力値を定格電圧にすることができ、部品の付け替えや可変抵抗等の手段により調整する必要がなく、生産コストを安くすることができる。また、高電圧発生回路のスイッチングが静電霧化装置が組み込まれる電気機器のリモコン受信部に影響を与えないようにでき、電気機器の誤動作を防止できる。   Since the present invention is configured as described above, the high voltage output variation due to the fixed variation of the high voltage generation circuit is adjusted by the high voltage adjustment unit provided in the control unit, and the output value of the high voltage is set to the rated voltage. Therefore, it is not necessary to adjust by means such as replacement of parts or variable resistance, and the production cost can be reduced. In addition, switching of the high voltage generation circuit can be prevented from affecting the remote control receiving unit of the electric device in which the electrostatic atomizer is incorporated, and malfunction of the electric device can be prevented.

また、制御手段から出力される高電圧発生回路を駆動させるための高電圧制御信号がパルス幅変調方式とすることで、高電圧発生回路のスイッチング周波数を固定した状態で制御することができて、静電霧化装置が組み込まれる電気機器のリモコン受信部に影響を与えないようにできる。   In addition, since the high voltage control signal for driving the high voltage generation circuit output from the control means is a pulse width modulation method, it can be controlled with the switching frequency of the high voltage generation circuit fixed, It is possible to prevent the remote control receiving unit of the electrical equipment in which the electrostatic atomizer is incorporated from being affected.

以下、本発明を添付図面に示す実施形態に基いて説明する。   Hereinafter, the present invention will be described based on embodiments shown in the accompanying drawings.

図1には本発明の静電霧化装置5の制御ブロック図が示してある。静電霧化装置5は、霧化電極1と、霧化電極1に水を供給する水供給手段2と、霧化電極1に供給された水を静電霧化するために霧化電極1に供給された水に高電圧を印加するための高電圧発生回路3とを備えている。また、図1において、4はマイコンよりなる制御手段、9は放電電流検出回路、10は高電圧検出回路、3は高電圧発生回路、5aは霧化ブロック、7はペルチェ用電源回路、20はペルチェ電圧検出回路である。   FIG. 1 is a control block diagram of the electrostatic atomizer 5 of the present invention. The electrostatic atomizer 5 includes an atomizing electrode 1, a water supply means 2 for supplying water to the atomizing electrode 1, and an atomizing electrode 1 for electrostatically atomizing water supplied to the atomizing electrode 1. And a high voltage generation circuit 3 for applying a high voltage to the water supplied to the water. In FIG. 1, 4 is a control means comprising a microcomputer, 9 is a discharge current detection circuit, 10 is a high voltage detection circuit, 3 is a high voltage generation circuit, 5a is an atomization block, 7 is a Peltier power supply circuit, and 20 is It is a Peltier voltage detection circuit.

添付図面に示す実施形態においては、水供給手段2が、空気中の水分を結露水として生成することで霧化電極1に水を供給するための冷却手段により構成してある例を示している。   In the embodiment shown in the accompanying drawings, an example is shown in which the water supply means 2 is constituted by a cooling means for supplying water to the atomizing electrode 1 by generating moisture in the air as condensed water. .

図1に示す実施形態においてはペルチェユニット6により冷却手段が構成してあり、冷却手段により空気中の水分を冷却して結露水を生成することで霧化電極1に水を供給するようになっている。   In the embodiment shown in FIG. 1, the cooling means is constituted by the Peltier unit 6, and water is supplied to the atomizing electrode 1 by generating moisture by cooling the moisture in the air by the cooling means. ing.

ペルチェユニット6は、熱伝導性の高いアルミナや窒化アルミニウムからなる絶縁板の片面側に回路を形成してある一対のペルチェ回路板を、互いの回路が向き合うように対向させ、多数列設してあるBiTe系の熱電素子を両ペルチェ回路板間で挟持すると共に隣接する熱電素子同士を両側の回路で電気的に接続させ、ペルチェ入力リード線を介してなされるペルチェ用電源回路7から熱電素子への通電により一方のペルチェ回路板側から他方のペルチェ回路板側に向けて熱が移動するように構成したものである。更に、上記一方の側のペルチェ回路板の外側には冷却部を接続してあり、また、上記他方の側のペルチェ回路板の外側には放熱部が接続してあり、放熱部としてたとえば放熱フィンを例示できる。ペルチェユニット6の冷却部には霧化電極1の後端部が接続してある。   The Peltier unit 6 has a pair of Peltier circuit boards in which a circuit is formed on one side of an insulating plate made of alumina or aluminum nitride having high thermal conductivity, facing each other so that the circuits face each other, and arranged in multiple rows. A BiTe-based thermoelectric element is sandwiched between both Peltier circuit boards, and adjacent thermoelectric elements are electrically connected by circuits on both sides, and the Peltier power supply circuit 7 formed via a Peltier input lead wire is transferred to the thermoelectric element. Is configured such that heat is transferred from one Peltier circuit board side to the other Peltier circuit board side. Further, a cooling part is connected to the outside of the Peltier circuit board on one side, and a heat radiating part is connected to the outside of the Peltier circuit board on the other side. Can be illustrated. The rear end of the atomizing electrode 1 is connected to the cooling part of the Peltier unit 6.

添付図面に示す実施形態では霧化電極1に対向するように対向電極8が配設してある。そして、添付図面に示す実施形態では、ペルチェユニット6と、霧化電極1と、対向電極8とで霧化ブロック5aを構成してある。   In the embodiment shown in the accompanying drawings, a counter electrode 8 is disposed so as to face the atomizing electrode 1. And in embodiment shown to an accompanying drawing, the atomization block 5a is comprised by the Peltier unit 6, the atomization electrode 1, and the counter electrode 8. FIG.

上記構成の静電霧化装置5は、ペルチェユニット6に通電することで、冷却部が冷却され、冷却部が冷却されることで霧化電極1が冷却され、空気中の水分を結露して霧化電極1に水(結露水)を供給するようになっている。   In the electrostatic atomizer 5 having the above-described configuration, the cooling unit is cooled by energizing the Peltier unit 6, the atomizing electrode 1 is cooled by cooling the cooling unit, and moisture in the air is condensed. Water (condensation water) is supplied to the atomizing electrode 1.

このように霧化電極1に水が供給された状態で上記霧化電極1と対向電極8との間に高電圧発生回路3から高電圧を印加すると、霧化電極1と対向電極8との間にかけられた高電圧により霧化電極1の先端部に供給された水と対向電極8との間にクーロン力が働いて、水の液面が局所的に錐状に盛り上がり(テーラーコーン)が形成される。このようにテーラーコーンが形成されると、該テーラーコーンの先端に電荷が集中してこの部分における電界強度が大きくなって、これによりこの部分に生じるクーロン力が大きくなり、更にテーラーコーンを成長させる。このようにテーラーコーンが成長し該テーラーコーンの先端に電荷が集中して電荷の密度が高密度となると、テーラーコーンの先端部分の水が大きなエネルギー(高密度となった電荷の反発力)を受け、表面張力を超えて分裂・飛散(レイリー分裂)を繰り返してマイナス又はプラスに帯電したナノメータサイズの帯電微粒子水を大量に生成するようになっている。生成された帯電微粒子水は静電霧化装置5の外部に放出される。   When a high voltage is applied from the high voltage generation circuit 3 between the atomizing electrode 1 and the counter electrode 8 in a state where water is supplied to the atomizing electrode 1 in this way, the atomization electrode 1 and the counter electrode 8 The Coulomb force acts between the water supplied to the tip of the atomizing electrode 1 and the counter electrode 8 due to the high voltage applied between them, and the water level rises locally in a cone shape (tailor cone). It is formed. When the tailor cone is formed in this way, the electric charge concentrates on the tip of the tailor cone and the electric field strength in this portion increases, thereby increasing the Coulomb force generated in this portion and further growing the tailor cone. . When the tailor cone grows like this and the charge concentrates on the tip of the tailor cone and the density of the charge becomes high, the water at the tip of the tailor cone has a large energy (repulsive force of the charge that has become dense). In response to this, a large amount of nanometer-sized charged fine particle water charged negatively or positively is generated by repeating splitting and scattering (Rayleigh splitting) beyond the surface tension. The generated charged fine particle water is discharged to the outside of the electrostatic atomizer 5.

そして、制御手段4から出力される冷却制御信号に基づいて、ペルチェ用電源回路7からペルチェユニット6に冷却用電圧が出力されてペルチェユニット6の冷却作用により空気中の水分が結露水として生成されて霧化電極1の先端部に結露水が供給される。   Then, based on the cooling control signal output from the control means 4, a cooling voltage is output from the Peltier power supply circuit 7 to the Peltier unit 6, and moisture in the air is generated as condensed water by the cooling action of the Peltier unit 6. Thus, dew condensation water is supplied to the tip of the atomizing electrode 1.

この状態で、制御手段4から高電圧制御信号を出力すると、高電圧制御信号に基づいて高電圧発生回路3から高電圧が出力され、霧化電極1に高電圧を印加され、前述のようにして霧化電極1の先端部の水の静電霧化が行われ、ナノメータサイズの帯電微粒子水が生成される。   When a high voltage control signal is output from the control means 4 in this state, a high voltage is output from the high voltage generation circuit 3 based on the high voltage control signal, and a high voltage is applied to the atomizing electrode 1 as described above. Electrostatic atomization of water at the tip of the atomizing electrode 1 is performed, and nanometer-sized charged fine particle water is generated.

ここで、放電電流検出回路9により、放電時の電流を検出し、放電電流検出回路9から制御手段4に放電電流信号を出力し、該放電電流信号に基づいて、制御手段4により高電圧発生回路3、ペルチェ用電源回路7をPWM制御するようになっている。   Here, the discharge current detection circuit 9 detects the current during discharge, the discharge current detection circuit 9 outputs a discharge current signal to the control means 4, and the control means 4 generates a high voltage based on the discharge current signal. The circuit 3 and the Peltier power supply circuit 7 are PWM-controlled.

上記のような静電霧化装置5は赤外線リモコン受信部14を備えた電気機器13に組み込まれる。静電霧化装置5を組み込む電気機器13としては、例えば赤外線リモコンにより制御される家庭用空調装置や空気清浄機等を挙げることができるが、必ずしも上記例のみに限定されず、赤外線リモコンにより制御される電気機器であれば、他の電気機器であってもよい。   The electrostatic atomizer 5 as described above is incorporated in an electric device 13 having an infrared remote control receiver 14. Examples of the electric device 13 incorporating the electrostatic atomizer 5 include a home air conditioner and an air cleaner controlled by an infrared remote controller, but are not necessarily limited to the above example, and are controlled by the infrared remote controller. Other electrical devices may be used as long as they are electrical devices.

