JP2010060220A - Damper for pressure control - Google Patents

Damper for pressure control Download PDF

Info

Publication number
JP2010060220A
JP2010060220A JP2008227222A JP2008227222A JP2010060220A JP 2010060220 A JP2010060220 A JP 2010060220A JP 2008227222 A JP2008227222 A JP 2008227222A JP 2008227222 A JP2008227222 A JP 2008227222A JP 2010060220 A JP2010060220 A JP 2010060220A
Authority
JP
Japan
Prior art keywords
damper
pressure control
casing
blade
damper blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008227222A
Other languages
Japanese (ja)
Other versions
JP5187511B2 (en
Inventor
Makoto Tanaka
真 田中
Ryusuke Gotoda
龍介 後藤田
Koji Yukita
浩二 雪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2008227222A priority Critical patent/JP5187511B2/en
Publication of JP2010060220A publication Critical patent/JP2010060220A/en
Application granted granted Critical
Publication of JP5187511B2 publication Critical patent/JP5187511B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Ventilation (AREA)
  • Air-Flow Control Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a damper for pressure control capable of stably controlling a chamber pressure irrespective of an amount of operation of a damper blade even in a room under execution of chamber pressure control such as a bioclean room, a regenerative medicine facility, or an animal experiment and breeding facility. <P>SOLUTION: The damper for pressure control comprises a casing 12 and the movable damper blade 14, and it is formed such that a passage cross-sectional area A<SB>t</SB>m<SP>2</SP>of a throttle part comprising a gap between the casing and the damper blade satisfies a formula of A<SB>t</SB>=A<SB>0</SB>√äf/(C<SB>β</SB>+C<SB>0</SB>)} where a cross-sectional area of a casing inlet is represented by A<SB>0</SB>m<SP>2</SP>, and the amount of operation of the damper blade is represented by θ% such that a resistant coefficient with respect to the amount of operation of the damper blade 14 is changed in a substantially linear manner. Here, f represents a resistant coefficient based upon a wind velocity Vt m/s in the throttle part, and C<SB>1</SB>, C<SB>0</SB>represent constants. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、バイオクリーンルーム、再生医療設備、動物実験飼育設備などの室圧制御を行っている部屋において用いられる圧力制御用ダンパに関する。   The present invention relates to a pressure control damper used in a room where room pressure control is performed, such as a bio clean room, a regenerative medical facility, and an animal experiment breeding facility.

バイオクリーンルーム、再生医療設備、動物実験飼育設備などでは、隣接する部屋間に圧力差をつけ、隣接する部屋からの微生物の進入を防止したり、部屋内の病原体が隣接する部屋に流出しないようにしている。ここで、隣接する部屋の圧力差は、通常15〜30Pa程度である。   In bio-clean rooms, regenerative medical equipment, animal experimental breeding equipment, etc., a pressure difference is created between adjacent rooms to prevent the entry of microorganisms from adjacent rooms and to prevent pathogens in the room from flowing out into adjacent rooms. ing. Here, the pressure difference between adjacent rooms is usually about 15 to 30 Pa.

そして、個々の部屋の圧力は、特許文献1や特許文献2のように、部屋の換気を行う給気・排気のダクトにダンパを設け、ダンパ羽根の操作量を変えてダンパでの圧力損失を変えることで調節されている。例えば、部屋A、部屋B、部屋Cがあり、部屋Aの室圧>部屋Bの室圧>部屋Cの室圧としたい場合、図9に示すように、部屋Aでは給気側ダンパでの圧力損失を小さくし、排気側ダンパでの圧力損失を大きくする。そして、部屋Cでは給気側ダンパでの圧力損失を大きくし、排気側ダンパでの圧力損失を小さくする。更に、部屋Bでは給気側ダンパでの圧力損失と排気側ダンパでの圧力損失とを部屋Aと部屋Cの中間になるようにする。   And, as in Patent Document 1 and Patent Document 2, the pressure in each room is provided with a damper in the air supply / exhaust duct that ventilates the room, and the operation loss of the damper blade is changed to reduce the pressure loss in the damper. It is adjusted by changing. For example, when there are a room A, a room B, and a room C, and the room pressure of the room A> the room pressure of the room B> the room pressure of the room C, as shown in FIG. Reduce the pressure loss and increase the pressure loss at the exhaust damper. In the room C, the pressure loss at the supply side damper is increased, and the pressure loss at the exhaust side damper is decreased. Further, in the room B, the pressure loss at the supply side damper and the pressure loss at the exhaust side damper are set to be intermediate between the room A and the room C.

尚、空調で圧力制御の用いられているダンパとしては、バタフライダンパと呼ばれているものや、多翼ダンパと呼ばれているものがある。
特開2002−39580号公報 特開2006−223207号公報
In addition, as a damper used for pressure control in air conditioning, there are a so-called butterfly damper and a multi-blade damper.
JP 2002-39580 A JP 2006-223207 A

ところで、バタフライダンパや多翼ダンパ等の従来のダンパは、図10に示すように、ダンパ羽根の操作量を100%に近づける(ダンパを閉じるようにする)と、抵抗係数が急激に上昇する非線形な特性を持っている。即ち、風量が一定の場合、ダンパでの圧力損失は抵抗係数に比例しているので、ダンパ羽根の操作量とダンパでの圧力損失の関係も非線形となる。   By the way, as shown in FIG. 10, the conventional dampers such as the butterfly damper and the multi-blade damper are non-linear in which the resistance coefficient increases rapidly when the operation amount of the damper blade is brought close to 100% (the damper is closed). It has special characteristics. That is, when the air volume is constant, the pressure loss at the damper is proportional to the resistance coefficient, so the relationship between the operation amount of the damper blade and the pressure loss at the damper is also nonlinear.

従って、このような非線形の特性は、ダンパ羽根を操作して圧力を制御することが困難である。例えば、PID制御などでダンパを制御する場合、適切な制御パラメータがダンパ羽根の操作量によって変わるため、ダンパ羽根の操作量を50%近傍でパラメータ調整をしても、操作量が20%や80%のときには満足できる制御性能が得られなかったり、制御が不安定になってしまうという問題があった。   Therefore, such nonlinear characteristics make it difficult to control the pressure by operating the damper blade. For example, when the damper is controlled by PID control or the like, an appropriate control parameter varies depending on the operation amount of the damper blade. Therefore, even if the parameter adjustment is performed in the vicinity of 50% of the operation amount of the damper blade, the operation amount is 20% or 80%. %, There is a problem that satisfactory control performance cannot be obtained or the control becomes unstable.

本発明は、このような事情に鑑みてなされたもので、バイオクリーンルーム、再生医療設備、動物実験飼育設備などの重圧制御を行っている部屋においても、ダンパ羽根の操作量に依らず室圧を安定に制御することができる圧力制御用ダンパを提供することを目的とする。   The present invention has been made in view of such circumstances, and even in a room in which heavy pressure control is performed such as a bioclean room, a regenerative medical facility, and an animal experiment and breeding facility, the room pressure is reduced regardless of the operation amount of the damper blade. An object of the present invention is to provide a pressure control damper that can be stably controlled.

本発明は、前記目的を達成するために、ケーシングと可動なダンパ羽根とから成り、前記ダンパ羽根の操作量に対して抵抗係数が略直線に変化するように、ケーシング入口の断面積をA(m)、ダンパ羽根の操作量をθ(%)で表したとき、ケーシングとダンパ羽根との隙間からなる絞り部の流路断面積A(m)が下記式を満たすように成形されていることを特徴とする圧力制御用ダンパを提供する。 In order to achieve the above object, the present invention comprises a casing and a movable damper blade, and the sectional area of the casing inlet is set to A 0 so that the resistance coefficient changes in a substantially straight line with respect to the operation amount of the damper blade. (m 2), when representing the operation amount of the damper blade in theta (%), molded casing and the throttle section composed of a gap between the damper blade flow path cross-sectional area a t (m 2) is to satisfy the following formula A pressure control damper is provided.

Figure 2010060220
Figure 2010060220

(但し、fは絞り部における風速Vt(m/s)を基準とした抵抗係数、C,Cは定数を表す。)
そして、本発明において、流路断面積A(m)は、前記式から求められる数値から10%の誤差の範囲に入ることが好ましい。
(Where f is a resistance coefficient based on the wind speed Vt (m / s) at the throttle portion, and C 1 and C 0 are constants.)
Then, in the present invention, the flow path cross-sectional area A t (m 2) is preferably within the scope of the error from the value obtained in 10% from the formula.

このように圧力制御用ダンパを形成することで、ダンパ羽根の操作量に対して抵抗係数が直線的に変化する圧力制御用ダンパを実現することができるので、ダンパ羽根の操作量に依らず室圧を安定に制御することができる圧力制御用ダンパを提供することができる。   By forming the pressure control damper in this way, it is possible to realize a pressure control damper whose resistance coefficient changes linearly with respect to the operation amount of the damper blade, so that the chamber does not depend on the operation amount of the damper blade. The damper for pressure control which can control a pressure stably can be provided.

ダンパ羽根の操作量に依らず室圧を安定に制御することができる圧力制御用ダンパとしては、例えば、ケーシングは、略90°曲がったエルボ形状であって、ケーシング入口がケーシング出口よりも広く形成され、ダンパ羽根は、前記エルボ形状のコーナー部付近を軸として回動するようにケーシング内に設けられていることで達成される。この圧力制御用ダンパは、ケーシングの外周が円弧形状と直線形状とで形成されていることが好ましく、ダンパ羽根の先端側がケーシング出口側へ向かうR形状となっていることが好ましい。   As a pressure control damper that can stably control the chamber pressure regardless of the operation amount of the damper blade, for example, the casing has an elbow shape bent by approximately 90 °, and the casing inlet is formed wider than the casing outlet. The damper blade is achieved by being provided in the casing so as to rotate around the elbow-shaped corner. In the pressure control damper, the outer periphery of the casing is preferably formed in an arc shape and a linear shape, and the tip end side of the damper blade is preferably in an R shape toward the casing outlet side.

本発明の圧力制御用ダンパを用いた室圧制御システムは、部屋の室内圧力(室圧)を容易に且つ精度良く制御することができるので、より安全なバイオクリーンルーム、再生医療設備、動物実験飼育設備などの室圧制御システムを提供することができる。   The room pressure control system using the pressure control damper according to the present invention can easily and accurately control the room pressure (room pressure) of the room, so that a safer bioclean room, regenerative medical equipment, animal experiment breeding A room pressure control system such as equipment can be provided.

本発明によれば、バイオクリーンルーム、再生医療設備、動物実験飼育設備などの室圧制御を行っている部屋においても、ダンパ羽根の操作量に依らず室圧を安定に制御することができる圧力制御用ダンパを提供することができる。   According to the present invention, even in a room that performs room pressure control such as a bioclean room, regenerative medical equipment, and animal experiment and breeding equipment, pressure control that can stably control the room pressure regardless of the operation amount of the damper blades A damper can be provided.

以下、添付図面に従って、バイオクリーンルーム、再生医療設備、動物実験飼育設備などの重圧制御を行っている部屋において用いられる本発明に係る圧力制御用ダンパの好ましい実施の形態について詳説する。   Hereinafter, preferred embodiments of a pressure control damper according to the present invention used in a room where heavy pressure control is performed, such as a bio clean room, a regenerative medical facility, and an animal experiment and breeding facility, will be described in detail with reference to the accompanying drawings.

図1は、ダンパのダクト断面積(ダンパ入口)をA(m)、ダンパの絞り部(ダンパ出口)の断面積をA(m)として、ダンパ入口とダンパ出口とを示したダンパの概念図である。 FIG. 1 shows the damper inlet and the damper outlet, where the damper sectional area (damper inlet) of the damper is A 0 (m 2 ) and the sectional area of the throttle part (damper outlet) is A t (m 2 ). It is a conceptual diagram of a damper.

本発明者は、図1のダンパの概念図をもとに、ケーシングと可動なダンパ羽根とから成る圧力制御用ダンパにおいて、ケーシング入口(ダンパ入口)の断面積をA(m)、ダンパ羽根の操作量をθ(%)で表したとき、ケーシングとダンパ羽根との隙間からなる絞り部(ダンパ出口)の流路断面積A(m)が下記式を満たすように成形することで、ダンパ羽根の操作量に対して抵抗係数が略直線に変化するようにでき、室圧を安定に制御することができるという知見を得た。 Based on the conceptual diagram of the damper shown in FIG. 1, the present inventor uses a damper for pressure control including a casing and movable damper blades to set the sectional area of the casing inlet (damper inlet) to A 0 (m 2 ), the damper. when the operation amount of the blade in terms of theta (%), the throttle portion comprising a gap between the casing and the damper blade flow path cross-sectional area a t of the (damper outlet) (m 2) is shaped so as to satisfy the following equation Thus, it was found that the resistance coefficient can be changed substantially linearly with respect to the operation amount of the damper blade, and the chamber pressure can be controlled stably.

Figure 2010060220
Figure 2010060220

(但し、fは絞り部における風速Vt(m/s)を基準とした抵抗係数、C,Cは定数を表す。)
図1に示したダンパでの圧力損失ΔP(Pa)は、ダンパ出口(ケーシングとダンパ羽根との隙間)での風速Vt(m/s)を用いて、下記(1)式で表すことができる。
(Where f is a resistance coefficient based on the wind speed Vt (m / s) at the throttle portion, and C 1 and C 0 are constants.)
The pressure loss ΔP (Pa) in the damper shown in FIG. 1 can be expressed by the following equation (1) using the wind speed Vt (m / s) at the damper outlet (the gap between the casing and the damper blade). .

Figure 2010060220
Figure 2010060220

但し、ここで、fはダンパ出口での風速がVtを基準とした抵抗係数であり、ρは流体(空気)の密度(kg/m)である。 Here, f is a resistance coefficient with respect to the wind speed at the damper outlet based on Vt, and ρ is the density (kg / m 3 ) of the fluid (air).

ここで、ダンパ出口の流れを漸次縮流から急拡大となるようにすると、fは絞り量や風速によらず、ほぼ一定の値(f=1.0〜1.3)となる。   Here, when the flow at the damper outlet is gradually expanded from the gradually contracted flow, f becomes a substantially constant value (f = 1.0 to 1.3) regardless of the amount of restriction and the wind speed.

また、ダンパの圧力損失ΔPは、ダクトの代表風速、即ち、ケーシング入口での風速Vを基準とした抵抗係数Fを用いると、下記(2)式で表すことができる。 Further, the pressure loss ΔP of the damper can be expressed by the following equation (2) using a typical wind speed of the duct, that is, a resistance coefficient F based on the wind speed V 0 at the casing inlet.

Figure 2010060220
Figure 2010060220

また、連続の式より、   Also, from the continuous formula,

Figure 2010060220
Figure 2010060220

となる。 It becomes.

また、(3)式を用いて(1)式のVtを消去すると、下記(4)式となる。   Further, when Vt in the formula (1) is deleted using the formula (3), the following formula (4) is obtained.

Figure 2010060220
Figure 2010060220

よって、ダクトの代表風速、即ち、ケーシング入口での風速Vを基準としたFは(1)式と(4)式より、 Therefore, the typical wind speed of the duct, that is, F based on the wind speed V 0 at the casing inlet, is obtained from the equations (1) and (4).

Figure 2010060220
Figure 2010060220

となる。 It becomes.

ところで、ダンパの操作量θ(%)に対して抵抗係数Fが直線的に変化する場合には、   By the way, when the resistance coefficient F changes linearly with respect to the operation amount θ (%) of the damper,

Figure 2010060220
Figure 2010060220

と表すことができる。なお、CとCは定数である。 It can be expressed as. C 1 and C 0 are constants.

(5)式と(6)式より、操作量θとダンパ出口面積Atの関係は、   From the equations (5) and (6), the relationship between the operation amount θ and the damper outlet area At is

Figure 2010060220
Figure 2010060220

となる。 It becomes.

以上より、本発明者は、絞り部(ダンパ出口)の断面積を(7)式に従って決定すれば、ダンパ羽根の操作量に対して略直線的に圧力損失が変化する圧力制御用ダンパを作成することができるとの知見を得た。   As described above, the present inventor creates a pressure control damper in which the pressure loss changes substantially linearly with respect to the operation amount of the damper blade if the sectional area of the throttle portion (damper outlet) is determined according to the equation (7). I got the knowledge that I can do it.

この知見から、ダンパ羽根の操作量に依らず室圧を安定に制御することができるダンパとして、例えば、図2に示すように、略90°曲がったエルボ形状であるケーシング12と、そのケーシング12のエルボ形状のコーナー部付近を軸として回動するダンパ羽根14と、から成り、ケーシング12の外周を円弧形状と直線形状とで形成し、ダンパ羽根の先端側をケーシング出口側へ向かうR形状とする圧力制御用ダンパ10を提案した。なお、ケーシング12の外周は円弧形状と直線形状とで形成することで、容易に上記(7)式を満たす圧力制御用ダンパ10を製造することができるが、上記(7)式を満たすように製造できればケーシング12の外周が円弧形状と直線形状とで成ることに限られない。また、ダンパ羽根の先端側をケーシング出口側へ向かうR形状とすると、ケーシングとダンパ羽根の隙間を流れる際の気流の乱れを抑え、抵抗係数fを略一定値に保つ点で好ましいが必修ではない。   From this knowledge, as a damper capable of stably controlling the chamber pressure regardless of the operation amount of the damper blade, for example, as shown in FIG. 2, a casing 12 having an elbow shape bent by approximately 90 °, and the casing 12 A damper blade 14 that rotates around the corner portion of the elbow shape, and the outer periphery of the casing 12 is formed in an arc shape and a linear shape, and the tip shape of the damper blade is directed to the casing outlet side. A pressure control damper 10 has been proposed. In addition, by forming the outer periphery of the casing 12 in an arc shape and a linear shape, it is possible to easily manufacture the pressure control damper 10 that satisfies the above expression (7). However, so as to satisfy the above expression (7). If it can be manufactured, the outer periphery of the casing 12 is not limited to the arc shape and the linear shape. Further, if the front end side of the damper blade has an R shape toward the casing outlet side, it is preferable but not required in that it suppresses the turbulence of the airflow when flowing through the gap between the casing and the damper blade and keeps the resistance coefficient f at a substantially constant value. .

図3の(a)は、図2の圧力制御用ダンパ10をケーシング入口12a側から見た図であり、図3の(b)は、圧力制御用ダンパ10をケーシング出口側から見た図であり、図3の(c)は、圧力制御用ダンパ10をケーシング12側面から見た図である。   3A is a view of the pressure control damper 10 of FIG. 2 as viewed from the casing inlet 12a side, and FIG. 3B is a view of the pressure control damper 10 as viewed from the casing outlet side. FIG. 3C is a view of the pressure control damper 10 as viewed from the side of the casing 12.

図2と図3の(b)から分かるように、先端がケーシング出口側へ向かうR形状のダンパ羽根14は、ケーシング12のエルボ形状のコーナー部16付近を軸14aとして、図の網掛け部の範囲(90°の範囲)を回動する。なお、ダンパ羽根14は不図示のモータにより回動するようになっている。   As can be seen from FIG. 2 and FIG. 3 (b), the R-shaped damper blade 14 whose tip is directed to the casing outlet side has an elbow-shaped corner 16 vicinity of the casing 12 as an axis 14a, and the shaded portion in the figure. Rotate the range (90 ° range). The damper blade 14 is rotated by a motor (not shown).

そして、図3の(b)に示したように、ケーシング12の外周は、円弧部13aと直線部13bとからなる。円弧部13aの円弧の中心は、コーナー部16から少しケーシング入口12a側にずらしている。また、図3の(b)に示したように、ダンパ羽根14はオフセット角θがあるように設定する。 And as shown in FIG.3 (b), the outer periphery of the casing 12 consists of the circular arc part 13a and the linear part 13b. The center of the arc of the arc portion 13a is slightly shifted from the corner portion 16 toward the casing inlet 12a. Further, as shown in (b) of FIG. 3, the damper blade 14 is set such that there is an offset angle theta W.

このように図2と図3に示したようなダンパにすることで、ケーシングとダンパ羽根との隙間からなる流路断面積が上記(7)式を略満たすようにすることができる。   In this way, by using the damper as shown in FIGS. 2 and 3, the cross-sectional area of the flow path formed by the gap between the casing and the damper blade can substantially satisfy the above expression (7).

図4は、ダンパ羽根とケーシングとの隙間からなる流路断面積を(7)式を満たすように形成することでダンパ羽根の操作量に対して略直線的に圧力損失が変化する圧力制御用ダンパの別の実施形態である。図4の(a)は、ケーシング12’側面から見た断面図を示しており、ケーシング12’は円筒状になっている。そして、ダンパ羽根14’は、動閉止部材20と静閉止部材22とからなり、動閉止部材20はモータMにより回転し、静閉止部材22はケーシング12’に固定されている。   FIG. 4 is a diagram for pressure control in which the pressure loss changes substantially linearly with respect to the operation amount of the damper blade by forming the flow path cross-sectional area formed by the gap between the damper blade and the casing so as to satisfy the expression (7). It is another embodiment of a damper. FIG. 4A shows a cross-sectional view as seen from the side of the casing 12 ', and the casing 12' is cylindrical. The damper blade 14 'includes a dynamic closing member 20 and a static closing member 22. The dynamic closing member 20 is rotated by a motor M, and the static closing member 22 is fixed to the casing 12'.

図4の(b)は、動閉止部材20と静閉止部材22を正面から見た図であり、この動閉止部材20が静閉止部材22の開口部24を塞ぐことで風量を調整する。なお、動閉止部材20の一部の部分は、図4の(b)に示すように、開口率が40%の部材を用いている。また、動閉止部材20を回転させるモータMは、開口部24を塞ぐことのない空気の流れに影響のない箇所に設けている。   FIG. 4B is a view of the dynamic closing member 20 and the static closing member 22 as viewed from the front. The dynamic closing member 20 closes the opening 24 of the static closing member 22 to adjust the air volume. In addition, as shown in FIG. 4B, a part of the dynamic closing member 20 is a member having an aperture ratio of 40%. Further, the motor M that rotates the dynamic closing member 20 is provided at a location that does not affect the air flow that does not block the opening 24.

図5は、圧力制御用ダンパ10’の動閉止部材20を0°、15°、30°、…90°と回転させてときのダンパ羽根14’の様子を正面から見た図である。0°(ダンパ操作量0%)のときに最も開口(流路断面積)が大きく、90°(ダンパ操作量100%)のときに最も開口が小さくなる。   FIG. 5 is a front view of the state of the damper blade 14 ′ when the dynamic closing member 20 of the pressure control damper 10 ′ is rotated by 0 °, 15 °, 30 °,... 90 °. The opening (channel cross-sectional area) is the largest at 0 ° (damper operation amount 0%), and the opening is the smallest at 90 ° (damper operation amount 100%).

図6は、図2(及び図3)の圧力制御用ダンパ10と図4(及び図5)の圧力制御用ダンパ10’のダンパ操作量における抵抗係数をプロットしたグラフである。   FIG. 6 is a graph plotting resistance coefficients in damper operation amounts of the pressure control damper 10 of FIG. 2 (and FIG. 3) and the pressure control damper 10 'of FIG. 4 (and FIG. 5).

なお、図2の圧力制御用ダンパ10は、ダンパ羽根14をケーシング入口12a側に最も近づけたときがダンパ操作量0%であり、ダンパ羽根14をケーシング出口12b側に最も近づけたときがダンパ操作量100%である。そして、圧力制御用ダンパ10の寸法は、図3において、H2を100(mm)として、W’が97(mm)、H1が129.95(mm)、Lwが84.4(mm)、xが7.34(mm)、aが6.83(mm)、bが2.85(mm)、θwが1.8(°)としている。また、ダンパ羽根14のR形状は、半径17.6(mm)の円弧である。図4の圧力制御用ダンパ10’は、図4の中に示した通りの寸法のものである。但し、前記寸法は一例であり、これに限るものではない。   In the pressure control damper 10 of FIG. 2, the damper operation amount is 0% when the damper blade 14 is closest to the casing inlet 12a side, and the damper operation is when the damper blade 14 is closest to the casing outlet 12b side. The amount is 100%. The dimensions of the pressure control damper 10 are as follows. In FIG. 3, H2 is 100 (mm), W ′ is 97 (mm), H1 is 129.95 (mm), Lw is 84.4 (mm), x Is 7.34 (mm), a is 6.83 (mm), b is 2.85 (mm), and θw is 1.8 (°). The R shape of the damper blade 14 is an arc having a radius of 17.6 (mm). The pressure control damper 10 'shown in FIG. 4 has dimensions as shown in FIG. However, the said dimension is an example and is not restricted to this.

図6から分かるように、本発明の圧力制御用ダンパは、図10の従来のダンパと比較して、ダンパ羽根の操作量に対して圧力制御用ダンパの抵抗係数が略直線に変化していることが分かる。ダンパ羽根とケーシングとの隙間からなる流路断面積が上記(7)式を満たすように形成した圧力制御用ダンパは、ダンパ羽根の操作量に対して圧力制御用ダンパの抵抗係数が略直線に変化するようにできることが分かる。   As can be seen from FIG. 6, in the pressure control damper of the present invention, the resistance coefficient of the pressure control damper changes in a substantially straight line with respect to the operation amount of the damper blade, as compared with the conventional damper of FIG. I understand that. In the pressure control damper formed so that the flow path cross-sectional area formed by the gap between the damper blade and the casing satisfies the above equation (7), the resistance coefficient of the pressure control damper is substantially linear with respect to the operation amount of the damper blade. You can see that it can change.

従って、ダンパでの圧力損失は抵抗係数に比例しているので、ダンパ羽根の操作量とダンパでの圧力損失の関係も略直線となる。   Therefore, since the pressure loss at the damper is proportional to the resistance coefficient, the relationship between the operation amount of the damper blade and the pressure loss at the damper is also substantially a straight line.

なお、本発明の圧力制御用ダンパは、流路断面積A(m)が上記(7)式から求められる数値から10%の誤差の範囲に入るように形成されていることが好ましい。 Note that the pressure control damper of the present invention is preferably formed so that the flow path cross-sectional area A t (m 2 ) falls within an error range of 10% from the numerical value obtained from the equation (7).

図7は、本発明の圧力制御用ダンパ10(又は10’)を用いた室圧制御システム30を示したものである。   FIG. 7 shows a room pressure control system 30 using the pressure control damper 10 (or 10 ') of the present invention.

図7の(a)は、CAVなどの定風量装置32と組み合せて、給気ダクト34又は排気ダクト36に本発明の圧力制御用ダンパ10を設置し、室圧に応じて ダンパ開度を調整し室圧を一定に保つ方式のものである。なお、ここでは、室が3室の場合について示しているが、それに限定するものではなく各種態様を採りうる。また、定風量装置32と圧力制御用ダンパ10とのどちらが給気側又は排気側に設置するかについては場合に依る。   FIG. 7A shows the pressure control damper 10 of the present invention installed in the air supply duct 34 or the exhaust duct 36 in combination with a constant air volume device 32 such as CAV, and adjusts the damper opening according to the room pressure. This is a method of keeping the chamber pressure constant. In addition, although it has shown about the case where there are three rooms here, it is not limited to it and various aspects can be taken. Further, which of the constant air volume device 32 and the pressure control damper 10 is installed on the supply side or the exhaust side depends on the case.

図7の(b)は、給気ダクト34と排気ダクト36の両方に本発明の圧力制御用ダンパを設置し、室圧に応じて給気側の圧力制御用ダンパを調整し、排気側の圧力制御用ダンパは給気側の圧力制御用ダンパと反対方向に同量操作する。   In FIG. 7B, the pressure control damper of the present invention is installed in both the air supply duct 34 and the exhaust duct 36, the pressure control damper on the air supply side is adjusted according to the chamber pressure, and The pressure control damper is operated in the same direction as the pressure control damper on the supply side in the opposite direction.

本発明の圧力制御用ダンパは抵抗係数の変化がダンパ羽根の操作量に対して直線的に変化するので、給気側と排気側との両方に圧力制御用ダンパを設けて給気側と排気側とを逆方向に同量動かせば(図7の(c)参照)、2つの圧力制御用ダンパの抵抗の和は略一定に保たれる。従って、図7の(b)の室圧制御システム30では、圧力制御による室の換気量変化を最小限にとどめることができるので、1台の圧力制御用ダンパで圧力制御するよりも高速に室圧を調整することができる。   In the pressure control damper according to the present invention, the resistance coefficient changes linearly with respect to the amount of operation of the damper blade. Therefore, pressure control dampers are provided on both the supply side and the exhaust side, and the supply side and the exhaust side are provided. If the side is moved by the same amount in the opposite direction (see FIG. 7C), the sum of the resistances of the two pressure control dampers is kept substantially constant. Therefore, in the room pressure control system 30 shown in FIG. 7B, the change in the ventilation volume of the room due to the pressure control can be minimized, so that the room speed is higher than the pressure control with a single pressure control damper. The pressure can be adjusted.

以上、本発明の実施の形態について説明したが、本発明は上記実施の形態に限定されるものではなく各種態様を採りうる。例えば、図8に示すような圧力制御用ダンパ10’’も考えられる。図8の(a)は圧力制御用ダンパ10’’を正面から見た図であり、図8の(b)は圧力制御用ダンパ10’’を側面から見た図である。即ち、ケーシング12’’の断面が長方形であり、ダンパ羽根14’’を長軸と短軸を図に示した寸法で形成した楕円柱とし、中心軸をモータ(不図示)で回転させる態様である。このように形成された圧力制御用ダンパ10’’でもダンパ羽根14’’の操作量に対して圧力制御用ダンパの抵抗係数が略直線に変化することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment, Various aspects can be taken. For example, a pressure control damper 10 ″ as shown in FIG. 8 is also conceivable. FIG. 8A is a view of the pressure control damper 10 ″ as viewed from the front, and FIG. 8B is a view of the pressure control damper 10 ″ as viewed from the side. That is, the casing 12 '' has a rectangular cross section, the damper blade 14 '' is an elliptical cylinder formed with the major and minor axes as shown in the figure, and the central axis is rotated by a motor (not shown). is there. Even in the pressure control damper 10 ″ formed in this way, the resistance coefficient of the pressure control damper can change to a substantially straight line with respect to the operation amount of the damper blade 14 ″.

ダンパの概念図Conceptual diagram of damper 本発明の圧力制御用ダンパを示す斜視図The perspective view which shows the damper for pressure control of this invention 本発明の圧力制御用ダンパを示す図The figure which shows the damper for pressure control of this invention 本発明の第2の実施態様である圧力制御用ダンパを示す図The figure which shows the damper for pressure control which is the 2nd embodiment of this invention 本発明の第2の実施態様である圧力制御用ダンパの開口を示す図The figure which shows the opening of the damper for pressure control which is the 2nd embodiment of this invention ダンパ操作量における抵抗係数をプロットしたグラフGraph plotting resistance coefficient at damper operation amount 本発明の圧力制御用ダンパを用いた室圧制御システムを示す図The figure which shows the room pressure control system using the damper for pressure control of this invention 本発明の第3の実施態様である圧力制御用ダンパを示す図The figure which shows the damper for pressure control which is the 3rd embodiment of this invention ダンパによる圧力制御の概要を示した図Diagram showing pressure control by damper 従来のダンパにおけるダンパ操作量と抵抗係数との関係を示すグラフGraph showing the relationship between damper operation amount and resistance coefficient in conventional dampers

符号の説明Explanation of symbols

10…圧力制御用ダンパ、12…ケーシング、12a…ケーシング入口(ダンパ入口)、12b…ダンパ出口、13a…円弧部、13b…直線部、14…ダンパ羽根、14a…軸、16…コーナー部、20…動閉止部材、22…静閉止部材、24…開口部、30…室圧制御システム、32…定風量装置、34…給気ダクト、36…排気ダクト   DESCRIPTION OF SYMBOLS 10 ... Pressure control damper, 12 ... Casing, 12a ... Casing inlet (damper inlet), 12b ... Damper outlet, 13a ... Arc part, 13b ... Straight part, 14 ... Damper blade, 14a ... Shaft, 16 ... Corner part, 20 DESCRIPTION OF SYMBOLS ... Dynamic closing member, 22 ... Static closing member, 24 ... Opening part, 30 ... Room pressure control system, 32 ... Constant air volume apparatus, 34 ... Supply air duct, 36 ... Exhaust duct

Claims (6)

ケーシングと可動なダンパ羽根とから成り、
前記ダンパ羽根の操作量に対して抵抗係数が略直線に変化するように、ケーシング入口の断面積をA(m)、ダンパ羽根の操作量をθ(%)で表したとき、ケーシングとダンパ羽根との隙間からなる絞り部の流路断面積A(m)が下記式を満たすように成形されていることを特徴とする圧力制御用ダンパ。
Figure 2010060220
(但し、fは絞り部における風速Vt(m/s)を基準とした抵抗係数、C,Cは定数を表す。)
It consists of a casing and movable damper blades,
When the cross-sectional area of the casing inlet is represented by A 0 (m 2 ) and the operation amount of the damper blade is represented by θ (%) so that the resistance coefficient changes in a substantially straight line with respect to the operation amount of the damper blade, A pressure control damper, wherein a flow passage cross-sectional area A t (m 2 ) of a constricted portion formed by a gap with a damper blade satisfies the following formula.
Figure 2010060220
(Where f is a resistance coefficient based on the wind speed Vt (m / s) at the throttle portion, and C 1 and C 0 are constants.)
前記流路断面積A(m)は、前記式から求められる数値から10%の誤差の範囲に入ることを特徴とする請求項1に記載の圧力制御用ダンパ。 2. The pressure control damper according to claim 1, wherein the flow path cross-sectional area A t (m 2 ) falls within an error range of 10% from a numerical value obtained from the equation. 前記ケーシングは、略90°曲がったエルボ形状であって、ケーシング入口がケーシング出口よりも広く形成され、
前記ダンパ羽根は、前記エルボ形状のコーナー部付近を軸として回動するようにケーシング内に設けられていることを特徴とする請求項1又は2に記載の圧力制御用ダンパ。
The casing has an elbow shape bent by approximately 90 °, and the casing inlet is formed wider than the casing outlet,
The damper for pressure control according to claim 1 or 2, wherein the damper blade is provided in the casing so as to rotate around an elbow-shaped corner portion as an axis.
前記ケーシングの外周は、円弧形状と直線形状とで形成されていることを特徴とする請求項3に記載の圧力制御用ダンパ。   The pressure control damper according to claim 3, wherein the outer periphery of the casing is formed in an arc shape and a linear shape. 前記ダンパ羽根の先端側は、前記ケーシング出口側へ向かうR形状となっていることを特徴とする請求項3又は4に記載の圧力制御用ダンパ。   The damper for pressure control according to claim 3 or 4, wherein a tip end side of the damper blade has an R shape toward the casing outlet side. 請求項1〜5の何れか1に記載の圧力制御用ダンパを用いたことを特徴とする室圧制御システム。   A room pressure control system using the pressure control damper according to any one of claims 1 to 5.
JP2008227222A 2008-09-04 2008-09-04 Pressure control damper Expired - Fee Related JP5187511B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008227222A JP5187511B2 (en) 2008-09-04 2008-09-04 Pressure control damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008227222A JP5187511B2 (en) 2008-09-04 2008-09-04 Pressure control damper

Publications (2)

Publication Number Publication Date
JP2010060220A true JP2010060220A (en) 2010-03-18
JP5187511B2 JP5187511B2 (en) 2013-04-24

Family

ID=42187213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008227222A Expired - Fee Related JP5187511B2 (en) 2008-09-04 2008-09-04 Pressure control damper

Country Status (1)

Country Link
JP (1) JP5187511B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743011A (en) * 1993-07-30 1995-02-10 Kyoritsu Eatetsuku Kk Pressure adjusting damper
JP2002061943A (en) * 2000-08-11 2002-02-28 Sanken Setsubi Kogyo Co Ltd Room pressure control system and differential pressure retention damper

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0743011A (en) * 1993-07-30 1995-02-10 Kyoritsu Eatetsuku Kk Pressure adjusting damper
JP2002061943A (en) * 2000-08-11 2002-02-28 Sanken Setsubi Kogyo Co Ltd Room pressure control system and differential pressure retention damper

Also Published As

Publication number Publication date
JP5187511B2 (en) 2013-04-24

Similar Documents

Publication Publication Date Title
EP1711750B1 (en) Multi-valve damper for controlling airflow and method for controlling airflow
WO2007079434A3 (en) Limited loss laminar flow dampers for heating, ventilation, and air conditioning (hvac) systems
US8746271B2 (en) Flow control valve
JP6229873B2 (en) Flow control damper
SE541076C2 (en) Ventilator with muffler.
EP3306217A1 (en) Supply air device for controlling supply air flow
CN112140847A (en) Vent hole
JP4968941B2 (en) Air volume adjustment device in plug fan room of air conditioner.
JP2011112271A (en) Wind speed sensor, variable air quantity unit and air conditioning system
CN104583685B (en) The method and apparatus slowed down to air-flow
JP5187511B2 (en) Pressure control damper
JP2018173207A (en) Variable air volume device
CN107489777B (en) Air quantity regulating valve for air duct, variable air quantity tail end and air conditioning system
WO2017033303A1 (en) Centrifugal blower and ventilation fan
CA2971987C (en) Damper regulator with adjustable resistance to damper motion
JP6849962B2 (en) Damper device
CN105805031A (en) Blower assembly for vehicle
EP4352392A1 (en) Variable orifice rotary valve for controlling gas flow
JP6507930B2 (en) Fan shroud
JP2006329444A (en) Damper device
FI125242B (en) Supply air valve
JP6725339B2 (en) Premixing device
JP2005221237A (en) Vehicle test system
JP2018200159A (en) Flow rate control device
US11512795B2 (en) Noise abatement in a venturi valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120815

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130108

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5187511

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees