JP2010061966A - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2010061966A
JP2010061966A JP2008225926A JP2008225926A JP2010061966A JP 2010061966 A JP2010061966 A JP 2010061966A JP 2008225926 A JP2008225926 A JP 2008225926A JP 2008225926 A JP2008225926 A JP 2008225926A JP 2010061966 A JP2010061966 A JP 2010061966A
Authority
JP
Japan
Prior art keywords
gas diffusion
polymer electrolyte
diffusion layer
water
porous gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008225926A
Other languages
Japanese (ja)
Inventor
Seiji Yoshioka
省二 吉岡
Hisatoshi Fukumoto
久敏 福本
Hiroto Nishiguchi
博人 西口
Naoyuki Yasuda
直之 安田
Susumu Takagi
進 高木
Toshiaki Murahashi
俊明 村橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Mitsubishi Electric Corp
Kanai Educational Institution
Original Assignee
Seiren Co Ltd
Mitsubishi Electric Corp
Kanai Educational Institution
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd, Mitsubishi Electric Corp, Kanai Educational Institution filed Critical Seiren Co Ltd
Priority to JP2008225926A priority Critical patent/JP2010061966A/en
Publication of JP2010061966A publication Critical patent/JP2010061966A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polymer electrolyte fuel cell capable of effectively discharging reaction-generated water without reducing battery characteristics. <P>SOLUTION: In the polymer electrolyte fuel cell where a membrane-electrode assembly formed by a solid polymer electrolyte membrane, electrode catalyst layers arranged on both sides of the solid polymer electrolyte membrane, and porous gas diffusion layers each arranged outside the electrode catalyst layers is sandwiched by a pair of separators forming gas passages on the surfaces coming in contact with the porous gas diffusion layers, a hydrophilic range is formed on at least part of a section corresponding to the gas passage on the surface coming in contact with the separator of the cathode side porous gas diffusion layer, a water-repellent range is formed on the remaining section. The hydrophilic range becomes narrowed from a separator side toward an electrode catalyst layer side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、固体高分子形燃料電池に関するものである。   The present invention relates to a polymer electrolyte fuel cell.

近年、環境問題に関する意識の高まりからエネルギー効率が高く、汚染物質の排出が少ないクリーンな発電システムが要求され、そのシステムの一つとして燃料電池が注目されている。燃料電池には、使用される電解質の種類によって、リン酸形、溶融炭酸塩形、固体電解質形、固体高分子形などに分類さているが、中でも発電温度が比較的低く、起動停止が容易に行え、コンパクトなシステムを構築できる点で優位な固体高分子形燃料電池システムの研究開発が盛んに進められている。   In recent years, a clean power generation system with high energy efficiency and low emission of pollutants has been required due to heightened awareness of environmental issues, and fuel cells are attracting attention as one of such systems. Fuel cells are classified into phosphoric acid type, molten carbonate type, solid electrolyte type, solid polymer type, etc., depending on the type of electrolyte used. Among them, the power generation temperature is relatively low, and it is easy to start and stop. Research and development of a polymer electrolyte fuel cell system that is advantageous in that it can be performed and a compact system can be constructed has been actively promoted.

固体高分子形燃料電池内における反応を効率よく継続的に行うには、イオン伝導抵抗を低下させることと、両電極の触媒層にガスを連続的に供給することが重要である。イオン伝導抵抗を低下させるには固体高分子電解質膜を常に水で湿潤状態にしておけばよい。一方、カソード電極で生成した水が触媒層の表面に滞留して多孔質ガス拡散層内部の空孔部が水で閉塞されると、ガスと触媒層との接触が妨げられるので、生成した水は連続的に排出する必要がある。多孔質ガス拡散層中の空孔部が水で閉塞することを回避するために、フッ素系樹脂などを用いて電極材料を撥水化することが広く行われている。特に、多孔質ガス拡散層は、ガス流路から供給されたガスを触媒層に到達させる供給経路であり、一般的に撥水化されている。しかしながら、このような撥水化を行うと多孔質ガス拡散層中に水が滞留することは回避できるが、触媒層表面の水が多孔質ガス拡散層へ移動することを妨げ、触媒層表面に水が滞留し触媒層にガスを連続的に供給することが困難になる。   In order to carry out the reaction in the polymer electrolyte fuel cell efficiently and continuously, it is important to lower the ion conduction resistance and continuously supply gas to the catalyst layers of both electrodes. In order to reduce the ionic conduction resistance, the solid polymer electrolyte membrane should always be kept wet with water. On the other hand, if the water generated at the cathode electrode stays on the surface of the catalyst layer and the pores inside the porous gas diffusion layer are blocked with water, the contact between the gas and the catalyst layer is hindered. Need to be discharged continuously. In order to avoid the pores in the porous gas diffusion layer from being clogged with water, it is widely performed to make the electrode material water repellent using a fluorine resin or the like. In particular, the porous gas diffusion layer is a supply path for allowing the gas supplied from the gas flow path to reach the catalyst layer, and is generally water repellent. However, such water repellency can prevent water from staying in the porous gas diffusion layer, but prevents the water on the catalyst layer surface from moving to the porous gas diffusion layer, and Water stays and it becomes difficult to continuously supply gas to the catalyst layer.

上述したように、固体高分子形燃料電池においては、固体高分子電解質膜が水分を多く含んでいるほどイオン伝導抵抗が低下して性能が向上する。そのため、ガスをあらかじめ外部加湿器で加湿して供給し、固体高分子電解質膜を湿潤状態に保持することが行われている。ガスを加湿するために液体の水を気化させると、蒸発潜熱をエネルギーとして消費する。従って固体高分子形燃料電池の性能を向上させることを目的として、加湿の度合を高くすればするほど消費エネルギーが大きくなり、また、加湿器本体や加湿器から固体高分子形燃料電池までのガス配管での放熱による熱損失も増大してしまうという問題があった。このような課題を抜本的に解決するには、より低いガス加湿量で固体高分子形燃料電池を運転する必要がある。しかし、通常の構成の固体高分子形燃料電池を低加湿領域で運転すると、固体高分子電解質膜の含水量が低下して性能が大幅に低下する。低加湿領域で固体高分子形燃料電池を運転するには固体高分子電解質膜を湿潤に保つ工夫が必要になる。その方法としては、以下のような技術が公知になっている。   As described above, in the polymer electrolyte fuel cell, as the solid polymer electrolyte membrane contains more water, the ion conduction resistance decreases and the performance improves. For this reason, it has been practiced that gas is supplied after being humidified with an external humidifier to keep the solid polymer electrolyte membrane in a wet state. When liquid water is vaporized to humidify the gas, latent heat of vaporization is consumed as energy. Therefore, for the purpose of improving the performance of the polymer electrolyte fuel cell, the higher the degree of humidification, the greater the energy consumption, and the gas from the humidifier body or humidifier to the polymer electrolyte fuel cell. There was a problem that heat loss due to heat radiation in the piping also increased. To drastically solve such problems, it is necessary to operate the polymer electrolyte fuel cell with a lower gas humidification amount. However, when a solid polymer fuel cell having a normal configuration is operated in a low humidification region, the water content of the solid polymer electrolyte membrane is lowered, and the performance is significantly lowered. In order to operate a polymer electrolyte fuel cell in a low humidification region, a device for keeping the polymer electrolyte membrane moist is required. As the method, the following techniques are known.

特許文献1には、セル面内に格子状の親水化領域と撥水化領域を分布させて、生成した液体の水を効率的に排水し、かつガス流路からのガスの拡散経路を確保する技術が開示されている。
特許文献2は、カソード側に関するもので、相対湿度の低いガス入口付近のガス拡散層を親水化し、反応生成水が蓄積するガス出口付近を撥水化するという分布形態が記述されている。特に、親水化については、ガス流路側と触媒層側とを貫通する親水ポア領域の形成技術が示されている。
特許文献3には、ガス拡散層厚み方向の中央部を親水化とし、その両側を撥水化する技術が開示されている。
特許文献4には、シリカ、アルミナ等の親水性酸化物をガス拡散層に薄くコーティングする親水化技術が開示されている。
In Patent Document 1, a grid-like hydrophilized region and a water-repellent region are distributed in the cell surface to efficiently drain the generated liquid water and secure a gas diffusion path from the gas flow path. Techniques to do this are disclosed.
Patent Document 2 relates to a cathode side, and describes a distribution form in which a gas diffusion layer near a gas inlet having a low relative humidity is hydrophilized, and a gas outlet near a gas generated in the reaction product is water repellent. In particular, as for hydrophilization, a technique for forming a hydrophilic pore region penetrating the gas flow path side and the catalyst layer side is shown.
Patent Document 3 discloses a technique in which a central portion in the gas diffusion layer thickness direction is made hydrophilic and both sides thereof are water repellent.
Patent Document 4 discloses a hydrophilization technique for thinly coating a gas diffusion layer with a hydrophilic oxide such as silica or alumina.

特開平6−103983号公報JP-A-6-103983 特開2007−323874号公報JP 2007-323874 A 特開2002−298859号公報Japanese Patent Laid-Open No. 2002-289859 特開2004−31325号公報JP 2004-31325 A

従来のガス拡散層部分親水化技術では、撥水性領域と親水性領域を、セル平面において入口と出口で分布させている。また、ガス流路形状に沿ったパターンで分布させるなど、比較的大きな分布パターンである。この場合、2つの問題が生じる。1つは電極触媒利用率の低下である。ガス拡散層内に存在する親水性領域は、凝縮した液体の水を排出するためのものであるが、一方でガス拡散の障壁となり、物質移動律速のためセル面内に発電に寄与しない触媒領域が発生する。また、撥水性領域及び親水性領域の形成後にセル面内に触媒層及び導電性集電多孔層を形成した場合、表面の凹凸が原因で固体高分子電解質膜との接合界面に未接触部位が形成されるという課題がある。
従って、本発明は、上記のような実情に鑑みてなされたものであり、電池特性を低下させることなく、反応生成水を効率よく排水できる固体高分子形燃料電池を提供することを目的とする。
In the conventional gas diffusion layer partial hydrophilization technique, the water-repellent region and the hydrophilic region are distributed at the inlet and outlet in the cell plane. Also, the distribution pattern is relatively large, such as a distribution along a gas flow path shape. In this case, two problems arise. One is a decrease in the electrode catalyst utilization. The hydrophilic region present in the gas diffusion layer is for discharging condensed liquid water, but on the other hand, it becomes a barrier for gas diffusion, and the catalyst region does not contribute to power generation in the cell plane due to mass transfer rate limiting. Will occur. In addition, when the catalyst layer and the conductive current collecting porous layer are formed in the cell surface after the formation of the water-repellent region and the hydrophilic region, there is a non-contact portion at the bonding interface with the solid polymer electrolyte membrane due to surface irregularities. There is a problem of being formed.
Accordingly, the present invention has been made in view of the above circumstances, and an object thereof is to provide a polymer electrolyte fuel cell that can efficiently drain reaction product water without deteriorating battery characteristics. .

そこで、本発明者らは、上記のような課題を解決すべく、多孔質ガス拡散層内において、フラッディングを防ぐために反応生成水をガス流路側へ移動させる親水パス部分と、水素などの燃料及び空気などの酸化剤ガスを電極触媒層へ迅速に移動させる撥水部分とをどのように配置すべきか検討した。まず、本発明者らは、電極触媒層近傍は、電極反応熱によって周辺より相対的に高温になるため、水分の多くは水蒸気として排出され、水を排出するための親水パスは殆ど必要ないと考え、生成水が発生する電極触媒層付近の多孔質ガス拡散層内は撥水性領域の割合を多くし、ガス拡散性を優先した。一方、水蒸気は高温の電極触媒層から離れ、相対的に温度の低い酸化剤ガスや燃料ガスの流れと接触する多孔質ガス拡散層内で凝縮して液体の水に戻るので、多孔質ガス拡散層内部の凝縮開始領域の親水性領域の割合を多くし、排水の効率を向上させた。
即ち、本発明は、固体高分子電解質膜と、前記固体高分子電解質膜の両面に配置した電極触媒層と、前記電極触媒層の外側にそれぞれ配置した多孔質ガス拡散層とで構成される膜電極接合体を、前記多孔質ガス拡散層に接する面にガス流路が成形された一対のセパレータで挟持してなる固体高分子形燃料電池において、カソード側多孔質ガス拡散層のセパレータと接する面のガス流路に対応する少なくとも一部に親水性領域が形成され、残りの部分に撥水性領域が形成されており、前記親水性領域が、セパレータ側から電極触媒層側に向かって狭くなることを特徴とする固体高分子形燃料電池である。
Therefore, in order to solve the above-mentioned problems, the present inventors, in the porous gas diffusion layer, a hydrophilic path portion that moves reaction product water to the gas flow path side to prevent flooding, a fuel such as hydrogen, and the like. We examined how to arrange a water-repellent part that quickly moves an oxidant gas such as air to the electrode catalyst layer. First, the inventors of the present invention have a relatively high temperature in the vicinity of the electrode catalyst layer due to the electrode reaction heat, so that most of the water is discharged as water vapor, and there is almost no need for a hydrophilic path for discharging water. In view of this, the porous gas diffusion layer in the vicinity of the electrode catalyst layer where the generated water is generated has a higher proportion of water-repellent regions, giving priority to gas diffusibility. On the other hand, water vapor separates from the high temperature electrocatalyst layer and condenses in the porous gas diffusion layer in contact with the flow of the relatively low temperature oxidant gas or fuel gas to return to liquid water. The ratio of the hydrophilic region in the condensation start region inside the bed was increased to improve drainage efficiency.
That is, the present invention provides a membrane comprising a solid polymer electrolyte membrane, electrode catalyst layers disposed on both sides of the solid polymer electrolyte membrane, and porous gas diffusion layers respectively disposed outside the electrode catalyst layer. In a polymer electrolyte fuel cell in which an electrode assembly is sandwiched between a pair of separators in which a gas flow path is formed on a surface in contact with the porous gas diffusion layer, a surface in contact with the separator of the cathode side porous gas diffusion layer A hydrophilic region is formed in at least a part corresponding to the gas flow path, and a water-repellent region is formed in the remaining part, and the hydrophilic region becomes narrower from the separator side toward the electrode catalyst layer side. Is a polymer electrolyte fuel cell.

本発明によれば、電池特性を低下させることなく、反応生成水を効率よく排水できる固体高分子形燃料電池を提供することができる。   According to the present invention, it is possible to provide a polymer electrolyte fuel cell that can efficiently drain reaction product water without deteriorating battery characteristics.

以下、本発明の実施形態を図面に基づいて説明する。
実施の形態1.
図1は、本発明の実施の形態1に係る固体高分子形燃料電池を説明するための模式断面図であり、図2は、実施の形態1に係る固体高分子形燃料電池のカソード側を拡大して示す模式断面図である。
図1において、実施の形態1に係る固体高分子形燃料電池1は、プロトン伝導性の固体高分子電解質膜2と、固体高分子電解質膜2の両面に配置されたアノード電極3及びカソード電極4と、両電極にガスを供給するためのガス流路5a,5bが形成されたセパレータ6a,6bとを備えている。アノード電極3は、固体高分子電解質膜2と接するアノード電極触媒層7と、ガス流路5aから供給されたガスをアノード電極触媒層7に拡散するアノード側多孔質ガス拡散層8と、アノード側導電性集電多孔層9とからなる。同様に、カソード電極4は、固体高分子電解質膜2と接するカソード電極触媒層10と、ガス流路5bから供給されたガスをカソード電極触媒層10に拡散するカソード側多孔質ガス拡散層11と、カソード側導電性集電多孔層12とからなる。なお、ガス流路5a,5bは、セパレータ6a,6bにそれぞれ凹部を複数箇所設けることにより形成されている。固体高分子形燃料電池1では、図2に示されるように、カソード側多孔質ガス拡散層11のセパレータ6bと接する面のガス流路5bに対応する少なくとも一部に親水性領域13が形成され、残りの部分に撥水性領域14が形成されている。更に、親水性領域13は、セパレータ6b側からカソード電極触媒層10側に向かって狭くなるように形成されている。
この親水性領域13は、反応生成水をより効率よく排水するため、カソード側多孔質ガス拡散層11のセパレータ6bと接する面において1%以上22%以下の面積割合で形成されていることが好ましい。親水性領域13の面積割合が22%を超えると、親水部の水分がガス透過性を阻害して、性能が低下する場合がある。一方、親水性領域13の面積割合が1%未満であると、効果が低下する場合がある。
また、親水性領域13は、カソード側多孔質ガス拡散層のセパレータと接する面において、例えば、海島状、格子状或いは帯状に形成してもよいし、撥水性領域14は、例えば、水玉状或いは格子状に形成してもよい。
また、先に述べたように、カソード電極触媒層10近傍では水分の多くが水蒸気として排出されるので、カソード側多孔質ガス拡散層11のカソード電極触媒層10と接する面には、親水性領域13を殆ど形成しなくてもよい。カソード側多孔質ガス拡散層11のカソード側導電性集電多孔層12と接する面において、9.0%以下の面積割合で形成されていることが好ましい。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a schematic cross-sectional view for explaining a polymer electrolyte fuel cell according to Embodiment 1 of the present invention. FIG. 2 shows the cathode side of the polymer electrolyte fuel cell according to Embodiment 1. It is a schematic cross section which expands and shows.
In FIG. 1, a solid polymer fuel cell 1 according to Embodiment 1 includes a proton conductive solid polymer electrolyte membrane 2, and an anode electrode 3 and a cathode electrode 4 disposed on both sides of the solid polymer electrolyte membrane 2. And separators 6a and 6b formed with gas flow paths 5a and 5b for supplying gas to both electrodes. The anode electrode 3 includes an anode electrode catalyst layer 7 in contact with the solid polymer electrolyte membrane 2, an anode side porous gas diffusion layer 8 for diffusing the gas supplied from the gas flow path 5a to the anode electrode catalyst layer 7, and an anode side. And a conductive current collecting porous layer 9. Similarly, the cathode electrode 4 includes a cathode electrode catalyst layer 10 in contact with the solid polymer electrolyte membrane 2, a cathode-side porous gas diffusion layer 11 that diffuses the gas supplied from the gas flow path 5 b to the cathode electrode catalyst layer 10, and And the cathode side conductive current collecting porous layer 12. The gas flow paths 5a and 5b are formed by providing a plurality of recesses in the separators 6a and 6b, respectively. In the polymer electrolyte fuel cell 1, as shown in FIG. 2, the hydrophilic region 13 is formed in at least a part corresponding to the gas flow path 5b on the surface in contact with the separator 6b of the cathode side porous gas diffusion layer 11. A water-repellent region 14 is formed in the remaining portion. Further, the hydrophilic region 13 is formed so as to become narrower from the separator 6b side toward the cathode electrode catalyst layer 10 side.
In order to drain the reaction product water more efficiently, the hydrophilic region 13 is preferably formed in an area ratio of 1% or more and 22% or less on the surface in contact with the separator 6b of the cathode side porous gas diffusion layer 11. . If the area ratio of the hydrophilic region 13 exceeds 22%, the moisture in the hydrophilic portion may impede gas permeability and the performance may deteriorate. On the other hand, an effect may fall that the area ratio of the hydrophilic region 13 is less than 1%.
The hydrophilic region 13 may be formed in, for example, a sea-island shape, a lattice shape, or a strip shape on the surface in contact with the separator of the cathode-side porous gas diffusion layer. You may form in a grid | lattice form.
Further, as described above, since most of the water is discharged as water vapor in the vicinity of the cathode electrode catalyst layer 10, a hydrophilic region is formed on the surface of the cathode-side porous gas diffusion layer 11 in contact with the cathode electrode catalyst layer 10. 13 may be hardly formed. The surface of the cathode-side porous gas diffusion layer 11 in contact with the cathode-side conductive current collecting porous layer 12 is preferably formed with an area ratio of 9.0% or less.

このように構成された固体高分子形燃料電池1は、アノード電極3に燃料ガス(例えば、水素ガス)を供給すると共に、カソード電極4に酸化剤(例えば、空気又は酸素ガス)を供給し、両電極を外部回路で接続することにより、燃料電池として作動することが可能となる。具体的には、まず、セパレータ6aに形成されたガス流路5aから、アノード電極3に例えば水素ガスが供給される。続いて、水素ガスはアノード側多孔質ガス拡散層8を通過することによりアノード電極触媒層7に向かって拡散していく。アノード電極触媒層7に達した水素ガスは、触媒による酸化反応によりプロトンと電子を発生する。このプロトンは、固体高分子電解質膜2を通過してカソード電極4に移動する。一方、電子は、外部回路を通ってカソード電極4に到達する。カソード電極4では、固体高分子電解質膜2中を通過してきたプロトン、外部回路から送られてきた電子及びセパレータ6bに形成されたガス流路5bからカソード側多孔質ガス拡散層11を介して供給される例えば酸素ガスが、カソード電極触媒層10により反応し、水に変換される。その際、電極間に発生する起電力として電気エネルギーを取り出すことが可能となる。   The polymer electrolyte fuel cell 1 thus configured supplies a fuel gas (for example, hydrogen gas) to the anode electrode 3 and supplies an oxidant (for example, air or oxygen gas) to the cathode electrode 4. By connecting both electrodes with an external circuit, it becomes possible to operate as a fuel cell. Specifically, first, for example, hydrogen gas is supplied to the anode electrode 3 from the gas flow path 5a formed in the separator 6a. Subsequently, hydrogen gas diffuses toward the anode electrode catalyst layer 7 by passing through the anode side porous gas diffusion layer 8. The hydrogen gas that has reached the anode electrode catalyst layer 7 generates protons and electrons by an oxidation reaction by the catalyst. This proton moves to the cathode electrode 4 through the solid polymer electrolyte membrane 2. On the other hand, electrons reach the cathode electrode 4 through an external circuit. In the cathode electrode 4, protons that have passed through the solid polymer electrolyte membrane 2, electrons sent from an external circuit, and gas flow path 5 b formed in the separator 6 b are supplied via the cathode-side porous gas diffusion layer 11. For example, oxygen gas reacted by the cathode electrode catalyst layer 10 is converted into water. At that time, electric energy can be taken out as an electromotive force generated between the electrodes.

次に、親水性領域13と撥水性領域14とが形成されたカソード側多孔質ガス拡散層11の作製方法について説明する。
カソード側多孔質ガス拡散層11は、多孔質ガス拡散層基材に撥水処理を行った後、親水化処理を行うか、あるいは親水化処理を行った後、撥水処理を行う二段階処理法で作製することができる。
Next, a method for producing the cathode side porous gas diffusion layer 11 in which the hydrophilic region 13 and the water repellent region 14 are formed will be described.
The cathode-side porous gas diffusion layer 11 is a two-stage process in which a water repellent treatment is performed on the porous gas diffusion layer base material and then a hydrophilization treatment is performed, or a water repellent treatment is performed after a hydrophilization treatment is performed. Can be produced by the method.

撥水性領域14を形成する方法としては、所定の模様(方形、格子、水玉、縞状等)が設けられたスクリーン印刷版又はロータリー印刷版を用いて撥水剤をカーボンペーパー、有機繊維を織って炭化したカーボンクロス等の多孔質ガス拡散層基材に塗布するか、あるいは、インクジェット法で所定の模様に撥水剤を塗布すればよい。スクリーン印刷又はロータリー印刷の場合、撥水剤としては、例えば、PTFEディスパージョン(旭硝子株式会社製 AD911L 固形分濃度60%)10質量%、アクリル増粘剤(大日本インキ化学工業株式会社製 ボンコート(登録商標)HV−E 固形分濃度31%)1質量%及び蒸留水89質量%を含むものを使用することができる。この撥水剤の粘度は、10Pa・s以上200Pa・s以下であることが好ましく、10Pa・s以上50Pa・s以下であることが更に好ましい。撥水剤の粘度が10Pa・s未満であると、撥水剤が裏漏れしてしまい、所定の領域に所定の量を付与することができない場合があり、また、200Pa・sを超えると、基材の極表面近傍にのみ撥水剤が付与されて、片面のみの付与になってしまい、3次元的に撥水パスを形成することができない場合がある。撥水剤の粘度は、増粘剤(アクリル樹脂系、多糖類系など)を添加することにより調整可能である。インクジェット法の場合は、撥水剤として、撥水性樹脂の水分散液あるいは撥水性樹脂溶液(水、有機溶媒)を使用することができる。
次いで、撥水剤が塗布された多孔質ガス拡散層基材を必要に応じて乾燥させ、焼成して増粘剤を除去し、撥水性樹脂を定着させる。撥水性樹脂としては、ポリテトラフルオロエチレン(PTFE)、フッ素化エチレンプロピレン(FEP)、テトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)等のフッ素系樹脂が挙げられる。
As a method for forming the water-repellent region 14, a water-repellent agent is woven with carbon paper and organic fibers using a screen printing plate or a rotary printing plate provided with a predetermined pattern (square, lattice, polka dots, stripes, etc.). It may be applied to a porous gas diffusion layer substrate such as carbonized carbon cloth, or a water repellent agent may be applied to a predetermined pattern by an ink jet method. In the case of screen printing or rotary printing, as the water repellent, for example, PTFE dispersion (Asahi Glass Co., Ltd. AD911L solid content concentration 60%) 10% by mass, acrylic thickener (Dainippon Ink Chemical Co., Ltd. Boncoat ( (Registered trademark) HV-E solid content concentration 31%) 1% by weight and distilled water 89% by weight can be used. The viscosity of the water repellent is preferably 10 Pa · s or more and 200 Pa · s or less, and more preferably 10 Pa · s or more and 50 Pa · s or less. When the viscosity of the water repellent is less than 10 Pa · s, the water repellent may leak back, and a predetermined amount may not be imparted to a predetermined region, and when it exceeds 200 Pa · s, In some cases, the water repellent agent is applied only in the vicinity of the extreme surface of the base material, so that only one side is applied, and the water repellent path cannot be formed three-dimensionally. The viscosity of the water repellent can be adjusted by adding a thickener (acrylic resin, polysaccharide, etc.). In the case of the inkjet method, an aqueous dispersion of water-repellent resin or a water-repellent resin solution (water, organic solvent) can be used as the water-repellent agent.
Next, the porous gas diffusion layer base material to which the water repellent agent is applied is dried as necessary and baked to remove the thickener and fix the water repellent resin. Examples of the water-repellent resin include fluorine resins such as polytetrafluoroethylene (PTFE), fluorinated ethylene propylene (FEP), and tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA).

親水性領域13を形成する方法としては、多孔質ガス拡散層基材の内部まで親水化できる方法であれば特に制限されず、公知の各種方法を採用することができる。中でも、多孔質ガス拡散層基材の内部まで十分に親水化することができ、長期間にわたって親水性を維持することができるものとして、六フッ化チタン酸アンモニウムを含む水溶液に多孔質ガス拡散層基材を浸漬して酸化チタンを親水性となるべき領域に析出させる方法が好ましい。また、酸化チタンは、チタンアルコキシド、チタンキレートを加水分解し、熱処理することで得ることも可能である。また、酸化チタンに限らず、酸化アルミニウムや二酸化珪素等の金属酸化物を析出させる方法も好ましい。なお、プラズマ処理、コロナ処理、陽極酸化処理により炭素含有基材の表面に親水基を形成する方法が知られているが、この方法は多孔質ガス拡散層基材の内部まで十分に親水化することができないという欠点があるので好ましくない。   The method for forming the hydrophilic region 13 is not particularly limited as long as it can be hydrophilicized to the inside of the porous gas diffusion layer substrate, and various known methods can be employed. Among them, the porous gas diffusion layer can be sufficiently hydrophilized up to the inside of the porous gas diffusion layer base material and can maintain hydrophilicity for a long period of time in an aqueous solution containing ammonium hexafluorotitanate. A method of immersing the base material and precipitating titanium oxide in a region to be hydrophilic is preferable. Titanium oxide can also be obtained by hydrolyzing and heat-treating titanium alkoxide and titanium chelate. Further, not only titanium oxide but also a method of depositing a metal oxide such as aluminum oxide or silicon dioxide is preferable. In addition, a method of forming a hydrophilic group on the surface of a carbon-containing substrate by plasma treatment, corona treatment, or anodizing treatment is known, but this method sufficiently hydrophilizes even the inside of the porous gas diffusion layer substrate. This is not preferable because it cannot be performed.

なお、電極触媒層及び導電性集電多孔層は、当該技術分野で公知の方法により形成することができる。   The electrode catalyst layer and the conductive current collecting porous layer can be formed by a method known in the technical field.

本実施の形態1では、カソード側多孔質ガス拡散層11のセパレータ6bと接する面のガス流路5bに対応する少なくとも一部に親水性領域13が形成され、残りの部分に撥水性領域14が形成されており、親水性領域13が、セパレータ6b側からカソード電極触媒層10側に向かって狭くなるように構成したので、電池特性を低下させることなく、反応生成水を効率よく排水することができる。   In the first embodiment, the hydrophilic region 13 is formed in at least a part corresponding to the gas flow path 5b on the surface in contact with the separator 6b of the cathode side porous gas diffusion layer 11, and the water repellent region 14 is formed in the remaining part. Since the hydrophilic region 13 is formed so as to narrow from the separator 6b side to the cathode electrode catalyst layer 10 side, the reaction product water can be efficiently drained without deteriorating battery characteristics. it can.

以下、本発明を実施例及び比較例により具体的に説明するが、本発明はこれらに限定されるものではない。
<実施例1>
(多孔質ガス拡散層の作製)
カーボンペーパー(東レ株式会社製TGP−H―090)上に、増粘剤で粘度を調整したPTFE10質量%懸濁液(粘度100Pa・s)を海−島(四角)模様のスクリーンを用いてスクリーン印刷した。その後、350℃で5分間焼成し、カーボン繊維表面を撥水化した。このカーボンペーパーを、0.1モル/Lの六フッ化チタン酸アンモニウム及び0.2モル/Lのホウ酸を含む水溶液に浸漬し、常温で24時間保持した後、カーボンペーパーを取り出して乾燥させ、多孔質ガス拡散層を得た。得られた多孔質ガス拡散層は、図3に示されるように、PTFE懸濁液をスクリーン印刷したカーボンペーパー表面に、PTFEを含む撥水性領域14が海状に形成され、酸化チタンを含む親水性領域13が四角い島状に形成されていた(面積割合9.0%)。一方、PTFE懸濁液をスクリーン印刷していない面には(反対面)、面積で7.2%の親水性領域13が形成されていた(あるいは、92.8%の撥水性領域14が形成された)。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these.
<Example 1>
(Preparation of porous gas diffusion layer)
A carbon paper (TGP-H-090 manufactured by Toray Industries, Inc.) was used to screen a 10% by mass PTFE suspension (viscosity 100 Pa · s) whose viscosity was adjusted with a thickener using a screen with a sea-island (square) pattern. Printed. Then, it baked at 350 degreeC for 5 minute (s), and the carbon fiber surface was water-repellent. This carbon paper is immersed in an aqueous solution containing 0.1 mol / L ammonium hexafluorotitanate and 0.2 mol / L boric acid and held at room temperature for 24 hours. Then, the carbon paper is taken out and dried. A porous gas diffusion layer was obtained. As shown in FIG. 3, the obtained porous gas diffusion layer has a water-repellent region 14 containing PTFE formed in a sea shape on the surface of a carbon paper screen-printed with a PTFE suspension, and has a hydrophilic property containing titanium oxide. Sex region 13 was formed in a square island shape (area ratio 9.0%). On the other hand, on the surface where the PTFE suspension was not screen-printed (opposite surface), 7.2% of the hydrophilic region 13 was formed (or 92.8% of the water-repellent region 14 was formed). Was).

(触媒層の形成)
カソード触媒としては、アセチレンブラック上に白金を50質量%担持したもの、アノード触媒としては、アセチレンブラック上に白金−ルテニウム系金属を50質量%担持したものを用いた。それぞれの触媒粒子1質量部に対して、パーフルオロスルホン酸系高分子電解質9質量%溶液を5質量部及び水1質量部を添加し、撹拌混合して均一な状態の触媒ぺーストを得た。これらの触媒ペーストを厚さ25μmのポリエチレンテレフタレート(PET)フィルム上にそれぞれスクリーン印刷した後、乾燥した。これらの触媒層付フィルムで固体高分子電解質膜(旭化成ケミカルズ株式会社製アシプレックス(登録商標))を挟み、150℃で2分間ホットプレスしてPETフィルムを除去することで固体高分子電解質膜上にアノード電極触媒層及びカソード電極触媒層を形成した。触媒層は縦横50mmの正方形状に形成した。
(Catalyst layer formation)
As the cathode catalyst, 50% by mass of platinum supported on acetylene black was used, and as the anode catalyst, 50% by mass of platinum-ruthenium metal supported on acetylene black was used. To 1 part by mass of each catalyst particle, 5 parts by mass of a 9% by mass perfluorosulfonic acid polymer electrolyte solution and 1 part by mass of water were added and stirred to obtain a uniform catalyst paste. . These catalyst pastes were each screen-printed on a polyethylene terephthalate (PET) film having a thickness of 25 μm and then dried. The polymer electrolyte membrane (Aciplex (registered trademark) manufactured by Asahi Kasei Chemicals Corporation) is sandwiched between these films with a catalyst layer, and the PET film is removed by hot pressing at 150 ° C. for 2 minutes on the polymer electrolyte membrane. An anode electrode catalyst layer and a cathode electrode catalyst layer were formed. The catalyst layer was formed in a square shape with a length and width of 50 mm.

(導電性集電多孔層の形成)
カーボンブラック粉末にPTFE分散液を加えて混練したものを、先に作製した多孔質ガス拡散層の触媒層形成面にスクリーン印刷によって塗布し、110℃で乾燥した後、350℃で焼成して、導電性集電多孔層が形成された多孔質ガス拡散層を得た。
(Formation of conductive current collecting porous layer)
A carbon black powder added with a PTFE dispersion and kneaded is applied by screen printing to the catalyst layer forming surface of the porous gas diffusion layer prepared above, dried at 110 ° C., and then fired at 350 ° C., A porous gas diffusion layer in which a conductive current collecting porous layer was formed was obtained.

(単セルの組み立て及び運転結果)
上記のように作製された多孔質ガス拡散層と両面に触媒層を形成した固体高分子電解質膜を重ねあわせ、固体高分子電解質膜のガラス転移温度付近の温度でホットプレスし、燃料側多孔質ガス拡散層及び空気側多孔質ガス拡散層を触媒層付固体高分子電解質膜と熱融着した。それぞれの両側に、ガス流路が形成されたカーボン製セパレータを配置し、固体高分子形燃料電池を組み立てた。有効電極面積は25cm2とし、組み立てた単セルを75℃までロッドヒータで20℃/時間で加温した。燃料側にガス加湿のためバブラーを通して水素を供給し、酸化剤ガス側はバブラーを通した空気を供給した。電流密度は0.25A/cm2(6.25A)になるように定電流で発電した。固体高分子電解質膜及び電極触媒層の安定化のため、発電開始から24時間後に燃料ガスを水素からメタン改質ガスを想定した一酸化炭素10ppm含む水素、二酸化炭素混合ガスに切り替えて電池特性を評価した。
(Single cell assembly and operation results)
The porous gas diffusion layer produced as described above and the solid polymer electrolyte membrane with the catalyst layer formed on both sides are superposed and hot pressed at a temperature near the glass transition temperature of the solid polymer electrolyte membrane, and the fuel side porous The gas diffusion layer and the air-side porous gas diffusion layer were heat-sealed with the solid polymer electrolyte membrane with a catalyst layer. A carbon separator having a gas flow path was disposed on each side to assemble a polymer electrolyte fuel cell. The effective electrode area was 25 cm 2 , and the assembled single cell was heated to 75 ° C. with a rod heater at 20 ° C./hour. Hydrogen was supplied to the fuel side through a bubbler for gas humidification, and the air through the bubbler was supplied to the oxidant gas side. Electric power was generated at a constant current so that the current density was 0.25 A / cm 2 (6.25 A). In order to stabilize the solid polymer electrolyte membrane and the electrode catalyst layer, the battery characteristics were changed by switching the fuel gas from hydrogen to hydrogen containing 10 ppm of carbon monoxide and carbon dioxide mixed gas assuming methane reformed gas 24 hours after the start of power generation. evaluated.

<実施例2>
カーボンペーパー(東レ株式会社製TGP−H―090)上に、増粘剤で粘度を調整したPTFE10質量%懸濁液(粘度100Pa・s)を格子模様のスクリーンを用いてスクリーン印刷した。その後、350℃で5分間焼成し、カーボン繊維表面を撥水化した。このカーボンペーパーを、0.1モル/Lの六フッ化チタン酸アンモニウム及び0.2モル/Lのホウ酸を含む水溶液に浸漬し、常温で24時間保持した後、カーボンペーパーを取り出して乾燥させ、多孔質ガス拡散層を得た。得られた多孔質ガス拡散層は、図4に示されるように、PTFE懸濁液をスクリーン印刷したカーボンペーパー表面に、酸化チタンを含む親水性領域13が四角い島状に形成されていた(面積割合5.6%)。一方、PTFE懸濁液をスクリーン印刷していない面(反対面)には、面積で4.5%の親水性領域13が形成された(あるいは95.5%の撥水性領域14が形成されていた)。このようにして得られた多孔質ガス拡散層を用いる以外は実施例1と同様にして単セルを組み立て、電池特性を評価した。
<Example 2>
On carbon paper (TGP-H-090 manufactured by Toray Industries, Inc.), a 10% by mass PTFE suspension (viscosity: 100 Pa · s) whose viscosity was adjusted with a thickener was screen-printed using a lattice-patterned screen. Then, it baked at 350 degreeC for 5 minute (s), and the carbon fiber surface was water-repellent. This carbon paper is immersed in an aqueous solution containing 0.1 mol / L ammonium hexafluorotitanate and 0.2 mol / L boric acid and held at room temperature for 24 hours. Then, the carbon paper is taken out and dried. A porous gas diffusion layer was obtained. In the obtained porous gas diffusion layer, as shown in FIG. 4, the hydrophilic region 13 containing titanium oxide was formed in a square island shape on the surface of the carbon paper on which the PTFE suspension was screen-printed (area). Ratio 5.6%). On the other hand, a hydrophilic region 13 having an area of 4.5% (or a 95.5% water-repellent region 14) is formed on the surface (the opposite surface) where the PTFE suspension is not screen-printed. ) A single cell was assembled in the same manner as in Example 1 except that the porous gas diffusion layer thus obtained was used, and the battery characteristics were evaluated.

<実施例3>
カーボンペーパー(東レ株式会社製TGP−H―090)を、0.1モル/Lの六フッ化チタン酸アンモニウム及び0.2モル/Lのホウ酸を含む水溶液に浸漬し、常温で24時間保持した後、カーボンペーパーを取り出して乾燥させた。このカーボンペーパー上に、増粘剤で粘度を調整したPTFE10質量%懸濁液(粘度100Pa・s)を水玉模様のスクリーンを用いてスクリーン印刷した。その後、350℃で5分間焼成し、カーボン繊維表面を撥水化して、多孔質ガス拡散層を得た。得られた多孔質ガス拡散層は、図5に示されるように、PTFE懸濁液をスクリーン印刷したカーボンペーパー表面に、PTFEを含む撥水性領域14が水玉状に形成され、酸化チタンを含む親水性領域13が撥水性領域を取り囲むように形成させた(面積割合21.5%)。一方、PTFE懸濁液をスクリーン印刷していない面(反対面)には、面積で18%の親水性領域13が形成されていた(あるいは82.0%の撥水性領域14が形成されていた)。このようにして得られた多孔質ガス拡散層を用いる以外は実施例1と同様にして単セルを組み立て、電池特性を評価した。
<Example 3>
Carbon paper (TGP-H-090 manufactured by Toray Industries, Inc.) is immersed in an aqueous solution containing 0.1 mol / L ammonium hexafluorotitanate and 0.2 mol / L boric acid, and kept at room temperature for 24 hours. After that, the carbon paper was taken out and dried. On this carbon paper, a 10% by mass PTFE suspension (viscosity: 100 Pa · s) whose viscosity was adjusted with a thickener was screen-printed using a polka dot screen. Then, it baked at 350 degreeC for 5 minute (s), the carbon fiber surface was made water-repellent, and the porous gas diffusion layer was obtained. As shown in FIG. 5, the obtained porous gas diffusion layer has a water-repellent region 14 containing PTFE formed in a polka dot shape on the surface of carbon paper on which a PTFE suspension is screen-printed, and has a hydrophilic property containing titanium oxide. The property region 13 was formed so as to surround the water-repellent region (area ratio 21.5%). On the other hand, the hydrophilic region 13 having an area of 18% (or 82.0% of the water-repellent region 14 was formed) on the surface (opposite surface) where the PTFE suspension was not screen-printed. ). A single cell was assembled in the same manner as in Example 1 except that the porous gas diffusion layer thus obtained was used, and the battery characteristics were evaluated.

<実施例4>
カーボンペーパー(東レ株式会社製TGP−H―090)を、0.1モル/Lの六フッ化チタン酸アンモニウム及び0.2モル/Lのホウ酸を含む水溶液に浸漬し、常温で24時間保持した後、カーボンペーパーを取り出して乾燥させた。このカーボンペーパー上に、増粘剤で粘度を調整したPTFE10質量%懸濁液(粘度100Pa・s)を0.5mm幅と4mm幅の縞模様のスクリーンを用いてスクリーン印刷した。得られた多孔質ガス拡散層は、図6に示されるように、PTFE懸濁液をスクリーン印刷したカーボンペーパー表面に、酸化チタンを含む親水性領域13が四角い島状に形成されていた(面積割合8.0%)。一方、PTFE懸濁液をスクリーン印刷していない面(反対面)には、面積で6.5%の親水性領域13が形成されていた(あるいは、93.5%の撥水性領木14が形成されていた)。このようにして得られた多孔質ガス拡散層を用いる以外は実施例1と同様にして単セルを組み立て、電池特性を評価した。
<Example 4>
Carbon paper (TGP-H-090 manufactured by Toray Industries, Inc.) is immersed in an aqueous solution containing 0.1 mol / L ammonium hexafluorotitanate and 0.2 mol / L boric acid, and kept at room temperature for 24 hours. After that, the carbon paper was taken out and dried. On this carbon paper, a 10% by mass PTFE suspension (viscosity: 100 Pa · s) whose viscosity was adjusted with a thickener was screen-printed using a striped screen of 0.5 mm width and 4 mm width. In the obtained porous gas diffusion layer, as shown in FIG. 6, the hydrophilic region 13 containing titanium oxide was formed in a square island shape on the surface of the carbon paper on which the PTFE suspension was screen-printed (area). (Ratio 8.0%). On the other hand, a hydrophilic region 13 having an area of 6.5% was formed on the surface (the opposite surface) where the PTFE suspension was not screen-printed (or 93.5% of the water-repellent tree 14 was formed). Was formed). A single cell was assembled in the same manner as in Example 1 except that the porous gas diffusion layer thus obtained was used, and the battery characteristics were evaluated.

<比較例1>
カーボンペーパー(東レ株式会社製TGP−H―090)をPTFE10質量%懸濁液に浸漬して、ゴムマングルで余剰分を取り除き、105℃で乾燥して、その後、350℃で5分間焼成を行い、多孔質ガス拡散層を得た。なお、焼成後のPTFE量は、カーボンペーパーに対して10質量%であった。このようにして得られた多孔質ガス拡散層を用いる以外は実施例1と同様にして単セルを組み立て、電池特性を評価した。
<Comparative Example 1>
Carbon paper (TGP-H-090 manufactured by Toray Industries, Inc.) is immersed in a 10% by mass suspension of PTFE, the excess is removed with a rubber mangle, dried at 105 ° C., and then fired at 350 ° C. for 5 minutes. A porous gas diffusion layer was obtained. The amount of PTFE after firing was 10% by mass with respect to the carbon paper. A single cell was assembled in the same manner as in Example 1 except that the porous gas diffusion layer thus obtained was used, and the battery characteristics were evaluated.

<比較例2>
カーボンペーパー(東レ株式会社製TGP−H―090)を、0.1モル/Lの六フッ化チタン酸アンモニウム及び0.2モル/Lのホウ酸を含む水溶液に浸漬し、脱泡後に常温で24時間保持した後、カーボンペーパーを取り出して乾燥させ、多孔質ガス拡散層を得た。このようにして得られた多孔質ガス拡散層を用いる以外は実施例1と同様にして単セルを組み立て、電池特性を評価した。
<Comparative example 2>
Carbon paper (TGP-H-090 manufactured by Toray Industries, Inc.) is immersed in an aqueous solution containing 0.1 mol / L ammonium hexafluorotitanate and 0.2 mol / L boric acid. After holding for 24 hours, the carbon paper was taken out and dried to obtain a porous gas diffusion layer. A single cell was assembled in the same manner as in Example 1 except that the porous gas diffusion layer thus obtained was used, and the battery characteristics were evaluated.

比較例1の単セルでは、加湿露点75℃の飽和加湿条件において0.70Vの電圧特性が得られた。しかし、比較例2では加湿露点75℃の飽和加湿条件ではフラッディングにより、ほとんど特性がとれなかった。これは、多孔質ガス拡散層全域が親水化されており、生成水がガス拡散の障壁になっているためである。一方、実施例1では飽和加湿条件において0.72Vの電圧特性を示し、実施例2でも0.73Vの特性が得られ、均一な撥水化ガス拡散層の比較例1より高い電圧特性を得た。   In the single cell of Comparative Example 1, a voltage characteristic of 0.70 V was obtained under saturated humidification conditions with a humidification dew point of 75 ° C. However, in Comparative Example 2, almost no characteristics were obtained due to flooding under a saturated humidification condition with a humidification dew point of 75 ° C. This is because the entire porous gas diffusion layer is hydrophilized and the generated water is a barrier for gas diffusion. On the other hand, Example 1 shows a voltage characteristic of 0.72 V under saturated humidification conditions, and Example 2 also obtains a characteristic of 0.73 V, which is higher than that of Comparative Example 1 of the uniform water repellent gas diffusion layer. It was.

また、セル温度に比べて加湿露点温度の低い低加湿運転において、比較例1の単セルは、電解質膜の乾燥に伴う電解質膜抵抗の経時的上昇が進行して電圧特性が低下したが、実施例3の単セルでは、加湿露点がセル温度より10℃低い低加湿条件においても0.70Vの特性が得られ、同加湿条件における比較例1の電圧特性0.65Vより高い特性を示した。さらに、実施例4の単セルでは、0.69Vの高い特性が得られ、実施例3と同等の低加湿特性を得ることができた。   In addition, in the low humidification operation where the humidification dew point temperature is lower than the cell temperature, the single cell of Comparative Example 1 was subjected to an increase in the electrolyte membrane resistance with time due to the drying of the electrolyte membrane, but the voltage characteristics decreased. In the single cell of Example 3, a characteristic of 0.70 V was obtained even under a low humidification condition in which the humidification dew point was 10 ° C. lower than the cell temperature, and the characteristic was higher than the voltage characteristic of 0.65 V of Comparative Example 1 in the humidification condition. Furthermore, in the single cell of Example 4, a high characteristic of 0.69 V was obtained, and a low humidification characteristic equivalent to that of Example 3 was obtained.

実施の形態1による固体高分子形燃料電池を説明するための断面模式図である。1 is a schematic cross-sectional view for explaining a polymer electrolyte fuel cell according to Embodiment 1. FIG. 実施の形態1に係る固体高分子形燃料電池のカソード側を拡大して示す模式断面図である。1 is an enlarged schematic cross-sectional view showing a cathode side of a polymer electrolyte fuel cell according to Embodiment 1. FIG. 実施例1で作製した多孔質ガス拡散層のガス流路に接する側の平面模式図である。3 is a schematic plan view of a porous gas diffusion layer produced in Example 1 on a side in contact with a gas flow path. FIG. 実施例2で作製した多孔質ガス拡散層のガス流路に接する側の平面模式図である。6 is a schematic plan view of a porous gas diffusion layer produced in Example 2 on a side in contact with a gas flow path. FIG. 実施例3で作製した多孔質ガス拡散層のガス流路に接する側の平面模式図である。6 is a schematic plan view of a porous gas diffusion layer produced in Example 3 on a side in contact with a gas flow path. FIG. 実施例4で作製した多孔質ガス拡散層のガス流路に接する側の平面模式図である。6 is a schematic plan view of a porous gas diffusion layer produced in Example 4 on a side in contact with a gas flow path. FIG.

符号の説明Explanation of symbols

1 固体高分子形燃料電池、2 固体高分子電解質膜、3 アノード電極、4 カソード電極、5a,5b ガス流路、6a,6b セパレータ、7 アノード電極触媒層、8 アノード側多孔質ガス拡散層、9 アノード側導電性集電多孔層、10 カソード電極触媒層、11 カソード側多孔質ガス拡散層、12 カソード側導電性集電多孔層、13 親水性領域、14 撥水性領域。   DESCRIPTION OF SYMBOLS 1 Solid polymer fuel cell, 2 Solid polymer electrolyte membrane, 3 Anode electrode, 4 Cathode electrode, 5a, 5b Gas flow path, 6a, 6b Separator, 7 Anode electrode catalyst layer, 8 Anode side porous gas diffusion layer, 9 Anode-side conductive current collecting porous layer, 10 Cathode electrode catalyst layer, 11 Cathode-side porous gas diffusion layer, 12 Cathode-side conductive current collecting porous layer, 13 Hydrophilic region, 14 Water-repellent region.

Claims (3)

固体高分子電解質膜と、前記固体高分子電解質膜の両面に配置した電極触媒層と、前記電極触媒層の外側にそれぞれ配置した多孔質ガス拡散層とで構成される膜電極接合体を、前記多孔質ガス拡散層に接する面にガス流路が成形された一対のセパレータで挟持してなる固体高分子形燃料電池において、
カソード側多孔質ガス拡散層のセパレータと接する面のガス流路に対応する少なくとも一部に親水性領域が形成され、残りの部分に撥水性領域が形成されており、前記親水性領域が、セパレータ側から電極触媒層側に向かって狭くなることを特徴とする固体高分子形燃料電池。
A membrane electrode assembly composed of a solid polymer electrolyte membrane, electrode catalyst layers disposed on both sides of the solid polymer electrolyte membrane, and a porous gas diffusion layer respectively disposed outside the electrode catalyst layer, In the polymer electrolyte fuel cell sandwiched between a pair of separators in which a gas flow path is formed on the surface in contact with the porous gas diffusion layer,
A hydrophilic region is formed in at least a portion corresponding to the gas flow path on the surface in contact with the separator of the cathode-side porous gas diffusion layer, and a water-repellent region is formed in the remaining portion. A polymer electrolyte fuel cell, which narrows from the side toward the electrode catalyst layer side.
前記カソード側多孔質ガス拡散層のセパレータと接する面において、前記親水性領域が1%以上22%以下の面積割合で形成されていることを特徴とする請求項1に記載の固体高分子形燃料電池。   2. The solid polymer fuel according to claim 1, wherein the hydrophilic region is formed in an area ratio of 1% or more and 22% or less on a surface of the cathode-side porous gas diffusion layer in contact with the separator. battery. 前記カソード側多孔質ガス拡散層のセパレータと接する面において、前記親水性領域が、海島状、格子状又は帯状に形成されていることを特徴とする請求項1又は2に記載の固体高分子形燃料電池。   3. The solid polymer form according to claim 1, wherein the hydrophilic region is formed in a sea-island shape, a lattice shape, or a strip shape on a surface of the cathode-side porous gas diffusion layer in contact with the separator. Fuel cell.
JP2008225926A 2008-09-03 2008-09-03 Polymer electrolyte fuel cell Pending JP2010061966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008225926A JP2010061966A (en) 2008-09-03 2008-09-03 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008225926A JP2010061966A (en) 2008-09-03 2008-09-03 Polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2010061966A true JP2010061966A (en) 2010-03-18

Family

ID=42188549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008225926A Pending JP2010061966A (en) 2008-09-03 2008-09-03 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2010061966A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800320A (en) * 2010-03-30 2010-08-11 上海恒劲动力科技有限公司 Breathable layer of fuel cell
US20140272659A1 (en) * 2013-03-15 2014-09-18 Ford Global Technologies, Llc Microporous layer structures and gas diffusion layer assemblies in proton exchange membrane fuel cells
US9461311B2 (en) 2013-03-15 2016-10-04 Ford Global Technologies, Llc Microporous layer for a fuel cell
CN113140737A (en) * 2021-01-08 2021-07-20 上海嘉资新材料有限公司 Gas diffusion layer, preparation method thereof, corresponding membrane electrode assembly and fuel cell
WO2022222220A1 (en) * 2021-04-21 2022-10-27 华东理工大学 Gas diffusion layer, preparation method therefor and application thereof, and fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151565A (en) * 2001-11-08 2003-05-23 Nissan Motor Co Ltd Electrode for fuel cell and fuel cell using it
JP2006108031A (en) * 2004-10-08 2006-04-20 Nissan Motor Co Ltd Mea for fuel cell and fuel cell using it
JP2007242417A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003151565A (en) * 2001-11-08 2003-05-23 Nissan Motor Co Ltd Electrode for fuel cell and fuel cell using it
JP2006108031A (en) * 2004-10-08 2006-04-20 Nissan Motor Co Ltd Mea for fuel cell and fuel cell using it
JP2007242417A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101800320A (en) * 2010-03-30 2010-08-11 上海恒劲动力科技有限公司 Breathable layer of fuel cell
US20140272659A1 (en) * 2013-03-15 2014-09-18 Ford Global Technologies, Llc Microporous layer structures and gas diffusion layer assemblies in proton exchange membrane fuel cells
US8945790B2 (en) * 2013-03-15 2015-02-03 Ford Global Technologies, Llc Microporous layer structures and gas diffusion layer assemblies in proton exchange membrane fuel cells
US9461311B2 (en) 2013-03-15 2016-10-04 Ford Global Technologies, Llc Microporous layer for a fuel cell
CN113140737A (en) * 2021-01-08 2021-07-20 上海嘉资新材料有限公司 Gas diffusion layer, preparation method thereof, corresponding membrane electrode assembly and fuel cell
CN113140737B (en) * 2021-01-08 2023-09-22 上海嘉资新材料科技有限公司 Gas diffusion layer, preparation method thereof, corresponding membrane electrode assembly and fuel cell
WO2022222220A1 (en) * 2021-04-21 2022-10-27 华东理工大学 Gas diffusion layer, preparation method therefor and application thereof, and fuel cell

Similar Documents

Publication Publication Date Title
JP4326179B2 (en) Polymer electrolyte fuel cell
JP4691914B2 (en) Gas diffusion electrode and solid polymer electrolyte fuel cell
JP5034172B2 (en) Gas diffusion layer for fuel cell and fuel cell using the same
KR102084568B1 (en) Component for fuel cell including graphene foam and functioning as flow field and gas diffusion layer
JP2007200855A (en) Membrane electrode assembly and fuel cell using it
US8435695B2 (en) Gas diffusion electrode, fuel cell, and manufacturing method for the gas diffusion electrode
JP2007005017A (en) Solid polymer fuel cell and manufacturing method of the same
JP2002367655A (en) Fuel cell
KR100548118B1 (en) Electrode for fuel cell and fuel cell
JP2004031325A (en) Solid polymer fuel cell and method of manufacturing same
JP5151217B2 (en) Fuel cell
JP2010061966A (en) Polymer electrolyte fuel cell
JP2012248341A (en) Fuel cell
JP2006228501A (en) Polymer electrolyte fuel cell
JP2003178780A (en) Polymer electrolyte type fuel cell system and operating method of polymer electrolyte type fuel cell
JP2010129310A (en) Gas diffusion layer for fuel cell, manufacturing method thereof
JP2001102059A (en) Proton-exchange membrane fuel cell system
JP2008262741A (en) Microporous layer (mpl), gas diffusion layer (gdl), membrane electrode assembly (mega) with microporous layer (mpl), and solid polymer electrolyte fuel cell equipped with the membrane electrode assembly (mega)
JP2006085984A (en) Mea for fuel cell and fuel cell using this
JP4686992B2 (en) Solid polymer fuel cell and power generation method thereof
JP2011014488A (en) Electrode catalyst and fuel cell
KR101534948B1 (en) Fuelcell
JP2005243295A (en) Gas diffusion layer, and mea for fuel cell using the same
JP2006079938A (en) Gas diffusion layer and fuel cell using it
JP2010146765A (en) Assembly for fuel cell, fuel cell, and manufacturing method of them

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130312