JP2010060000A - Constant-flow valve - Google Patents

Constant-flow valve Download PDF

Info

Publication number
JP2010060000A
JP2010060000A JP2008224195A JP2008224195A JP2010060000A JP 2010060000 A JP2010060000 A JP 2010060000A JP 2008224195 A JP2008224195 A JP 2008224195A JP 2008224195 A JP2008224195 A JP 2008224195A JP 2010060000 A JP2010060000 A JP 2010060000A
Authority
JP
Japan
Prior art keywords
valve member
valve
coil spring
constant flow
constant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008224195A
Other languages
Japanese (ja)
Inventor
Hideki Tanimoto
秀樹 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2008224195A priority Critical patent/JP2010060000A/en
Publication of JP2010060000A publication Critical patent/JP2010060000A/en
Pending legal-status Critical Current

Links

Landscapes

  • Details Of Valves (AREA)
  • Safety Valves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a constant-flow valve which is compact and equipped with a simple structure and moreover suppresses overshoot in low-pressure range and cavitation in high-pressure range. <P>SOLUTION: The constant-flow valve, which comprises: an outer-side valve member changing a cross-sectional area of a first channel formed, in a space with an inner-circumferential section of constant flow valve body; an inner-side valve member which is arranged slidably in the inside of the outer-side valve member, and changes a cross-sectional area of a second channel formed between a periphery and an inner-circumferential section of the outer-side valve member; an outer-side coil spring which slides the outer-side valve member when a hydraulic pressure is applied to the outer-side valve member, and contracts so that the cross-sectional area of the first channel is reduced; and an inner-side coil spring which slides the inner-side valve member when the hydraulic pressure is applied to the inner-side valve member, and contracts so that the cross-sectional area of the second channel may be reduced, wherein a spring constant of the inner-side coil spring is larger than the spring constant of the outer-side coil spring, and the outer-side coil spring becomes larger in the spring constant, as the outer-side valve member moves. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、定流量弁に係わり、特に、供給される水の圧力の変動によらず流出させる水の流量を所定量に調整する定流量弁に関する。   The present invention relates to a constant flow valve, and more particularly to a constant flow valve that adjusts the flow rate of water to flow out regardless of fluctuations in the pressure of supplied water.

従来から、水道直圧方式の大便器における洗浄水の供給経路等には、給水源からの給水圧の変動によらず洗浄水の流量を所定量に調整する定流量弁が用いられている。
このような従来の定流量弁としては、例えば、特許文献1に記載されているように、円筒状に延びる定流量弁本体内に固定された固定弁体に対し、複数の可動弁体が直列に配置され、各可動弁体の開閉については、各可動弁体に取り付けられたばね定数が異なるコイルばねの弾性力によって調整されるようになっているものが知られている。
2. Description of the Related Art Conventionally, a constant flow valve that adjusts the flow rate of cleaning water to a predetermined amount regardless of fluctuations in the supply water pressure from a water supply source has been used in a cleaning water supply path or the like in a direct water pressure toilet.
As such a conventional constant flow valve, for example, as described in Patent Document 1, a plurality of movable valve bodies are connected in series to a fixed valve body fixed in a constant flow valve body extending in a cylindrical shape. As for the opening and closing of each movable valve body, a spring constant attached to each movable valve body is adjusted by the elastic force of a different coil spring.

しかしながら、特許文献1に記載されている従来の定流量弁においては、複数の可動弁体が定流量弁本体内の長手方向に沿って直列に配置されているため、作動スペースを要し、狭く限られたスペースで使用することが難しく、定流量弁の小型化を妨げる要因となっている。したがって、定流量弁の小型化が従来から要請されている。   However, in the conventional constant flow valve described in Patent Document 1, since a plurality of movable valve bodies are arranged in series along the longitudinal direction in the constant flow valve main body, an operation space is required and narrow. It is difficult to use in a limited space, which is a factor that hinders the downsizing of the constant flow valve. Therefore, downsizing of the constant flow valve has been conventionally demanded.

また、特許文献2に記載されているように、円すいコイルばねを用い、このばねの非線形ばね特性を利用した定流量弁も知られているが、この定流量弁に用いられている円すいコイルばねは、製造上、高い寸法精度と形状精度が要求されるため、歩留りが悪く、製造コストが高くなってしまう。したがって、低コストで簡易な構造を有する定流量弁が従来から要請されている。   Also, as described in Patent Document 2, a constant flow valve using a conical coil spring and utilizing the non-linear spring characteristic of this spring is also known, but the conical coil spring used in this constant flow valve is known. Since manufacturing requires high dimensional accuracy and shape accuracy, the yield is poor and the manufacturing cost is increased. Therefore, a constant flow valve having a simple structure with a low cost has been conventionally demanded.

上記した要請に応えるために、本出願人は小型でかつ簡易な構造を備えた定流量弁を提案している(特許文献3)。
この特許文献3に示す定流量弁は、供給される水の圧力の変動によらず流出させる水の流量を所定量に調整する定流量弁であって、流入口と流出口が形成された定流量弁本体と、この流量弁本体の内側に上記定流量弁本体に対して摺動可能に配置され、この摺動により、外周部と上記定流量弁本体の内周部との間に形成される第1流路の断面積を変化させる外側弁部材と、上記外側弁部材の内側に上記外側弁部材に対して摺動可能に配置され、この摺動により、外周部と上記外側弁部材の内周部との間に形成される第2流路の断面積を変化させる内側弁部材と、上記定流量弁本体と上記外側弁部材との間に配置され、上記外側弁部材を軸方向に付勢し、上記外側弁部材に水圧が作用すると上記外側弁部材を摺動させ、上記第1流路の断面積を減少させるように縮む外側コイルばねと、上記外側弁部材と上記内側弁部材との間に配置され、上記内側弁部材を軸方向に付勢し、上記内側弁部材に水圧が作用すると上記内側弁部材を摺動させ、上記第2流路の断面積を減少させるように縮む内側コイルばねで構成されている。
この特許文献3における定流量弁においては、供給される水の圧力が極小さい状態では流量弁本体に摺動可能に配置されている上記外側弁部材と上記内側弁部材は共に作動しないが、水圧が増していくと上記流入口と上記流出口の間に差圧が発生し、その差圧を受けて、ばね定数が小さい上記外側コイルばねで付勢した上記外側弁部材が第一に摺動するが、摺動初期段階では上記第1流路の断面積が水圧と比較して大きいため、十分な差圧が得られず、差圧と比較して上記外側コイルばねのばね力が大きいので、上記外側弁部材の摺動は極小さくなる。水圧が上昇し、上記外側コイルばねのばね力と差圧力が等しくなるまでは上記外側弁部材の摺動は極小さいので上記第1流路の断面積は極緩やかに縮小するので上記第1流路の断面積を通る流量は水圧に応じて大きくなる。上記第1流路の断面積において差圧が生じるまで水圧を段階的に上昇させた場合、ある水圧で差圧と上記外側コイルばねのばね力が拮抗する。さらに水圧を上昇させると生じた差圧が上記外側コイルばねのばね力よりも大きくなり、上記外側弁部材は差圧を受けて摺動し、上記第1流路の断面積も縮小する。上記第1流路の断面積が縮小するので差圧はさらに拡大し、その差圧を受けて上記外側弁部材はさらに摺動することで上記外側断面積は縮小するので断面積を通る流量は急激に減少して上記外側コイルばねは急激に縮んでしまう。結果、上記外側弁部材は急閉止し、オーバーシュートとアンダーシュートが発生する。
また、上記定流量弁において、上記外側弁部材が完全に閉止した状態で水圧を上昇させていくと、差圧が上記内側弁部材に付勢する内側コイルばねのばね力よりも大きくなり、上記内側弁部材が摺動する。上記内側弁部材はある水圧で上記第2流路から発生する噴流によりキャビテーションが誘発され、上記内側弁部材が振動したり異音が発生したりすることがある。
In order to meet the above request, the present applicant has proposed a constant flow valve having a small and simple structure (Patent Document 3).
The constant flow valve shown in Patent Document 3 is a constant flow valve that adjusts the flow rate of water to flow out to a predetermined amount regardless of fluctuations in the pressure of supplied water, and is a constant flow valve in which an inlet and an outlet are formed. The flow valve main body is disposed inside the flow valve main body so as to be slidable with respect to the constant flow valve main body, and is formed between the outer peripheral portion and the inner peripheral portion of the constant flow valve main body by the sliding. An outer valve member that changes a cross-sectional area of the first flow path, and an inner side of the outer valve member that is slidable with respect to the outer valve member. An inner valve member that changes the cross-sectional area of the second flow path formed between the inner peripheral portion, the constant flow valve main body, and the outer valve member are disposed between the inner valve member and the outer valve member in the axial direction. When urging is performed and water pressure acts on the outer valve member, the outer valve member is slid, and the cross-sectional area of the first flow path is reduced. An outer coil spring that shrinks to a minimum, and an inner valve member that is disposed between the outer valve member and the inner valve member, urges the inner valve member in an axial direction, and water pressure acts on the inner valve member. It is comprised by the inner coil spring which slides a member and shrinks so that the cross-sectional area of the said 2nd flow path may be reduced.
In the constant flow valve in Patent Document 3, the outer valve member and the inner valve member that are slidably disposed on the flow valve main body do not operate when the pressure of supplied water is extremely small. As the pressure increases, a differential pressure is generated between the inlet and the outlet, and the outer valve member urged by the outer coil spring having a small spring constant slides first due to the differential pressure. However, since the cross-sectional area of the first flow path is larger than the water pressure at the initial stage of sliding, a sufficient differential pressure cannot be obtained, and the spring force of the outer coil spring is larger than the differential pressure. The sliding of the outer valve member is extremely small. Until the water pressure rises and the spring force and the differential pressure of the outer coil spring become equal, the sliding of the outer valve member is extremely small, so that the cross-sectional area of the first flow path is extremely reduced, so that the first flow The flow rate through the cross-sectional area of the road increases with the water pressure. When the water pressure is increased stepwise until a differential pressure is generated in the cross-sectional area of the first flow path, the differential pressure and the spring force of the outer coil spring antagonize at a certain water pressure. When the water pressure is further increased, the generated differential pressure becomes larger than the spring force of the outer coil spring, the outer valve member slides under the differential pressure, and the cross-sectional area of the first flow path is also reduced. Since the cross-sectional area of the first flow path is reduced, the differential pressure is further increased, and the outer valve member is further slid by receiving the differential pressure, so that the outer cross-sectional area is reduced, so the flow rate through the cross-sectional area is The outer coil spring contracts rapidly and decreases rapidly. As a result, the outer valve member closes rapidly, and overshoot and undershoot occur.
Further, in the constant flow valve, when the water pressure is increased in a state where the outer valve member is completely closed, the differential pressure becomes larger than the spring force of the inner coil spring urging the inner valve member, The inner valve member slides. In the inner valve member, cavitation is induced by a jet generated from the second flow path at a certain water pressure, and the inner valve member may vibrate or generate abnormal noise.

実開昭61−40569号公報Japanese Utility Model Publication No. 61-40569 特開平6−331051号公報JP-A-6-331051 WO2006/100973号公報WO 2006/100383 gazette

そこで、本発明は、小型でかつ簡易な構造を備えた定流量弁であって、しかも、低圧領域でのオーバーシュート,アンダーシュートを抑え、また、高圧領域でのキャビテーションの発生を抑えることができる定流量弁を提供することを目的とする。   Therefore, the present invention is a constant flow valve having a small and simple structure, and can suppress overshoot and undershoot in a low pressure region, and can suppress the occurrence of cavitation in a high pressure region. The object is to provide a constant flow valve.

上記の課題を解決するために、本発明は、供給される水の圧力の変動によらず流出させる水の流量を所定量に調整する定流量弁であって、流入口と流出口が形成された定流量弁本体と、この流量弁本体の内側に上記定流量弁本体に対して摺動可能に配置され、この摺動により、外周部と上記定流量弁本体の内周部との間に形成される第1流路の断面積を変化させる外側弁部材と、上記外側弁部材の内側に上記外側弁部材に対して摺動可能に配置され、この摺動により、外周部と上記外側弁部材の内周部との間に形成される第2流路の断面積を変化させる内側弁部材と、上記定流量弁本体と上記外側弁部材との間に配置され、上記外側弁部材を軸方向に付勢し、上記外側弁部材に水圧が作用すると上記外側弁部材を摺動させ、上記第1流路の断面積を減少させるように縮む外側コイルばねと、上記外側弁部材と上記内側弁部材との間に配置され、上記内側弁部材を軸方向に付勢し、上記内側弁部材に水圧が作用すると上記内側弁部材を摺動させ、上記第2流路の断面積を減少させるように縮む内側コイルばねで構成される定流量弁において上記内側コイルばねのばね定数は、上記外側コイルばねのばね定数よりも大きく、その外側コイルばねが上記外側弁部材の移動に伴いばね定数が大きくなる単一ばねから構成されていることを特徴としている。   In order to solve the above problems, the present invention is a constant flow valve that adjusts the flow rate of water to flow out to a predetermined amount regardless of fluctuations in the pressure of supplied water, and has an inlet and an outlet. The constant flow valve main body is disposed inside the flow valve main body so as to be slidable with respect to the constant flow valve main body. By this sliding, between the outer peripheral portion and the inner peripheral portion of the constant flow valve main body. An outer valve member that changes a cross-sectional area of the formed first flow path, and an outer valve member that is slidably disposed with respect to the outer valve member inside the outer valve member. An inner valve member that changes a cross-sectional area of the second flow path formed between the inner peripheral portion of the member, the constant flow valve main body, and the outer valve member; When the water pressure acts on the outer valve member, the outer valve member is slid to interrupt the first flow path. An outer coil spring that contracts to reduce the product, and is disposed between the outer valve member and the inner valve member, urges the inner valve member in the axial direction, and water pressure acts on the inner valve member. In the constant flow valve constituted by the inner coil spring that slides the inner valve member and contracts so as to reduce the cross-sectional area of the second flow path, the spring constant of the inner coil spring is greater than the spring constant of the outer coil spring. The outer coil spring is constituted by a single spring whose spring constant increases with the movement of the outer valve member.

このように構成された本発明の定流量弁においては、供給される水の圧力が極小さい状態では流量弁本体に摺動可能に配置されている上記外側弁部材と上記内側弁部材は共に作動しないが、水圧が増していくと上記流入口と上記流出口の間に差圧が発生し、その差圧を受けて、ばね定数が小さい上記外側コイルばねに付勢した上記外側弁部材が第一に摺動する。外側コイルばねが外側弁部材の移動に伴いばね定数が大きくなるばねなので上記外側弁部材が摺動することにより上記第1流路の断面積は縮小し差圧が大幅に拡大し、上記外側弁部材をさらに摺動させる向きに力が働いたとしても、外側コイルばねは上記外側弁部材の摺動に追随して縮んでおり、そのばね定数が大きくなるように変化することになるため上記外側弁部材が急激に閉じる方向への摺動に対しての抵抗力となり、外側弁部材の急閉止を防いで、オーバーシュートとアンダーシュートの発生を抑えることができる。   In the constant flow valve of the present invention configured as described above, the outer valve member and the inner valve member that are slidably disposed on the flow valve body operate in a state where the pressure of supplied water is extremely small. However, as the water pressure increases, a differential pressure is generated between the inlet and the outlet, and the outer valve member biased by the outer coil spring having a small spring constant is received by the differential pressure. Slide in one. Since the outer coil spring is a spring whose spring constant increases with the movement of the outer valve member, the outer valve member slides to reduce the cross-sectional area of the first flow path and greatly increase the differential pressure. Even if a force acts in the direction in which the member is further slid, the outer coil spring contracts following the sliding of the outer valve member, and the spring constant changes so that the outer constant is increased. The resistance against sliding in the direction in which the valve member suddenly closes can be prevented, and the sudden closing of the outer valve member can be prevented, thereby preventing the occurrence of overshoot and undershoot.

また、上記外側コイルばねが、上記外側弁部材の移動方向に不等ピッチで巻回されたコイルばねであることを特徴とする。
巻回のピッチを不等にすることでばね定数を変化させているため、ばねの製造も比較的簡単であり、また、ばねの径としては一定であるのでこの外側コイルばねの収納スペースの径も一定でよく、定流量弁の構造を簡単にして小型化することができる。
The outer coil spring is a coil spring wound at an unequal pitch in the moving direction of the outer valve member.
Since the spring constant is changed by making the winding pitch unequal, the manufacture of the spring is relatively simple and the diameter of the spring is constant, so the diameter of the storage space of the outer coil spring is constant. However, the constant flow valve structure can be simplified and miniaturized.

また、本発明においては、供給される水の圧力の変動によらず流出させる水の流量を所定量に調整する定流量弁であって、流入口と流出口が形成された定流量弁本体と、この流量弁本体の内側に上記定流量弁本体に対して摺動可能に配置され、この摺動により、外周部と上記定流量弁本体の内周部との間に形成される第1流路の断面積を変化させる外側弁部材と、上記外側弁部材の内側に上記外側弁部材に対して摺動可能に配置され、この摺動により、外周部と上記外側弁部材の内周部との間に形成される第2流路の断面積を変化させる内側弁部材と、上記定流量弁本体と上記外側弁部材との間に配置され、上記外側弁部材を軸方向に付勢し、上記外側弁部材に水圧が作用すると上記外側弁部材を摺動させ、上記第1流路の断面積を減少させるように縮む外側コイルばねと、上記外側弁部材と上記内側弁部材との間に配置され、上記内側弁部材を軸方向に付勢し、上記内側弁部材に水圧が作用すると上記内側弁部材を摺動させ、上記第2流路の断面積を減少させるように縮む内側コイルばねで構成される定流量弁において、上記外側弁部材は、上記外側弁部材を横断するように延びるアーチ部と、このアーチ部に形成され上記内側弁部材を軸方向に摺動可能に支持するよう筒形状に形成された支持突起と、を備え、上記内側弁部材には、上記支持突起の筒形状における内周及び外周の両面に対向壁面を構成するよう円環状の凹部が形成されていることを特徴とする。   Further, in the present invention, a constant flow valve for adjusting the flow rate of water to flow out to a predetermined amount regardless of fluctuations in the pressure of the supplied water, the constant flow valve main body having an inlet and an outlet formed therein, The first flow formed between the outer peripheral portion and the inner peripheral portion of the constant flow valve main body is arranged inside the flow valve main body so as to be slidable with respect to the constant flow valve main body. An outer valve member that changes a cross-sectional area of the passage; and an outer valve member disposed inside the outer valve member so as to be slidable with respect to the outer valve member. An inner valve member that changes a cross-sectional area of the second flow path formed between the constant flow valve body and the outer valve member, and biases the outer valve member in the axial direction, When water pressure acts on the outer valve member, the outer valve member is slid to reduce the cross-sectional area of the first flow path. An outer coil spring that is contracted in such a manner that the inner valve member is disposed between the outer valve member and the inner valve member, biases the inner valve member in the axial direction, and water pressure acts on the inner valve member. In the constant flow valve constituted by an inner coil spring that slides and contracts so as to reduce the cross-sectional area of the second flow path, the outer valve member has an arch portion that extends across the outer valve member; A support projection formed in a tubular shape so as to support the inner valve member so as to be slidable in the axial direction, and the inner valve member has an inner periphery in the tubular shape of the support projection. And the annular recessed part is formed in both surfaces of outer periphery so that an opposing wall surface may be comprised, It is characterized by the above-mentioned.

これにより、上記支持突起が上記内側弁部材の凹部を摺動する時に、上記支持突起の筒形状内部に内在している水が上記支持突起部への上記内側弁部材の進入で、上記支持突起の内周壁面と上記内側弁部材の円環状の凹部内壁面、支持突起の外周壁面と上記内側弁部材の円環状の凹部外壁面を伝いながら上記内側弁部材の外に出て行く。その際に各壁面と水の粘性抵抗により、上記内側弁部材の摺動方向の反対向きに大きな抵抗が与えられダンパーとしての役割をもつことが出来、第2流路から発生する噴流による内側弁部材のキャビテーションの誘発を抑え、上記内側弁部材が振動したり異音が発生したりすることを防止することができる。   As a result, when the support protrusion slides in the recess of the inner valve member, the water contained in the cylindrical shape of the support protrusion is caused by the entry of the inner valve member into the support protrusion. And the outer peripheral wall surface of the inner valve member, the outer peripheral wall surface of the support protrusion, and the outer annular wall surface of the inner valve member. At that time, due to the viscous resistance of each wall surface and water, a large resistance is given in the direction opposite to the sliding direction of the inner valve member, which can serve as a damper, and the inner valve due to the jet generated from the second flow path. Induction of cavitation of the member can be suppressed, and the inner valve member can be prevented from vibrating or generating abnormal noise.

本発明によれば、供給される水の圧力の変動によらず流出させる水の流量を所定量に調整する小型でかつ簡易な構造を備え、しかも、低圧領域でのオーバーシュート,アンダーシュートを抑え、また、高圧領域でのキャビテーションの発生を抑えることができる定流量弁を提供することができる。   According to the present invention, there is provided a small and simple structure that adjusts the flow rate of water to be discharged to a predetermined amount regardless of fluctuations in the pressure of supplied water, and suppresses overshoot and undershoot in a low pressure region. In addition, it is possible to provide a constant flow valve that can suppress the occurrence of cavitation in a high pressure region.

以下、添付図面を参照して本発明の定流量弁の実施形態について説明する。
図1は、本発明の第1実施形態による定流量弁を示す分解斜視図であり、図2は、本発明の第1実施形態による定流量弁を示す斜視図である。
図1及び図2に示すように、本実施形態の定流量弁1は、ほぼ円筒状の定流量弁本体を形成するケーシング2、このケーシング2内に収容された外側コイルばねとしての外側圧縮不等ピッチコイルばね4、外側弁部材6、内側コイルばねとしての内側圧縮コイルばね8、内側弁部材10、ケーシング2の上流側端部に取り付けられた蓋12によって構成されている。
ケーシング2の上流側端部に取り付けられた蓋12には、定流量弁1の流入口12aが形成され、ケーシング2の下流側端部には、定流量弁1の流出口2aが形成されている。
Hereinafter, embodiments of the constant flow valve of the present invention will be described with reference to the accompanying drawings.
FIG. 1 is an exploded perspective view showing a constant flow valve according to the first embodiment of the present invention, and FIG. 2 is a perspective view showing the constant flow valve according to the first embodiment of the present invention.
As shown in FIGS. 1 and 2, the constant flow valve 1 of the present embodiment includes a casing 2 that forms a substantially cylindrical constant flow valve main body, and an outer compression not as an outer coil spring accommodated in the casing 2. An equal pitch coil spring 4, an outer valve member 6, an inner compression coil spring 8 as an inner coil spring, an inner valve member 10, and a lid 12 attached to the upstream end of the casing 2.
The lid 12 attached to the upstream end of the casing 2 is formed with an inlet 12 a of the constant flow valve 1, and the outlet 2 a of the constant flow valve 1 is formed at the downstream end of the casing 2. Yes.

図3は、図2に示す本発明の第1実施形態による定流量弁のI−I断面図であり、図4は、図2に示す本発明の第1実施形態による定流量弁のII−II断面図である。ここで、図3では、定流量弁1内の水の流れを矢印で示している。
図1〜図4に示すように、外側弁部材6は、ケーシング2内に軸方向に摺動可能に配置されており、内側弁部材10は、外側弁部材6の内側に軸方向に摺動可能に配置されている。
外側弁部材6は、流入口12aからケーシング2内に流入した水の圧力を外側弁部材6の上流側端部の受圧部6aと内側弁部材10の上流側端部の受圧部10cで受圧し、この受圧部6aで受圧した水圧に応じて軸方向下流側に摺動するようになっている。
また、図1に示すように、外側弁部材6の主要部である弁体部6bは、上流側から下流側に向かって相対的に絞られた形状に形成されている。
さらに、図4に示すように、弁体部6bの外周部とケーシング2の流出口2aとの間には、第1流路として外側可変流路14が形成されており、外側弁部材6が軸方向に摺動することにより、弁体部6bが外側可変流路14の開度又は流路断面積を可変に調整するようになっている。なお、図3及び図4では、初動低水圧時において、定流量弁1の流入口12aからケーシング2内に水が流入するものの、外側弁部材6が軸方向に摺動せずに、外側可変流路14が最大に開放されている状態を示している。
3 is a cross-sectional view taken along the line II of the constant flow valve according to the first embodiment of the present invention shown in FIG. 2, and FIG. 4 is a cross-sectional view of the constant flow valve according to the first embodiment of the present invention shown in FIG. It is II sectional drawing. Here, in FIG. 3, the flow of water in the constant flow valve 1 is indicated by arrows.
As shown in FIGS. 1 to 4, the outer valve member 6 is slidably disposed in the casing 2 in the axial direction, and the inner valve member 10 slides in the axial direction inside the outer valve member 6. Arranged to be possible.
The outer valve member 6 receives the pressure of water flowing into the casing 2 from the inlet 12 a by the pressure receiving portion 6 a at the upstream end of the outer valve member 6 and the pressure receiving portion 10 c at the upstream end of the inner valve member 10. The slider slides in the axially downstream side in accordance with the water pressure received by the pressure receiving portion 6a.
Moreover, as shown in FIG. 1, the valve body part 6b which is the principal part of the outer side valve member 6 is formed in the shape restrict | squeezed relatively toward the downstream from the upstream.
Further, as shown in FIG. 4, an outer variable flow path 14 is formed as a first flow path between the outer peripheral portion of the valve body 6 b and the outlet 2 a of the casing 2, and the outer valve member 6 is By sliding in the axial direction, the valve body portion 6b variably adjusts the opening degree or flow path cross-sectional area of the outer variable flow path 14. In FIGS. 3 and 4, water flows into the casing 2 from the inlet 12a of the constant flow valve 1 at the time of initial low water pressure, but the outer valve member 6 does not slide in the axial direction and is variable outside. The state where the flow path 14 is opened to the maximum is shown.

さらに、ケーシング2の内周部2cと外側弁部材6の外周部6cとの間には、外側圧縮不等ピッチコイルばね4が外側弁部材6とほぼ同軸に配置されている。
この外側圧縮不等ピッチコイルばね4は、図1に示すように、巻回のピッチが序々に狭くなるように構成されており、そのため、外側弁部材6が移動してこの不等ピッチコイルばね4が縮むとばね定数が大きくなるものであり、ばね荷重とばねの縮みは非線形ばね特性を有し、外側弁部材6が作動しない状態では、ケーシング2の内周部2cと外側弁部材6の外周部6cとの間に、外側弁部材6を軸方向に付勢するように収容されている。定流量弁1の流入口12aからケーシング2内に水が流入すると、この水の圧力によって外側弁部材6の上流側端部の受圧部6aと内側弁部材10の上流側端部の受圧部10cとが下流側軸方向に押圧されるようになっている。さらに、この外側弁部材6の押圧と内側弁部材10の押圧が内側圧縮コイルばね8を介して外側弁部材6を押圧することにより、外側圧縮不等ピッチコイルばね4の上流側端部4aが下流側軸方向に押圧されるようになっている。
また、外側弁部材6の弁体部6bの下流側端部は、外側弁部材6を横断するように延びるアーチ部18を備えている。外側弁部材6の受圧部6aと内側弁部材10の上流側端部の受圧部10cとが受圧する水圧の上昇に応じて、外側弁部材6が下流側へ移動し、外側弁部材6から外側圧縮不等ピッチコイルばね4の上流側端部4aに加わるばね荷重が増すにつれて、外側弁部材6の弁体部6bの外周部に形成された段部6dがケーシング2の流出口2aに近づき、最終的には当接して外側可変流路14が完全に閉鎖されるようになっている。
また、アーチ部18は円周方向に90度間隔で形成された脚部を有することになり、この脚部がケーシング2の流出口2の内周に当接することにより、外側弁部材6の移動におけるガイドとして機構すると共に、外側可変流路14から噴出する水を整流する役目も果たす。
Further, an outer compression unequal pitch coil spring 4 is disposed substantially coaxially with the outer valve member 6 between the inner peripheral portion 2 c of the casing 2 and the outer peripheral portion 6 c of the outer valve member 6.
As shown in FIG. 1, the outer compression unequal pitch coil spring 4 is configured such that the winding pitch gradually becomes narrower. Therefore, the outer valve member 6 moves and the unequal pitch coil spring is moved. When 4 is contracted, the spring constant becomes large. The spring load and the contraction of the spring have nonlinear spring characteristics. When the outer valve member 6 is not operated, the inner peripheral portion 2c of the casing 2 and the outer valve member 6 Between the outer peripheral part 6c, it accommodates so that the outer side valve member 6 may be urged | biased to an axial direction. When water flows into the casing 2 from the inlet 12a of the constant flow valve 1, the pressure of this water causes the pressure receiving portion 6a at the upstream end of the outer valve member 6 and the pressure receiving portion 10c at the upstream end of the inner valve member 10. Are pressed in the downstream axial direction. Further, the pressing of the outer valve member 6 and the pressing of the inner valve member 10 press the outer valve member 6 via the inner compression coil spring 8, whereby the upstream end 4 a of the outer compression unequal pitch coil spring 4. It is pressed in the downstream axial direction.
Further, the downstream end portion of the valve body portion 6 b of the outer valve member 6 includes an arch portion 18 that extends so as to cross the outer valve member 6. As the water pressure received by the pressure receiving portion 6a of the outer valve member 6 and the pressure receiving portion 10c at the upstream end of the inner valve member 10 rises, the outer valve member 6 moves downstream and moves outward from the outer valve member 6. As the spring load applied to the upstream end 4a of the compression non-uniform pitch coil spring 4 increases, the step 6d formed on the outer peripheral portion of the valve body 6b of the outer valve member 6 approaches the outlet 2a of the casing 2, Ultimately, the outer variable flow path 14 comes into contact with each other and is completely closed.
Further, the arch portion 18 has leg portions formed at intervals of 90 degrees in the circumferential direction, and the leg portions abut on the inner circumference of the outlet 2 of the casing 2, thereby moving the outer valve member 6. And also serves to rectify the water ejected from the outer variable flow path 14.

内側弁部材10の主要部である弁体部10aは、上流側から下流側に向かって相対的に絞られた形状に形成されている。
また、外側弁部材6の内周部6eと内側弁部材10の弁体部10aとの間には、第2流路として内側可変流路16が形成されており、内側弁部材10が外側弁部材6に対して軸方向に摺動することにより、弁体部10aが内側可変流路16の開度又は流路断面積を可変に調整するようになっている。なお、図3及び図4では、定流量弁1の流入口12aからケーシング2内に水が流入するものの、内側弁部材10が外側弁部材6に対して軸方向に摺動せずに、内側可変流路16が最大に開放されている状態を示している。
The valve body 10a, which is the main part of the inner valve member 10, is formed in a shape that is relatively narrowed from the upstream side toward the downstream side.
Further, an inner variable flow path 16 is formed as a second flow path between the inner peripheral portion 6e of the outer valve member 6 and the valve body portion 10a of the inner valve member 10, and the inner valve member 10 serves as the outer valve. By sliding in the axial direction with respect to the member 6, the valve body portion 10 a variably adjusts the opening degree or flow path cross-sectional area of the inner variable flow path 16. 3 and 4, water flows into the casing 2 from the inlet 12 a of the constant flow valve 1, but the inner valve member 10 does not slide in the axial direction with respect to the outer valve member 6. The state where the variable flow path 16 is opened to the maximum is shown.

外側弁部材6の内周部6eと内側弁部材10の外周部10bとの間には、内側圧縮コイルばね8が内側弁部材10とほぼ同軸に配置されている。
この内側圧縮コイルばね8は、外側圧縮不等ピッチコイルばね4のコイル平均径よりも小さい平均径を有し、外側圧縮不等ピッチコイルばね4に対して同軸かつ入れ子状に配置されている。さらに、内側圧縮コイルばね8は線形ばね特性を有しており、外側圧縮不等ピッチコイルばね4は非線形ばね特性を有し、尚且つ外側圧縮不等ピッチコイルばね4のばね定数よりも大きいばね定数を有している。すなわち、本実施形態の定流量弁1は、コイル平均径とばね定数とばね特性の異なる2つの圧縮コイルばね4,8を同軸かつ入れ子状に配置することにより、組み合わせて使用するように構成されている。
An inner compression coil spring 8 is disposed substantially coaxially with the inner valve member 10 between the inner peripheral portion 6 e of the outer valve member 6 and the outer peripheral portion 10 b of the inner valve member 10.
The inner compression coil spring 8 has an average diameter smaller than the coil average diameter of the outer compression unequal pitch coil spring 4, and is arranged coaxially and nested with respect to the outer compression unequal pitch coil spring 4. Further, the inner compression coil spring 8 has a linear spring characteristic, the outer compression unequal pitch coil spring 4 has a non-linear spring characteristic, and is larger than the spring constant of the outer compression unequal pitch coil spring 4. Has a constant. That is, the constant flow valve 1 of the present embodiment is configured to be used in combination by arranging two compression coil springs 4 and 8 having different coil average diameters, spring constants, and spring characteristics in a coaxial and nested manner. ing.

また、内側圧縮コイルばね8は、内側弁部材10が作動しない状態では、外側弁部材6の内周部6eと内側弁部材10の外周部10bとの間に、内側弁部材10を軸方向に付勢するように収容されている。定流量弁1の流入口12aからケーシング2内に水が流入すると、この水の圧力によって内側弁部材10の上流側端部の受圧部10cが下流側軸方向に押圧されて、この内側弁部材10の押圧により内側圧縮コイルばね8の下流側端部8bが外側弁部材6を下流側軸方向に押圧されるようになっている。
さらに、外側弁部材6が外側可変流路14を完全に閉鎖した後に内側弁部材10の受圧部10cが受圧する水圧の上昇に応じて、内側弁部材10が下流側へ移動し、内側弁部材10から内側圧縮コイルばね8に加わるばね荷重が増すにつれて、内側弁部材10の外周部10bに形成された段部10dが外側弁部材6の内周部6eに当接し、内側可変流路16が所定の開度または流路断面積まで閉鎖されるようになっている。
Further, the inner compression coil spring 8 moves the inner valve member 10 in the axial direction between the inner peripheral portion 6e of the outer valve member 6 and the outer peripheral portion 10b of the inner valve member 10 in a state where the inner valve member 10 does not operate. Contained to be energized. When water flows into the casing 2 from the inlet 12a of the constant flow valve 1, the pressure receiving portion 10c at the upstream end of the inner valve member 10 is pressed in the downstream axial direction by the pressure of the water, and this inner valve member. The downstream end 8b of the inner compression coil spring 8 is pressed against the outer valve member 6 in the downstream axial direction by the pressure of 10.
Furthermore, after the outer valve member 6 completely closes the outer variable flow path 14, the inner valve member 10 moves to the downstream side in response to an increase in water pressure received by the pressure receiving portion 10 c of the inner valve member 10, and the inner valve member As the spring load applied to the inner compression coil spring 8 increases from 10, the stepped portion 10 d formed on the outer peripheral portion 10 b of the inner valve member 10 contacts the inner peripheral portion 6 e of the outer valve member 6, and the inner variable flow path 16 is formed. It is closed to a predetermined opening or a channel cross-sectional area.

なお、上述した実施形態の定流量弁1においては、一例として、流入口12aと流出口2aにおける水圧の差(差圧)Pがほぼ0.15MPaの場合に、まず外側弁部材6が最も下流側に摺動して外側可変流路14を完全に閉鎖し、差圧Pがほぼ1.0MPaの場合に、外側弁部材6が外側可変流路14を完全に閉鎖した状態で、内側弁部材10が最も下流側に摺動して内側可変流路16を最小限度に開放し、それぞれの場合の流出口2aにおける流量Qが下限目標流量値Qから上限目標流量値Qまでの目標定流量域となる20L/min〜25L/minの範囲となるように、外側弁部材6と内側弁部材10の寸法及び形状と外側圧縮不等ピッチコイルばね4及び内側圧縮コイルばね8の仕様が定められている。 In the constant flow valve 1 of the above-described embodiment, as an example, when the water pressure difference (differential pressure) P between the inlet 12a and the outlet 2a is approximately 0.15 MPa, the outer valve member 6 is first the most downstream. When the differential pressure P is approximately 1.0 MPa, the outer valve member 6 completely closes the outer variable flow channel 14 in the state where the outer variable flow channel 14 is completely closed. 10 slides on the most downstream side is opened to a minimum inner variable flow path 16, target constant from the lower target flow rate value Q 0 flow rate Q at the outlet 2a in each case to the upper limit target flow rate value Q 1 The dimensions and shape of the outer valve member 6 and the inner valve member 10 and the specifications of the outer compression unequal pitch coil spring 4 and the inner compression coil spring 8 are determined so that the flow rate range is 20 L / min to 25 L / min. It has been.

さらに、図1〜図3に示すように、外側弁部材6のアーチ部18の中心部には、内側弁部材10を軸方向に摺動可能に支持する支持突起22が形成されている。
この支持突起22は筒状に形成されて内側には凹部22aが形成されている。
一方、内側弁部材10には、外側弁部材6の支持突起22を摺動可能に受け入れる突起20が形成され、突起20の内側には凹部20aの内側に突起凸部20bが形成され、結果として凹部20aは円環状に形成されている。外側弁部材6の支持突起22に内側弁部材10の突起20が受け入れられている状態では、この支持突起22が、凹部20aに収まり、突起凸部20bが支持突起22の凹部22aに収まることにより、内側弁部材10が移動して凹部20aに支持突起22が収まるように移動する際には、支持突起22の内側の凹部22aに内在している水が支持突起22の内周壁面22cと円環状の凹部20aの内壁面20c、及び、支持突起22の外周壁面22dと円環状の凹部20aの外壁面20dを伝いながら上記内側弁部材の外に出て行く。その際に各壁面20c,20d,22c,22dと水の粘性抵抗により、上記内側弁部材10の摺動方向の反対向きに大きな抵抗が与えられダンパーとしての役割をもつことが出来、水圧が高く第1流路が閉止されて第2流路のみを水が流れるときに発生する噴流による内側弁部材10のキャビテーションの誘発を抑え、上記内側弁部材が振動したり異音が発生したりすることを防止することができる。
また、外側弁部材6のアーチ部18は、径方向に放射状に形成された翼部24を備えており、この翼部24が外側弁部材6の下流側を整流することにより、水流の乱れによる外側弁部材6の横方向の振動を防止するようになっている。
Further, as shown in FIGS. 1 to 3, a support protrusion 22 that supports the inner valve member 10 so as to be slidable in the axial direction is formed at the center of the arch portion 18 of the outer valve member 6.
The support protrusion 22 is formed in a cylindrical shape, and a recess 22a is formed inside.
On the other hand, the inner valve member 10 is formed with a protrusion 20 that slidably receives the support protrusion 22 of the outer valve member 6, and a protrusion protrusion 20b is formed inside the protrusion 20a inside the protrusion 20 as a result. The recess 20a is formed in an annular shape. In a state where the protrusion 20 of the inner valve member 10 is received by the support protrusion 22 of the outer valve member 6, the support protrusion 22 is received in the recess 20 a, and the protrusion protrusion 20 b is received in the recess 22 a of the support protrusion 22. When the inner valve member 10 moves and moves so that the support protrusion 22 is accommodated in the recess 20a, the water present in the recess 22a inside the support protrusion 22 is circular with the inner peripheral wall surface 22c of the support protrusion 22. The outer wall surface 20c of the annular recess 20a, the outer peripheral wall surface 22d of the support protrusion 22 and the outer wall surface 20d of the annular recess 20a go out of the inner valve member. At that time, due to the viscous resistance of each wall surface 20c, 20d, 22c, 22d and water, a large resistance is given in the direction opposite to the sliding direction of the inner valve member 10 and it can serve as a damper, and the water pressure is high. Suppressing induction of cavitation of the inner valve member 10 by a jet generated when the first flow path is closed and water flows only through the second flow path, and the inner valve member vibrates or generates noise. Can be prevented.
Further, the arch portion 18 of the outer valve member 6 includes wing portions 24 that are radially formed in the radial direction, and the wing portions 24 rectify the downstream side of the outer valve member 6, thereby causing disturbance of water flow. The lateral vibration of the outer valve member 6 is prevented.

つぎに、上述した本発明の第1実施形態による定流量弁1の動作(作用)について説明する。
図5は、本実施形態の定流量弁1における水圧と流量との関係、及び、水圧と全流路断面積との関係をそれぞれ定性的に示した特性線図である。ここで、図5において、横軸に流入口12aと流出口2aにおける水圧の差(差圧)P、左側縦軸に流量Q、右側縦軸に定流量弁1の流出口2aにおける全流路断面積Sをそれぞれ示し、流量線図については実線で示し、全流路断面積の特性線図については破線で示している。
また、図5の線図では、作動中の定流量弁の各作動状態について、定流量弁に流入する水の圧力の小さい順にO、A、B、C、Dで表している。
さらに、図6〜図9は、図5の作動状態A〜Dにおける各定流量弁を示す断面図である。また、図10は、本発明の第1実施形態による定流量弁1において、図2のIII−III断面による作動状態Dを示す断面図である。
Next, the operation (action) of the constant flow valve 1 according to the first embodiment of the present invention described above will be described.
FIG. 5 is a characteristic diagram qualitatively showing the relationship between the water pressure and the flow rate and the relationship between the water pressure and the total flow path cross-sectional area in the constant flow valve 1 of the present embodiment. Here, in FIG. 5, the horizontal axis represents the water pressure difference (differential pressure) P between the inlet 12 a and the outlet 2 a, the left vertical axis represents the flow rate Q, and the right vertical axis represents the entire flow path at the outlet 2 a of the constant flow valve 1. The sectional area S is shown, the flow chart is shown by a solid line, and the characteristic chart of the entire flow path sectional area is shown by a broken line.
Moreover, in the diagram of FIG. 5, each operation state of the constant flow valve in operation is represented by O, A, B, C, and D in ascending order of the pressure of water flowing into the constant flow valve.
6 to 9 are cross-sectional views showing the constant flow valves in the operating states A to D of FIG. FIG. 10 is a cross-sectional view showing an operating state D according to the III-III cross section of FIG. 2 in the constant flow valve 1 according to the first embodiment of the present invention.

まず、図3〜図5に示すように、初期状態である作動状態Oの定流量弁1は、定流量弁1の流入口12aからケーシング2内に水が流入しているが、差圧Pがほとんど生じていない状態である。この状態では、外側弁部材6と内側弁部材10は、最も上流側に位置しており、外側可変流路14と内側可変流路16は最大に開放されている。
ここで、これら外側可変流路14と内側可変流路16が最大に開放された作動状態Oにおいて、流量Qは差圧Pがほとんど生じていないため、ほぼ0となる。
さらに、定流量弁1の外側弁部材6と内側弁部材10は、流入する水の差圧Pが上昇するにつれて、作動状態Oから、作動状態A(図5及び図6参照)、作動状態B(図5及び図7参照)、作動状態C(図5及び図8参照)、作動状態D(図5及び図9〜図10参照)の順で作動する。
First, as shown in FIGS. 3 to 5, in the constant flow valve 1 in the operation state O which is an initial state, water flows into the casing 2 from the inlet 12 a of the constant flow valve 1, but the differential pressure P Is in a state where almost no has occurred. In this state, the outer valve member 6 and the inner valve member 10 are located on the most upstream side, and the outer variable flow channel 14 and the inner variable flow channel 16 are opened to the maximum.
Here, in the operating state O in which the outer variable flow channel 14 and the inner variable flow channel 16 are opened to the maximum, the flow rate Q is almost zero because the differential pressure P hardly occurs.
Furthermore, the outer valve member 6 and the inner valve member 10 of the constant flow valve 1 are changed from the operating state O to the operating state A (see FIGS. 5 and 6) and the operating state B as the differential pressure P of the inflowing water increases. (Refer FIG.5 and FIG.7), it act | operates in order of the operation state C (refer FIG.5 and FIG.8) and the operation state D (refer FIG.5 and FIG.9-10).

図5及び図6に示すように、作動状態Aの定流量弁1は、外側弁部材6の受圧部6aと内側弁部材10の受圧部10cのそれぞれに加わる水圧が作動状態Oよりも上昇した状態となる。この状態では、外側圧縮不等ピッチコイルばね4が外側弁部材6の受圧部6aと内側弁部材10の上流側端部の受圧部10cとにより下流側軸方向に押圧され、内側圧縮コイルばね8が内側弁部材10の受圧部10cにより下流側軸方向に押圧されている。このとき、ばね定数の小さい外側圧縮不等ピッチコイルばね4が内側圧縮コイルばね8よりも軸方向に大きく縮むため、また、この外側圧縮不等ピッチコイルばね4は不等ピッチで巻回されていて縮む初期においては特にばね定数が小さいため、ケーシング2内では、外側弁部材6が内側弁部材10よりも大きく下流側軸方向に摺動する。また、外側可変流路14と内側可変流路16は共に開放されており、流量Qは水圧の上昇と共に下限目標の流量値Qに向かって増加しているが、全流路断面積Sは減少している。 As shown in FIGS. 5 and 6, in the constant flow valve 1 in the operating state A, the water pressure applied to each of the pressure receiving part 6 a of the outer valve member 6 and the pressure receiving part 10 c of the inner valve member 10 is higher than that in the operating state O. It becomes a state. In this state, the outer compression unequal pitch coil spring 4 is pressed in the downstream axial direction by the pressure receiving portion 6 a of the outer valve member 6 and the pressure receiving portion 10 c of the upstream end of the inner valve member 10, and the inner compression coil spring 8. Is pressed in the downstream axial direction by the pressure receiving portion 10 c of the inner valve member 10. At this time, the outer compression unequal pitch coil spring 4 having a small spring constant contracts more in the axial direction than the inner compression coil spring 8, and the outer compression unequal pitch coil spring 4 is wound at an unequal pitch. Since the spring constant is particularly small in the initial stage of contraction, the outer valve member 6 slides in the downstream axial direction larger than the inner valve member 10 in the casing 2. Moreover, the outer variable flow passage 14 and the inner variable flow passage 16 is open both, the flow rate Q is increased toward the flow rate value Q 0 of the lower limit target with increasing water pressure, total flow cross-sectional area S is decreasing.

また、図5及び図7に示すように、作動状態Bの定流量弁1は、外側弁部材6の受圧部6aと内側弁部材10の受圧部10cのそれぞれに加わる水圧が作動状態Aよりもさらに上昇した状態となる。この状態では、外側圧縮不等ピッチコイルばね4が外側弁部材6の受圧部6aと内側弁部材10の上流側端部の受圧部10cとにより下流側軸方向にさらに押圧され、内側圧縮コイルばね8が内側弁部材10の受圧部10cにより下流側軸方向にさらに押圧される。このとき、外側弁部材6のアーチ部18の段部6dがケーシング2の流出口2aに当接し、外側可変流路14が完全に閉鎖されるが、内側可変流路16は作動状態Aの開放状態よりもわずかに閉鎖されている。
また、作動状態AからBへの途中の状態において、流量Qは水圧の上昇と共に増加して下限目標の流量値Qを超えて一旦最大となるが、その後作動状態Bでは、流量Qは減少して目標の流量値Qに近づいて目標定流領域に収まる。一方、全流路断面積Sについては、作動状態AからBにかけて水圧の上昇と共に減少する。なお、この作動状態AからBへの途中においては、作動状態OからAへの移動時よりも外側圧縮不等ピッチコイルばね4のバネ定数が大きくなるため、外側弁部材6が急激に閉じる方向への摺動に対しての抵抗力となり、外側弁部材6の急閉止を防いで、オーバーシュートを抑えることができ、また、外側コイルばねを等ピッチコイルばねとしてばね定数を大きくしていると、外側可変流路14が完全に閉鎖され難くアンダーシュートの発生の恐れがあるが、不等ピッチコイルばねとすることで、外側弁部材の閉止に近づくにつれてバネ定数を高めることにより、アンダーシュートの発生を抑えることができる。
As shown in FIGS. 5 and 7, the constant flow valve 1 in the operating state B has a higher water pressure applied to each of the pressure receiving portion 6 a of the outer valve member 6 and the pressure receiving portion 10 c of the inner valve member 10 than in the operating state A. Further rises. In this state, the outer compression unequal pitch coil spring 4 is further pressed in the downstream axial direction by the pressure receiving portion 6a of the outer valve member 6 and the pressure receiving portion 10c of the upstream end of the inner valve member 10, and the inner compression coil spring. 8 is further pressed in the downstream axial direction by the pressure receiving portion 10 c of the inner valve member 10. At this time, the step portion 6d of the arch portion 18 of the outer valve member 6 contacts the outlet 2a of the casing 2 and the outer variable flow channel 14 is completely closed, but the inner variable flow channel 16 is opened in the operating state A. Slightly closed than the state.
Further, in the intermediate state from the operating state A to B, the flow rate Q is maximized once exceeded the flow rate value Q 0 of the lower limit target increases with increasing pressure, the subsequent operating state B, the flow rate Q is reduced to fit the target constant flow area close to the flow rate value Q 0 of goals. On the other hand, the total cross-sectional area S of the channel decreases from the operating state A to B as the water pressure increases. In the middle from the operating state A to B, the spring constant of the outer compression unequal pitch coil spring 4 becomes larger than that during the movement from the operating state O to A, so that the outer valve member 6 is suddenly closed. When the outer valve member 6 is prevented from abruptly closing and overshooting can be suppressed, and the outer coil spring is an equal pitch coil spring and the spring constant is increased. The outer variable flow path 14 is hardly completely closed, and undershoot may occur. However, by using an unequal pitch coil spring, the spring constant increases as the outer valve member closes, so that the undershoot is reduced. Occurrence can be suppressed.

さらに、図5及び図8に示すように、作動状態Cの定流量弁1は、外側弁部材6の受圧部6aと内側弁部材10の受圧部10cのそれぞれに加わる水圧が作動状態Bよりもさらに上昇した状態となる。この状態では、外側圧縮不等ピッチコイルばね4はこれ以上縮まず、外側弁部材6のアーチ部18の段部6dがケーシング2の流出口2aに当接して外側可変流路14が完全閉鎖された状態まま、内側圧縮コイルばね8が内側弁部材10の受圧部10cにより下流側軸方向にさらに押圧される。このとき、内側可変流路16は作動状態Bの開放状態よりもさらに閉鎖される。
また、作動状態BからCへの途中の状態において、流量Qは水圧の上昇と共に作動状態Bの流量よりもわずかに増加して一旦最大となるが、その後作動状態Cでは、流量は最小目標の流量値Qに向かって減少傾向となる。一方、全流路断面積Sについては、作動状態BからCにかけて水圧の上昇と共にさらに減少する。
Further, as shown in FIGS. 5 and 8, in the constant flow valve 1 in the operating state C, the water pressure applied to each of the pressure receiving part 6 a of the outer valve member 6 and the pressure receiving part 10 c of the inner valve member 10 is higher than that in the operating state B. Further rises. In this state, the outer compression unequal pitch coil spring 4 does not contract any further, the step 6d of the arch portion 18 of the outer valve member 6 contacts the outlet 2a of the casing 2, and the outer variable flow path 14 is completely closed. The inner compression coil spring 8 is further pressed in the downstream axial direction by the pressure receiving portion 10c of the inner valve member 10 in the state where it is left. At this time, the inner variable flow path 16 is further closed than in the open state of the operating state B.
Further, in the state on the way from the operating state B to C, the flow rate Q slightly increases from the flow rate in the operating state B as the water pressure increases, and once reaches the maximum, but in the operating state C, the flow rate reaches the minimum target. the downward trend toward the flow rate value Q 0. On the other hand, the total cross-sectional area S of the flow path further decreases from the operating state B to C as the water pressure increases.

つぎに、図5及び図9〜図10に示すように、作動状態Dの定流量弁1は、外側弁部材6の受圧部6aと内側弁部材10の受圧部10cのそれぞれに加わる水圧が作動状態Cよりもさらに上昇した状態となる。この状態では、外側圧縮不等ピッチコイルばね4と内側圧縮コイルばね8は共にこれ以上縮まず、また外側弁部材6のアーチ部18の段部6dがケーシング2の流出口2aに当接して外側可変流路14が閉鎖された状態のままである。
さらに、内側弁部材10も下流側軸方向へこれ以上摺動することなく、内側可変流路16は作動状態Cの開放状態よりもわずかに閉鎖されて最小限の開度または流路断面積まで閉鎖された状態となる。すなわち、外側弁部材6と内側弁部材10がケーシング2に対して最も下流側に位置し、外側可変流路14が閉鎖されたままの状態で、かつ内側可変流路16のみが最小限度に開放されて通水状態が維持された状態となる。
また、作動状態CからDへの途中の状態において、流量Qは水圧の上昇と共に減少して作動状態Dで下限目標流量値Qに近づく。一方、全流路断面積Sについては、作動状態CからDにかけて水圧の上昇と共にさらに減少し、Dにおいて全流路面積は最小となる。その後作動状態Dよりも水圧が上昇しても、断面積Sは変わらずにほぼ一定となり、さらに水圧が上昇するとともに流量は増加する。
Next, as shown in FIGS. 5 and 9 to 10, in the constant flow valve 1 in the operation state D, the water pressure applied to each of the pressure receiving portion 6 a of the outer valve member 6 and the pressure receiving portion 10 c of the inner valve member 10 is operated. It becomes a state further elevated than state C. In this state, both the outer compression unequal pitch coil spring 4 and the inner compression coil spring 8 are not further compressed, and the step portion 6d of the arch portion 18 of the outer valve member 6 is in contact with the outlet 2a of the casing 2 to be outside. The variable flow path 14 remains closed.
Further, the inner valve member 10 does not slide further in the downstream axial direction, and the inner variable flow passage 16 is slightly closed from the open state of the operating state C to the minimum opening or flow passage cross-sectional area. It becomes a closed state. That is, the outer valve member 6 and the inner valve member 10 are located on the most downstream side with respect to the casing 2, the outer variable flow channel 14 remains closed, and only the inner variable flow channel 16 is opened to the minimum. And the water flow state is maintained.
Further, in the state on the way from the operating state C to D, the flow rate Q decreases as the water pressure increases, and approaches the lower limit target flow rate value Q 0 in the operating state D. On the other hand, the total channel cross-sectional area S further decreases as the water pressure increases from the operating state C to D, and the total channel area is minimum in D. Thereafter, even if the water pressure increases from the operating state D, the cross-sectional area S does not change and becomes substantially constant, and further, the water pressure increases and the flow rate increases.

上述した本発明の第1実施形態による定流量弁1によれば、流入口12aから流入した水の差圧に応じた外側弁部材6、内側弁部材10、外側圧縮不等ピッチコイルばね4、内側圧縮コイルばね8の一連の作動により、定流量弁1に供給される水の圧力の変動によらず流出口2aから流出させる水の流量を下限目標流量値Qから上限目標流量値Qの範囲である目標定流量域内となるように調整することができる。 According to the constant flow valve 1 according to the first embodiment of the present invention described above, the outer valve member 6, the inner valve member 10, the outer compression unequal pitch coil spring 4 according to the differential pressure of the water flowing in from the inlet 12 a, a series of operation of the inner compression coil spring 8, the upper limit target flow rate value Q 1 the flow rate of the water to flow out from the outlet 2a regardless of the variations in the pressure of the water supplied to the constant flow valve 1 from the lower limit target flow rate value Q 0 It can adjust so that it may become in the target constant flow area which is the range.

また、本実施形態の定流量弁1によれば、定流量弁本体を形成するケーシング2内に外側弁部材6が軸方向に摺動可能に配置され、この外側弁部材6の内側に内側弁部材10が軸方向に摺動可能に配置されている。さらに、外側圧縮不等ピッチコイルばね4がケーシング2の内周部2cと外側弁部材6の外周部6cとの間に外側弁部材6とほぼ同軸に配置されて、内側圧縮コイルばね8が外側弁部材6の内周部6eと内側弁部材10の外周部10bとの間に内側弁部材10とほぼ同軸に配置されている。したがって、これらの複数の部材4,6,8,10が互いのスペースを利用して、ケーシング2内の限られたスペースにコンパクトに集約されているため、定流量弁1の全体を小型化することができる。   In addition, according to the constant flow valve 1 of the present embodiment, the outer valve member 6 is slidably disposed in the axial direction in the casing 2 forming the constant flow valve body, and the inner valve is disposed inside the outer valve member 6. The member 10 is disposed so as to be slidable in the axial direction. Further, the outer compression unequal pitch coil spring 4 is disposed substantially coaxially with the outer valve member 6 between the inner peripheral portion 2c of the casing 2 and the outer peripheral portion 6c of the outer valve member 6, and the inner compression coil spring 8 is disposed outside. Between the inner peripheral portion 6e of the valve member 6 and the outer peripheral portion 10b of the inner valve member 10, the inner valve member 10 is disposed substantially coaxially. Accordingly, since the plurality of members 4, 6, 8, and 10 are compactly concentrated in a limited space in the casing 2 by using the mutual space, the entire constant flow valve 1 is reduced in size. be able to.

さらに、本実施形態の定流量弁1によれば、コイル平均径とばね定数が異なる2つの線形コイルばね4,8をほぼ同軸かつ入れ子状に配置して、組み合わせて使用するため、小型でかつ簡易な構造を備えた定流量弁を実現することができる。   Furthermore, according to the constant flow valve 1 of the present embodiment, the two linear coil springs 4 and 8 having different coil average diameters and spring constants are arranged almost coaxially and nested, and are used in combination. A constant flow valve with a simple structure can be realized.

また、本実施形態の定流量弁1によれば、外側弁部材6が内側弁部材10を軸方向に摺動可能に支持するアーチ部18を備えており、このアーチ部18の支持突起22が内側弁部材10の凹部20に挿入されているため、内側弁部材10が外側弁部材6に対して正確に軸方向に摺動することができる。また、内側弁部材10が軸方向に摺動する際、横方向への振動を防止すると共に、水の流動による内側弁部材10の急激な移動を防止することができる。   Further, according to the constant flow valve 1 of the present embodiment, the outer valve member 6 includes the arch portion 18 that supports the inner valve member 10 so as to be slidable in the axial direction. Since the inner valve member 10 is inserted into the recess 20, the inner valve member 10 can slide accurately in the axial direction with respect to the outer valve member 6. Further, when the inner valve member 10 slides in the axial direction, vibration in the lateral direction can be prevented, and rapid movement of the inner valve member 10 due to the flow of water can be prevented.

なお、上記した実施形態においては、外側コイルばねが上記外側弁部材の移動に伴いばね定数が大きくなる構成として不等ピッチで巻回されたものについて説明してきたが、これに限らず、巻回ピッチは等ピッチで径を変化させて巻回させた円錐ばねを用いるなどの変更をすることは可能である。   In the above-described embodiment, the outer coil spring has been described as being wound at an unequal pitch as a configuration in which the spring constant increases with the movement of the outer valve member. It is possible to change the pitch, for example, by using a conical spring wound by changing the diameter at an equal pitch.

本発明の第1実施形態による定流量弁を示す分解斜視図である。It is a disassembled perspective view which shows the constant flow valve by 1st Embodiment of this invention. 本発明の第1実施形態による定流量弁を示す斜視図である。It is a perspective view which shows the constant flow valve by 1st Embodiment of this invention. 図2に示す本発明の第1実施形態による定流量弁のI−I断面図である。It is II sectional drawing of the constant flow valve by 1st Embodiment of this invention shown in FIG. 図2に示す本発明の第1実施形態による定流量弁のII−II断面図である。It is II-II sectional drawing of the constant flow valve by 1st Embodiment of this invention shown in FIG. 本発明の第1実施形態の定流量弁における水圧と流量との関係、及び、水圧と全流路断面積との関係をそれぞれ定性的に示した特性線図である。It is the characteristic line figure which showed the relationship between the water pressure and flow volume in the constant flow valve of 1st Embodiment of this invention, and the relationship between a water pressure and all the flow-path cross sections qualitatively, respectively. 本発明の第1実施形態による定流量弁の作動状態Aを示す断面図である。It is sectional drawing which shows the operating state A of the constant flow valve by 1st Embodiment of this invention. 本発明の第1実施形態による定流量弁の作動状態Bを示す断面図である。It is sectional drawing which shows the operating state B of the constant flow valve by 1st Embodiment of this invention. 本発明の第1実施形態による定流量弁の作動状態Cを示す断面図である。It is sectional drawing which shows the operating state C of the constant flow valve by 1st Embodiment of this invention. 本発明の第1実施形態による定流量弁の作動状態Dを示す断面図である。It is sectional drawing which shows the operating state D of the constant flow valve by 1st Embodiment of this invention. 本発明の第1実施形態による定流量弁において、図2のIII−III断面による作動状態Dを示す断面図である。FIG. 3 is a cross-sectional view showing an operating state D along the III-III cross section of FIG.

符号の説明Explanation of symbols

1 定流量弁
2 ケーシング
4 外側圧縮不等ピッチコイルばね
6 外側弁部材
8 内側圧縮コイルばね
10 内側弁部材
12 蓋
14 外側可変流路
16 内側可変流路
18 アーチ部
20 凹部
22 支持突起
24 翼部
DESCRIPTION OF SYMBOLS 1 Constant flow valve 2 Casing 4 Outer compression non-uniform pitch coil spring 6 Outer valve member 8 Inner compression coil spring 10 Inner valve member 12 Lid 14 Outer variable flow path 16 Inner variable flow path 18 Arch part 20 Concave 22 Support protrusion 24 Wing part

Claims (3)

供給される水の圧力の変動によらず流出させる水の流量を所定量に調整する定流量弁であって、流入口と流出口が形成された定流量弁本体と、この流量弁本体の内側に上記定流量弁本体に対して摺動可能に配置され、この摺動により、外周部と上記定流量弁本体の内周部との間に形成される第1流路の断面積を変化させる外側弁部材と、
上記外側弁部材の内側に上記外側弁部材に対して摺動可能に配置され、この摺動により、外周部と上記外側弁部材の内周部との間に形成される第2流路の断面積を変化させる内側弁部材と、
上記定流量弁本体と上記外側弁部材との間に配置され、上記外側弁部材を軸方向に付勢し、上記外側弁部材に水圧が作用すると上記外側弁部材を摺動させ、上記第1流路の断面積を減少させるように縮む外側コイルばねと、
上記外側弁部材と上記内側弁部材との間に配置され、上記内側弁部材を軸方向に付勢し、上記内側弁部材に水圧が作用すると上記内側弁部材を摺動させ、上記第2流路の断面積を減少させるように縮む内側コイルばねで構成される定流量弁において
上記内側コイルばねのばね定数は、上記外側コイルばねのばね定数よりも大きく、その外側コイルばねが上記外側弁部材の移動に伴いばね定数が大きくなる単一ばねから構成されていることを特徴とする定流量弁。
A constant flow valve that adjusts the flow rate of water to flow out to a predetermined amount regardless of fluctuations in the pressure of the supplied water, and a constant flow valve body having an inlet and an outlet, and an inner side of the flow valve body Is slidably arranged with respect to the constant flow valve main body, and this sliding changes the cross-sectional area of the first flow path formed between the outer peripheral portion and the inner peripheral portion of the constant flow valve main body. An outer valve member;
The second valve is formed inside the outer valve member so as to be slidable with respect to the outer valve member, and the sliding of the second flow path formed between the outer peripheral portion and the inner peripheral portion of the outer valve member is caused by this sliding. An inner valve member that changes the area;
It is arranged between the constant flow valve main body and the outer valve member, urges the outer valve member in the axial direction, and slides the outer valve member when water pressure acts on the outer valve member, An outer coil spring that shrinks to reduce the cross-sectional area of the flow path;
The second valve is disposed between the outer valve member and the inner valve member, urges the inner valve member in the axial direction, and slides the inner valve member when water pressure acts on the inner valve member. In a constant flow valve constituted by an inner coil spring that shrinks so as to reduce the cross-sectional area of the path, the spring constant of the inner coil spring is larger than the spring constant of the outer coil spring, and the outer coil spring is the outer valve member. A constant flow valve comprising a single spring having a spring constant that increases with movement of the valve.
上記外側コイルばねが、上記外側弁部材の移動方向に不等ピッチで巻回されたコイルばねであることを特徴とする請求項1記載の定流量弁。   The constant flow valve according to claim 1, wherein the outer coil spring is a coil spring wound at an unequal pitch in the moving direction of the outer valve member. 供給される水の圧力の変動によらず流出させる水の流量を所定量に調整する定流量弁であって、流入口と流出口が形成された定流量弁本体と、この流量弁本体の内側に上記定流量弁本体に対して摺動可能に配置され、この摺動により、外周部と上記定流量弁本体の内周部との間に形成される第1流路の断面積を変化させる外側弁部材と、
上記外側弁部材の内側に上記外側弁部材に対して摺動可能に配置され、この摺動により、外周部と上記外側弁部材の内周部との間に形成される第2流路の断面積を変化させる内側弁部材と、
上記定流量弁本体と上記外側弁部材との間に配置され、上記外側弁部材を軸方向に付勢し、上記外側弁部材に水圧が作用すると上記外側弁部材を摺動させ、上記第1流路の断面積を減少させるように縮む外側コイルばねと、
上記外側弁部材と上記内側弁部材との間に配置され、上記内側弁部材を軸方向に付勢し、上記内側弁部材に水圧が作用すると上記内側弁部材を摺動させ、上記第2流路の断面積を減少させるように縮む内側コイルばねで構成される定流量弁において、
上記外側弁部材は、上記外側弁部材を横断するように延びるアーチ部と、このアーチ部に形成され上記内側弁部材を軸方向に摺動可能に支持するよう筒形状に形成された支持突起と、を備え、上記内側弁部材には、上記支持突起の筒形状における内周及び外周の両面に対向壁面を構成するよう円環状の凹部が形成されている定流量弁。
A constant flow valve that adjusts the flow rate of water to flow out to a predetermined amount regardless of fluctuations in the pressure of the supplied water, and a constant flow valve body having an inlet and an outlet, and an inner side of the flow valve body Is slidably arranged with respect to the constant flow valve main body, and this sliding changes the cross-sectional area of the first flow path formed between the outer peripheral portion and the inner peripheral portion of the constant flow valve main body. An outer valve member;
The second valve is formed inside the outer valve member so as to be slidable with respect to the outer valve member, and the sliding of the second flow path formed between the outer peripheral portion and the inner peripheral portion of the outer valve member is caused by this sliding. An inner valve member that changes the area;
It is arranged between the constant flow valve main body and the outer valve member, urges the outer valve member in the axial direction, and slides the outer valve member when water pressure acts on the outer valve member, An outer coil spring that shrinks to reduce the cross-sectional area of the flow path;
The second valve is disposed between the outer valve member and the inner valve member, urges the inner valve member in the axial direction, and slides the inner valve member when water pressure acts on the inner valve member. In a constant flow valve composed of an inner coil spring that shrinks to reduce the cross-sectional area of the path,
The outer valve member includes an arch extending so as to cross the outer valve member, and a support protrusion formed in the arch so as to support the inner valve member so as to be slidable in the axial direction. A constant flow valve in which the inner valve member is formed with an annular recess so as to constitute opposing wall surfaces on both the inner periphery and the outer periphery of the cylindrical shape of the support protrusion.
JP2008224195A 2008-09-02 2008-09-02 Constant-flow valve Pending JP2010060000A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008224195A JP2010060000A (en) 2008-09-02 2008-09-02 Constant-flow valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008224195A JP2010060000A (en) 2008-09-02 2008-09-02 Constant-flow valve

Publications (1)

Publication Number Publication Date
JP2010060000A true JP2010060000A (en) 2010-03-18

Family

ID=42187030

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008224195A Pending JP2010060000A (en) 2008-09-02 2008-09-02 Constant-flow valve

Country Status (1)

Country Link
JP (1) JP2010060000A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101184976B1 (en) 2012-04-03 2012-10-02 신우공조 주식회사 Fan coil unit
CN104879542A (en) * 2012-07-21 2015-09-02 中山市雅西环保科技有限公司 Constant flow device for replacing bubbler
CN105065743A (en) * 2012-05-03 2015-11-18 晋江市东亨工业设计有限公司 Galvanostat for gas and liquid
JP2016031094A (en) * 2014-07-28 2016-03-07 株式会社デンソー Two-stage selector valve
CN107314141A (en) * 2017-06-16 2017-11-03 深圳市红尚科技有限公司 The method that straight-through valve and straight-through valve control hydraulic pressure
KR20230130889A (en) * 2022-03-04 2023-09-12 백현수 a dispensing valve for the shower

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101184976B1 (en) 2012-04-03 2012-10-02 신우공조 주식회사 Fan coil unit
CN105065743A (en) * 2012-05-03 2015-11-18 晋江市东亨工业设计有限公司 Galvanostat for gas and liquid
CN103383016B (en) * 2012-05-03 2015-12-09 长乐市丽智产品设计有限公司 With the galvanostat of mother and sons' valve
CN104879542A (en) * 2012-07-21 2015-09-02 中山市雅西环保科技有限公司 Constant flow device for replacing bubbler
JP2016031094A (en) * 2014-07-28 2016-03-07 株式会社デンソー Two-stage selector valve
CN107314141A (en) * 2017-06-16 2017-11-03 深圳市红尚科技有限公司 The method that straight-through valve and straight-through valve control hydraulic pressure
CN107314141B (en) * 2017-06-16 2023-09-05 深圳市红尚科技有限公司 Straight-through valve and method for controlling water pressure by same
KR20230130889A (en) * 2022-03-04 2023-09-12 백현수 a dispensing valve for the shower
KR102605014B1 (en) * 2022-03-04 2023-11-23 백현수 a dispensing valve for the shower

Similar Documents

Publication Publication Date Title
JP2010060000A (en) Constant-flow valve
JP6378618B2 (en) Damping valve and shock absorber
JP6081800B2 (en) Fluid control valve and mass flow controller
JP5161186B2 (en) Check valve
JP2013050198A (en) Damper
JP4775769B2 (en) Constant flow valve
JP2014005922A (en) Valve structure
JP4785203B2 (en) Hot water tap
JP2014005923A (en) Valve structure
JP5281523B2 (en) Valve structure
JP6018517B2 (en) Solenoid valve
US20170175915A1 (en) Solenoid valve
JP2008089170A (en) Valve structure of shock absorber
JP6059548B2 (en) Solenoid valve
JP2006291987A (en) Constant flow valve
JP5357233B2 (en) Intermediate valve for operating air
JP2011064285A (en) Valve structure
JP2008106926A (en) Valve structure of damper
JPH0717894Y2 (en) Relief valve
JP2007303593A (en) Relief valve
JP5913216B2 (en) Pressure operated valve
JP5113774B2 (en) Fluid control valve
JP6514492B2 (en) Damping valve and shock absorber
JP2008309239A (en) Hydraulic shock absorber
JP4963478B2 (en) Fluid control valve