JP2010063320A - Method and apparatus for controlling supply and demand for power system - Google Patents

Method and apparatus for controlling supply and demand for power system Download PDF

Info

Publication number
JP2010063320A
JP2010063320A JP2008229032A JP2008229032A JP2010063320A JP 2010063320 A JP2010063320 A JP 2010063320A JP 2008229032 A JP2008229032 A JP 2008229032A JP 2008229032 A JP2008229032 A JP 2008229032A JP 2010063320 A JP2010063320 A JP 2010063320A
Authority
JP
Japan
Prior art keywords
overload
value
transmission
limit value
operation limit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008229032A
Other languages
Japanese (ja)
Inventor
Katsutoshi Hiromasa
勝利 廣政
Koji Shioda
耕治 汐田
Yoshihiko Yoshimura
吉彦 吉村
Naohito Imaizumi
尚人 今泉
Kazuyuki Numa
一之 沼
Masayuki Kobayashi
正行 小林
Takao Nakajima
孝夫 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Chubu Electric Power Co Inc
Original Assignee
Toshiba Corp
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Chubu Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP2008229032A priority Critical patent/JP2010063320A/en
Publication of JP2010063320A publication Critical patent/JP2010063320A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve controllability and economical efficiency by highly efficiently processing an overload of power transmission facilities due to load fluctuation in short and long periods while satisfying operation restrictions of the power system. <P>SOLUTION: An MMI 5 sets an operation limit value 52 for preventing overload which is 98% of an operation limit value 53 of the power transmission facilities 411-41n. An overload prevention section 37 calculates a value for preventing overload when an online flow value of the power transmission facilities 411-41n exceeds the limit value 52 for preventing overload. The overload prevention section 37 achieve to eliminate the overload of the power transmission facilities 411-41n when the load fluctuates in a short period, and compensates the cyclic period for eliminating the overload of the power transmission facilities 411-41n by economical load distribution control when the load fluctuates in a long period. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、経済負荷配分制御方式を採用した電力系統の需給制御技術に係り、特に、電力系統の運用制約を満たしつつ制御性・経済性の向上を図った電力系統の需給制御方法及びその装置に関するものである。   The present invention relates to a power supply and demand control technology that employs an economic load distribution control method, and in particular, a power supply and demand control method and apparatus for improving the controllability and economy while satisfying operational constraints of the power system. It is about.

電力系統の需要(負荷)は、季節的・時間的・瞬間的に時々刻々絶えず変動している。したがって、電力系統を効率良く運用するためには、電力系統の負荷変動に応じて電力供給を制御する需給制御技術が不可欠である。電力系統の需給制御技術では、負荷変動を正確に捉え、常に適正な需給バランスをとることが肝要である。   The demand (load) of the power system is constantly changing seasonally, temporally, and momentarily. Therefore, in order to efficiently operate the power system, a supply and demand control technique for controlling power supply according to load fluctuations of the power system is indispensable. In power system supply and demand control technology, it is important to accurately grasp load fluctuations and always maintain an appropriate supply and demand balance.

電力系統の負荷変動については、変化幅の小さい種々の振動と周期を持った脈動成分や、不規則な変動成分が重畳したものであると考えられており、変動の大きさに応じて次の3つの変動成分に分けられている。すなわち、数分周期までの微小変動分のサイクリック分、数分から10数分程度までの短周期変動分のフリンジ分、10数分以上の長周期変動分のサステンド分である。   Regarding power system load fluctuations, it is considered that pulsation components with various vibrations and periods with small variation widths and irregular fluctuation components are superimposed. Divided into three variable components. That is, a cyclic part for minute fluctuations up to a period of several minutes, a fringe part for short period fluctuations from about a few minutes to about a few tens of minutes, and a sustain part for long-period fluctuations of 10 minutes or more.

サイクリック分のうち、20秒程度までの極めて短周期の負荷変動は、系統の負荷特性によって吸収することができる。また、20秒から数分程度までの負荷変動に関しては、ガバナフリー運転する発電所の調速機の特性を適正化することで、自動調整が可能である。さらに、ガバナフリー制御だけでは調整しきれなくなると、電力会社の中央給電指令所において、それぞれの周期成分を対象とした制御分担が行われている。   Among cyclic components, load fluctuations with a very short period of up to about 20 seconds can be absorbed by the load characteristics of the system. In addition, the load fluctuation from about 20 seconds to several minutes can be automatically adjusted by optimizing the characteristics of the governor of the power plant that operates in a governor-free operation. Further, when the adjustment cannot be achieved by the governor-free control alone, the control sharing for each periodic component is performed at the central power supply command station of the electric power company.

フリンジ分のような変動周期が数分から十数分程度の負荷変動については、サイクリック分に比べて負荷変動量も大きくなるので、電力会社の中央給電指令所において、負荷周波数制御(以下、LFC:Load Frequency Control)を実施する。LFCでは、周波数偏差や電力変動量を検出して発電機の出力を調整することにより、電力会社間の連系線潮流や系統全体の周波数を規定値に近づけることができる。   For load fluctuations with a fluctuation period of several to ten and several minutes, such as fringe, the amount of load fluctuation is larger than that for cyclic parts. Therefore, load frequency control (hereinafter referred to as LFC) is performed at the central power supply command center of the power company. : Load Frequency Control). In LFC, the frequency deviation and the amount of power fluctuation are detected and the output of the generator is adjusted, so that the grid line flow between electric power companies and the frequency of the entire system can be brought close to a specified value.

また、変動周期が伸びて十数分以上の長い負荷変動であるサステンド分となると、負荷変動もかなり大きくなるので、1日の負荷曲線によって支配される変化の一部であると考えることができる。したがって、上記LFCの適用だけでは発電所の出力変化能力が不足する事態も想定でき、複数の発電所間の経済的な負荷配分が問題となってくる。   In addition, when the fluctuation cycle is extended to become a sustain portion that is a long load fluctuation of more than a dozen minutes, the load fluctuation becomes considerably large, so it can be considered to be part of the change governed by the daily load curve. . Therefore, it is possible to assume a situation where the output changing capability of the power plant is insufficient only by the application of the LFC, and economical load distribution among a plurality of power plants becomes a problem.

そこで、長周期の負荷変動への対応は、発電所の経済運用が主体となり、経済負荷配分制御(以下、ELD;Economic Load Dispatch)により給電調整を行っている。ELDでは、ELDスケジュール計算部にて経済負荷配分の計算結果であるELD値を求め、このELD値に基づいて最経済となる発電所の運用計画を実施している。   In response to long-term load fluctuations, the power plant is mainly operated by the economy, and the power supply is adjusted by economic load distribution control (ELD; Economic Load Dispatch). In ELD, an ELD value that is a calculation result of economic load distribution is obtained by an ELD schedule calculation unit, and an operation plan of a power plant that is the most economical is executed based on the ELD value.

上記のELDは、例えば特許文献1のような負荷周波数制御システムに含まれる等、電力系統の需給制御技術に広く採用されており、主として「等増分燃料費の法則」による手法が採られている。「等増分燃料費の法則」とは、1950年代に確立した手法であって、各火力発電機の燃料費特性を微分した値が等しいところが最適であるという基本原理に基づいている(非特許文献1参照)。以上のLFC及びELDは、電力会社の中央給電指令所における最重要な制御機能であって、電力系統の運用において中核的な役割を果たしている。   The above ELD is widely adopted in power supply and demand control technology, for example, included in a load frequency control system such as Patent Document 1, and a technique based mainly on the “equal fuel cost law” is adopted. . “Equal Incremental Fuel Cost Law” is a method established in the 1950s, and is based on the basic principle that the optimal value is the one where the differentiated values of the fuel cost characteristics of each thermal power generator are equal (non-patent literature). 1). The above LFC and ELD are the most important control functions in the central power supply command center of the electric power company and play a core role in the operation of the electric power system.

また、電力系統の需要変化や、電力系統に含まれる送変電設備の作業停止や事故などにより、送変電設備を流れる電力潮流値が、当該送変電設備に設定された運用限度値を超える場合がある。これは当該送変電設備に過負荷が発生している状態に他ならない。送変電設備の運用限度値は、系統安定度の問題等から決められており、系統運用において厳密に守らなければならない限界値である。したがって、過負荷が発生した場合には、送変電設備の過負荷を解消する過負荷解消対策として、発電機の出力を抑制するような出力調整を行っている。   In addition, the power flow value that flows through the power transmission / transformation equipment may exceed the operation limit value set for the power transmission / transformation equipment due to a change in the demand of the power system, work stoppage or accident of the power transmission / transformation equipment included in the power system. is there. This is nothing but an overload in the transmission and substation equipment. The operation limit value of the transmission and substation equipment is determined from the problem of system stability and the like, and is a limit value that must be strictly observed in system operation. Therefore, when an overload occurs, output adjustment is performed to suppress the output of the generator as an overload elimination measure for eliminating the overload of the transmission and substation equipment.

一般的に、過負荷解消対策では、各発電機の単位出力を変化させた場合の各送変電設備の潮流値変化量、いわゆる感度係数を用いて効果的な過負荷解消対策を計算するようになっている。
特開2008−42961号公報 「電気工学ハンドブック」 電気学会 ISBN4-88686-012-5(P970〜P975)
Generally, in overload elimination measures, an effective overload elimination measure is calculated using the so-called sensitivity coefficient, the amount of change in the power flow value of each transmission and substation equipment when the unit output of each generator is changed. It has become.
JP 2008-42961 A "Electrical Engineering Handbook" The Institute of Electrical Engineers of Japan ISBN4-88686-012-5 (P970 to P975)

しかしながら、以上のELDを採用した電力系統の需給制御技術には、次のような問題点が挙げられていた。すなわち、ELDでは長周期の負荷変動に対して、最経済となる運転スケジュールを作成しているが、短周期及び長周期の双方の負荷変動に伴う送変電設備の過負荷解消に関しては考慮できていなかった。また、送変電設備に過負荷が発生した際、過負荷解消対策を計算して発電機出力を抑制する動きと、ELDでの発電機出力を上げる動きとでは、互いに相反することになる。このため、双方の機能協調が不可欠であった。   However, the following problems have been raised in the power supply and demand control technology of the electric power system adopting the above ELD. In other words, ELD has created the most economical operation schedule for long-cycle load fluctuations, but it has taken into consideration the overload elimination of transmission and substation facilities associated with both short-cycle and long-cycle load fluctuations. There wasn't. In addition, when an overload occurs in the transmission and substation equipment, there is a contradiction between the movement to suppress the generator output by calculating the overload elimination measure and the movement to increase the generator output at the ELD. For this reason, functional cooperation of both sides was indispensable.

ところで、電力系統の運用制約上、送変電設備に設定される運用限度値は、送変電設備を流れる通常の潮流値との間で、ある程度の開きが存在することはやむを得ない状況にある。これは前述したように、系統安定度の問題等から決められる送変電設備の運用限度値は、系統運用において厳守しなくてはならない限界値なので、送変電設備の潮流値が運用限度値を簡単に超過しないように、運用限度値の設定にゆとりを持たせているからである。   By the way, due to operation restrictions of the power system, it is inevitable that the operation limit value set in the transmission and substation equipment has some degree of difference with the normal power flow value flowing through the transmission and substation equipment. As mentioned above, this is because the operational limit value of the transmission and substation equipment determined from problems such as system stability is the limit value that must be strictly observed in the system operation. This is because there is room in setting the operation limit value so that it is not exceeded.

しかしながら、送電損失を考慮した場合、送変電設備の潮流値が送変電設備の運用限度に近い値となるように、電力系統を運用することが経済性向上の観点から望ましいことは言うまでもない。そこで電力系統の需給制御技術の分野では、電力系統の運用制約を満たしつつも、送変電設備の運用限度にできるだけ近づけた潮流値にて電力系統を運用することが常に要求されている。   However, when power transmission loss is taken into consideration, it goes without saying that it is desirable from the viewpoint of economic efficiency to operate the power system so that the power flow value of the transmission and substation equipment is close to the operation limit of the transmission and substation equipment. Therefore, in the field of power supply and demand control technology, it is always required to operate the power system with a power flow value as close as possible to the operation limit of the transmission and substation equipment while satisfying the operation constraints of the power system.

本発明は、上記の問題点を解決するために提案されたものであり、その目的は、電力系統の運用制約を満足した上で、短周期及び長周期の双方の負荷変動に伴う送変電設備の過負荷を効率よく処理して制御性の向上を図り、さらには送変電設備の運用限度に近い潮流値にて電力系統を運用することで優れた経済性を発揮できる電力系統の需給制御方法及びその装置を提供することにある。   The present invention has been proposed in order to solve the above-mentioned problems, and its purpose is to satisfy the operational constraints of the power system, and to transmit and substation equipment accompanying both short-cycle and long-cycle load fluctuations. Power system supply and demand control method that can improve the controllability by efficiently processing the overload of the power system, and can demonstrate excellent economic efficiency by operating the power system at a power flow value close to the operation limit of transmission and substation equipment And providing such a device.

上記目的を達成するために、請求項1の発明は、電力系統内の発電機の出力値を入力するステップと、前記電力系統内の送変電設備の潮流値を入力するステップと、前記電力系統内の開閉器の情報を入力するステップと、前記電力系統の状態を監視するステップと、前記発電機の出力値より総需要を計算するステップと、予測総需要を作成するステップと、前日運転計画を作成するステップと、経済負荷配分制御(ELD)にて算出した運用スケジュールからELD値を求めるステップと、前記送変電設備の潮流値が予め設定された前記送変電設備の運用限度値を上回った場合に過負荷解消対策の計算値を求めるステップを含む電力系統の需給制御方法において、次のような特徴がある。   In order to achieve the above object, the invention of claim 1 includes a step of inputting an output value of a generator in an electric power system, a step of inputting a power flow value of transmission and transformation equipment in the electric power system, and the electric power system. A step of inputting information on the switch in the power supply, a step of monitoring the state of the power system, a step of calculating a total demand from the output value of the generator, a step of creating a predicted total demand, and a previous day operation plan The step of obtaining the ELD value from the operation schedule calculated by economic load distribution control (ELD), and the power flow value of the transmission and substation equipment exceeded the preset operation limit value of the transmission and substation equipment In this case, the power system supply and demand control method including the step of obtaining a calculated value for overload elimination measures has the following characteristics.

すなわち、前記送変電設備の運用限度値を下回る値であって前記過負荷を未然に防止するための運用限度値である過負荷未然防止用運用限度値を設定するステップと、前記送変電設備の潮流値が前記過負荷未然防止用運用限度値を上回った場合に過負荷未然防止対策の計算値を求めるステップを含み、前記過負荷解消対策の計算値を求めるステップでは、長周期の負荷変動に伴う前記送変電設備の過負荷解消のための計算値を求め、前記過負荷未然防止対策の計算値を求めるステップでは、短周期の負荷変動に伴う前記送変電設備の過負荷解消のための計算値を求めることを特徴としている。   That is, a step of setting an operation limit value for overload prevention that is an operation limit value for preventing the overload in advance, which is a value lower than the operation limit value of the transmission and substation equipment; Including a step of obtaining a calculated value of the overload prevention measure when the power flow value exceeds the operation limit value for overload prevention, and the step of obtaining the calculated value of the overload elimination measure includes a long cycle load fluctuation. In the step of obtaining a calculated value for eliminating the overload of the transmission and substation equipment, and calculating a calculated value of the overload prevention measure, a calculation for eliminating the overload of the transmission and substation equipment accompanying a short cycle load fluctuation is provided. It is characterized by obtaining a value.

また、請求項3の発明は、上記請求項1の発明を装置の観点からとらえたものであり、電力系統内の発電機の出力値を入力する手段と、前記電力系統内の送変電設備の潮流値を入力する手段と、前記電力系統内の開閉器の情報を入力する手段と、前記電力系統の状態を監視する手段と、前記発電機の出力値より総需要を計算する手段と、予測総需要を作成する手段と、前日運転計画を作成する手段と、経済負荷配分制御(ELD)にて算出した運用スケジュールからELD値を求める手段と、前記送変電設備の潮流値が予め設定された前記送変電設備の運用限度値を上回った場合に過負荷解消対策の計算値を求める手段を備えた電力系統の需給制御装置において、前記送変電設備の運用限度値を下回る値であって前記過負荷を未然に防止するための運用限度値である過負荷未然防止用運用限度値を設定する手段と、前記送変電設備の潮流値が前記過負荷未然防止用運用限度値を上回った場合に過負荷未然防止対策の計算値を求める手段を設け、前記過負荷解消対策の計算値を求める手段は、長周期の負荷変動に伴う前記送変電設備の過負荷解消のための計算値を求め、前記過負荷未然防止対策の計算値を求める手段は、短周期の負荷変動に伴う前記送変電設備の過負荷解消のための計算値を求める構成したことを特徴とするものである。   The invention of claim 3 captures the invention of claim 1 from the viewpoint of the device, and includes means for inputting the output value of the generator in the power system, and transmission and substation equipment in the power system. Means for inputting tidal current values, means for inputting information on switches in the power system, means for monitoring the state of the power system, means for calculating the total demand from the output value of the generator, and prediction A means for creating total demand, a means for creating an operation plan for the previous day, a means for obtaining an ELD value from an operation schedule calculated by economic load distribution control (ELD), and a power flow value of the transmission / transformation equipment are preset. In a power supply and demand control apparatus comprising means for obtaining a calculated value for overload elimination measures when the operation limit value of the transmission and substation equipment is exceeded, a value that is lower than the operation limit value of the transmission and substation equipment, and Preventing the load in advance Means for setting an operation limit value for preventing overload, which is an operation limit value for the operation, and calculation of measures for preventing overload when the power flow value of the transmission and substation equipment exceeds the operation limit value for preventing overload Means for obtaining a value, and means for obtaining a calculated value of the overload elimination measure obtains a calculated value for eliminating the overload of the transmission and substation equipment accompanying a long-cycle load fluctuation, and The means for obtaining the calculated value is characterized in that the calculated value for eliminating the overload of the transmission / transformation equipment accompanying short-term load fluctuations is obtained.

以上のような請求項1及び3に記載の発明では、過負荷を未然に防止するための計算を実施することで、短周期負荷変動時における送変電設備の過負荷解消を実現することが可能であり、それに合わせて長周期負荷変動時の経済負荷配分制御による送変電設備における過負荷解消処理の周期期間の補完が可能となる。これにより、短周期及び長周期の双方の負荷変動に伴う送変電設備の過負荷解消を確実に行うことができる。   In the invention described in claims 1 and 3 as described above, it is possible to realize overload elimination of the transmission and substation equipment at the time of short cycle load fluctuation by performing calculation for preventing overload in advance. Accordingly, it is possible to complement the periodic period of the overload elimination processing in the transmission and substation equipment by the economic load distribution control at the time of long cycle load fluctuation. As a result, it is possible to reliably eliminate the overload of the transmission and substation equipment accompanying both short cycle and long cycle load fluctuations.

また、本発明では、送変電設備の運用限度値を下回る値である過負荷未然防止用運用限度値を予め設定し、この過負荷未然防止用運用限度値を超過した送変電設備の潮流値に関して、過負荷の未然防止対策として、この過負荷未然防止用運用限度値の超過分を解消することができる。したがって、送変電設備の潮流値が過負荷未然防止用運用限度値を上回り、更には送変電設備の運用限度値までも上回るといった事態は発生し難くなる。これにより、電力系統の運用制約を満足させると同時に、送変電設備の運用限度値にできるだけ近い潮流値にて電力系統の運用が可能となる。   In the present invention, an operation limit value for preventing overload that is lower than the operation limit value of the transmission and substation equipment is set in advance, and the power flow value of the transmission and substation equipment that exceeds this operation limit value for preventing overload As an overload prevention measure, it is possible to eliminate the excess of the operation limit value for overload prevention. Therefore, it is difficult for a situation in which the power flow value of the transmission / transformation equipment exceeds the operation limit value for overload prevention and further exceeds the operation limit value of the transmission / transformation equipment. As a result, the power system can be operated at a power flow value as close as possible to the operation limit value of the transmission and substation equipment, while satisfying the power system operation constraints.

また、請求項2の発明は、請求項1に記載の電力系統の需給制御方法において、前記過負荷解消対策の計算値、及び、前記過負荷未然防止対策の計算値を過負荷対策テーブルに格納するステップを含み、前記過負荷解消対策の計算値を求めるステップでは、前記過負荷対策テーブルを参照して前記過負荷解消対策の計算値を求め、前記過負荷未然防止対策の計算値を求めるステップでは、前記過負荷対策テーブルを参照して前記過負荷未然防止対策の計算値を求めることを特徴としたものである。   Further, the invention according to claim 2 is the power supply and demand control method according to claim 1, wherein the calculated value of the overload elimination measure and the calculated value of the overload prevention measure are stored in an overload countermeasure table. A step of obtaining a calculated value of the overload elimination measure by referring to the overload countermeasure table and obtaining a calculated value of the overload prevention measure. Then, the calculated value of the overload prevention measure is obtained with reference to the overload countermeasure table.

上記の請求項2の発明では、過負荷解消対策及び過負荷未然防止対策の計算値を過負荷対策テーブルに予め格納しておくので、過負荷解消対策及び過負荷未然防止対策を実施する際の処理速度が向上し、計算機負荷の軽減化を進めることが可能となる。   In the above invention of claim 2, since the calculated values of the overload elimination countermeasure and the overload prevention countermeasure are stored in advance in the overload countermeasure table, the overload elimination countermeasure and the overload prevention countermeasure are implemented. The processing speed is improved, and the computer load can be reduced.

以上、本発明に係る電力系統の需給制御方法及びその装置によれば、電力系統の運用制約を満足した上で、短周期及び長周期の双方の負荷変動に伴う送変電設備の過負荷を効率よく処理して制御性の向上を図ると共に、送変電設備の運用限度値に近い潮流値にて電力系統を運用することで優れた経済性を発揮できる。   As described above, according to the power supply and demand control method and apparatus therefor according to the present invention, it is possible to efficiently overload the transmission and substation facilities accompanying both short-cycle and long-cycle load fluctuations while satisfying the operation constraints of the power system. It is possible to improve the controllability by processing well, and to demonstrate excellent economic efficiency by operating the power system at a power flow value close to the operation limit value of the transmission and substation equipment.

(1)代表的な実施形態
[構成]
以下、本発明に係る代表的な実施形態について、図1乃至図3を参照して具体的に説明する。本実施形態はELDを採用した場合の実施形態であり、図1は本実施形態の構成図、図2は本実施形態の各処理を示す説明図、図3は本実施形態の過負荷対策テーブルの説明図である。
(1) Representative embodiment [configuration]
Hereinafter, typical embodiments according to the present invention will be specifically described with reference to FIGS. 1 to 3. This embodiment is an embodiment in the case of adopting ELD, FIG. 1 is a configuration diagram of this embodiment, FIG. 2 is an explanatory diagram showing each processing of this embodiment, and FIG. 3 is an overload countermeasure table of this embodiment. It is explanatory drawing of.

図1に示すように、電力系統1の内部には発電機401〜40n、送変電設備411〜41n、開閉器421〜42nが複数設けられている。符号5は、MMI(マンマシンインターフェース)であり、このMMI5にて、ELD運用限度値51、過負荷未然防止用運用限度値52、運用限度値53が設定される。   As shown in FIG. 1, a plurality of generators 401 to 40 n, power transmission / transformation facilities 411 to 41 n, and switches 421 to 42 n are provided inside the electric power system 1. Reference numeral 5 denotes an MMI (man machine interface). In this MMI 5, an ELD operation limit value 51, an overload prevention operation limit value 52, and an operation limit value 53 are set.

過負荷未然防止用運用限度値52は、本実施形態にて設定される特徴的な運用限度値であり、過負荷を未然に防止するための運用限度値である。この過負荷未然防止用運用限度値52は、系統安定度の問題等から決められる通常の運用限度値53よりも若干低く設定されており、例えば、運用限度値53の95%程度、より望ましくは98%程度に設定されている。具体的な数値例としては、運用限度値53が−100MW〜+100MWであれば、過負荷未然防止用運用限度値52は−98MW〜+98MWとなる。   The overload prevention operation limit value 52 is a characteristic operation limit value set in the present embodiment, and is an operation limit value for preventing overload in advance. The operation limit value 52 for preventing overload is set slightly lower than the normal operation limit value 53 determined from a problem of system stability, for example, about 95% of the operation limit value 53, more preferably It is set to about 98%. As a specific numerical example, when the operation limit value 53 is −100 MW to +100 MW, the overload prevention operation limit value 52 is −98 MW to +98 MW.

計算機2側には次のような機能を実行する手段が装備されている。すなわち、発電機401〜40nと接続される部分として、発電端総需要計算部27、オンライン予測需要部28、ELDスケジュール計算部30、発電機出力値入力部31、LFC計算部36がある。   The computer 2 side is equipped with means for executing the following functions. That is, as the parts connected to the generators 401 to 40n, there are a generation end total demand calculation unit 27, an online prediction demand unit 28, an ELD schedule calculation unit 30, a generator output value input unit 31, and an LFC calculation unit 36.

すなわち、複数の発電機401〜40nと計算機2とは、検出用の信号線43と制御用の信号線44を介して、計算機2内の発電端総需要計算部27と、ELDスケジュール計算部30と、発電機出力値入力部31と、LFC計算部36とに接続されている。また、ELDスケジュール計算部30には前日運転計画部29が接続されている。   That is, the plurality of generators 401 to 40n and the computer 2 are connected to the power generation end total demand calculation unit 27 and the ELD schedule calculation unit 30 in the computer 2 via the detection signal line 43 and the control signal line 44. Are connected to the generator output value input unit 31 and the LFC calculation unit 36. The ELD schedule calculation unit 30 is connected to the previous day operation plan unit 29.

また、送変電設備411〜41nと計算機2とは、検出用の信号線45を介して、計算機2内の送変電設備潮流値入力部32に接続され、さらに電力系統監視部35に接続されている。さらに、開閉器421〜42nと計算機2とは、検出用信号線46を介して、計算機2内の開閉器情報入力部33に接続され、開閉器情報入力部33もまた、前記電力系統監視部35に接続されている。   Further, the power transmission / transformation facilities 411 to 41n and the computer 2 are connected to the power transmission / transformation facility power flow value input unit 32 in the computer 2 via the signal line 45 for detection, and further connected to the power system monitoring unit 35. Yes. Further, the switches 421 to 42n and the computer 2 are connected to the switch information input unit 33 in the computer 2 via the detection signal line 46, and the switch information input unit 33 is also connected to the power system monitoring unit. 35.

電力系統監視部35には、過負荷解消対策部34及び過負荷対策テーブル作成部38が接続され、過負荷対策テーブル作成部38には過負荷対策テーブル54が接続されている。過負荷対策テーブル54には、前記過負荷解消対策部34と共に、過負荷未然防止対策部37が接続されており、これら対策部34、37には、前記LFC計算部36が接続されている。   An overload elimination countermeasure unit 34 and an overload countermeasure table creation unit 38 are connected to the power system monitoring unit 35, and an overload countermeasure table 54 is connected to the overload countermeasure table creation unit 38. The overload countermeasure table 54 is connected with an overload prevention countermeasure section 37 together with the overload elimination countermeasure section 34, and the countermeasure section 34, 37 is connected with the LFC calculation section 36.

続いて、計算機2内の各機能部について、詳しく説明する。
[発電端総需要計算部27]
発電端総需要計算部27は、発電機出力値入力部31からの発電機出力値を取り込んで発電端総需要を計算し、その計算結果をオンライン予測需要部28に送る部分である。
Next, each functional unit in the computer 2 will be described in detail.
[Total power generation demand calculator 27]
The power generation end total demand calculation unit 27 is a part that takes in the generator output value from the generator output value input unit 31 to calculate the power generation end total demand, and sends the calculation result to the online prediction demand unit 28.

[オンライン予測需要部28、前日運転計画部29]
オンライン予測需要部28は予測総需要を作成する手段、前日運転計画部29は前日運転計画を作成する手段であって、各部28、29からの出力をELDスケジュール計算部30に送るようになっている。
[Online forecast demand unit 28, previous day operation plan unit 29]
The online forecast demand section 28 is a means for creating a predicted total demand, and the previous day operation plan section 29 is a means for creating a previous day operation plan, and the output from each section 28, 29 is sent to the ELD schedule calculation section 30. Yes.

[ELDスケジュール計算部30]
ELDスケジュール計算部30は、最経済となる運転スケジュールを作成する経済負荷配分制御手段であって、MMI5にて設定された送変電設備411〜41nのELD運用限度値51に基づいて過負荷解消対策および経済負荷配分の計算結果として各発電機401〜40nの各々のELD値71を求め、これを発電機目標出力値の候補としてLFC計算部36に与えるようになっている。
[ELD schedule calculation unit 30]
The ELD schedule calculation unit 30 is an economic load distribution control means for creating the most economical operation schedule, and an overload elimination measure based on the ELD operation limit value 51 of the transmission / transformation equipment 411 to 41n set in the MMI 5 The ELD value 71 of each of the generators 401 to 40n is obtained as the calculation result of the economic load distribution, and this is given to the LFC calculation unit 36 as a generator target output value candidate.

[電力系統監視部35]
電力系統監視部35は、開閉器情報入力部33からの開閉器情報を取り込み、入力した開閉器情報の状態変化を検出して、状態変化があった場合、過負荷解消テーブル作成部38および過負荷解消対策部34へ通知するものである。
[Power system monitoring unit 35]
The power system monitoring unit 35 takes in the switch information from the switch information input unit 33, detects a change in the state of the input switch information, and if there is a change in state, This is notified to the load cancellation countermeasure unit 34.

また、電力系統監視部35は、送変電設備潮流入力部32からの送変電設備411〜41nの潮流値を取り込み、入力した潮流値を、MMI5にて設定された運用限度値53と比較して、送変電設備411〜41nの潮流値が運用限度値53を超過した場合、過負荷発生として過負荷解消対策部34へと通知するようになっている。   In addition, the power system monitoring unit 35 takes in the power flow values of the power transmission / transformation facilities 411 to 41n from the power transmission / transformation facility power flow input unit 32 and compares the input power flow values with the operation limit value 53 set in the MMI 5. When the power flow value of the transmission / transformation equipment 411 to 41n exceeds the operation limit value 53, the overload elimination countermeasure unit 34 is notified of the occurrence of overload.

[過負荷対策テーブル作成部38]
過負荷対策テーブル作成部38は、電力系統監視部35からの状態変化があった旨の通知を受けた場合、また、電力系統監視部35からの状態変化があった旨の通知を受けない場合でも1分周期等の定周期で、送変電設備411〜41nの各々のオンラインの潮流値についてMMI5にて設定された各々の運用限度値53と比較し、運用限度値53を超過する潮流値の送変電設備があるか否かをチェックする。その結果、運用限度値53を超過する潮流値の送変電設備がある場合、その潮流値に対する過負荷解消計算を行って、その計算結果である過負荷解消対策の計算値73(発電機目標出力値VA)を過負荷対策テーブル54に登録する。
[Overload countermeasure table creation unit 38]
When the overload countermeasure table creation unit 38 receives a notification that the state change has occurred from the power system monitoring unit 35, or does not receive a notification that the state change has occurred from the power system monitoring unit 35 However, in a fixed cycle such as one minute, the online power flow values of each of the power transmission / transformation equipments 411 to 41n are compared with the respective operation limit values 53 set in the MMI 5, and the power flow values exceeding the operation limit values 53 are compared. Check whether there are transmission and substation facilities. As a result, when there is a power transmission / transformation facility with a tidal value exceeding the operation limit value 53, an overload elimination calculation is performed for that tidal value, and a calculation value 73 (generator target output) of the overload elimination countermeasure, which is the calculation result, is calculated. Value VA) is registered in the overload countermeasure table 54.

また、過負荷対策テーブル作成部38は、電力系統監視部35からの状態変化があった旨の通知を受けた場合、また、電力系統監視部35からの状態変化があった旨の通知を受けない場合でも1分周期等の定周期で、送変電設備411〜41nの各々のオンラインの潮流値についてMMI5にて設定された各々の過負荷未然防止用運用限度値52と比較して、過負荷未然防止用運用限度値52を超過する潮流値の送変電設備があるか否かをチェックする。その結果、過負荷未然防止用運用限度値52を超過する潮流値の送変電設備がある場合、その潮流値に対する過負荷解消計算を行い、その計算結果である過負荷未然防止対策の計算値72(発電機目標出力値VB)を過負荷対策テーブル54に登録するようになっている。   Further, the overload countermeasure table creation unit 38 receives a notification from the power system monitoring unit 35 that there has been a state change, and also receives a notification from the power system monitoring unit 35 that there has been a state change. Even when there is no overload, the on-line power value of each of the transmission / transformation equipments 411 to 41n is compared with the operation limit value 52 for preventing overload set in the MMI 5 at a constant cycle such as one minute cycle. It is checked whether or not there is a power transmission / transformation facility having a tidal current value exceeding the operational limit value 52 for prevention. As a result, when there is a transmission / transformation facility with a tidal value exceeding the operation limit value 52 for preventing overload, overload elimination calculation is performed for the tidal value, and the calculated value 72 of the overload prevention measure is the calculation result. (Generator target output value VB) is registered in the overload countermeasure table 54.

[過負荷解消対策部34]
過負荷解消対策部34は、電力系統1の事故時などによる負荷の急変に対して過負荷を解消するものであり、過負荷発生時に電力系統監視部35によって起動される。過負荷発生時に電力系統監視部35によって起動されると、過負荷解消対策部34は、過負荷対策テーブル54を参照し、過負荷対策テーブル54に登録されている過負荷解消対策の計算値73(発電機目標出力値VA)の中から過負荷が発生している送変電設備に対応して登録されている過負荷解消対策の計算値73(発電機目標出力値VA(k))を選択し、この選択した過負荷解消対策の計算値73(発電機目標出力値VA(k))をLFC計算部36へ受け渡す。ここで、VA(k)は、発電機40kの過負荷解消対策の計算値としての発電機目標出力値である。また、発電機40kは、複数の発電機401〜40nのうちのある一つの発電機であり、出力値の制御対象として選択されたものである。
[Overload elimination countermeasure unit 34]
The overload elimination countermeasure unit 34 eliminates an overload in response to a sudden change in load due to an accident in the power system 1, and is activated by the power system monitoring unit 35 when an overload occurs. When activated by the power system monitoring unit 35 when an overload occurs, the overload elimination countermeasure unit 34 refers to the overload countermeasure table 54 and calculates a calculated value 73 of the overload elimination countermeasure registered in the overload countermeasure table 54. Select the calculation value 73 (generator target output value VA (k)) of the countermeasure for overload elimination registered in correspondence with the transmission / transformation equipment in which overload has occurred from (generator target output value VA) The selected overload elimination measure value 73 (generator target output value VA (k)) is then passed to the LFC calculator 36. Here, VA (k) is a generator target output value as a calculated value for overload elimination measures for the generator 40k. The generator 40k is one generator among the plurality of generators 401 to 40n, and is selected as an output value control target.

[過負荷未然防止対策部37]
過負荷未然防止対策部37は、本実施形態の構成上の特徴を示す部分である。過負荷未然防止対策部37では、10秒周期等の定周期で、送変電設備411〜41nの各々のオンラインの潮流値についてMMI5にて設定され過負荷対策テーブル54に登録されている各々の過負荷未然防止用運用限度値52と比較し、過負荷未然防止用運用限度値52を超過する潮流値の送変電設備があるか否かをチェックする。その結果、過負荷未然防止用運用限度値52を超過する潮流値の送変電設備がある場合、過負荷対策テーブル54を参照して、過負荷対策テーブル54に登録されている過負荷未然防止対策の計算値72(発電機目標出力値VB)の中から過負荷未然防止用運用限度値52を超過する潮流値の送変電設備に対応して登録されている過負荷未然防止対策の計算値72(発電機目標出力値VB(k))を選択し、この選択した過負荷未然防止対策の計算値72(発電機目標出力値VB(k))をLFC計算部36へと受け渡すようになっている。ここで、VB(k)は、発電機40kの過負荷未然防止対策の計算値としての発電機目標出力値である。
[Overload prevention measures section 37]
The overload prevention countermeasure unit 37 is a part showing the structural features of the present embodiment. The overload prevention countermeasure unit 37 sets each online power flow value of each of the power transmission / transformation equipments 411 to 41n in the MMI 5 at a fixed period such as a 10 second period and registers each overload registered in the overload countermeasure table 54. Compared with the operation limit value 52 for preventing load overload, it is checked whether or not there is a power transmission / transformation facility having a tidal value exceeding the operation limit value 52 for preventing overload prevention. As a result, when there is a power transmission / transformation facility having a power flow value exceeding the operation limit value 52 for preventing overload, the overload prevention countermeasure registered in the overload countermeasure table 54 is referred to the overload countermeasure table 54. Calculation value 72 of an overload prevention measure registered corresponding to the power transmission / transformation equipment having a tidal value exceeding the operation limit value 52 for prevention of overload from the calculated value 72 (generator target output value VB). (Generator target output value VB (k)) is selected, and the selected calculation value 72 (generator target output value VB (k)) for preventing overload is delivered to the LFC calculation unit 36. ing. Here, VB (k) is a generator target output value as a calculated value of an overload prevention measure for the generator 40k.

[LFC計算部36]
LFC計算部36は、図2に示すように、ELDスケジュール計算部30から3分周期で送出される各発電機401〜40nに対する各々のELD値71を取り込む。また、LFC計算部36は、過負荷未然防止用運用限度値52を超過する潮流値の送変電設備があると判断された際に過負荷未然防止対策部37から送出される過負荷未然防止対策の計算値72を取り込む。また、LFC計算部36は、運用限度値53を超過する潮流値の送変電設備があると判断された際に過負荷解消対策部34から送出される過負荷解消対策の計算値73を取り込む。
[LFC calculator 36]
As shown in FIG. 2, the LFC calculation unit 36 takes in each ELD value 71 for each of the generators 401 to 40n sent from the ELD schedule calculation unit 30 at a cycle of 3 minutes. Further, the LFC calculation unit 36, when it is determined that there is a power transmission / transformation facility having a power flow value that exceeds the operation limit value 52 for overload prevention, an overload prevention measure sent from the overload prevention measure unit 37. The calculated value 72 is taken in. In addition, the LFC calculation unit 36 takes in the calculated value 73 of the overload elimination measure transmitted from the overload elimination countermeasure unit 34 when it is determined that there is a power transmission / transformation facility having a tidal value exceeding the operation limit value 53.

LFC計算部36は、取り込んだELD値71、過負荷未然防止対策の計算値72、負荷解消対策の計算値73を対象とする発電機にそれぞれ送出する。このとき、LFC計算部36は、過負荷解消対策の計算値73を最も優先的に送出し、過負荷解消対策の計算値73がない場合は、次に過負荷未然防止対策の計算値72を優先的に送出し、過負荷解消対策の計算値73も過負荷未然防止対策の計算値72もない場合は、ELD値71を送出する。   The LFC calculation unit 36 sends the fetched ELD value 71, the calculated value 72 of the overload prevention measure, and the calculated value 73 of the load elimination measure to the target generator. At this time, the LFC calculation unit 36 sends the calculated value 73 for overload elimination countermeasures most preferentially. If there is no calculated value 73 for overload elimination countermeasures, then the calculated value 72 for overload prevention countermeasures is output next. If there is no calculation value 73 for overload elimination countermeasures and no calculation value 72 for overload prevention countermeasures, the ELD value 71 is transmitted.

例えば、LFC計算部36は、過負荷解消対策の計算値73を取り込んでいる場合、過負荷解消対策の計算値73を対象の発電機に送出する。また、過負荷解消対策の計算値73を送出する対象の発電機ではない発電機について、この発電機を対象とした過負荷未然防止対策の計算値72を取り込んでいる場合、過負荷未然防止対策の計算値72を対象の発電機に送出する。また、過負荷解消対策の計算値73を送出する対象の発電機でもなく過負荷未然防止対策の計算値72を送出する対象の発電機でもない発電機については、この発電機を対象としたELD値71が取り込まれている場合は、このELD値71を対象とする発電機に送出する。   For example, when the calculated value 73 of the overload elimination measure is taken in, the LFC calculation unit 36 sends the calculated value 73 of the overload elimination measure to the target generator. In addition, for a generator that is not the generator to which the calculated value 73 of the overload elimination measure is sent, when the calculated value 72 of the overload prevention measure for this generator is taken in, the overload prevention measure is taken. The calculated value 72 is sent to the target generator. Further, regarding a generator that is not a target generator for sending the calculated value 73 for overload elimination countermeasures and is not a target target for sending the calculated value 72 for overload prevention countermeasures, an ELD targeted for this generator is used. When the value 71 is captured, the ELD value 71 is sent to the target generator.

[過負荷解消対策の計算値73(発電機目標出力値VA)の計算方法]
過負荷対策テーブル作成部38における過負荷解消対策の計算値73(発電機目標出力値VA)の計算方法を以下に説明する。
[Calculation method of overload elimination countermeasure value 73 (generator target output value VA)]
The calculation method of the calculation value 73 (generator target output value VA) of the overload elimination countermeasure in the overload countermeasure table creation unit 38 will be described below.

複数の送変電設備411〜41nのうちのある一つの送変電設備を送変電設備41kとして、この送変電設備41kの潮流値Pkがこの送変電設備41kに対して予め設定されている運用限度値53を超過した場合を説明する。送変電設備41kの潮流値Pkの逸脱量の解消を行える発電機として発電機401〜40nがある場合、この発電機401〜40nの中から送変電設備41kの潮流値Pkの逸脱量の解消を行う過負荷解消対策において最も効果のある発電機、即ち、最も感度係数が大きい発電機を選択する。過負荷対策テーブル作成部38は、発電機401〜40nのうち最も感度係数が大きいものが発電機40kである場合、発電機40kを選択する。   One transmission / transformation facility among a plurality of transmission / transformation facilities 411-41n is defined as a transmission / transformation facility 41k, and a power flow value Pk of the transmission / transformation facility 41k is set in advance for the transmission / transformation facility 41k. The case where 53 is exceeded is demonstrated. When there are generators 401 to 40n as generators that can eliminate the deviation of the tidal current value Pk of the power transmission / transformation equipment 41k, the deviation of the deviation of the tidal current value Pk of the transmission / transformation equipment 41k can be eliminated from the generators 401 to 40n. A generator that is most effective in overload elimination measures to be performed, that is, a generator having the largest sensitivity coefficient is selected. When the generator 40k has the highest sensitivity coefficient among the generators 401 to 40n, the overload countermeasure table creation unit 38 selects the generator 40k.

次に過負荷対策テーブル作成部38は、選択した発電機40kの発電機目標出力値VA(k)を次の式により求める。すなわち、
発電機目標出力値VA(k)=(Plimit(k)−Pk)/Ak+Pgk
Pk…送変電設備41kの潮流値
Plimit(k)…送変電設備41kの運用限度値53
Pgk…発電機40kの現在出力値
Ak…発電機40kの感度係数(Δ潮流/Δ発電機出力)
Next, the overload countermeasure table creation unit 38 obtains the generator target output value VA (k) of the selected generator 40k by the following equation. That is,
Generator target output value VA (k) = (Plimit (k) −Pk) / Ak + Pgk
Pk: Tidal current value of transmission / transformation equipment 41k Plimit (k): Operation limit value 53 of transmission / transformation equipment 41k
Pgk: Current output value of the generator 40k Ak: Sensitivity coefficient of the generator 40k (Δ tidal current / Δ generator output)

図3に示すように過負荷対策テーブル54には、MMI5にて過負荷監視対象送配電設備と、この過負荷監視対象送配電設備の運用限度値53、過負荷未然防止用運用限度値52が予め登録されている。   As shown in FIG. 3, the overload countermeasure table 54 includes an overload monitoring target transmission / distribution facility in the MMI 5, an operation limit value 53 of the overload monitoring target transmission / distribution facility, and an overload prevention operation limit value 52. Registered in advance.

ここで、過負荷監視対象送配電設備418の潮流値が1530であり、運用限度値53の1500を超過しているとする。このとき、過負荷対策テーブル作成部38は、逸脱量の解消を行える発電機として最も感度係数が大きい発電機402を選択し、発電機402の発電機目標出力値VA(2)を計算する。ここで、発電機402の現在出力値は500、感度係数は0.53とする。
発電機目標出力値VA(2) = (1500―1530)/0.53+500
= −56.6+500
= 443.4
Here, it is assumed that the power flow value of the overload monitoring target power transmission / distribution facility 418 is 1530 and exceeds the operation limit value 53 of 1500. At this time, the overload countermeasure table creation unit 38 selects the generator 402 having the largest sensitivity coefficient as the generator capable of eliminating the deviation amount, and calculates the generator target output value VA (2) of the generator 402. Here, the current output value of the generator 402 is 500, and the sensitivity coefficient is 0.53.
Generator target output value VA (2) = (1500-1530) /0.53+500
= -56.6 + 500
= 443.4

過負荷監視対象送配電設備413の潮流値が運用限度値53の4000を超過している場合も同じように計算を行う。過負荷監視対象送配電設備413の潮流値が4020であり、逸脱量の解消を行える発電機として最も感度係数が大きい発電機405の現在出力値が600、感度係数が0.87とすると、発電機目標出力値VA(5)=577.0と計算される。   The same calculation is performed when the power flow value of the overload monitoring target power transmission / distribution facility 413 exceeds the operation limit value of 4000. When the power flow value of the overload monitoring target transmission / distribution facility 413 is 4020, the current output value of the generator 405 having the largest sensitivity coefficient as a generator capable of eliminating the deviation amount is 600, and the sensitivity coefficient is 0.87, The machine target output value VA (5) = 577.0 is calculated.

[過負荷未然防止対策の計算値72(発電機目標出力値VB)の計算方法]
過負荷対策テーブル作成部38における過負荷未然防止対策の計算値72(発電機目標出力値VB)の計算方法を以下に説明する。
[Calculation method of calculated value 72 (generator target output value VB) for measures to prevent overload]
The calculation method of the calculation value 72 (generator target output value VB) of the overload prevention measure in the overload countermeasure table creation unit 38 will be described below.

送変電設備411〜41nの潮流値が過負荷未然防止用運用限度値52を逸脱している場合に、過負荷未然防止対策の計算値としての発電機目標出力値VBを計算する。送変電設備411〜41nのうち送変電設備41kの潮流値Pkがこの送変電設備41kに対して予め設定されている過負荷未然防止運用限度値52を超過する場合を説明する。   When the power flow value of the transmission / transformation equipment 411 to 41n deviates from the operation limit value 52 for preventing overload, the generator target output value VB is calculated as a calculated value for measures for preventing overload. A case will be described in which the power flow value Pk of the power transmission / transformation equipment 41k out of the power transmission / transformation equipment 411 to 41n exceeds the overload prevention operation limit value 52 preset for the power transmission / transformation equipment 41k.

送変電設備41kの潮流値Pkの逸脱量の解消を行える発電機として発電機401〜40nがある場合、過負荷対策テーブル作成部38は、発電機401〜40nの中から、過負荷未然防止対策にて、過負荷未然防止用運用限度値52に近い潮流値となるように最も効果のある発電機即ち、最も感度係数が大きい発電機を選択する。   When there are generators 401 to 40n as generators that can eliminate the deviation of the power flow value Pk of the power transmission / transformation equipment 41k, the overload countermeasure table creation unit 38 takes measures to prevent overload from among the generators 401 to 40n. Thus, the most effective generator, that is, the generator having the largest sensitivity coefficient is selected so that the tidal current value is close to the operation limit value 52 for preventing overload.

ここで、過負荷対策テーブル作成部38は、発電機401〜40nのうち最も感度係数が大きいものが発電機40kである場合、発電機40kを選択し、この発電機40kの発電機目標出力値VB(k)を次の式により求める。   Here, when the generator 40k has the largest sensitivity coefficient among the generators 401 to 40n, the overload countermeasure table creation unit 38 selects the generator 40k, and the generator target output value of the generator 40k. VB (k) is obtained by the following equation.

この時の目標出力値を求める式は次の通りである。すなわち、
発電機目標出力値VB(k)=(Pprelimit(k)−Pk)/Ak+Pgk
Pk…送変電設備41kの潮流値
Pprelimit(k)…送変電設備41kの過負荷未然防止用運用限度値52
Pgk…発電機40kの現在出力値
Ak…発電機40kの感度係数(Δ潮流/Δ発電機出力)
また、LFC計算部36は、地域要求電力(AR)を求める計算を行う部分でもある。
The formula for obtaining the target output value at this time is as follows. That is,
Generator target output value VB (k) = (Pprelimit (k) −Pk) / Ak + Pgk
Pk: Power flow value of transmission / transformation equipment 41k Preprelimit (k): Operation limit value 52 for preventing overload of transmission / transformation equipment 41k
Pgk: Current output value of the generator 40k Ak: Sensitivity coefficient of the generator 40k (Δ tidal current / Δ generator output)
The LFC calculation unit 36 is also a part that performs a calculation for obtaining the regional required power (AR).

ここで、過負荷監視対象送配電設備408の潮流値が1490であり、過負荷未然防止運用限度値52の1470を超過しているとする。このとき、過負荷対策テーブル作成部38は、発電機401〜40nのうち最も感度係数が大きい発電機402を逸脱量の解消を行える発電機として選択し、発電機402の発電機目標出力値VB(2)を計算する。ここで、発電機402の現在出力値は500、感度係数は0.53とする。
発電機目標出力値VA(2) = (1470―1490)/0.53+500
= −37.7+500
= 462.3
Here, it is assumed that the power flow value of the overload monitoring target power transmission / distribution facility 408 is 1490 and exceeds the overload prevention prevention operation limit value 1470 of 1470. At this time, the overload countermeasure table creation unit 38 selects the generator 402 having the highest sensitivity coefficient among the generators 401 to 40n as a generator capable of eliminating the deviation amount, and generates the generator target output value VB of the generator 402. (2) is calculated. Here, the current output value of the generator 402 is 500, and the sensitivity coefficient is 0.53.
Generator target output value VA (2) = (1470-1490) /0.53+500
= -37.7 + 500
= 462.3

過負荷監視対象送配電設備413の潮流値が過負荷未然防止用運用限度値52の3920を超過している場合も同じように計算を行う。過負荷監視対象送配電設備413の潮流値が3950であり、逸脱量の解消を行える発電機として最も感度係数が大きい発電機415の現在出力値が600、感度係数が0.87とすると、発電機目標出力値VA(5)=565.5と計算される。   The same calculation is performed when the power flow value of the overload monitoring target transmission / distribution facility 413 exceeds 3920 of the operation limit value 52 for preventing overload. When the power flow value of the overload monitoring target transmission / distribution facility 413 is 3950, the current output value of the generator 415 having the largest sensitivity coefficient as a generator capable of eliminating the deviation amount is 600, and the sensitivity coefficient is 0.87. The machine target output value VA (5) = 565.5 is calculated.

[処理の流れ]
次に、以上の構成を有する本実施形態において実行される各種の処理の流れの一例について、図2を参照して具体的に説明する。
[Process flow]
Next, an example of the flow of various processes executed in the present embodiment having the above configuration will be specifically described with reference to FIG.

<ELD過負荷解消処理・図2中の矢印Aの流れ>
ELD過負荷解消処理では、MMI5より設定されたELD運用限度値51をもとにして、ELDスケジュール計算部30が、3分周期で、ELD過負荷判定を行う。その際、ELDスケジュール計算部30は、将来時間断面を考慮して、経済負荷配分のELD値71を求めて、LFC計算部36へ出力する。LFC計算部36は最終的な目標出力値を発電機401〜40nに出す。このようなELD過負荷解消処理によって、長周期の負荷変動に伴う送変電設備411〜41nの過負荷を解消する。
<ELD overload elimination processing / flow of arrow A in FIG. 2>
In the ELD overload elimination processing, the ELD schedule calculation unit 30 performs ELD overload determination at a cycle of 3 minutes based on the ELD operation limit value 51 set by the MMI 5. At that time, the ELD schedule calculation unit 30 obtains an ELD value 71 of economic load distribution in consideration of the future time section, and outputs it to the LFC calculation unit 36. The LFC calculation unit 36 outputs the final target output value to the generators 401 to 40n. By such ELD overload elimination processing, the overload of the transmission / transformation facilities 411 to 41n associated with long-period load fluctuations is eliminated.

<過負荷対策テーブル作成処理・図2中の矢印Bの流れ>
本実施形態では、計算機2の負荷軽減を図るために、過負荷対策テーブル作成部38にて過負荷対策テーブル54を事前に作成する処理を行う。なお、過負荷対策テーブル54を作成する前提の処理として、MMI5にて、過負荷未然防止用運用限度値52及び運用限度値53の設定が行われる。
<Overload countermeasure table creation processing / flow of arrow B in FIG. 2>
In the present embodiment, in order to reduce the load on the computer 2, the overload countermeasure table creating unit 38 performs processing for creating the overload countermeasure table 54 in advance. As a premise process for creating the overload countermeasure table 54, the operation limit value 52 and the operation limit value 53 for preventing overload are set in the MMI 5.

過負荷対策テーブル作成部38では、電力系統監視部35からの状態変化があった旨の通知を受けた場合、また、電力系統監視部35からの状態変化があった旨の通知を受けない場合でも1分周期で、MMI5より設定された運用限度値53をもとにして送変電設備411〜41nの各々の潮流値に関して過負荷判定を行う。そして、送変電設備411〜41nのいずれかの潮流値が対応する運用限度値53を超えた場合には、運用限度値53を超過する潮流値の送変電設備に関して潮流値の逸脱量の解消を行う過負荷解消計算を行って、その計算結果を過負荷対策テーブル54に登録しておく。   When the overload countermeasure table creation unit 38 receives a notification that a state change has occurred from the power system monitoring unit 35, or does not receive a notification that a state change has occurred from the power system monitoring unit 35 However, overload determination is performed with respect to each power flow value of the transmission / transformation facilities 411 to 41n based on the operation limit value 53 set by the MMI 5 at a cycle of 1 minute. When any of the power flow values of the power transmission / transformation equipment 411 to 41n exceeds the corresponding operation limit value 53, the deviation of the power flow value for the power transmission / transformation equipment having a power flow value exceeding the operation limit value 53 is eliminated. The overload elimination calculation to be performed is performed, and the calculation result is registered in the overload countermeasure table 54.

また、過負荷対策テーブル作成部38では、1分周期で、前記の運用限度値53よりも低く設定された、例えば運用限度値53の98%に設定された過負荷未然防止用運用限度値52をもとにして、送変電設備411〜41nの各々の潮流値に関して過負荷判定を行う。   In addition, the overload countermeasure table creation unit 38 has an operation limit value 52 for preventing overload, which is set lower than the operation limit value 53, for example, 98% of the operation limit value 53, in one minute cycle. Based on the above, overload determination is performed for each power flow value of the transmission / transformation equipment 411-41n.

そして、送変電設備411〜41nのいずれかの潮流値が対応する過負荷未然防止用運用限度値52を超えた場合には、過負荷未然防止用運用限度値52を超過する潮流値の送変電設備に関して潮流値の逸脱量の解消を行う過負荷解消計算を行って、その計算結果を過負荷対策テーブル54に登録しておく。なお、電力系統1の構成変化時には、電力系統監視部35によって、過負荷対策テーブル作成部38を起動し、過負荷対策テーブル54の再作成を行うことができる。   When any of the power flow values of the power transmission / transformation facilities 411 to 41n exceeds the corresponding operation limit value 52 for preventing overload, the power transmission / transformation of the power value exceeding the operation limit value 52 for preventing overload is performed. An overload elimination calculation for eliminating the deviation of the tidal current value for the equipment is performed, and the calculation result is registered in the overload countermeasure table 54. When the configuration of the power system 1 is changed, the power system monitoring unit 35 can activate the overload countermeasure table creating unit 38 to recreate the overload countermeasure table 54.

<過負荷未然防止処理・図2中の矢印Cの流れ>
過負荷未然防止処理では、短周期の負荷変動に伴う過負荷の解消と、上記ELD過負荷解消処理で述べた長周期の負荷変動に対するELD過負荷解消の処理周期の期間(本実施形態では3分間)の補完を行うことができる。
<Overload prevention process / flow of arrow C in FIG. 2>
In the overload prevention process, the period of the ELD overload elimination processing period (3 in this embodiment) corresponding to the elimination of the overload associated with the short period load fluctuation and the long period load fluctuation described in the ELD overload elimination process. Min) complementation.

ここでは、過負荷未然防止対策部37が、10秒周期で、過負荷未然防止用運用限度値52をもとにして、送変電設備411〜41nの各々の潮流値に関して過負荷判定を行う。そして、送変電設備411〜41nのいずれかの潮流値が対応する過負荷未然防止用運用限度値52を超えた場合に、過負荷対策テーブル54を参照して、過負荷対策テーブル54に登録されている過負荷未然防止対策の計算値72の中から過負荷未然防止用運用限度値52を超過する潮流値の送変電設備に対応して登録されている過負荷未然防止対策の計算値72を選択し、この選択した過負荷未然防止対策の計算値72をLFC計算部36へ送る。   Here, the overload prevention countermeasure unit 37 performs overload determination for each tidal current value of the transmission / transformation facilities 411 to 41n based on the operation limit value 52 for overload prevention in a cycle of 10 seconds. When any of the power flow values of the transmission / transformation equipment 411 to 41n exceeds the corresponding operation limit value 52 for preventing overload, the overload countermeasure table 54 is referred to and registered in the overload countermeasure table 54. Among the calculated overload prevention measures 72, the overload prevention measure calculation value 72 registered corresponding to the power transmission / transformation equipment having a tidal value exceeding the overload prevention operation limit value 52 is used. Then, the selected overload prevention measure calculation value 72 is sent to the LFC calculation unit 36.

このようにして過負荷未然防止対策部37が過負荷未然防止対策の計算値72を求め、LFC計算部36が最終的な目標出力値として発電機401〜40nに指令を出すことで発電機401〜40nは出力調整を実行し、短周期負荷変動時における送変電設備411〜41nの過負荷を解消する。これと同時に、長周期負荷変動時の経済負荷配分制御による送変電設備411〜41nにおける過負荷解消処理周期の補完が実現する。   In this way, the overload prevention countermeasure unit 37 obtains the calculated value 72 of the overload prevention measure, and the LFC calculation unit 36 issues a command to the generators 401 to 40n as the final target output value, thereby generating the generator 401. ˜40n executes output adjustment, and eliminates the overload of the power transmission / transformation equipment 411 to 41n at the time of short cycle load fluctuation. At the same time, it is possible to complement the overload elimination processing cycle in the transmission / transformation facilities 411 to 41n by the economic load distribution control at the time of long-cycle load fluctuation.

なお、本実施形態では、過負荷対策の対象となる発電機401〜40nは、LFC計算による発電機401〜40nへの指令との競合を防ぐため、LFC計算部36で求める地域要求電力(AR)による需給バランス維持用の対象となる発電機としては使用しないようになっている。   In the present embodiment, the generators 401 to 40n to be subjected to overload countermeasures require the regional required power (AR) calculated by the LFC calculation unit 36 in order to prevent competition with the command to the generators 401 to 40n by the LFC calculation. ) Is not used as a generator for maintaining the supply-demand balance.

<過負荷解消処理・図2中の矢印Dの流れ>
図2中の矢印Dに示した過負荷解消処理では、電力系統1の事故時などによる負荷の急変に対して、過負荷を解消する。過負荷発生時には電力系統監視部35によって、過負荷解消対策部34を起動すると共に、電力系統監視部35から過負荷解消対策部34に対して送変電設備411〜41nのうちどの送変電設備に過負荷が発生しているかが連絡される。
<Overload elimination processing / Flow of arrow D in FIG. 2>
In the overload elimination process indicated by the arrow D in FIG. 2, overload is eliminated with respect to a sudden change in load due to an accident in the power system 1 or the like. When an overload occurs, the power system monitoring unit 35 activates the overload elimination countermeasure unit 34, and the power system monitoring unit 35 selects the transmission / transformation equipment among the transmission / transformation facilities 411 to 41n with respect to the overload elimination countermeasure unit 34. You will be notified if an overload has occurred.

過負荷解消対策部34は、過負荷対策テーブル54を参照し、過負荷対策テーブル54に登録されている過負荷解消対策の計算値73の中から過負荷が発生している送変電設備に対応して登録されている過負荷解消対策の計算値73を選択し、この選択した過負荷解消対策の計算値73をLFC計算部36へ送る。このようにして過負解消対策部34が過負荷解消対策の計算値73を求め、LFC計算部36が最終的な目標出力値として発電機401〜40nに指令を出すことにより、発電機401〜40nは出力調整を実行し、送変電設備411〜41nの過負荷を解消する。   The overload elimination countermeasure unit 34 refers to the overload countermeasure table 54 and corresponds to the transmission / transformation equipment in which the overload has occurred from the calculated value 73 of the overload elimination countermeasure registered in the overload countermeasure table 54. The calculated overload elimination measure value 73 is selected and the selected overload elimination measure value 73 is sent to the LFC calculator 36. In this manner, the overload elimination countermeasure unit 34 obtains the calculated value 73 of the overload elimination countermeasure, and the LFC calculation unit 36 issues a command to the generators 401 to 40n as the final target output value. 40n performs output adjustment and eliminates the overload of the power transmission / transformation equipment 411-41n.

[作用効果]
上記のような本実施形態によれば、過負荷未然防止対策部37によって過負荷未然防止対策の計算値を求めることで短周期負荷変動時に伴う送変電設備411〜41nの過負荷解消を実現することが可能となる。と同時に、長周期負荷変動時の経済負荷配分制御による送変電設備411〜41nの過負荷解消処理の周期期間の補完が可能である。これにより、短周期及び長周期双方の負荷変動に伴う送変電設備411〜41nの過負荷解消を行うことができ、電力系統1の運用制約を満たしつつ、制御性の向上を図ることが可能となる。
[Function and effect]
According to the present embodiment as described above, the overload prevention measures unit 37 obtains the calculated value of the overload prevention measures, thereby realizing overload elimination of the transmission and substation facilities 411 to 41n that accompanies short cycle load fluctuations. It becomes possible. At the same time, it is possible to complement the periodic period of the overload elimination processing of the transmission / transformation facilities 411 to 41n by economic load distribution control at the time of long-cycle load fluctuation. Thereby, it is possible to eliminate the overload of the transmission / transformation facilities 411 to 41n accompanying both short-cycle and long-cycle load fluctuations, and it is possible to improve controllability while satisfying the operation constraints of the power system 1. Become.

また、本実施形態では、送変電設備411〜41nの運用限度値53の98%である過負荷未然防止用運用限度値52を予め設定することで、送変電設備411〜41nの潮流値が過負荷未然防止用運用限度52を超過した場合には、過負荷未然防止対策部37は過負荷未然防止対策の計算値を求めて、過負荷未然防止用運用限度52の超過分である過負荷の解消が可能である。   Moreover, in this embodiment, the power flow value of the transmission / transformation equipment 411-41n is excessive by presetting the operation limit value 52 for overload prevention that is 98% of the operation limit value 53 of the transmission / transformation equipment 411-41n. When the operation limit 52 for preventing load overload is exceeded, the overload prevention countermeasure unit 37 obtains a calculated value of the countermeasure for preventing overload, and the overload prevention operation limit 52 is exceeded. It can be resolved.

このため、送変電設備411〜41nの潮流値が過負荷未然防止用運用限度値52を上回るといった事態を回避できる。したがって、送変電設備411〜41nの潮流値が負荷未然防止用運用限度値52よりも大きい通常の運用限度値53を上回る心配がない。その結果、電力系統の運用制約を満足させると同時に、送変電設備411〜41nの運用限度値53にできるだけ近い潮流値にて、電力系統1を運用することが可能となる。これにより、送電損失を抑制することができ、経済性が格段に向上する。   For this reason, it is possible to avoid a situation in which the power flow value of the power transmission / transformation equipment 411 to 41n exceeds the operation limit value 52 for preventing overload. Therefore, there is no fear that the power flow value of the power transmission / transformation equipment 411 to 41n exceeds the normal operation limit value 53 that is larger than the operation limit value 52 for preventing load. As a result, the power system 1 can be operated at a power flow value as close as possible to the operation limit value 53 of the transmission / transformation equipment 411 to 41n while satisfying the operation restrictions of the power system. Thereby, power transmission loss can be suppressed and economic efficiency is remarkably improved.

さらに、本実施形態では、過負荷対策テーブル作成部38において、過負荷未然防止用運用限度値52と送変電設備411〜41nの潮流値を比較し、さらには運用限度値53と送変電設備411〜41nの潮流値を比較して、限度値52、53からの潮流値の超過分を計算し、これらの計算結果を、過負荷対策テーブル54に事前に、格納、登録することが可能である。すなわち、過負荷解消対策部34による過負荷解消対策や、過負荷未然防止対策部37による過負荷未然防止対策を実行する際、その処理速度を大幅に高速化することが可能であり、計算機2の負荷軽減に貢献することができる。   Furthermore, in this embodiment, the overload countermeasure table creation unit 38 compares the operation limit value 52 for preventing overload and the power flow values of the transmission / transformation facilities 411 to 41n, and further compares the operation limit value 53 and the transmission / transformation facility 411. It is possible to compare the tidal values of ˜41n, calculate the excess of the tidal values from the limit values 52 and 53, and store and register these calculation results in the overload countermeasure table 54 in advance. . That is, when the overload elimination countermeasure 34 by the overload elimination countermeasure section 34 and the overload prevention countermeasure section 37 by the overload prevention countermeasure section 37 are executed, the processing speed can be greatly increased. Can contribute to reducing the load.

(2)他の実施形態
本発明は、上述した実施形態に限定されるものではなく、各部分の構成等は適宜変更可能であり、例えば、電力系統の需給制御装置としては、各機能部分を1台の計算機で実現してもよいし、データ通信可能な複数台の計算機で実現しても構わない。
(2) Other Embodiments The present invention is not limited to the above-described embodiments, and the configuration and the like of each portion can be changed as appropriate. For example, as a power supply and demand control device, each functional portion is It may be realized by one computer, or may be realized by a plurality of computers capable of data communication.

本発明に係る第1の実施形態の構成図。1 is a configuration diagram of a first embodiment according to the present invention. 第1の実施形態における処理の説明図。Explanatory drawing of the process in 1st Embodiment. 第1の実施形態における過負荷対策テーブルの説明図。Explanatory drawing of the overload countermeasure table in 1st Embodiment.

符号の説明Explanation of symbols

1…電力系統
2…計算機
27…発電端総需要計算部
28…オンライン予測需要部
29…前日運転計画部
30…ELDスケジュール計算部
31…発電機出力値入力部
32…送変電設備潮流入力部
33…開閉器情報入力部
34…過負荷解消対策部
35…電力系統監視部
36…LFC計算部
37…過負荷未然防止対策部
38…過負荷解消テーブル作成部
401〜40n…発電機
411〜41n…送変電設備
421〜42n…開閉器
43…発電機出力検出用信号線
44…発電機制御用信号線
45…送変電設備潮流検出用信号線
46…開閉器情報検出用信号線
5…MMI(マンマシンインターフェース)
51…ELD運用限度値
52…過負荷未然防止用運用限度値
53…運用限度値
54…過負荷対策テーブル
71…ELD値
72…過負荷未然防止対策の計算値
73…過負荷解消対策の計算値
DESCRIPTION OF SYMBOLS 1 ... Electric power system 2 ... Computer 27 ... Generation | occurrence | production total demand calculation part 28 ... Online prediction demand part 29 ... The previous day operation plan part 30 ... ELD schedule calculation part 31 ... Generator output value input part 32 ... Transmission / transformation equipment power flow input part 33 Switch information input unit 34 Overload elimination countermeasure unit 35 Power system monitoring unit 36 LFC calculation unit 37 Overload prevention prevention unit 38 Overload elimination table creation units 401 to 40n Generators 411 to 41n Transmission / transformation equipment 421-42n ... Switch 43 ... Generator output detection signal line 44 ... Generator control signal line 45 ... Transmission / transformation equipment power flow detection signal line 46 ... Switch information detection signal line 5 ... MMI (man machine) interface)
51 ... ELD operation limit value 52 ... Overload prevention operation limit value 53 ... Operation limit value 54 ... Overload countermeasure table 71 ... ELD value 72 ... Overload prevention measure calculation value 73 ... Overload elimination measure calculation value

Claims (3)

電力系統内の発電機の出力値を入力するステップと、前記電力系統内の送変電設備の潮流値を入力するステップと、前記電力系統内の開閉器の情報を入力するステップと、前記電力系統の状態を監視するステップと、前記発電機の出力値より総需要を計算するステップと、予測総需要を作成するステップと、前日運転計画を作成するステップと、経済負荷配分制御(ELD)にて算出した運用スケジュールからELD値を求めるステップと、前記送変電設備の潮流値が予め設定された前記送変電設備の運用限度値を上回った場合に過負荷解消対策の計算値を求めるステップを含む電力系統の需給制御方法において、
前記送変電設備の運用限度値を下回る値であって前記過負荷を未然に防止するための運用限度値である過負荷未然防止用運用限度値を設定するステップと、
前記送変電設備の潮流値が前記過負荷未然防止用運用限度値を上回った場合に過負荷未然防止対策の計算値を求めるステップを含み、
前記過負荷解消対策の計算値を求めるステップでは、長周期の負荷変動に伴う前記送変電設備の過負荷解消のための計算値を求め、
前記過負荷未然防止対策の計算値を求めるステップでは、短周期の負荷変動に伴う前記送変電設備の過負荷解消のための計算値を求める
ことを特徴とする電力系統の需給制御方法。
A step of inputting an output value of a generator in the electric power system, a step of inputting a power flow value of a transmission / transformation facility in the electric power system, a step of inputting information on a switch in the electric power system, and the electric power system The step of monitoring the state of the generator, the step of calculating the total demand from the output value of the generator, the step of creating the predicted total demand, the step of creating the previous day operation plan, and economic load distribution control (ELD) Electric power including a step of obtaining an ELD value from the calculated operation schedule, and a step of obtaining a calculated value for overload elimination measures when the power flow value of the transmission / transformation equipment exceeds a preset operation limit value of the transmission / transformation equipment In the system supply and demand control method,
Setting an operation limit value for preventing overload, which is an operation limit value for preventing the overload in advance, which is a value lower than the operation limit value of the transmission and substation equipment;
When the power flow value of the power transmission and substation equipment exceeds the operation limit value for preventing overload, and calculating a calculated value of measures for preventing overload,
In the step of obtaining the calculated value of the overload elimination measure, the calculated value for overload elimination of the transmission and substation equipment accompanying a long cycle load fluctuation is obtained,
In the step of obtaining the calculated value of the countermeasure for preventing overload, a calculated value for eliminating the overload of the transmission and substation equipment accompanying a short-cycle load fluctuation is obtained.
前記過負荷解消対策の計算値、及び、前記過負荷未然防止対策の計算値を過負荷対策テーブルに格納するステップを含み、
前記過負荷解消対策の計算値を求めるステップでは、前記過負荷対策テーブルを参照して前記過負荷解消対策の計算値を求め、
前記過負荷未然防止対策の計算値を求めるステップでは、前記過負荷対策テーブルを参照して前記過負荷未然防止対策の計算値を求めることを特徴とする請求項1に記載の電力系統の需給制御方法。
Storing the calculated value of the overload elimination measure and the calculated value of the overload prevention measure in an overload countermeasure table;
In the step of obtaining the calculated value of the overload elimination measure, the calculated value of the overload elimination measure is obtained with reference to the overload countermeasure table,
2. The power supply and demand control according to claim 1, wherein in the step of obtaining the calculated value of the overload prevention measure, the calculated value of the overload prevention measure is obtained with reference to the overload countermeasure table. Method.
電力系統内の発電機の出力値を入力する手段と、前記電力系統内の送変電設備の潮流値を入力する手段と、前記電力系統内の開閉器の情報を入力する手段と、前記電力系統の状態を監視する手段と、前記発電機の出力値より総需要を計算する手段と、予測総需要を作成する手段と、前日運転計画を作成する手段と、経済負荷配分制御(ELD)にて算出した運用スケジュールからELD値を求める手段と、前記送変電設備の潮流値が予め設定された前記送変電設備の運用限度値を上回った場合に過負荷解消対策の計算値を求める手段を備えた電力系統の需給制御装置において、
前記送変電設備の運用限度値を下回る値であって前記過負荷を未然に防止するための運用限度値である過負荷未然防止用運用限度値を設定する手段と、
前記送変電設備の潮流値が前記過負荷未然防止用運用限度値を上回った場合に過負荷未然防止対策の計算値を求める手段を設け、
前記過負荷解消対策の計算値を求める手段は、長周期の負荷変動に伴う前記送変電設備の過負荷解消のための計算値を求め、
前記過負荷未然防止対策の計算値を求める手段は、短周期の負荷変動に伴う前記送変電設備の過負荷解消のための計算値を求めるように構成した
ことを特徴とする電力系統の需給制御装置。
Means for inputting an output value of a generator in an electric power system, means for inputting a power flow value of a transmission / transformation facility in the electric power system, means for inputting information on a switch in the electric power system, and the electric power system Means for monitoring the state of the generator, means for calculating the total demand from the output value of the generator, means for creating the predicted total demand, means for creating the previous day operation plan, and economic load distribution control (ELD) A means for obtaining an ELD value from the calculated operation schedule, and a means for obtaining a calculated value for overload elimination measures when a power flow value of the transmission / transformation equipment exceeds a preset operation limit value of the transmission / transformation equipment In the power supply and demand control system,
Means for setting an operation limit value for preventing overload, which is an operation limit value for preventing the overload in advance, which is a value lower than the operation limit value of the transmission and substation equipment;
Provided means for obtaining a calculated value of overload prevention measures when the power flow value of the transmission and substation equipment exceeds the operational limit value for overload prevention,
The means for obtaining the calculated value of the overload elimination measure obtains the calculated value for eliminating the overload of the transmission and substation equipment accompanying a long cycle load fluctuation,
Means for obtaining a calculated value of the overload prevention measure is configured to obtain a calculated value for eliminating the overload of the transmission and substation equipment accompanying a short-cycle load fluctuation. apparatus.
JP2008229032A 2008-09-05 2008-09-05 Method and apparatus for controlling supply and demand for power system Pending JP2010063320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008229032A JP2010063320A (en) 2008-09-05 2008-09-05 Method and apparatus for controlling supply and demand for power system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008229032A JP2010063320A (en) 2008-09-05 2008-09-05 Method and apparatus for controlling supply and demand for power system

Publications (1)

Publication Number Publication Date
JP2010063320A true JP2010063320A (en) 2010-03-18

Family

ID=42189504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008229032A Pending JP2010063320A (en) 2008-09-05 2008-09-05 Method and apparatus for controlling supply and demand for power system

Country Status (1)

Country Link
JP (1) JP2010063320A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029938A3 (en) * 2011-08-30 2013-08-15 Siemens Aktiengesellschaft Network monitoring device
CN109672171A (en) * 2018-12-06 2019-04-23 国网天津市电力公司 Eliminate the Automatic Control Strategy of 500kV transformer overload
EP3771061A1 (en) 2019-07-26 2021-01-27 Hitachi, Ltd. Power system stabilization system and power system stabilization method using calculated power system sensitivity
CN114648178A (en) * 2022-05-12 2022-06-21 武汉格蓝若智能技术有限公司 Operation and maintenance strategy optimization method of electric energy metering device based on DDPG algorithm

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013029938A3 (en) * 2011-08-30 2013-08-15 Siemens Aktiengesellschaft Network monitoring device
US9559525B2 (en) 2011-08-30 2017-01-31 Siemens Aktiengesellschaft Network monitoring device
CN109672171A (en) * 2018-12-06 2019-04-23 国网天津市电力公司 Eliminate the Automatic Control Strategy of 500kV transformer overload
CN109672171B (en) * 2018-12-06 2022-02-22 国网天津市电力公司 Automatic control strategy for eliminating 500kV transformer overload
EP3771061A1 (en) 2019-07-26 2021-01-27 Hitachi, Ltd. Power system stabilization system and power system stabilization method using calculated power system sensitivity
CN114648178A (en) * 2022-05-12 2022-06-21 武汉格蓝若智能技术有限公司 Operation and maintenance strategy optimization method of electric energy metering device based on DDPG algorithm

Similar Documents

Publication Publication Date Title
Schaab et al. Simulative analysis of a flexible, robust and sustainable energy supply through industrial smart-dc-grid with distributed grid management
JP5556334B2 (en) Power system reliability evaluation system
JP5986827B2 (en) Power system stabilization analysis device, power system stabilization analysis method, and power system stabilization analysis program
JP2007215392A (en) Single operation detection method, single operation detection controller for distributed power supply, single operation detector, and distributed power supply
JP2011114956A (en) Stable-operation control device for micro grid
JP6397759B2 (en) Power system stabilization apparatus and method
JP2010063320A (en) Method and apparatus for controlling supply and demand for power system
JP2013126260A (en) Operation apparatus and method of natural variation power supply
WO2015111473A1 (en) Photovoltaic power generator output estimation method and device, and power system monitoring device using same
CN102646979A (en) Multi-module parallel DC (direct current) power supply and control method thereof
JP2015015865A (en) Server device and power supply-demand control method
KR20160144421A (en) Energy supply and demand operational guidance device and energy supply and demand operational method for inside of iron mill
Marchi et al. Product-service system for sustainable EAF transformers: real operation conditions and maintenance impacts on the life-cycle cost
JP2014204577A (en) Supply and demand control system for power system, and supply and demand control device
JP2009278834A (en) Control method for power supply system, and power supply system
CN104704700A (en) Method and controller for continuously operating a plurality of electric energy generating machines during a high voltage condition
JP2020022320A (en) Power supply-demand control device, power supply-demand control system, computer program for power supply-demand control, and power supply-demand control method
CN103701154B (en) The machine unit automatic generation control target instruction target word receiving system of generating electricity by way of merging two or more grid systems
JP2017060325A (en) Load frequency controller, load frequency control method, and program
Babu et al. LP based solution for security constrained optimal power flow
JP2016213973A (en) Autonomous distributed voltage control system
Li et al. Study on the frequency control method and AGC model of wind power integration based on the full dynamic process simulation program
JP2012077617A (en) Power generation plant and power generation plant control apparatus
JP6474017B2 (en) Frequency control method and frequency control system in power system
Sun et al. Simulation-based production scheduling with optimization of electricity consumption and cost in smart manufacturing systems