JP2010060445A - Inert gas encapsulated sheathed thermocouple and method for manufacturing the same - Google Patents

Inert gas encapsulated sheathed thermocouple and method for manufacturing the same Download PDF

Info

Publication number
JP2010060445A
JP2010060445A JP2008226857A JP2008226857A JP2010060445A JP 2010060445 A JP2010060445 A JP 2010060445A JP 2008226857 A JP2008226857 A JP 2008226857A JP 2008226857 A JP2008226857 A JP 2008226857A JP 2010060445 A JP2010060445 A JP 2010060445A
Authority
JP
Japan
Prior art keywords
thermocouple
inert gas
cable
inorganic insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008226857A
Other languages
Japanese (ja)
Inventor
Masabumi Terada
正文 寺田
Masaru Yamana
勝 山名
Mitsuaki Mochizuki
光明 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okazaki Manufacturing Co Ltd
Original Assignee
Okazaki Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okazaki Manufacturing Co Ltd filed Critical Okazaki Manufacturing Co Ltd
Priority to JP2008226857A priority Critical patent/JP2010060445A/en
Publication of JP2010060445A publication Critical patent/JP2010060445A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To solve an issue of a temperature measurement error increasing on the negative side over time when using a sheathed thermocouple at a high temperature of 1,000°C or more, which has housed K or N thermocouple wires in a metal sheath through intervention of an inorganic powder insulating material including magnesia, alumina, and the like, and sealed ends thereof with a resin, and the like, particularly, the sheathed thermocouple with an outer sheath diameter of ϕ3.2 mm or less. <P>SOLUTION: In the sheathed thermocouple which has housed the K or N thermocouple wires in the metal sheath through intervention of the inorganic powder insulating material including magnesia, alumina, and the like, and sealed the ends thereof with the resin, and the like, an inert gas is encapsulated among the inorganic powder insulating material. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、例えば加熱炉内などの高温部の温度を測定するためのシース熱電対とその製造方法についてのものである。   The present invention relates to a sheath thermocouple for measuring the temperature of a high temperature part such as in a heating furnace and a method for manufacturing the same.

シース熱電対は、非接地型と接地型の2種類があり、図1、図2に示すように、いずれの型も金属シース1内に、マグネシア、アルミナ等を材質とする粉末の無機絶縁材3を介在させて一対の熱電対素線2を収容し、端部(図1の右端)を、湿分の侵入による無機絶縁材の絶縁低下を防ぐために樹脂等によりシール4を施したものである。なお、図1のシール部は、一例であり、他の構造のものもある。また、多対の熱電対素線を収容したものもある。   There are two types of sheathed thermocouples: non-grounded type and grounded type. As shown in FIGS. 1 and 2, each type is a powdered inorganic insulating material made of magnesia, alumina or the like in a metal sheath 1. A pair of thermocouple wires 2 are accommodated with 3 interposed therebetween, and the end portion (the right end in FIG. 1) is provided with a seal 4 with a resin or the like in order to prevent insulation deterioration of the inorganic insulating material due to moisture intrusion. is there. In addition, the seal part of FIG. 1 is an example, and there exists a thing of another structure. Some have accommodated multiple pairs of thermocouple wires.

シース熱電対は、熱電対素線が直接外部金属と接触しないため、外部金属との接触による外部金属電位の影響を考慮することなく、自由に配置することができる特長を持ち、また、過酷な酸化雰囲気、還元雰囲気や腐食性雰囲気などで使用しても、それに耐える金属シース材を使用しておれば長寿命が得られるという利点もあるため、従来から広く使用されている。   The sheath thermocouple has the feature that it can be placed freely without considering the influence of the external metal potential due to the contact with the external metal because the thermocouple wire does not directly contact the external metal. Even if it is used in an oxidizing atmosphere, a reducing atmosphere, a corrosive atmosphere, etc., it has been widely used since there is an advantage that a long life can be obtained if a metal sheath material that can withstand it is used.

なお、シース熱電対は大気中で製造されているので、図1、図2のシース熱電対内の無機絶縁材粉末の間隙に存在する気体は、従来のものは空気である。
特開平06−260687号公報 丸善株式会社出版「金属材料の高温酸化と高温腐食」腐食防食協会編
Since the sheath thermocouple is manufactured in the atmosphere, the conventional gas is the air present in the gap between the inorganic insulating material powders in the sheath thermocouple of FIGS.
Japanese Patent Laid-Open No. 06-260687 Published by Maruzen Co., Ltd. “High-temperature oxidation and high-temperature corrosion of metal materials”

K熱電対素線やN熱電対素線を用いたシース熱電対を、1000℃を超える高温を測定対象として用いた場合、温度測定誤差が時間経過とともに負側に増加するという傾向がある。この誤差の増加は、シース外径が細く、したがって収容されている熱電対素線の径が細いもの程大きく、シース外径がφ3.2mm以下のシース熱電対では実用上問題となることが多かった。   When a sheathed thermocouple using a K thermocouple element or an N thermocouple element is used as a measurement target at a high temperature exceeding 1000 ° C., the temperature measurement error tends to increase on the negative side with the passage of time. This increase in error is larger when the outer diameter of the sheath is thinner, and therefore the smaller the diameter of the thermocouple wire accommodated, and this is often a practical problem with sheath thermocouples with a sheath outer diameter of 3.2 mm or less. It was.

金属シース内にマグネシア、アルミナ等を材質とする粉末の無機絶縁材を介在させてK熱電対素線又はN熱電対素線を収容し、端部を樹脂等でシールしたシース熱電対において、特にシース外径がφ3.2mm以下のシース熱電対において、1000℃以上の高温で用いた場合に温度測定誤差が時間経過とともに負側に増加するという問題を解決するために、無機絶縁材粉末の間隙に不活性ガスを封入する。また、その不活性ガスとしてアルゴンガスを使用する。   In a sheath thermocouple in which a K thermocouple element or N thermocouple element is accommodated in a metal sheath with a powdered inorganic insulating material made of magnesia, alumina or the like interposed, and the end is sealed with resin or the like. In order to solve the problem that the temperature measurement error increases negatively over time when used at a high temperature of 1000 ° C or higher in a sheath thermocouple with a sheath outer diameter of 3.2 mm or less, the gap between the inorganic insulating powders An inert gas is sealed in. Argon gas is used as the inert gas.

次に、その製造方法は、一般にMIケーブルと呼ばれる両端を加工してシース熱電対にする前の無機絶縁材粉末を介在させて熱電対素線を収容した金属シース部に対し、一端をアルゴンガス等の不活性ガスにより加圧して無機絶縁材粉末間に注入し、この不活性ガスの圧力によって初めに無機絶縁材粉末間に存在していた空気を他端から流出させることにより、MIケーブル内の無機絶縁材粉末間に不活性ガスを充填した後、両端を加工してシース熱電対に仕上げることで、不活性ガスが封入されたシース熱電対を作る。   Next, the manufacturing method generally employs an argon gas at one end with respect to a metal sheath portion containing a thermocouple element by interposing an inorganic insulating material powder before processing into both ends called a MI cable to form a sheath thermocouple. The inside of the MI cable is pressurized with an inert gas such as, and injected between the inorganic insulating powders, and the air that was initially present between the inorganic insulating powders is caused to flow out of the other end by the pressure of the inert gas. After filling an inert gas between the inorganic insulating material powders, both ends are processed into a sheathed thermocouple, thereby making a sheathed thermocouple filled with the inert gas.

MIケーブルは最初に太径のものを作り、これにロータリースエージングや穴ダイスによる冷間引き抜き等による縮径を複数回行うことにより、所定の外径のMIケーブルを得るのが通常である。   An MI cable is first prepared with a large diameter, and a MI cable having a predetermined outer diameter is usually obtained by performing a plurality of times of diameter reduction by rotary swaging or cold drawing with a hole die.

この縮径の初期又は途中段階で、MIケーブル一端をアルゴンガス等の不活性ガスにより加圧して無機絶縁材粉末間に注入し、この不活性ガスの圧力によって初めに無機絶縁材粉末間に不活性ガスを充填した後、縮径を継続し、所定の径に達してから、両端を加工してシース熱電対に仕上げることによっても、不活性ガスが封入されたシース熱電対を作ることができる。   At the initial or middle stage of the diameter reduction, one end of the MI cable is pressurized with an inert gas such as argon gas and injected between the inorganic insulating powders. After filling with the active gas, it is possible to make a sheathed thermocouple filled with an inert gas by continuing to reduce the diameter and reaching a predetermined diameter and then processing both ends to finish the sheath thermocouple. .

K熱電対素線やN熱電対素線を用いたシース熱電対を、1000℃を超える高温で用いた場合、熱電対素線の表面に変質層が生じることをSEMにより観察した。また、1000℃を超える温度で加熱した場合、シース内の圧力が降下していくことを測定した。   When a sheathed thermocouple using a K thermocouple element or an N thermocouple element was used at a high temperature exceeding 1000 ° C., it was observed by SEM that an altered layer was formed on the surface of the thermocouple element. Moreover, when it heated at the temperature exceeding 1000 degreeC, it measured that the pressure in a sheath fell.

これらの結果から、熱電対素線表面の変質層は、無機絶縁材粉末間にある空気に含まれる酸素及び窒素と熱電対素線成分が結合したもので、また、これと同じことが金属シース内面にも起こり、圧力降下はこれらの酸化、窒化により空気が消費されたことによるものであると結論付けすることができる。   From these results, the altered layer on the surface of the thermocouple wire is a combination of oxygen and nitrogen contained in the air between the inorganic insulating powder and the thermocouple wire component, and the same is true for the metal sheath. It can also be concluded that the pressure drop occurs due to the consumption of air due to these oxidation and nitridation.

非特許文献1によれば、K及びN熱電対素線の成分中のアルミニウム、シリコン、クロムは酸化、窒化の生成自由エネルギーが小さいため、酸化物、窒化物に変化し易い。   According to Non-Patent Document 1, aluminum, silicon, and chromium in the components of the K and N thermocouple strands are easy to change to oxides and nitrides because the free energy for formation of oxidation and nitridation is small.

これらの元素のうち特にアルミニウム、クロムは熱電対素線の熱起電力発生源としての役割を持っているもので、酸化、窒化による熱電対素線中のこれらの濃度減少が、1000℃を超える高温で使用した場合に測定誤差が負側に増加することの主原因である。   Among these elements, aluminum and chromium have a role as a thermoelectromotive force generation source of thermocouple wires, and the concentration reduction in thermocouple wires due to oxidation and nitridation exceeds 1000 ° C. This is the main cause of the increase in measurement error on the negative side when used at high temperatures.

また、シース外径が細く、熱電対素線径の細いものほど熱電対素線の体積に対するその表面積の比が大きいため、太いものに較べて相対的に酸化、窒化による熱電対素線中の濃度減少が速く、したがって測定誤差の負側への増加速度も速い。   Also, the thinner the outer diameter of the sheath and the smaller the diameter of the thermocouple wire, the greater the ratio of the surface area to the volume of the thermocouple wire. The density decrease is fast, and therefore the increase rate of the measurement error to the negative side is also fast.

以上のことから、K熱電対素線やN熱電対素線を用いたシース熱電対内のシース熱電対内の無機絶縁材粉末の間隙に存在する気体を、空気に換えて不活性ガスとすることにより、1000℃を超える高温で使用した場合でも熱電対素線の酸化、窒化は生じず、測定誤差が負側に増加することを抑制することができる。この効果は特に、従来実用上の問題となっていたシース外径がφ3.2mm以下の細いシース熱電対に対して大きい。   From the above, the gas existing in the gap between the inorganic insulating material powders in the sheath thermocouple in the sheath thermocouple using the K thermocouple wire or the N thermocouple wire is changed to air and used as an inert gas. Even when used at a high temperature exceeding 1000 ° C., oxidation and nitridation of the thermocouple wire does not occur, and the increase in measurement error to the negative side can be suppressed. This effect is particularly great for a thin sheath thermocouple having a sheath outer diameter of φ3.2 mm or less, which has been a practical problem in the past.

使用する不活性ガスに対し、アルゴンが最も安価であり、不活性ガスとしてアルゴンを使用することは、経済面において得策である。   Argon is the cheapest with respect to the inert gas used, and it is economically advantageous to use argon as the inert gas.

アルゴンはまた、ヘリウムなどに比べて金属を透過する量が極めて少なく、長期間にわたって無機絶縁材粉末間に留まる効果もある。   Argon also has an effect of remaining between the inorganic insulating powders for a long period of time because the amount of the metal that permeates is extremely small compared to helium and the like.

次に、本発明によるシース熱電対に関し、不活性ガスの封入方法について説明する。   Next, an inert gas sealing method for the sheath thermocouple according to the present invention will be described.

不活性ガスの封入は、シース熱電対の材料となるMIケーブルの一端を高圧の不活性ガスにより加圧して不活性ガスを無機絶縁材粉末間に注入し、他端から既存の空気を吐出させることにより行うことができる。空気が不活性ガスに置換したことの判定は、吐出したガスを捕集し、そのガス体積が、MIケーブルの無機絶縁材粉末が充填された部分の体積に無機絶縁材粉末の充填率を乗じて求めた無機絶縁材粉末間のガス体積より十分に多くなったことにより行うことができる。   The inert gas is sealed by pressurizing one end of the MI cable, which is the material of the sheath thermocouple, with a high-pressure inert gas, injecting the inert gas between the inorganic insulating powders, and discharging the existing air from the other end. Can be done. The determination that the air has been replaced with the inert gas is made by collecting the discharged gas and multiplying the volume of the portion of the MI cable filled with the inorganic insulating powder by the filling rate of the inorganic insulating powder. This can be performed by sufficiently increasing the gas volume between the inorganic insulating material powders obtained in the above.

また、一定時間毎に吐出ガスを捕集してガス分析器にかけ、吐出ガスが空気から不活性ガスに変わったことにより判定しても良い。   Alternatively, the discharge gas may be collected every certain time and applied to a gas analyzer, and the determination may be made by changing the discharge gas from air to an inert gas.

不活性ガスの注入時の構成の一例を図3に示す。MIケーブル5の一端(図3のMIケーブル左端)に、チューブ7の設けられたキャップ6を、コンプレッションフィッティングなどにより無漏洩にMIケーブルに取付け、チューブ7を不活性ガスボンベなどの高圧不活性ガス源に接続する。他端にはやはり、チューブ9の設けられたキャップ8を、コンプレッションフィッティング等により無漏洩にMIケーブルに取付ける。このチューブ9に吐出ガス捕集器10を接続し、吐出ガスを容器11内の水13を通してガス捕集筒12に捕集する。この捕集ガスの体積又はガスの成分変化より空気が不活性ガスに置き換わったことを判定する。   An example of the configuration at the time of injecting the inert gas is shown in FIG. At one end of the MI cable 5 (the left end of the MI cable in FIG. 3), a cap 6 provided with a tube 7 is attached to the MI cable without leakage by compression fitting or the like, and the tube 7 is attached to a high-pressure inert gas source such as an inert gas cylinder. Connect to. At the other end, the cap 8 provided with the tube 9 is attached to the MI cable without leakage by compression fitting or the like. A discharge gas collector 10 is connected to the tube 9 and the discharge gas is collected in the gas collection cylinder 12 through the water 13 in the container 11. It is determined from the volume of the collected gas or the gas component change that the air has been replaced with the inert gas.

シース熱電対の材料となるMIケーブルは、図4に示すように最初太い径のものを作り、これに所定の外径になるまで、ロータリースエージングや穴ダイスによる冷間引き抜き等による縮径を複数回施すことにより製作される。縮径が進むにつれてMIケーブル5は長くなるので、シース熱電対は通常、所定の外径になったMIケーブルを必要な長さに切断し、両端を加工して図1、図2に示すシース熱電対が作られる。   The MI cable, which is the material of the sheath thermocouple, is first made with a large diameter as shown in FIG. 4, and then the diameter of the MI cable is reduced by rotary swaging or cold drawing with a hole die until it reaches a predetermined outer diameter. Produced by applying multiple times. Since the MI cable 5 becomes longer as the diameter decreases, the sheath thermocouple normally cuts the MI cable having a predetermined outer diameter into a required length, and processes both ends to obtain the sheath shown in FIGS. A thermocouple is made.

不活性ガスの注入は、所定の外径になったMIケーブル5をシース熱電対の製作に必要な長さに切断した後に行ってもよいし、MIケーブル縮径の初期又は途中段階で行ってもよい。不活性ガスを注入されたMIケーブルは図1に示すシース熱電対に加工され、注入された不活性ガスは、無機絶縁材粉末間に封入される。   The inert gas may be injected after the MI cable 5 having a predetermined outer diameter is cut to a length necessary for manufacturing the sheath thermocouple, or at the initial stage or in the middle of the MI cable diameter reduction. Also good. The MI cable into which the inert gas is injected is processed into a sheath thermocouple shown in FIG. 1, and the injected inert gas is sealed between the inorganic insulating material powders.

なお、不活性ガス注入からシース熱電対への加工までの期間が長いと、最初MIケーブル内に加圧状態で入っていた不活性ガスがMIケーブル両端の開口から大気中に流出し、続いて両端部の不活性ガスの一部が拡散により外部の空気と置換される。空気の流入は、空気に含まれる湿分による無機絶縁材の絶縁低下をも招く。   In addition, if the period from the inert gas injection to the processing to the sheath thermocouple is long, the inert gas initially contained in the MI cable in a pressurized state flows out into the atmosphere from the openings at both ends of the MI cable. Part of the inert gas at both ends is replaced with external air by diffusion. The inflow of air also causes a decrease in insulation of the inorganic insulating material due to moisture contained in the air.

このような空気流入やそれに伴う絶縁低下は、不活性ガス注入後の長期保管時にMIケーブルの両端開口部を樹脂等で封止しておくことによって防止できる。   Such inflow of air and accompanying insulation decrease can be prevented by sealing the opening portions at both ends of the MI cable with a resin or the like during long-term storage after injecting an inert gas.

以下の外径φ1.6mmとφ3.2mmのMIケーブルにアルゴンガスを注入した。いずれも、製作するシース熱電対と同じ外径まで縮径済みのMIケーブルである。   Argon gas was injected into the following MI cables having outer diameters of φ1.6 mm and φ3.2 mm. Both are MI cables that have been reduced in diameter to the same outer diameter as the sheathed thermocouple to be manufactured.

シース外径:φ1.6mm及びφ3.2mm
シース長:1.7m
熱電対素線の種類:K熱電対
金属シースの材質:NCF600
注入は図3に示す構成により行い、アルゴンガスの圧力は4.7kg/cm2Gとした。
Sheath outer diameter: φ1.6mm and φ3.2mm
Sheath length: 1.7m
Type of thermocouple wire: K thermocouple Metal sheath material: NCF600
The injection was performed according to the configuration shown in FIG. 3, and the argon gas pressure was 4.7 kg / cm 2 G.

外径φ1.6mmで長さ1.7mのMIケーブルの無機絶縁材粉末間に含まれる空気は、計算では0.6ccである。4日間の加圧で捕集した吐出ガス量は約2.5ccとなり、十分に空気がアルゴンガスに置換したことを確認した。   The air contained between the inorganic insulating powders of the MI cable having an outer diameter of φ1.6 mm and a length of 1.7 m is 0.6 cc in the calculation. The amount of discharged gas collected by pressurization for 4 days was about 2.5 cc, and it was confirmed that the air was sufficiently replaced with argon gas.

また外径φ3.2mmで長さ1.7mのMIケーブルは無機絶縁材粉末間に含まれる空気は、計算では2.3ccである。これについても外径φ1.6mmのMIケーブルと同様にアルゴンガスを注入し、3日間の加圧で捕集した吐出ガス量は約10ccとなり、十分に空気がアルゴンガスに置換したことを確認した。   Moreover, the MI cable having an outer diameter of 3.2 mm and a length of 1.7 m has 2.3 cc of air contained between the inorganic insulating powders. Also about this, argon gas was inject | poured similarly to MI cable with an outer diameter of φ1.6mm, and the amount of discharged gas collected by pressurization for 3 days was about 10cc, and it was confirmed that the air was sufficiently replaced with argon gas. .

上述したように外径φ1.6mmのものについては4日間、φ3.2mmのものについては3日間アルゴンガスを注入したMIケーブルの両端部を加工し、図1に示す非接地型熱電対で、アルゴンガスが無機絶縁材粉末間に封入された外径φ1.6mmとφ3.2mmのシース熱電対を製作した。なお、両端部加工の際にMIケーブルを切断しシース熱電対の仕上りシース長はいずれも1000mmとした。   As described above, both ends of the MI cable into which argon gas was injected were processed for 4 days for an outer diameter of φ1.6 mm, and for an φ3.2 mm for 3 days, and the ungrounded thermocouple shown in FIG. Sheath thermocouples with outer diameters of φ1.6mm and φ3.2mm, in which argon gas was sealed between the inorganic insulating powders, were fabricated. Note that the MI cable was cut when processing both ends, and the finished sheath length of the sheath thermocouple was 1000 mm for both.

上記詳述したように、1000℃以上の高温を測定対象とした場合に、従来、測定誤差の負側への増加が問題となっていたシース外径がφ3.2mm以下の細いシース熱電対について、1000℃以上の高温を測定対象とした場合にも測定誤差の負側への増加が少ないシース熱電対を得た。   As described above in detail, when the measurement target is a high temperature of 1000 ° C or higher, a thin sheath thermocouple with a sheath outer diameter of φ3.2 mm or less has been a problem in the past due to the increase in measurement error to the negative side. In addition, even when a high temperature of 1000 ° C. or higher was measured, a sheathed thermocouple with a small increase in measurement error on the negative side was obtained.

本発明は、シース熱電対に不活性ガスを封入したものであるが、高温中で使用するシース内の無機絶縁材粉末に不活性ガスを封入して内在する電気導線の劣化を防止できる。   In the present invention, an inert gas is sealed in a sheath thermocouple, but the inert gas is sealed in the inorganic insulating material powder in the sheath used at a high temperature, so that deterioration of the electrical conductors can be prevented.

シース熱電対の長手方向断面図である。It is longitudinal direction sectional drawing of a sheath thermocouple. シース熱電対のII−II断面図である。It is II-II sectional drawing of a sheath thermocouple. 不活性ガス注入時の構成例である。It is a structural example at the time of inert gas injection | pouring. MIケーブルの縮径加工を説明するMIケーブルの長手方向断面図である。It is longitudinal direction sectional drawing of MI cable explaining the diameter reduction process of MI cable.

符号の説明Explanation of symbols

1:金属シース
2:熱電対素線(K又はN)
3:無機絶縁材粉末
4:樹脂等によるシール部
5:MIケーブル
6,8:コンプレッションフィッティング付キャップ
7,9:チューブ
10:吐出ガス捕集器
11:容器
12:ガス捕集筒
13:水
1: Metal sheath 2: Thermocouple wire (K or N)
3: Insulating material powder 4: Sealing part made of resin, etc. 5: MI cable 6, 8: Cap with compression fitting 7, 9: Tube 10: Discharge gas collector 11: Container 12: Gas collecting cylinder 13: Water

Claims (4)

金属シース内にマグネシア、アルミナ等を材質とする粉末の無機絶縁材を介在させてK熱電対素線又はN熱電対素線を収容し、端部を樹脂等でシールしたシース熱電対において、無機絶縁材粉末間に不活性ガスを封入したシース熱電対。   In a sheathed thermocouple in which a K thermocouple element or an N thermocouple element is accommodated by interposing a powdered inorganic insulating material made of magnesia, alumina or the like in the metal sheath, and the end portion is sealed with a resin or the like, inorganic A sheathed thermocouple with an inert gas sealed between insulating powders. 請求項1記載のシース熱電対において、封入する不活性ガスをアルゴンとしたシース熱電対。   The sheath thermocouple according to claim 1, wherein the inert gas to be sealed is argon. MIケーブルと呼ばれる両端を加工してシース熱電対にする前の無機絶縁材粉末を介在させて熱電対素線を収容収した金属シース部に対し、その一端を、アルゴンガス等の不活性ガスにより加圧して無機絶縁材粉末間に注入し、この不活性ガスの圧力によって初めに無機絶縁材粉末間に存在していた空気を他端から流出させることにより、MIケーブル内の無機絶縁材粉末間に不活性ガスを充填した後、両端を加工してシース熱電対に仕上げる無機絶縁材粉末間に不活性ガスを封入したシース熱電対の製造方法。   One end of an MI cable is treated with an inert gas such as argon gas with respect to a metal sheath portion containing a thermocouple wire by interposing inorganic insulating powder before processing both ends into a sheath thermocouple. By pressurizing and injecting between the inorganic insulating material powders, the air that was initially present between the inorganic insulating material powders is caused to flow out from the other end by the pressure of the inert gas, so that the inorganic insulating material powders in the MI cable A method for manufacturing a sheathed thermocouple in which an inert gas is sealed between inorganic insulating powders that are filled with an inert gas and then processed at both ends to be finished into a sheathed thermocouple. 太径のMIケーブルを、ロータリースエージングや穴ダイスによる冷間引き抜き等により縮径を複数回行って、所定の外径のMIケーブルを製作する過程において、前記縮径の初期又は途中段階で、MIケーブル一端をアルゴンガス等の不活性ガスにより加圧して無機絶縁材粉末間に不活性ガスを注入し、前記不活性ガスの圧力によって無機絶縁材粉末間に存在していた空気を他端から流出させ、MIケーブル内の無機絶縁材粉末間に不活性ガスを充填した後、MIケーブルの縮径を継続し、所定の径に達してから、MIケーブルを必要な長さに切断してMIケーブルの両端を加工することによりシース熱電対に仕上げる、無機絶縁材粉末間に不活性ガスを封入したシース熱電対の製造方法。   In the process of manufacturing a MI cable having a predetermined outer diameter by performing a diameter reduction of a large-diameter MI cable multiple times by rotary swaging or cold drawing with a hole die, etc. One end of the MI cable is pressurized with an inert gas such as argon gas, an inert gas is injected between the inorganic insulating material powders, and the air that has existed between the inorganic insulating material powders by the pressure of the inert gas is introduced from the other end. After flowing out and filling an inert gas between the inorganic insulating material powders in the MI cable, the MI cable is continuously reduced in diameter, and after reaching a predetermined diameter, the MI cable is cut to a required length and the MI cable is cut. A method for manufacturing a sheathed thermocouple in which an inert gas is sealed between inorganic insulating material powders, which is processed into a sheathed thermocouple by processing both ends of a cable.
JP2008226857A 2008-09-04 2008-09-04 Inert gas encapsulated sheathed thermocouple and method for manufacturing the same Pending JP2010060445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226857A JP2010060445A (en) 2008-09-04 2008-09-04 Inert gas encapsulated sheathed thermocouple and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226857A JP2010060445A (en) 2008-09-04 2008-09-04 Inert gas encapsulated sheathed thermocouple and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010060445A true JP2010060445A (en) 2010-03-18

Family

ID=42187388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226857A Pending JP2010060445A (en) 2008-09-04 2008-09-04 Inert gas encapsulated sheathed thermocouple and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010060445A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105628235A (en) * 2014-09-29 2016-06-01 张培康 Method for manufacturing high-performance tungsten-rhenium (W-Re) thermocouple by high-temperature double-sealing special filling vacuum
CN106166059A (en) * 2015-05-18 2016-11-30 韦伯斯特生物官能(以色列)有限公司 There is the conduit of coaxial thermocouple
US10281337B2 (en) 2013-09-20 2019-05-07 Furuya Metal Co., Ltd. Thermocouple and manufacturing method for same
JP7058451B1 (en) * 2020-11-06 2022-04-22 株式会社岡崎製作所 Crack detector

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10281337B2 (en) 2013-09-20 2019-05-07 Furuya Metal Co., Ltd. Thermocouple and manufacturing method for same
CN105628235A (en) * 2014-09-29 2016-06-01 张培康 Method for manufacturing high-performance tungsten-rhenium (W-Re) thermocouple by high-temperature double-sealing special filling vacuum
CN106166059A (en) * 2015-05-18 2016-11-30 韦伯斯特生物官能(以色列)有限公司 There is the conduit of coaxial thermocouple
JP2016214861A (en) * 2015-05-18 2016-12-22 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Catheter with coaxial thermocouple
US10918437B2 (en) 2015-05-18 2021-02-16 Biosense Webster (Israel) Ltd. Catheter with coaxial thermocouple
JP2021100662A (en) * 2015-05-18 2021-07-08 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Catheter with coaxial thermocouple
JP7073555B2 (en) 2015-05-18 2022-05-23 バイオセンス・ウエブスター・(イスラエル)・リミテッド Catheter with coaxial thermocouple
JP7058451B1 (en) * 2020-11-06 2022-04-22 株式会社岡崎製作所 Crack detector
WO2022097280A1 (en) * 2020-11-06 2022-05-12 株式会社岡崎製作所 Crack detection device
US11467111B2 (en) 2020-11-06 2022-10-11 Okazaki Manufacturing Company Crack detection device

Similar Documents

Publication Publication Date Title
KR100816634B1 (en) Device for measuring temperature in molten metals
JP5044202B2 (en) HEATER, DEVICE AND RELATED METHOD
JP2010060445A (en) Inert gas encapsulated sheathed thermocouple and method for manufacturing the same
KR100458351B1 (en) Electric resistance temperature sensor
JP6150971B1 (en) Resistance thermometer sensor and manufacturing method thereof
JP5470479B2 (en) Apparatus for measuring temperature in molten metal
US20090050476A1 (en) Zr/ZrO2 Electrode and Producing Method Thereof and Integrated High Temperature and High-Pressure Chemical Sensor Composed by the Same
WO1989008317A1 (en) High-strength superconductive wire and cable having high current density, and method of producing them
WO2012160275A1 (en) Method for manufacturing a metal foam provided with channels and resulting metal foam
JP6992553B2 (en) Temperature sensor and temperature measuring device
JP3288791B2 (en) Temperature measuring device for molten metal
JP4752505B2 (en) Method for manufacturing oxide superconducting wire and method for modifying oxide superconducting wire
CN205333208U (en) A high low temperature connective bar for automobile engine temperature sensor
FR2709548A1 (en) Probe for electrochemical potential measurements in a hostile environment
JP3120986B2 (en) Manufacturing method of superconducting cable
RU66056U1 (en) DEVICE FOR MEASURING HYDROGEN CONTENT IN LIQUIDS AND GASES
EP0145060A2 (en) Manufacturing method for a shielded cable with mineral insulation
RU2334979C1 (en) Device for measurement of hydrogen content in liquids and gases
JP3913990B2 (en) Hydrogen gas leak detection sensor
JP5372804B2 (en) Hydrogen sensor
JPS6077395A (en) Metalli tube mounting electric heater with two stage insulating structure
JP6146713B2 (en) Hydrogen concentration meter using proton conductive ceramics
JP2006147357A (en) Manufacturing method of oxide superconductive wire
JPS6361606B2 (en)
JP2008066622A (en) Metal oxide sintered compact for thermistor, and thermistor temperature sensor