ここで、上記のように電気機器13に組み込まれる(搭載される)本発明の静電霧化装置5は、制御手段4に、高電圧発生回路3で出力する高電圧を検出して該検出値に基づいて前記高電圧が静電霧化に必要な所定の高電圧となるように調整する高電圧調整手段11と、高電圧発生回路3のスイッチングを駆動させるための制御手段4から出力される高電圧制御信号のスイッチング周波数を調整するための周波数調整手段12と、上記周波数調整手段12によるスイッチング周波数の調整条件と同じ条件で調整した周波数の冷却制御信号でペルチェ用電源回路7を駆動するペルチェ電圧制御手段15を設けている。   Here, the electrostatic atomizer 5 of the present invention incorporated (mounted) in the electric device 13 as described above detects the high voltage output from the high voltage generation circuit 3 in the control means 4 and detects the detected high voltage. The high voltage adjusting means 11 for adjusting the high voltage to a predetermined high voltage necessary for electrostatic atomization based on the value and the control means 4 for driving the switching of the high voltage generating circuit 3 are output. The Peltier power supply circuit 7 is driven by the frequency adjusting means 12 for adjusting the switching frequency of the high voltage control signal and the cooling control signal of the frequency adjusted under the same conditions as the switching frequency adjusting conditions by the frequency adjusting means 12. Peltier voltage control means 15 is provided.

上記高電圧調整手段11による高電圧発生回路3から出力する高電圧の調整、周波数調整手段12による制御手段4から出力される高電圧制御信号のスイッチング周波数の調整、ペルチェ用のスイッチング周波数の調整、ペルチェ電圧制御手段15によるペルチェ用電源回路7から出力する電圧の調整は、静電霧化装置5の初期設定の際に自動的に行われる。   Adjustment of the high voltage output from the high voltage generation circuit 3 by the high voltage adjustment means 11, adjustment of the switching frequency of the high voltage control signal output from the control means 4 by the frequency adjustment means 12, adjustment of the switching frequency for Peltier, Adjustment of the voltage output from the Peltier power supply circuit 7 by the Peltier voltage control means 15 is automatically performed when the electrostatic atomizer 5 is initially set.

上記初期設定においては、まず、制御手段4に設けた周波数調整手段12によるスイッチング周波数の調整を行う制御が行われる。   In the initial setting, first, control for adjusting the switching frequency by the frequency adjusting unit 12 provided in the control unit 4 is performed.

すなわち、高電圧発生回路3の固有周波数は固体によるばらつきがあるので、周波数調整手段12により、高電圧発生回路の固有周波数に対応して、制御手段4から高電圧発生回路3への高電圧制御信号の周波数出力を制御して静電霧化に必要な高電圧を確保できるような特定周波数範囲に含まれ、且つ、当該静電霧化装置5が組み込まれる電気機器13における赤外線リモコン受信部14が持つ受信周波数範囲に入らない範囲に調整する。   That is, since the natural frequency of the high voltage generation circuit 3 varies depending on the individual, the high voltage control from the control unit 4 to the high voltage generation circuit 3 is performed by the frequency adjusting unit 12 according to the natural frequency of the high voltage generation circuit. Infrared remote control receiver 14 in an electric device 13 that is included in a specific frequency range that can secure the high voltage required for electrostatic atomization by controlling the frequency output of the signal and that incorporates the electrostatic atomizer 5 Adjust to a range that does not fall within the reception frequency range of the.

図2にはその一例の制御フロー図が示してある。   FIG. 2 shows an example of a control flow diagram.

本実施形態においては、制御手段4から高電圧制御信号(PWMデューティ固定、周波数は初期値)を出力して、高電圧発生回路3から高電圧の出力を開始し、高電圧検出回路10により高電圧を検出して、高電圧信号を制御手段4に入力して高電圧出力を読み込む。次に、周波数をΔfだけワンステップ増加させ、周波数をΔf増加させた時の高電圧出力が下降(高電圧信号値が減少)した場合は、周波数をΔfだけワンステップ減少させ、周波数をΔf減少させた時の高電圧が上昇(高電圧信号値が増加)する場合は、周波数制限値(上記赤外線リモコン受信部14が持つ受信周波数範囲の上限値)を越えたか否かを判定し、周波数制限値を越えた場合は、上記越えた周波数よりもワンステップ前の周波数にスイッチング周波数を確定する(図3参照)。   In the present embodiment, a high voltage control signal (PWM duty fixed, frequency is an initial value) is output from the control means 4, high voltage output is started from the high voltage generation circuit 3, and the high voltage detection circuit 10 increases the high voltage. A voltage is detected, a high voltage signal is input to the control means 4 and a high voltage output is read. Next, when the frequency is increased by Δf by one step and the high voltage output when the frequency is increased by Δf decreases (the high voltage signal value decreases), the frequency is decreased by one step by Δf and the frequency is decreased by Δf. If the high voltage rises (the high voltage signal value increases), it is determined whether or not the frequency limit value (the upper limit value of the reception frequency range of the infrared remote control receiver 14) has been exceeded. When the value is exceeded, the switching frequency is determined at a frequency one step before the above-exceeded frequency (see FIG. 3).

周波数制限値を越えない場合は、再び周波数をΔfだけワンステップ減少させる。   If the frequency limit value is not exceeded, the frequency is again decreased by one step by Δf.

一方、周波数をΔf減少させた時の高電圧が下降(高電圧信号値が減少)する場合は、ピーク周波数を越えたと認定できるので、周波数をΔfだけワンステップだけ増加させて、高電圧がピーク周波数を越えて下降する直前の周波数に戻し、この周波数をピーク周波数であるとみなしてスイッチング周波数として確定する(図4参照)。   On the other hand, if the high voltage drops when the frequency is decreased by Δf (the high voltage signal value decreases), it can be recognized that the peak frequency has been exceeded, so the frequency is increased by Δf by one step and the high voltage peaks. The frequency is returned to the frequency immediately before falling below the frequency, and this frequency is regarded as the peak frequency and determined as the switching frequency (see FIG. 4).

また、上記図2の制御フロー図において、高電圧発生回路3から高電圧の出力を開始し、高電圧出力を読み込み、次に、周波数をΔfだけワンステップ増加させた時の高電圧が上昇(高電圧信号値が増加)した場合は、周波数をΔf増加させ、周波数をΔf増加させた時の高電圧が上昇(高電圧信号値が増加)する場合は、周波数制限値(上記赤外線リモコン受信部14が持つ受信周波数範囲の下限値)を越えたか否かを判定し、周波数制限値を越えた場合は、上記越えた周波数よりもワンステップ前の周波数にスイッチング周波数を確定する。周波数制限値を越えない場合は、再び周波数をΔfだけワンステップ増加させる(図5参照)。   Also, in the control flow diagram of FIG. 2, the high voltage generation circuit 3 starts high voltage output, reads the high voltage output, and then increases the high voltage when the frequency is increased by one step by Δf ( When the high voltage signal value is increased), the frequency is increased by Δf, and when the frequency is increased by Δf, the high voltage is increased (the high voltage signal value is increased). 14 is exceeded, and if the frequency limit value is exceeded, the switching frequency is determined at a frequency one step before the above-exceeded frequency. If the frequency limit value is not exceeded, the frequency is again increased by one step by Δf (see FIG. 5).

一方、周波数をΔf増加させた時の高電圧が上昇(高電圧信号値が増加)する場合は、ピーク周波数を越えたたと認定できるので、周波数をΔfだけワンステップだけ減少させて、高電圧がピーク周波数を越えて下降する直前の周波数に戻し、この周波数をピーク周波数であるとみなしてスイッチング周波数として確定する。   On the other hand, if the high voltage rises when the frequency is increased by Δf (the high voltage signal value increases), it can be recognized that the peak frequency has been exceeded, so the frequency is decreased by one step by Δf, and the high voltage is increased. The frequency is returned to the frequency just before falling below the peak frequency, and this frequency is regarded as the peak frequency and determined as the switching frequency.

図3乃至図6には上記図2の制御フローによってスイッチング周波数を調整する各例の順序を説明するための説明図である。   FIGS. 3 to 6 are explanatory diagrams for explaining the order of examples in which the switching frequency is adjusted by the control flow of FIG.

図3は、スイッチング周波数の初期値が(1)で、最初に周波数をワンステップ(Δf)増加させた際に高電圧出力が下降(高電圧信号値が減少)したケースで、次に、周波数をΔfずつ減少させて、周波数を(2)、(3)……(N)と減少していく際に、高電圧出力が上昇から下降に転じる前に周波数(N)が、周波数制限値を越えた場合を示し、この場合は、最初に周波数制限値を越えた(N)から周波数をワンステップ(Δf)増加させた(M)をスイッチング周波数として確定する例を示している。   FIG. 3 shows a case where the initial value of the switching frequency is (1), and when the frequency is first increased by one step (Δf), the high voltage output is decreased (the high voltage signal value is decreased). Is decreased by Δf, and when the frequency is decreased to (2), (3)... (N), the frequency (N) becomes the frequency limit value before the high voltage output changes from rising to falling. In this case, an example is shown in which (M) obtained by increasing the frequency by one step (Δf) from (N) where the frequency limit value is first exceeded is determined as the switching frequency.

図4は、スイッチング周波数の初期値が(1)で、最初に周波数をワンステップ(Δf)増加させた際に高電圧出力が下降(高電圧信号値が減少)したケースで、次に、周波数をΔfずつ減少させて、周波数を(2)、(3)……(N)と減少していく際に、高電圧出力が上昇から下降に転じて周波数(N)となっても、周波数制限値を越えない場合を示し、この場合は、高電圧出力が上昇から下降に転じて周波数(N)から周波数をワンステップ(Δf)増加させた(M)をスイッチング周波数として確定する例を示している。   FIG. 4 shows a case where the initial value of the switching frequency is (1), and when the frequency is first increased by one step (Δf), the high voltage output is decreased (the high voltage signal value is decreased). Is reduced by Δf and the frequency is reduced to (2), (3), ... (N). In this case, the high voltage output changes from rising to falling and the frequency is increased by one step (Δf) from the frequency (N) and (M) is determined as the switching frequency. Yes.

図5は、スイッチング周波数の初期値が(1)で、最初に周波数をワンステップ(Δf)増加させた際に高電圧出力が上昇(高電圧信号値が増加)したケースで、次に、周波数をΔfずつ増加させて、周波数を(2)……(N)と増加していく際に、高電圧出力が上昇から下降に転じる前に周波数(N)が、周波数制限値を越えた場合を示し、この場合は、最初に周波数制限値を越えた(N)から周波数をワンステップ(Δf)減少させた(M)をスイッチング周波数として確定する例を示している。   FIG. 5 shows a case where the initial value of the switching frequency is (1) and the high voltage output is increased (the high voltage signal value is increased) when the frequency is first increased by one step (Δf). When the frequency is increased by Δf and the frequency is increased from (2) to (N), the frequency (N) exceeds the frequency limit value before the high voltage output changes from rising to falling. In this case, an example is shown in which (M) in which the frequency is reduced by one step (Δf) from (N) that first exceeds the frequency limit value is determined as the switching frequency.

図6は、スイッチング周波数の初期値が(1)で、最初に周波数をワンステップ(Δf)増加させた際に高電圧出力が上昇(高電圧信号値が増加)したケースで、次に、周波数をΔfずつ減少させて、周波数を(2)……(N)と増加していく際に、高電圧出力が上昇から下降に転じて周波数(N)となっても、周波数制限値を越えない場合を示し、この場合は、高電圧出力が上昇から下降に転じて周波数(N)から周波数をワンステップ(Δf)減少させた(M)をスイッチング周波数として確定する例を示している。   FIG. 6 shows a case where the initial value of the switching frequency is (1) and the high voltage output increases (the high voltage signal value increases) when the frequency is first increased by one step (Δf). When the frequency is increased by Δf and the frequency is increased to (2)... (N), the frequency limit value will not be exceeded even if the high voltage output changes from rising to falling to become the frequency (N). In this case, an example is shown in which the high voltage output is changed from rising to falling, and (M) obtained by reducing the frequency by one step (Δf) from the frequency (N) is determined as the switching frequency.

このようにして、制御手段4に設けた周波数調整手段12により、高電圧発生回路3のスイッチングを駆動させるための高電圧制御信号の周波数の調整をしてスイッチング周波数を自動的に確定した後、電圧調整手段11による高電圧発生回路3から出力する高電圧が静電霧化に必要な所定の高電圧となるように自動的に調整する。   In this way, after the frequency adjustment means 12 provided in the control means 4 adjusts the frequency of the high voltage control signal for driving the switching of the high voltage generation circuit 3 and automatically determines the switching frequency, The high voltage output from the high voltage generation circuit 3 by the voltage adjusting means 11 is automatically adjusted so as to be a predetermined high voltage necessary for electrostatic atomization.

すなわち、静電霧化装置5の高電圧発生回路3は組み込まれる部品定数により個体ばらつきがあり、高電圧発生回路3から出力する高電圧の定格電圧に対するばらつきがある。このため、本発明においては、制御手段4に高電圧調整手段11を設けることで、高電圧発生回路3で出力する高電圧を検出して該検出値に基づいて高電圧調整手段11により前記高電圧が静電霧化に必要な所定の高電圧となるように自動的に調整する。   That is, the high voltage generating circuit 3 of the electrostatic atomizer 5 has individual variations depending on the component constants incorporated therein, and there is variation with respect to the rated voltage of the high voltage output from the high voltage generating circuit 3. For this reason, in the present invention, by providing the control means 4 with the high voltage adjusting means 11, the high voltage output from the high voltage generating circuit 3 is detected, and the high voltage adjusting means 11 detects the high voltage based on the detected value. The voltage is automatically adjusted so as to be a predetermined high voltage necessary for electrostatic atomization.

ここで、本発明においては、高電圧発生回路3には従来のようにDCDCコントローラICやスイッチング回路を設けることなく、制御手段4に設けた高電圧調整手段11により調整されたパルス幅変調方式の高電圧制御信号により高電圧発生回路3に設けたスイッチング素子を直接オン、オフするようになっている。   Here, in the present invention, the high voltage generation circuit 3 is not provided with a DCDC controller IC or a switching circuit as in the prior art, and a pulse width modulation method adjusted by the high voltage adjustment means 11 provided in the control means 4 is used. A switching element provided in the high voltage generation circuit 3 is directly turned on and off by a high voltage control signal.

図7には高電圧調整手段11による高電圧の調整の制御のフロー図が示してあり、この図7に基づいて高電圧の調整につき説明する。   FIG. 7 shows a flow chart of the control of the high voltage adjustment by the high voltage adjusting means 11, and the adjustment of the high voltage will be described based on FIG.

制御手段4から高電圧制御信号(PWMデューテイ固定、周波数は上記で求めた周波数)を出力し、高電圧発生回路3から高電圧の出力を開始する。この高電圧発生回路3から出力する高電圧を高電圧検出回路10で検出して、検出した放電電圧信号を制御手段2に設けた高電圧調整手段11で読み取り、該高電圧検出回路10で検出した高電圧が定格電圧であるかを判定し、検出された高電圧が定格電圧の場合は、制御手段4から出力する高電圧制御信号のデューティ比を維持し、一方、検出された高電圧が定格電圧でない場合は、制御手段4から出力する高電圧制御信号のデューティ比を変更し、高電圧が定格電圧となるように調整し、高電圧が定格電圧になると高電圧制御信号のデューティ比を維持する。このように高電圧調整手段11により、高電圧発生回路3で出力する高電圧を検出して該検出値に基づいて前記高電圧が静電霧化に必要な定格電圧となるように調整する。   A high voltage control signal (PWM duty fixed, frequency is the frequency obtained above) is output from the control means 4, and high voltage output from the high voltage generation circuit 3 is started. The high voltage output from the high voltage generation circuit 3 is detected by the high voltage detection circuit 10, and the detected discharge voltage signal is read by the high voltage adjustment means 11 provided in the control means 2 and detected by the high voltage detection circuit 10. If the detected high voltage is the rated voltage, the duty ratio of the high voltage control signal output from the control means 4 is maintained, while the detected high voltage is If it is not the rated voltage, the duty ratio of the high voltage control signal output from the control means 4 is changed and adjusted so that the high voltage becomes the rated voltage. When the high voltage becomes the rated voltage, the duty ratio of the high voltage control signal is changed. maintain. Thus, the high voltage adjusting means 11 detects the high voltage output from the high voltage generating circuit 3 and adjusts the high voltage to be a rated voltage necessary for electrostatic atomization based on the detected value.

また、制御手段4には前述のようにペルチェ電圧制御手段15が設けてあり、ペルチェ電圧制御手段15により、前記周波数調整手段12で求めたスイッチング周波数と同じ周波数の冷却制御信号でペルチェ用電源回路7を駆動するように調整する。   Further, the control means 4 is provided with the Peltier voltage control means 15 as described above, and the Peltier power control circuit 15 uses the cooling control signal having the same frequency as the switching frequency obtained by the frequency adjustment means 12 by the Peltier voltage control means 15. 7 is adjusted to drive.

ここで、本発明においては、ペルチェ用電源回路7には従来のようにDCDCコントローラICやスイッチング回路を設けることなく、制御手段4に設けたペルチェ電圧制御手段15により調整されたパルス幅変調方式の冷却制御信号によりペルチェ用電源回路7に設けたスイッチング素子を直接オン、オフするようになっている。   Here, in the present invention, the Peltier power supply circuit 7 is not provided with a DCDC controller IC or a switching circuit as in the prior art, and a pulse width modulation method adjusted by the Peltier voltage control means 15 provided in the control means 4 is used. A switching element provided in the Peltier power supply circuit 7 is directly turned on and off by a cooling control signal.

図8には高電圧調整手段11によるペルチェ電圧の調整の制御のフロー図が示してあり、この図8に基づいてペルチェ電圧の調整につき説明する。   FIG. 8 shows a flow chart of control of the Peltier voltage adjustment by the high voltage adjusting means 11, and the adjustment of the Peltier voltage will be described based on FIG.

制御手段4から冷却制御信号(PWMデューテイ固定、周波数は前述の周波数調整手段12を調整して求めたスイッチング周波数と同じ周波数に設定)を出力し、ペルチェ用電源回路7から電圧の出力を開始する。このペルチェ用電源回路7から出力する電圧をペルチェ電圧検出回路20で検出して、検出したペルチェ電圧信号を制御手段2に設けた高電圧調整手段11で読み取り、該ペルチェ電圧検出回路20で検出した電圧が目標電圧であるかを判定し、検出された電圧が目標電圧の場合は、制御手段4から出力する冷却圧制御信号のデューティ比を維持し、一方、検出された高電圧が目標電圧でない場合は、制御手段4から出力する冷却制御信号のデューティ比を変更し、電圧が目標電圧となるように調整し、電圧が目標電圧になると冷却制御信号のデューティ比を維持する。   A cooling control signal (PWM duty fixed, frequency is set to the same frequency as the switching frequency obtained by adjusting the frequency adjusting means 12) is output from the control means 4, and voltage output is started from the Peltier power supply circuit 7. . The voltage output from the Peltier power supply circuit 7 is detected by the Peltier voltage detection circuit 20, and the detected Peltier voltage signal is read by the high voltage adjusting means 11 provided in the control means 2 and detected by the Peltier voltage detection circuit 20. It is determined whether the voltage is the target voltage. If the detected voltage is the target voltage, the duty ratio of the cooling pressure control signal output from the control unit 4 is maintained, while the detected high voltage is not the target voltage. In this case, the duty ratio of the cooling control signal output from the control means 4 is changed and adjusted so that the voltage becomes the target voltage. When the voltage becomes the target voltage, the duty ratio of the cooling control signal is maintained.

上記のように、静電霧化装置5の初期設定において、周波数調整手段12によるスイッチング周波数の調整を行って、高電圧発生回路3のスイッチング周波数を、当該高電圧発生回路3で出力される高電圧が静電霧化に必要な所定の高電圧となるような特定周波数範囲に含まれ、且つ、前記静電霧化装置5が組み込まれた電気機器13における赤外線リモコン受信部14が持つ受信周波数範囲に入らない範囲に設定し、更に、このようにして設定したスイッチング周波数と同じ周波数にペルチェ電源回路7のスイッチング周波数を設定するので、高電圧発生回路3のスイッチング及びペルチェ用電源回路7のスイッチングが静電霧化装置5が組み込まれる電気機器13を誤動作しないようにできる。   As described above, in the initial setting of the electrostatic atomizer 5, the switching frequency is adjusted by the frequency adjusting unit 12, and the switching frequency of the high voltage generating circuit 3 is output to the high voltage generating circuit 3. The reception frequency of the infrared remote control receiver 14 in the electrical device 13 that is included in the specific frequency range in which the voltage is a predetermined high voltage necessary for electrostatic atomization and in which the electrostatic atomizer 5 is incorporated. Since the switching frequency of the Peltier power supply circuit 7 is set to the same frequency as the switching frequency set in this way, the switching of the high voltage generating circuit 3 and the switching of the Peltier power supply circuit 7 are set. However, the electric device 13 in which the electrostatic atomizer 5 is incorporated can be prevented from malfunctioning.

また、制御手段4に設けた高電圧調整手段11により、高電圧発生回路3から出力する高電圧を検出し、この高電圧検出信号に基づいて高電圧発生回路3から出力する高電圧を定格電圧となるように調整し、更に、ペルチェ電圧制御手段15により、ペルチェ用電源回路7から出力する電圧を検出し、この電圧検出信号に基づいてペルチェ用電源回路7から出力するペルチェ電圧を目標電圧となるように調整するので、高電圧発生回路3、ペルチェ用電源回路7の個体ばらつきを、制御手段4により調整して高電圧発生回路3から出力する高電圧を定格電圧に調整すると共にペルチェ用電源回路7から出力する電圧を目標電圧に調整することができる。   Further, the high voltage adjusting means 11 provided in the control means 4 detects the high voltage output from the high voltage generating circuit 3, and based on this high voltage detection signal, the high voltage output from the high voltage generating circuit 3 is set to the rated voltage. Further, the voltage output from the Peltier power supply circuit 7 is detected by the Peltier voltage control means 15, and the Peltier voltage output from the Peltier power supply circuit 7 based on this voltage detection signal is set as the target voltage. Therefore, the individual variations of the high voltage generation circuit 3 and the Peltier power supply circuit 7 are adjusted by the control means 4 so that the high voltage output from the high voltage generation circuit 3 is adjusted to the rated voltage and the Peltier power supply The voltage output from the circuit 7 can be adjusted to the target voltage.

この結果、本発明においては、高電圧発生回路3は、スイッチング駆動と高電圧制御を制御手段4が行うことになり、また、ペルチェ用電源回路7は、スイッチング駆動とペルチェ電圧制御を制御手段が行うこととなり、DCDCコントローラICやスイッチング回路を必要とせず、部品点数が少なくなり、コストが安くなる。   As a result, in the present invention, the high voltage generation circuit 3 is controlled by the control means 4 for switching driving and high voltage control, and the Peltier power supply circuit 7 is controlled by the control means for switching driving and Peltier voltage control. Therefore, the DCDC controller IC and the switching circuit are not required, the number of parts is reduced, and the cost is reduced.

そして、本発明の静電霧化装置においては、上記のような調整を初期設定時に制御手段4により自動的に行うので、実際の静電霧化装置5の使用に当たっては、静電霧化によって帯電微粒子水の発生量を安定させることができる。   And in the electrostatic atomizer of this invention, since the above adjustment is automatically performed by the control means 4 at the time of initial setting, in the actual use of the electrostatic atomizer 5, the electrostatic atomization is performed. The amount of charged fine particle water generated can be stabilized.

なお、図1においては、水供給手段2としてペルチェユニットの例を示したが、ペルチェユニット以外の冷却手段であってもよい。また、空気中の水分を結露水として水を供給するものに限定されず、タンクのような水溜め部から毛細管現象や重力等を利用して霧化電極に水を供給するようにしてもよい。   In addition, although the example of the Peltier unit was shown as the water supply means 2 in FIG. 1, cooling means other than a Peltier unit may be sufficient. Further, the water in the air is not limited to supplying water as condensed water, and water may be supplied to the atomizing electrode from a water reservoir such as a tank by using capillary action or gravity. .

本発明において、ペルチェユニットを設けない場合は、前述の実施形態におけるペルチェ用電源回路7、ペルチェ電圧検出回路20、ペルチェ電圧制御手段15は設けない。   In the present invention, when the Peltier unit is not provided, the Peltier power supply circuit 7, the Peltier voltage detection circuit 20, and the Peltier voltage control means 15 in the above-described embodiment are not provided.

また、図1の実施形態では対向電極8を設けた例を示したが、対向電極8を設けない場合であってもよい。   In the embodiment of FIG. 1, the example in which the counter electrode 8 is provided has been described. However, the counter electrode 8 may not be provided.

本発明の静電霧化装置の制御ブロック図である。It is a control block diagram of the electrostatic atomizer of this invention. 同上のスイッチング周波数を調整して確定する制御フロー図である。It is a control flow figure which adjusts and determines a switching frequency same as the above. 同上のスイッチング周波数のセンシングの例を示す説明図である。It is explanatory drawing which shows the example of the sensing of the switching frequency same as the above. 同上のスイッチング周波数のセンシングの他例を示す説明図である。It is explanatory drawing which shows the other example of sensing of the switching frequency same as the above. 同上のスイッチング周波数のセンシングの更に他例を示す説明図である。It is explanatory drawing which shows the further another example of sensing of the switching frequency same as the above. 同上のスイッチング周波数のセンシングの更に他例を示す説明図である。It is explanatory drawing which shows the further another example of sensing of the switching frequency same as the above. 同上の高電圧制御の制御フロー図である。It is a control flowchart of high voltage control same as the above. 同上のペルチェ制御の制御フロー図である。It is a control flowchart of Peltier control same as the above.

符号の説明Explanation of symbols

1 霧化電極
2 水供給手段
3 高電圧発生回路
4 制御手段
5 静電霧化装置
11 高電圧調整手段
12 周波数調整手段
13 電気機器
14 赤外線リモコン受信部
DESCRIPTION OF SYMBOLS 1 Atomization electrode 2 Water supply means 3 High voltage generation circuit 4 Control means 5 Electrostatic atomizer 11 High voltage adjustment means 12 Frequency adjustment means 13 Electric equipment 14 Infrared remote control receiver

Claims (2)

霧化電極と、該霧化電極に水を供給する水供給手段と、制御手段が出力する高電圧制御信号により高電圧を出力して前記霧化電極に高電圧を印加する高電圧発生回路とを備え、前記霧化電極に供給された水を前記高電圧の印加によって発生する高電界で静電霧化させる静電霧化装置において、
制御手段に、前記高電圧発生回路で出力する高電圧を検出して該検出値に基づいて前記高電圧が静電霧化に必要な所定の高電圧となるように調整する高電圧調整手段と、高電圧発生回路のスイッチングを駆動させための制御手段から出力される高電圧制御信号のスイッチング周波数を調整するための周波数調整手段とを設け、
上記周波数調整手段により、上記スイッチング周波数を、当該高電圧発生回路で出力される高電圧が静電霧化に必要な所定の高電圧となるような特定周波数範囲に含まれ、且つ、前記静電霧化装置が組み込まれる電気機器における赤外線リモコン受信部が持つ受信周波数範囲に入らない範囲に調整することを特徴とする静電霧化装置。
An atomizing electrode, water supply means for supplying water to the atomizing electrode, a high voltage generating circuit for outputting a high voltage to the atomizing electrode by outputting a high voltage in response to a high voltage control signal output from the control means, In an electrostatic atomization device that electrostatically atomizes water supplied to the atomization electrode with a high electric field generated by application of the high voltage,
High voltage adjusting means for detecting a high voltage output from the high voltage generating circuit and adjusting the high voltage to be a predetermined high voltage required for electrostatic atomization based on the detected value; Providing a frequency adjusting means for adjusting the switching frequency of the high voltage control signal output from the control means for driving the switching of the high voltage generating circuit,
By the frequency adjusting means, the switching frequency is included in a specific frequency range in which a high voltage output from the high voltage generation circuit is a predetermined high voltage required for electrostatic atomization, and the electrostatic frequency An electrostatic atomizer that adjusts to a range that does not fall within a reception frequency range of an infrared remote control receiver in an electric device in which the atomizer is incorporated.
前記制御手段から出力される前記高電圧発生回路を駆動させるための高電圧制御信号がパルス幅変調方式であることを特徴とする請求項1記載の静電霧化装置。
2. The electrostatic atomizer according to claim 1, wherein the high voltage control signal for driving the high voltage generation circuit output from the control means is a pulse width modulation system.
JP2008235494A 2008-09-12 2008-09-12 Electrostatic atomizer Expired - Fee Related JP5330780B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008235494A JP5330780B2 (en) 2008-09-12 2008-09-12 Electrostatic atomizer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008235494A JP5330780B2 (en) 2008-09-12 2008-09-12 Electrostatic atomizer

Publications (2)

Publication Number Publication Date
JP2010064052A true JP2010064052A (en) 2010-03-25
JP5330780B2 JP5330780B2 (en) 2013-10-30

Family

ID=42190109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008235494A Expired - Fee Related JP5330780B2 (en) 2008-09-12 2008-09-12 Electrostatic atomizer

Country Status (1)

Country Link
JP (1) JP5330780B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139091A1 (en) * 2017-01-30 2018-08-02 住友化学株式会社 Electrostatic atomization device, information processing terminal, voltage adjustment method, and control program

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243975A (en) * 1993-02-16 1994-09-02 Denki Kogyo Co Ltd Discharge lamp lighting device
JPH1012393A (en) * 1996-06-21 1998-01-16 Asahi Natl Shomei Kk Infrared remote control luminaire
JP2002352994A (en) * 2001-05-28 2002-12-06 Matsushita Electric Works Ltd Lighting device for discharge lamp, and luminaire
JP2006122819A (en) * 2004-10-28 2006-05-18 Matsushita Electric Works Ltd Electrostatic atomization apparatus

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06243975A (en) * 1993-02-16 1994-09-02 Denki Kogyo Co Ltd Discharge lamp lighting device
JPH1012393A (en) * 1996-06-21 1998-01-16 Asahi Natl Shomei Kk Infrared remote control luminaire
JP2002352994A (en) * 2001-05-28 2002-12-06 Matsushita Electric Works Ltd Lighting device for discharge lamp, and luminaire
JP2006122819A (en) * 2004-10-28 2006-05-18 Matsushita Electric Works Ltd Electrostatic atomization apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139091A1 (en) * 2017-01-30 2018-08-02 住友化学株式会社 Electrostatic atomization device, information processing terminal, voltage adjustment method, and control program

Also Published As

Publication number Publication date
JP5330780B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
US8448883B2 (en) Electrostatically atomizing device
JP4900207B2 (en) Electrostatic atomizer
WO2005097339A1 (en) Electrostatic atomizer
CN111052524B (en) Voltage applying device and discharging device
EP1964615B1 (en) Electrostatically atomizing device
JP2006150334A (en) Electrostatic atomization apparatus
JP5314368B2 (en) Electrostatic atomizer
WO2013080686A1 (en) Electrostatic atomizing device
JP4765772B2 (en) Electrostatic atomizer
US20090135539A1 (en) Electrostatically atomizing device
JP5330780B2 (en) Electrostatic atomizer
WO2007138920A1 (en) Electrostatic atomizer
CN107803282B (en) Voltage applying device and discharge device
KR101168638B1 (en) Actuating device having an integrated electronic control circuit
JP5265999B2 (en) Electrostatic atomizer
JP5265997B2 (en) Electrostatic atomizer
JP4900208B2 (en) Electrostatic atomizer
JP4900209B2 (en) Electrostatic atomizer
JP5265998B2 (en) Electrostatic atomizer
JP2014050151A (en) Dc-dc converter and electrostatic atomizer using the same
CN117643989A (en) Atomizing sheet driving method, apparatus, atomizer and computer readable storage medium

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100716

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110523

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130702

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130726

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees