JP2010061836A - Discharge lamp with reflecting mirror - Google Patents

Discharge lamp with reflecting mirror Download PDF

Info

Publication number
JP2010061836A
JP2010061836A JP2008223391A JP2008223391A JP2010061836A JP 2010061836 A JP2010061836 A JP 2010061836A JP 2008223391 A JP2008223391 A JP 2008223391A JP 2008223391 A JP2008223391 A JP 2008223391A JP 2010061836 A JP2010061836 A JP 2010061836A
Authority
JP
Japan
Prior art keywords
electrode
coil
reflecting mirror
diameter
wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008223391A
Other languages
Japanese (ja)
Other versions
JP5280772B2 (en
Inventor
Hideyuki Matsumoto
英之 松本
Takushi Noguchi
卓志 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram Melco Ltd
Original Assignee
Osram Melco Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Melco Ltd filed Critical Osram Melco Ltd
Priority to JP2008223391A priority Critical patent/JP5280772B2/en
Priority to DE102009038931A priority patent/DE102009038931A1/en
Priority to US12/550,426 priority patent/US8203268B2/en
Priority to CN200910168173A priority patent/CN101666437A/en
Publication of JP2010061836A publication Critical patent/JP2010061836A/en
Application granted granted Critical
Publication of JP5280772B2 publication Critical patent/JP5280772B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/04Electrodes; Screens; Shields
    • H01J61/06Main electrodes
    • H01J61/073Main electrodes for high-pressure discharge lamps
    • H01J61/0732Main electrodes for high-pressure discharge lamps characterised by the construction of the electrode

Landscapes

  • Discharge Lamp (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a discharge lamp with a reflecting mirror, restraining temperature rise of an electrode on an opening part side of the reflecting mirror, and with less electrode wear. <P>SOLUTION: In the discharge lamp 100 with a reflecting mirror, shapes before forming melt electrodes 12c, 13c of an F electrode 12 and an R electrode 13 satisfy one of conditions from (a) to (c) shown below, or an arbitrary combination of the conditions (a) to (c). (a) When a diameter of a core wire 12a of the F electrode 12 is to be d1f, and a diameter of a core wire 13a of the R electrode 13 is to be d1r, this condition satisfies: d1f>1.2×d1r. (b) When a wire diameter of a coil 12b of the F electrode 12 is to be d2f, and a wire diameter of a coil 13b of the R electrode 13 is to be d2r, this condition satisfies: d2f>1.2×d2r. (c) When the number of windings of the coil 12b of the F electrode 12 is to be nf, and the number of windings of the coil 13b of the R electrode 13 is to be nr, this condition satisfies: nf>1.2×nr. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、プロジェクタ装置に使用される反射鏡付放電ランプに関する。   The present invention relates to a discharge lamp with a reflector used in a projector apparatus.

現状、交流タイプの反射鏡付放電ランプ(以下、ランプとも呼ぶ)は、特に楕円反射鏡との組合せの場合、光学系からの反射光により楕円反射鏡の開口部側の電極の温度が上昇し、それにより両電極間に温度差が発生し正常なハロゲンサイクルが機能しなくなる。結果として、楕円反射鏡の開口部側の電極先端が損耗し、ランプ特性が維持できなくなる場合がある。また、電極損耗により、電極形状が変化しアークスポットのずれが発生する。一般的に交流タイプの超高圧水銀ランプの場合、サイクル毎のスポットずれが、「ちらつき」となって感じられる。   At present, in the case of an AC type discharge lamp with a reflecting mirror (hereinafter also referred to as a lamp), particularly when combined with an elliptical reflecting mirror, the temperature of the electrode on the opening side of the elliptical reflecting mirror increases due to the reflected light from the optical system. As a result, a temperature difference occurs between the two electrodes, and the normal halogen cycle does not function. As a result, the tip of the electrode on the opening side of the elliptical reflector may be worn out and the lamp characteristics may not be maintained. Further, due to electrode wear, the electrode shape changes and arc spot deviation occurs. In general, in the case of an AC type ultra-high pressure mercury lamp, the spot deviation for each cycle is felt as “flickering”.

この対策として、サイクル毎の電流波形に重畳パルスを加えて、電極先端の温度を高め、ハロゲンサイクルの最適化を図る方法が提案されている(例えば、特許文献1参照)。
特表平10−501919号公報
As a countermeasure, a method has been proposed in which a superimposed pulse is added to the current waveform for each cycle to increase the temperature at the electrode tip and optimize the halogen cycle (see, for example, Patent Document 1).
Japanese National Patent Publication No. 10-501919

しかし、特許文献1の方法では、常に一定の電流パルスが発生しており、ハロゲンサイクルの最適化を図るどころか、逆に電極に大きなダメージを与えることになりかねない。   However, in the method of Patent Document 1, a constant current pulse is always generated, which may cause considerable damage to the electrode, rather than optimizing the halogen cycle.

この発明は、上記のような課題を解決するためになされたもので、反射鏡の開口部側の電極の温度上昇を抑制し、電極損耗の少ない反射鏡付放電ランプを提供する。   The present invention has been made to solve the above-described problems, and provides a reflector-equipped discharge lamp that suppresses the temperature rise of the electrode on the opening side of the reflector and has little electrode wear.

この発明に係る反射鏡付放電ランプは、
開口部とこの開口部の反対側にネック部とを有する反射鏡と、
Fリード線が溶接されたFモリブデン箔を溶接したF電極と、Rリード線が溶接されたRモリブデン箔を溶接したR電極と、水銀とを封入した略球状の発光部を中央部に有する発光管とを備えた反射鏡付放電ランプであって、
前記F電極及び前記R電極は、
夫々所定の線径の芯線に、前記F電極及び前記R電極が対向する前記芯線の端部に所定線径、所定巻数のコイルを巻き、
次に、前記F電極及び前記R電極の先端を溶解して曲面形状のメルト電極を形成し、
さらに、エージングにより前記メルト電極の先端に、電極先端部を形成して構成され、
前記F電極、前記R電極の前記メルト電極を形成する前の形状が、以下に示す条件(a)〜(c)のいずれか一つ、若しくは以下に示す条件(a)〜(c)の任意の組合せを満たすことを特徴とする反射鏡付放電ランプ。
(a)前記F電極の前記芯線の直径をd1f、前記R電極の前記芯線の直径をd1rとすると、
d1f>1.2×d1r;
(b)前記F電極の前記コイルの線径をd2f、前記R電極の前記コイルの線径をd2rとすると、
d2f>1.2×d2r;
(c)前記F電極の前記コイルの巻数をnf、前記R電極の前記コイルの巻数をnrとすると、
nf>1.2×nr。
The discharge lamp with a reflector according to the present invention,
A reflector having an opening and a neck on the opposite side of the opening;
Light emission having a substantially spherical light-emitting part in the center with an F electrode welded with an F molybdenum foil welded with an F lead wire, an R electrode welded with an R molybdenum foil welded with an R lead wire, and mercury A discharge lamp with a reflector comprising a tube,
The F electrode and the R electrode are
A coil having a predetermined wire diameter and a predetermined number of turns is wound around an end portion of the core wire to which the F electrode and the R electrode face each core wire having a predetermined wire diameter,
Next, melt the tip of the F electrode and the R electrode to form a curved melt electrode,
Furthermore, the tip of the melt electrode is formed by aging to form an electrode tip,
The shape of the F electrode and the R electrode before forming the melt electrode is any one of the following conditions (a) to (c), or any of the following conditions (a) to (c) A discharge lamp with a reflector characterized by satisfying the combination of
(A) When the diameter of the core wire of the F electrode is d1f and the diameter of the core wire of the R electrode is d1r,
d1f> 1.2 × d1r;
(B) When the wire diameter of the coil of the F electrode is d2f and the wire diameter of the coil of the R electrode is d2r,
d2f> 1.2 × d2r;
(C) When the number of turns of the coil of the F electrode is nf and the number of turns of the coil of the R electrode is nr,
nf> 1.2 × nr.

この発明に係る反射鏡付放電ランプは、F電極、R電極のメルト電極を形成する前の形状が、以下に示す条件(a)〜(c)のいずれか一つ、若しくは以下に示す条件(a)〜(c)の任意の組合せを満たすことにより、F電極の表面積をR電極の表面積よりも大きくでき、プロジェクタ装置の光学系からの反射光により反射鏡の開口部側のF電極の温度上昇を抑制することができる。それによりハロゲンサイクルが正常に機能し、ランプ特性を維持できる。
(a)F電極の芯線の直径をd1f、R電極の芯線の直径をd1rとすると、
d1f>1.2×d1r;
(b)F電極のコイルの線径をd2f、R電極のコイルの線径をd2rとすると、
d2f>1.2×d2r;
(c)F電極のコイルの巻数をnf、R電極のコイルの巻数をnrとすると、
nf>1.2×nr。
In the discharge lamp with reflector according to the present invention, the shape before forming the melt electrode of the F electrode and the R electrode is any one of the following conditions (a) to (c), or the following conditions ( By satisfying any combination of a) to (c), the surface area of the F electrode can be made larger than the surface area of the R electrode, and the temperature of the F electrode on the opening side of the reflector is reflected by the reflected light from the optical system of the projector apparatus. The rise can be suppressed. As a result, the halogen cycle functions normally and the lamp characteristics can be maintained.
(A) If the diameter of the core wire of the F electrode is d1f and the diameter of the core wire of the R electrode is d1r,
d1f> 1.2 × d1r;
(B) When the wire diameter of the coil of the F electrode is d2f and the wire diameter of the coil of the R electrode is d2r,
d2f> 1.2 × d2r;
(C) When the number of turns of the F electrode coil is nf and the number of turns of the R electrode coil is nr,
nf> 1.2 × nr.

実施の形態1.
図1乃至図8は実施の形態1を示す図で、図1は反射鏡付放電ランプ100の構成図、図2は一部を破断して断面で示す反射鏡付放電ランプ100の構成図、図3は製造過程における初期のF電極12の構成を示す図、図4はF電極12の先端を溶解してメルト電極12cを形成した図、図5はF電極12を点灯させて電極先端部12dを形成した図、図6は発光管1におけるF電極12とR電極13付近を示す図、図7はシミュレーションに用いたプロジェクタ装置の構成の概念図、図8は主に図7の構成において光学系から発光管1へ戻るエネルギーを求めた結果を示す図である。
Embodiment 1 FIG.
FIGS. 1 to 8 are diagrams showing Embodiment 1, FIG. 1 is a configuration diagram of a discharge lamp 100 with a reflecting mirror, FIG. 2 is a configuration diagram of the discharge lamp 100 with a reflecting mirror, partially cut away and shown in section. FIG. 3 is a diagram showing the configuration of the initial F electrode 12 in the manufacturing process, FIG. 4 is a diagram in which the tip of the F electrode 12 is melted to form a melt electrode 12c, and FIG. 6 is a diagram showing the vicinity of the F electrode 12 and the R electrode 13 in the arc tube 1, FIG. 7 is a conceptual diagram of the configuration of the projector device used for the simulation, and FIG. 8 is mainly in the configuration of FIG. It is a figure which shows the result of having calculated | required the energy which returns to the arc tube 1 from an optical system.

本実施の形態は、発光管1の内部に配置される電極に特徴がある。従って、反射鏡付放電ランプ100の全体構成については、簡単に説明する。   This embodiment is characterized by an electrode disposed inside the arc tube 1. Therefore, the overall configuration of the reflector-equipped discharge lamp 100 will be briefly described.

図1、図2により、反射鏡付放電ランプ100の構成を説明する。反射鏡付放電ランプ100は、発光管1と、この発光管1を保持するセラミックリング2と、セラミックリング2が固定される楕円反射鏡3(反射鏡の一例)と、セラミックリング2の後面に固定されるキャップ5とを備える。セラミックリング2は、発光管1のRモリブデン箔付近(封止部)を保持する。反射鏡は、楕円反射鏡3以外に、放物型反射鏡等でもよい。   The configuration of the reflector-equipped discharge lamp 100 will be described with reference to FIGS. A discharge lamp 100 with a reflecting mirror includes an arc tube 1, a ceramic ring 2 that holds the arc tube 1, an elliptical reflecting mirror 3 (an example of a reflecting mirror) to which the ceramic ring 2 is fixed, and a rear surface of the ceramic ring 2. And a cap 5 to be fixed. The ceramic ring 2 holds the vicinity of the R molybdenum foil (sealing portion) of the arc tube 1. The reflecting mirror may be a parabolic reflecting mirror in addition to the elliptical reflecting mirror 3.

発光管1は、Fリード線17が溶接されたFモリブデン箔15を溶接したF電極12と、Rリード線18が溶接されたRモリブデン箔16を溶接したR電極13と、水銀14とを封入した略球状の発光部11を中央部(中央部分)に有する。   The arc tube 1 encloses an F electrode 12 welded with an F molybdenum foil 15 welded with an F lead wire 17, an R electrode 13 welded with an R molybdenum foil 16 welded with an R lead wire 18, and mercury 14. The substantially spherical light emitting part 11 is provided at the central part (central part).

楕円反射鏡3は、回転楕円体形状の一部分の形をしている。楕円反射鏡3の材質は、ガラスである。   The ellipsoidal reflecting mirror 3 has a part of a spheroid shape. The material of the elliptical reflecting mirror 3 is glass.

発光管1は、F電極12を楕円反射鏡3の開口部3a側に、R電極13をネック部3b側にして配置させる。   In the arc tube 1, the F electrode 12 is arranged on the opening 3a side of the elliptical reflecting mirror 3, and the R electrode 13 is arranged on the neck portion 3b side.

発光管1の中心軸を、楕円反射鏡3の開口部3aとネック部3bを結ぶ中心軸に一致させ、発光部11の中心が楕円反射鏡3の焦点に一致するように発光管1を楕円反射鏡3に組み込んだ構造とする。   The arc tube 1 is elliptically aligned so that the central axis of the arc tube 1 coincides with the central axis connecting the opening 3 a and the neck portion 3 b of the elliptical reflector 3, and the center of the light emitter 11 coincides with the focal point of the elliptical reflector 3. The structure is incorporated in the reflecting mirror 3.

セラミックリング2は、外周面2a、内周面2bを有する略円筒形である。セラミックリング2は、楕円反射鏡3に固定される側の端部に、楕円反射鏡3のネック部3bを覆うように嵌合する嵌合部22を備える。   The ceramic ring 2 has a substantially cylindrical shape having an outer peripheral surface 2a and an inner peripheral surface 2b. The ceramic ring 2 includes a fitting portion 22 that is fitted to the end portion on the side fixed to the elliptical reflecting mirror 3 so as to cover the neck portion 3b of the elliptical reflecting mirror 3.

また、セラミックリング2は、楕円反射鏡3に固定される側の端部に、楕円反射鏡3のネック部3bの軸方向端部が当接する当接部21を備える。当接部21は、発光管1の中心線方向に対して略直角である。   Further, the ceramic ring 2 includes an abutting portion 21 that is in contact with the end portion in the axial direction of the neck portion 3 b of the elliptic reflecting mirror 3 at the end portion fixed to the elliptic reflecting mirror 3. The contact portion 21 is substantially perpendicular to the center line direction of the arc tube 1.

セラミックリング2は、セメント4aにより楕円反射鏡3に固定される。セメント4aの主成分は、シリカである。   The ceramic ring 2 is fixed to the elliptical reflecting mirror 3 by cement 4a. The main component of the cement 4a is silica.

さらに、セラミックリング2は、楕円反射鏡3に固定される側の端部に、嵌合部22を切り欠いた切り欠き部23を備える。切り欠き部23は、通風口として機能する。反射鏡付放電ランプ100において、楕円反射鏡3にセラミックリング2を固定した状態では、切り欠き部23が開口している。発光管1が何らかの原因により破裂した場合、ガラスの破片がこの切り欠き部23から飛び散る恐れがあるので、図1に示すように、切り欠き部23にメッシュ7を設けている。   Further, the ceramic ring 2 includes a cutout portion 23 formed by cutting out the fitting portion 22 at an end portion on the side fixed to the elliptical reflecting mirror 3. The notch 23 functions as a ventilation opening. In the discharge lamp 100 with a reflecting mirror, the notch 23 is opened in a state where the ceramic ring 2 is fixed to the elliptical reflecting mirror 3. If the arc tube 1 is ruptured for some reason, glass fragments may scatter from the notch 23. Therefore, the mesh 7 is provided in the notch 23 as shown in FIG.

ここで、反射鏡付放電ランプ100の組み立て手順を簡単に説明する。   Here, the assembly procedure of the discharge lamp 100 with a reflecting mirror will be briefly described.

先ず、楕円反射鏡3にセラミックリング2を固定する。楕円反射鏡3のネック部3bに、セラミックリング2の嵌合部22をネック部3bを覆うように嵌め、ネック部3bの軸方向端部にセラミックリング2の当接部21を当接させる。   First, the ceramic ring 2 is fixed to the elliptical reflecting mirror 3. The fitting portion 22 of the ceramic ring 2 is fitted to the neck portion 3b of the elliptical reflecting mirror 3 so as to cover the neck portion 3b, and the contact portion 21 of the ceramic ring 2 is brought into contact with the axial end portion of the neck portion 3b.

その状態で、セメント4aで、楕円反射鏡3とセラミックリング2とを接着する。セメント4aの主成分は、シリカである。   In this state, the elliptical reflecting mirror 3 and the ceramic ring 2 are bonded with the cement 4a. The main component of the cement 4a is silica.

次に、発光管1を楕円反射鏡3とセラミックリング2の内部に挿入する。そして、発光管1を点灯させながら、発光管1に3次元的な位置調整(軸調整ともいう)を行う。   Next, the arc tube 1 is inserted into the elliptical reflecting mirror 3 and the ceramic ring 2. Then, three-dimensional position adjustment (also referred to as axis adjustment) is performed on the arc tube 1 while the arc tube 1 is turned on.

これにより、発光管1の中心軸が楕円反射鏡3の開口部3aとネック部3bを結ぶ中心軸に一致し、発光部11の中心が楕円反射鏡3の焦点となる状態となる。   As a result, the central axis of the arc tube 1 coincides with the central axis connecting the opening 3 a and the neck portion 3 b of the elliptical reflector 3, and the center of the light emitting unit 11 becomes the focal point of the elliptical reflector 3.

そして、セメント4bを発光管1とセラミックリング2の内周面2bとの隙間に注入し乾燥する(図2)。セメント4bは、セメント4aと同様、主成分はシリカである。   Then, the cement 4b is poured into the gap between the arc tube 1 and the inner peripheral surface 2b of the ceramic ring 2 and dried (FIG. 2). The main component of the cement 4b is silica like the cement 4a.

さらに、セラミックリング2から突出している発光管1を切断する。このとき、Rリード線18は切断しない。   Further, the arc tube 1 protruding from the ceramic ring 2 is cut. At this time, the R lead wire 18 is not cut.

Rリード線18とトリガーワイヤ9とを、かしめ部材(図示せず、金属製)でかしめる。リング状のかしめ部材にRリード線18とトリガーワイヤ9とを通し、リング状のかしめ部材を潰してかしめるイメージである。   The R lead wire 18 and the trigger wire 9 are caulked with a caulking member (not shown, made of metal). This is an image in which the R lead wire 18 and the trigger wire 9 are passed through the ring-shaped caulking member and the ring-shaped caulking member is crushed and caulked.

Rリード線18とトリガーワイヤ9とをかしめたかしめ部材を第1の端子6に溶接する。   A caulking member for caulking the R lead wire 18 and the trigger wire 9 is welded to the first terminal 6.

そして、キャップ5をセラミックリング2に被せる。このとき、キャップ5にはその側壁に切り欠き部(図示せず)があり、この切り欠き部に第1の端子6が納まる。   Then, the cap 5 is put on the ceramic ring 2. At this time, the cap 5 has a notch (not shown) on the side wall thereof, and the first terminal 6 is accommodated in the notch.

尚、発光管1の楕円反射鏡3の開口部3a側のFリード線17は、楕円反射鏡3の外周面に取り付けられる第2の端子31に接続される。   Note that the F lead wire 17 on the opening 3 a side of the elliptical reflecting mirror 3 of the arc tube 1 is connected to a second terminal 31 attached to the outer peripheral surface of the elliptical reflecting mirror 3.

第1の端子6と、第2の端子31とが電源に接続される。   The first terminal 6 and the second terminal 31 are connected to a power source.

次に、F電極12、R電極13の構成について説明する。サイズの違いはあるが、F電極12とR電極13の基本的な構成は同じであるので、F電極12を例に説明する。   Next, the configuration of the F electrode 12 and the R electrode 13 will be described. Although there is a difference in size, the basic configuration of the F electrode 12 and the R electrode 13 is the same, so the F electrode 12 will be described as an example.

図3に示すように、F電極12は、先ず芯線12aの一方の端部(R電極13と対向する側)にコイル12bを所定線径、所定巻数で巻く。コイル12bの所定線径、所定巻数は、ランプのワット数によって変わる。   As shown in FIG. 3, the F electrode 12 first winds a coil 12b with a predetermined wire diameter and a predetermined number of turns around one end of the core wire 12a (the side facing the R electrode 13). The predetermined wire diameter and the predetermined number of turns of the coil 12b vary depending on the wattage of the lamp.

図3に示すF電極12は、例えば、250Wワットのランプに使用されるものである。ワット数が増えると、コイル12bの所定線径、所定巻数は増加する。   The F electrode 12 shown in FIG. 3 is used for, for example, a 250 W watt lamp. As the wattage increases, the predetermined wire diameter and the predetermined number of turns of the coil 12b increase.

芯線12aの材料は、タングステンである。また、芯線12aの直径(d1f)は、0.5mm程度である。   The material of the core wire 12a is tungsten. Moreover, the diameter (d1f) of the core wire 12a is about 0.5 mm.

コイル12bの材料も、タングステンである。また、コイル12bの線径(d2f)は、0.25〜0.3mm程度である。   The material of the coil 12b is also tungsten. The wire diameter (d2f) of the coil 12b is about 0.25 to 0.3 mm.

F電極12(R電極13も同じ)は、図3の形状のままでは、ランプでの放電が安定しないため、R電極13に対向する部分を滑らか曲面にする。F電極12の先端に、曲面形状のメルト電極12cを形成する。   If the F electrode 12 (the same applies to the R electrode 13) remains in the shape shown in FIG. 3, the discharge at the lamp is not stable. A curved melt electrode 12 c is formed at the tip of the F electrode 12.

メルト電極12cは、F電極12及びR電極13にタングステンが溶解する程度の電流を流すことで形成される。タングステンの融点は、約3407°Cである。   The melt electrode 12 c is formed by flowing an electric current that can dissolve tungsten in the F electrode 12 and the R electrode 13. The melting point of tungsten is about 3407 ° C.

このメルト電極12cの形成は、F電極12及びR電極13を発光管1に組み込む前に行う場合と、F電極12及びR電極13を発光管1に組み込んだ後に行う場合とがある。どちらでもよい。   The melt electrode 12c may be formed before the F electrode 12 and the R electrode 13 are incorporated into the arc tube 1 or after the F electrode 12 and the R electrode 13 are incorporated into the arc tube 1. either will do.

さらに、ランプ完成後に、エージング(ランプを点灯させる)を行うと、F電極12(R電極13も同じ)のメルト電極12cの先端に、メルト電極12cに比べると小さい電極先端部12dが形成される。   Furthermore, when aging (lighting the lamp) is performed after completion of the lamp, an electrode tip 12d smaller than the melt electrode 12c is formed at the tip of the melt electrode 12c of the F electrode 12 (the same applies to the R electrode 13). .

電極先端部12dのサイズは、例えば、軸方向長さ、最大径ともに約0.1〜0.2mm程度である。   The size of the electrode tip portion 12d is, for example, about 0.1 to 0.2 mm in both axial length and maximum diameter.

本実施の形態のF電極12、R電極13は、メルト電極12c,13cを形成する前の形状が、以下に示す条件(a)〜(c)のいずれか一つ、若しくは以下に示す条件(a)〜(c)の任意の組合せを満たすものとする。
(a)F電極12の芯線12aの直径をd1f、R電極13の芯線13aの直径をd1rとすると、
d1f>1.2×d1r (1)
(b)F電極12のコイル12bの線径をd2f、R電極13のコイル13bの線径をd2rとすると、
d2f>1.2×d2r (2)
(c)F電極12のコイル12bの巻数をnf、R電極13のコイル13bの巻数をnrとすると、
nf>1.2×nr (3)
In the F electrode 12 and the R electrode 13 of the present embodiment, the shape before forming the melt electrodes 12c and 13c is any one of the following conditions (a) to (c), or the following conditions ( It shall satisfy any combination of a) to (c).
(A) When the diameter of the core wire 12a of the F electrode 12 is d1f and the diameter of the core wire 13a of the R electrode 13 is d1r,
d1f> 1.2 × d1r (1)
(B) When the wire diameter of the coil 12b of the F electrode 12 is d2f and the wire diameter of the coil 13b of the R electrode 13 is d2r,
d2f> 1.2 × d2r (2)
(C) When the number of turns of the coil 12b of the F electrode 12 is nf and the number of turns of the coil 13b of the R electrode 13 is nr,
nf> 1.2 × nr (3)

F電極12、R電極13が、上記条件(a)〜(c)のいずれか一つ、若しくは上記条件(a)〜(c)の任意の組合せを満たす場合の、発光管1におけるF電極12、R電極13は、図6に示すように、F電極12のサイズがR電極13のサイズよりも大きくなる。そして、F電極12の表面積がR電極13の表面積よりも大きくなる。   The F electrode 12 in the arc tube 1 when the F electrode 12 and the R electrode 13 satisfy any one of the above conditions (a) to (c) or any combination of the above conditions (a) to (c). 6, the size of the F electrode 12 is larger than the size of the R electrode 13, as shown in FIG. 6. The surface area of the F electrode 12 is larger than the surface area of the R electrode 13.

尚、F電極12とR電極13との間の距離Lは、一例では、1.0mm程度である。電極先端部12dのサイズは、例えば、軸方向長さ、最大径ともに約0.1〜0.2mm程度である。従って、F電極12の電極先端部12dが損耗すると、F電極12とR電極13との間の距離Lは、1.1〜1.2mm程度に変化する。   Note that the distance L between the F electrode 12 and the R electrode 13 is, for example, about 1.0 mm. The size of the electrode tip portion 12d is, for example, about 0.1 to 0.2 mm in both axial length and maximum diameter. Accordingly, when the electrode tip 12d of the F electrode 12 is worn, the distance L between the F electrode 12 and the R electrode 13 changes to about 1.1 to 1.2 mm.

F電極12の表面積がR電極13の表面積よりも大きくなることにより、プロジェクタ装置の光学系からの反射光により楕円反射鏡3の開口部側のF電極12の温度上昇が抑制される。それにより両電極間の温度差が、F電極12の表面積がR電極13の表面積と同じ場合に比べて小さくなり、ハロゲンサイクルが正常に機能し、F電極12の損耗を抑制できる。   Since the surface area of the F electrode 12 is larger than the surface area of the R electrode 13, the temperature rise of the F electrode 12 on the opening side of the elliptical reflecting mirror 3 is suppressed by the reflected light from the optical system of the projector apparatus. As a result, the temperature difference between the two electrodes is smaller than when the surface area of the F electrode 12 is the same as the surface area of the R electrode 13, the halogen cycle functions normally, and wear of the F electrode 12 can be suppressed.

ハロゲンサイクルとは、電極から蒸発した電極材料であるタングステンが、例えばサイクル毎の電流波形により電極先端を適切な温度に高めることにより、電極先端に戻り電極形状を維持することを言う。   The halogen cycle means that tungsten, which is an electrode material evaporated from an electrode, returns to the electrode tip and maintains the electrode shape by, for example, raising the electrode tip to an appropriate temperature by a current waveform for each cycle.

次に、プロジェクタ装置の光学系からのランプへ戻る反射光のエネルギーをシミュレーションにより調査した結果を示す。   Next, the result of investigating the energy of the reflected light returning from the optical system of the projector device to the lamp will be shown.

図7はシミュレーションに用いたプロジェクタ装置の構成の概念図である。図7において、本実施の形態の反射鏡付放電ランプ100は、プロジェクタ装置の前面ガラス30を備えるホルダーに保持される。   FIG. 7 is a conceptual diagram of the configuration of the projector device used for the simulation. In FIG. 7, the discharge lamp 100 with a reflector according to the present embodiment is held by a holder having a front glass 30 of the projector device.

前面ガラス30は、反射鏡付放電ランプ100の中心線100aに対する直交線に対して、角度θ1傾斜している。角度θ1は、例えば、十度以内である。前面ガラス30では、発光管1から放射された光は、全透過する(一例)。   The front glass 30 is inclined at an angle θ1 with respect to a line perpendicular to the center line 100a of the discharge lamp 100 with a reflecting mirror. The angle θ1 is, for example, within 10 degrees. In the front glass 30, the light emitted from the arc tube 1 is totally transmitted (an example).

前面ガラス30の前方に、紫外線と赤外線を反射するUV/IRフィルタ40(紫外線/赤外線フィルタ)を設ける。UV/IRフィルタ40も、反射鏡付放電ランプ100の中心線100aに対する直交線に対して、角度θ2傾斜している。角度θ2は、例えば、十数度である。   A UV / IR filter 40 (ultraviolet / infrared filter) that reflects ultraviolet rays and infrared rays is provided in front of the front glass 30. The UV / IR filter 40 is also inclined at an angle θ2 with respect to a line perpendicular to the center line 100a of the discharge lamp 100 with a reflecting mirror. The angle θ2 is, for example, tens of degrees.

UV/IRフィルタ40を角度θ2傾斜させているのは、UV/IRフィルタ40から戻る紫外線/赤外線が反射鏡付放電ランプ100から外れ、発光管1に戻るエネルギーが傾斜させない場合より小さくなると考えられるからである。   The reason why the UV / IR filter 40 is inclined by the angle θ2 is considered to be smaller than that in the case where the ultraviolet rays / infrared rays returning from the UV / IR filter 40 are detached from the discharge lamp 100 with a reflecting mirror and the energy returning to the arc tube 1 is not inclined. Because.

UV/IRフィルタ40の前方に、カラーホイール50を設ける。カラーホイール50からは、光が前方へ放射される。但し、カラーホイール50から戻るエネルギーもある。   A color wheel 50 is provided in front of the UV / IR filter 40. Light is emitted forward from the color wheel 50. However, there is energy returning from the color wheel 50.

図8は主に図7の構成において光学系から発光管1へ戻るエネルギーを求めた結果を示す図であり、横軸は前面ガラス30と発光管1の放電中心(F電極12とR電極13との間の中心)との距離、縦軸は発光管1へ戻るエネルギー(全放射エネルギーに対する比[%])である。そして、図7の構成において、F電極12とR電極13とに戻るエネルギーを求めている。また、参考に図7の構成からUV/IRフィルタ40を省いたときのF電極12に戻るエネルギーも求めている。但し、このデータについては、特に以下では言及しない。   FIG. 8 is a diagram mainly showing the results of obtaining the energy returning from the optical system to the arc tube 1 in the configuration of FIG. 7, and the horizontal axis is the discharge center of the front glass 30 and arc tube 1 (F electrode 12 and R electrode 13). The vertical axis represents the energy returned to the arc tube 1 (ratio to the total radiation energy [%]). In the configuration of FIG. 7, the energy returning to the F electrode 12 and the R electrode 13 is obtained. For reference, the energy returned to the F electrode 12 when the UV / IR filter 40 is omitted from the configuration of FIG. 7 is also obtained. However, this data is not specifically mentioned below.

図8から解るように、プロジェクタ装置で通常採用される前面ガラス30と発光管1の放電中心との距離において、図7の構成では、
(1)F電極12へ戻るエネルギー(全放射エネルギーに対する比[%])は、6.5〜8[%]程度である。
(2)R電極13へ戻るエネルギー(全放射エネルギーに対する比[%])は、1〜2[%]程度である。
As can be seen from FIG. 8, in the configuration of FIG.
(1) The energy returned to the F electrode 12 (ratio [%] to the total radiation energy) is about 6.5 to 8 [%].
(2) The energy returning to the R electrode 13 (ratio to the total radiation energy [%]) is about 1 to 2 [%].

このように、R電極13に比べ、F電極12へ戻るエネルギーが圧倒的に大きい。そのため、F電極12の温度が上昇し、R電極13との温度差が発生する場合は、F電極12の電極先端部12dが損耗し、ランプ特性が維持できなくなる場合がある。また、電極先端部12dの損耗により、電極形状が変化しアークスポットのずれが発生する。交流タイプの反射鏡付放電ランプ100の場合、サイクル毎のスポットずれが、「ちらつき」となって感じられることになる。   Thus, compared with the R electrode 13, the energy returning to the F electrode 12 is overwhelmingly large. Therefore, when the temperature of the F electrode 12 rises and a temperature difference from the R electrode 13 occurs, the electrode tip 12d of the F electrode 12 may be worn out and the lamp characteristics may not be maintained. Further, due to the wear of the electrode tip 12d, the electrode shape changes and the arc spot shifts. In the case of the AC type reflector-equipped discharge lamp 100, the spot deviation for each cycle is felt as "flickering".

上記シミュレーション(図7の構成)におけるF電極12とR電極13の温度データの一例は、以下に示す通りである。
(1)F電極12の温度:約2900℃
(2)R電極13の温度:約2800℃
両者には、約100℃の差があることが解る。
An example of temperature data of the F electrode 12 and the R electrode 13 in the simulation (configuration of FIG. 7) is as follows.
(1) Temperature of the F electrode 12: about 2900 ° C.
(2) Temperature of the R electrode 13: about 2800 ° C.
It can be seen that there is a difference of about 100 ° C. between the two.

参考データであるが、反射鏡付放電ランプ100をプロジェクタ装置から外に出し、自然点灯した場合のF電極12とR電極13の温度データの一例は、以下に示す通りである。
(1)F電極12の温度:2815〜2820℃
(2)R電極13の温度:2811〜2817℃
両者には、殆ど差がないことが解る。
Although it is reference data, an example of the temperature data of the F electrode 12 and the R electrode 13 when the discharge lamp 100 with a reflecting mirror is taken out of the projector apparatus and is naturally lit is as follows.
(1) Temperature of the F electrode 12: 2815 to 2820 ° C
(2) Temperature of the R electrode 13: 2811 to 2817 ° C.
It can be seen that there is almost no difference between the two.

このように、反射鏡付放電ランプ100をプロジェクタ装置に組込むと、プロジェクタ装置の光学系からの反射光により楕円反射鏡3の開口部側のF電極12の温度が上昇することが解る。それによりF電極12とR電極13との間に温度差が発生し正常なハロゲンサイクルが機能しなくなる。結果として、楕円反射鏡3の開口部側のF電極12の電極先端部12dが損耗し、ランプ特性が維持できなくなる場合がある。   Thus, when the discharge lamp 100 with a reflecting mirror is incorporated in the projector apparatus, it can be seen that the temperature of the F electrode 12 on the opening side of the elliptical reflecting mirror 3 rises due to the reflected light from the optical system of the projector apparatus. As a result, a temperature difference occurs between the F electrode 12 and the R electrode 13, and the normal halogen cycle does not function. As a result, the electrode tip 12d of the F electrode 12 on the opening side of the elliptical reflecting mirror 3 may be worn out and the lamp characteristics may not be maintained.

以上のように、本実施の形態によれば、F電極12、R電極13のメルト電極12c,13cを形成する前の形状が、以下に示す条件(a)〜(c)のいずれか一つ、若しくは以下に示す条件(a)〜(c)の任意の組合せを満たすものとする。
(a)F電極12の芯線12aの直径をd1f、R電極13の芯線13aの直径をd1rとすると、
d1f>1.2×d1r (1)
(b)F電極12のコイル12bの線径をd2f、R電極13のコイル13bの線径をd2rとすると、
d2f>1.2×d2r (2)
(c)F電極12のコイル12bの巻数をnf、R電極13のコイル13bの巻数をnrとすると、
nf>1.2×nr (3)
以上のようにすることにより、F電極12の表面積をR電極13の表面積よりも大きくでき、プロジェクタ装置の光学系からの反射光により楕円反射鏡3の開口部側のF電極12の温度上昇を抑制することができる。それによりハロゲンサイクルが正常に機能し、ランプ特性を維持できる。
As described above, according to the present embodiment, the shape of the F electrode 12 and the R electrode 13 before the melt electrodes 12c and 13c are formed is any one of the following conditions (a) to (c). Or any combination of the following conditions (a) to (c).
(A) When the diameter of the core wire 12a of the F electrode 12 is d1f and the diameter of the core wire 13a of the R electrode 13 is d1r,
d1f> 1.2 × d1r (1)
(B) When the wire diameter of the coil 12b of the F electrode 12 is d2f and the wire diameter of the coil 13b of the R electrode 13 is d2r,
d2f> 1.2 × d2r (2)
(C) When the number of turns of the coil 12b of the F electrode 12 is nf and the number of turns of the coil 13b of the R electrode 13 is nr,
nf> 1.2 × nr (3)
By doing so, the surface area of the F electrode 12 can be made larger than the surface area of the R electrode 13, and the temperature of the F electrode 12 on the opening side of the elliptical reflecting mirror 3 can be increased by the reflected light from the optical system of the projector apparatus. Can be suppressed. As a result, the halogen cycle functions normally and the lamp characteristics can be maintained.

実施の形態1を示す図で、反射鏡付放電ランプ100の構成図。FIG. 3 shows the first embodiment, and is a configuration diagram of a discharge lamp 100 with a reflecting mirror. 実施の形態1を示す図で、一部を破断して断面で示す反射鏡付放電ランプ100の構成図。FIG. 3 is a diagram showing the first embodiment, and is a configuration diagram of a discharge lamp 100 with a reflecting mirror, partly broken and shown in cross section. 実施の形態1を示す図で、製造過程における初期のF電極12の構成を示す図。FIG. 5 shows the first embodiment, and shows a configuration of an initial F electrode 12 in a manufacturing process. 実施の形態1を示す図で、F電極12の先端を溶解してメルト電極12cを形成した図。The figure which shows Embodiment 1 and the figure which melt | dissolved the front-end | tip of F electrode 12 and formed the melt electrode 12c. 実施の形態1を示す図で、F電極12を点灯させて電極先端部12dを形成した図。FIG. 5 shows the first embodiment, and is a diagram in which an electrode tip 12d is formed by turning on an F electrode 12; 実施の形態1を示す図で、発光管1におけるF電極12とR電極13付近を示す図。FIG. 3 shows the first embodiment and shows the vicinity of the F electrode 12 and the R electrode 13 in the arc tube 1. 実施の形態1を示す図で、シミュレーションに用いたプロジェクタ装置の構成の概念図。FIG. 5 shows the first embodiment, and is a conceptual diagram of the configuration of a projector device used for simulation. 実施の形態1を示す図で、主に図7の構成において光学系から発光管1へ戻るエネルギーを求めた結果を示す図。FIG. 8 is a diagram illustrating the first embodiment and is a diagram illustrating a result of obtaining energy returning from the optical system to the arc tube 1 mainly in the configuration of FIG.

符号の説明Explanation of symbols

1 発光管、2 セラミックリング、2a 外周面、2b 内周面、3 楕円反射鏡、3a 開口部、3b ネック部、4a セメント、4b セメント、5 キャップ、6 第1の端子、7 メッシュ、9 トリガーワイヤ、11 発光部、12 F電極、12a 芯線、12b コイル、12c メルト電極、12d 電極先端部、13 R電極、13a 芯線、13b コイル、13c メルト電極、13d 電極先端部、14 水銀、15 Fモリブデン箔、16 Rモリブデン箔、17 Fリード線、18 Rリード線、21 当接部、22 嵌合部、23 切り欠き部、30 前面ガラス、31 第2の端子、40 UV/IRフィルタ、50 カラーホイール、100 反射鏡付放電ランプ。   1 arc tube, 2 ceramic ring, 2a outer peripheral surface, 2b inner peripheral surface, 3 elliptical reflector, 3a opening, 3b neck, 4a cement, 4b cement, 5 cap, 6 first terminal, 7 mesh, 9 trigger Wire, 11 Light emitting part, 12 F electrode, 12a core wire, 12b coil, 12c melt electrode, 12d electrode tip, 13 R electrode, 13a core wire, 13b coil, 13c melt electrode, 13d electrode tip, 14 mercury, 15 F molybdenum Foil, 16 R molybdenum foil, 17 F lead wire, 18 R lead wire, 21 contact portion, 22 fitting portion, 23 notch portion, 30 front glass, 31 second terminal, 40 UV / IR filter, 50 color Wheel, 100 discharge lamp with reflector.

Claims (1)

開口部とこの開口部の反対側にネック部とを有する反射鏡と、
Fリード線が溶接されたFモリブデン箔を溶接したF電極と、Rリード線が溶接されたRモリブデン箔を溶接したR電極と、水銀とを封入した略球状の発光部を中央部に有する発光管とを備えた反射鏡付放電ランプであって、
前記F電極及び前記R電極は、
夫々所定の線径の芯線に、前記F電極及び前記R電極が対向する前記芯線の端部に所定線径、所定巻数のコイルを巻き、
次に、前記F電極及び前記R電極の先端を溶解して曲面形状のメルト電極を形成し、
さらに、エージングにより前記メルト電極の先端に、電極先端部を形成して構成され、
前記F電極、前記R電極の前記メルト電極を形成する前の形状が、以下に示す条件(a)〜(c)のいずれか一つ、若しくは以下に示す条件(a)〜(c)の任意の組合せを満たすことを特徴とする反射鏡付放電ランプ。
(a)前記F電極の前記芯線の直径をd1f、前記R電極の前記芯線の直径をd1rとすると、
d1f>1.2×d1r;
(b)前記F電極の前記コイルの線径をd2f、前記R電極の前記コイルの線径をd2rとすると、
d2f>1.2×d2r;
(c)前記F電極の前記コイルの巻数をnf、前記R電極の前記コイルの巻数をnrとすると、
nf>1.2×nr。
A reflector having an opening and a neck on the opposite side of the opening;
Light emission having a substantially spherical light-emitting part in the center with an F electrode welded with an F molybdenum foil welded with an F lead wire, an R electrode welded with an R molybdenum foil welded with an R lead wire, and mercury A discharge lamp with a reflector comprising a tube,
The F electrode and the R electrode are
A coil having a predetermined wire diameter and a predetermined number of turns is wound around an end portion of the core wire to which the F electrode and the R electrode face each core wire having a predetermined wire diameter,
Next, melt the tip of the F electrode and the R electrode to form a curved melt electrode,
Furthermore, the tip of the melt electrode is formed by aging to form an electrode tip,
The shape of the F electrode and the R electrode before forming the melt electrode is any one of the following conditions (a) to (c), or any of the following conditions (a) to (c) A discharge lamp with a reflector characterized by satisfying the combination of
(A) When the diameter of the core wire of the F electrode is d1f and the diameter of the core wire of the R electrode is d1r,
d1f> 1.2 × d1r;
(B) When the wire diameter of the coil of the F electrode is d2f and the wire diameter of the coil of the R electrode is d2r,
d2f> 1.2 × d2r;
(C) When the number of turns of the coil of the F electrode is nf and the number of turns of the coil of the R electrode is nr,
nf> 1.2 × nr.
JP2008223391A 2008-09-01 2008-09-01 Discharge lamp with reflector Expired - Fee Related JP5280772B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2008223391A JP5280772B2 (en) 2008-09-01 2008-09-01 Discharge lamp with reflector
DE102009038931A DE102009038931A1 (en) 2008-09-01 2009-08-26 Discharge lamp with reflector
US12/550,426 US8203268B2 (en) 2008-09-01 2009-08-31 Discharge lamp with a reflective mirror with optimized electrode configuration
CN200910168173A CN101666437A (en) 2008-09-01 2009-09-01 Discharge lamp with a reflective mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223391A JP5280772B2 (en) 2008-09-01 2008-09-01 Discharge lamp with reflector

Publications (2)

Publication Number Publication Date
JP2010061836A true JP2010061836A (en) 2010-03-18
JP5280772B2 JP5280772B2 (en) 2013-09-04

Family

ID=41606384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223391A Expired - Fee Related JP5280772B2 (en) 2008-09-01 2008-09-01 Discharge lamp with reflector

Country Status (4)

Country Link
US (1) US8203268B2 (en)
JP (1) JP5280772B2 (en)
CN (1) CN101666437A (en)
DE (1) DE102009038931A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186613B1 (en) * 2012-11-01 2013-04-17 パナソニック株式会社 High pressure discharge lamp and projector using the high pressure discharge lamp

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104170531B (en) 2012-03-06 2015-12-30 欧司朗股份有限公司 For running circuit arrangement and the method for at least one discharge lamp

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086453A1 (en) * 2003-03-24 2004-10-07 Seiko Epson Corporation Illumination device and projector with the same
JP2005019262A (en) * 2003-06-27 2005-01-20 Ushio Inc Short arc type discharge lamp lighting device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW339496B (en) 1994-06-22 1998-09-01 Philips Electronics Nv Method and circuit arrangement for operating a high-pressure discharge lamp
JP3216877B2 (en) * 1997-11-18 2001-10-09 松下電子工業株式会社 High pressure discharge lamp, illumination optical device using this high pressure discharge lamp as light source, and image display device using this illumination optical device
DE60129265T2 (en) * 2000-03-17 2008-03-13 Ushiodenki K.K. Mercury high pressure lamp lighting device and means to their ignition
JP3327895B2 (en) * 2000-04-28 2002-09-24 松下電器産業株式会社 High pressure discharge lamp, method for manufacturing the lamp, method for lighting the lamp, and lighting device
JP3327896B2 (en) * 2000-05-12 2002-09-24 松下電器産業株式会社 High pressure discharge lamp
JP4438826B2 (en) * 2007-06-04 2010-03-24 セイコーエプソン株式会社 Projector and light source device driving method for projector

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004086453A1 (en) * 2003-03-24 2004-10-07 Seiko Epson Corporation Illumination device and projector with the same
JP2005019262A (en) * 2003-06-27 2005-01-20 Ushio Inc Short arc type discharge lamp lighting device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5186613B1 (en) * 2012-11-01 2013-04-17 パナソニック株式会社 High pressure discharge lamp and projector using the high pressure discharge lamp

Also Published As

Publication number Publication date
US8203268B2 (en) 2012-06-19
DE102009038931A1 (en) 2010-03-04
JP5280772B2 (en) 2013-09-04
CN101666437A (en) 2010-03-10
US20100052496A1 (en) 2010-03-04

Similar Documents

Publication Publication Date Title
JP4400095B2 (en) Short arc super high pressure mercury lamp
JP4816608B2 (en) Optical device
JP5280772B2 (en) Discharge lamp with reflector
JP2006059813A (en) Incandescent lamp for headlight
JP2010061816A (en) Discharge lamp with reflecting mirror
JP2006059815A (en) Electric incandescent lamp for vehicular headlight
JP2008010384A (en) Light source device
JP5126030B2 (en) High pressure discharge lamp, lamp unit using the high pressure discharge lamp, and projector using the lamp unit
WO2018143300A1 (en) High-pressure discharge lamp
EP1965253A1 (en) Discharge lamp with concave reflector
JP2002298637A (en) Bulb, bulb with reflecting mirror, and illumination apparatus
JP2009140846A (en) Discharge lamp for vehicle
JP4337968B2 (en) Short arc type discharge lamp
JP2009105062A (en) Short-arc type extra high-pressure mercury lamp
JP5369360B2 (en) Light source electrode
JP7175109B2 (en) short arc discharge lamp
US20030201703A1 (en) High pressure discharge lamp, lamp with reflecting mirror and image projecting device
US20070018549A1 (en) Highstrength discharge lamp with low glare and high efficiency for vehicles
JP2009289567A (en) Discharge lamp with reflecting mirror
JP5604964B2 (en) Light source device
JP2005228711A (en) Optical apparatus
JP6562298B2 (en) Discharge lamp
JP2011228037A (en) Ultra-high pressure mercury vapor lamp
JP4536753B2 (en) Tube with bulb and reflector
JP2009009775A (en) Bulb and bulb with reflecting mirror

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130521

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130523

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5280772

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees