JP2010059688A - Rail breakage inspection method and rail breakage inspection device - Google Patents

Rail breakage inspection method and rail breakage inspection device Download PDF

Info

Publication number
JP2010059688A
JP2010059688A JP2008226519A JP2008226519A JP2010059688A JP 2010059688 A JP2010059688 A JP 2010059688A JP 2008226519 A JP2008226519 A JP 2008226519A JP 2008226519 A JP2008226519 A JP 2008226519A JP 2010059688 A JP2010059688 A JP 2010059688A
Authority
JP
Japan
Prior art keywords
rail
pulse signal
incident
wave
breakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008226519A
Other languages
Japanese (ja)
Other versions
JP5091811B2 (en
Inventor
Toshiaki Hasegawa
敏明 長谷川
Tomonori Itagaki
朋範 板垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyosan Electric Manufacturing Co Ltd
Original Assignee
Kyosan Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyosan Electric Manufacturing Co Ltd filed Critical Kyosan Electric Manufacturing Co Ltd
Priority to JP2008226519A priority Critical patent/JP5091811B2/en
Publication of JP2010059688A publication Critical patent/JP2010059688A/en
Application granted granted Critical
Publication of JP5091811B2 publication Critical patent/JP5091811B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machines For Laying And Maintaining Railways (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rail breakage inspection method without using a track circuit. <P>SOLUTION: A partial section of a rail R is set as an inspection object section of a rail breakage inspection device 1, and load impedance Z<SB>L</SB>equal to characteristic impedance Z0 of the rails R is connected between the rails R to terminate the other end side of the set inspection object section. The rail breakage inspection device 1 carries out incidence (transmission) of pulse signals from one end side of the inspection object section toward the other end side, and determines the presence of rail breakage/short circuit in the inspection object section based on the waveform of reflected wave received (observed) in an incidence position. Further, when determining the presence of rail breakage/short circuit, a distance L from the incidence position to an occurrence position is computed from the time ΔT required until receiving the reflected wave from the incidence of the pulse signal to the rails R. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、鉄道用のレールに破断が生じているか否かを検査するレール破断検査方法等に関する。   The present invention relates to a rail breakage inspection method for inspecting whether or not a railroad rail is broken.

従来、鉄道では、列車の位置検知を軌道回路によって行っており、この軌道回路の副次的な機能として、レール破断の検知が行われていた。一方、近年では、新たな列車制御システムとして、軌道回路を用いない移動閉塞システムの開発が進んでいる。この移動閉塞システムでは、列車の位置検知は軌道回路によらず、列車自身において、例えば車軸に取り付けた速度発電機の回転数や地上装置との無線通信によって自車の走行位置を算出し、算出した現在位置を、無線通信によって他の列車や地上装置等に送信する構成となっている。   Conventionally, in a railway, the position of a train is detected by a track circuit, and rail breakage is detected as a secondary function of the track circuit. On the other hand, in recent years, as a new train control system, development of a moving block system that does not use a track circuit has been advanced. In this mobile blockage system, train position detection is not based on the track circuit, but on the train itself, for example, the traveling position of the own vehicle is calculated by the speed of the speed generator attached to the axle or wireless communication with the ground device. The current position is transmitted to other trains or ground devices by wireless communication.

このようなシステムでは、軌道回路を必要としていないため、従来のような軌道回路を用いたレール破断検知が行えない。そこで、軌道回路を用いずにレール破断を検知する方法が提案されている。例えば、鉄道車両にレール破断検知装置を搭載する。この装置では、電気信号を、一方(前方/後方)の車輪を介してレールに送出し、レールを伝搬してきた電気信号を他方の車輪(後方/前方)を介して受信し、受信した電気信号のレベルの変化によりレール破断を判定する(例えば、特許文献1参照)。
特開2002−294609号公報
Since such a system does not require a track circuit, the conventional method cannot detect a rail break using a track circuit. Therefore, a method for detecting rail breakage without using a track circuit has been proposed. For example, a rail break detection device is mounted on a railway vehicle. In this device, an electric signal is sent to the rail via one (front / rear) wheel, an electric signal propagated through the rail is received via the other wheel (rear / front), and the received electric signal is received. The rail breakage is determined based on the level change (see, for example, Patent Document 1).
Japanese Patent Laid-Open No. 2002-294609

しかしながら、上述の特許文献1の技術は、レール上を走行する列車(車上側)において、該列車の前後の車輪間のレール破断を検知するものであり、列車を走行させる必要がある。一方、レール自体の検査は、検査員が目視や実測によって検査するのが一般的であり、列車を必要としない。本発明は、上記事情に鑑みてなされたものであり、その目的とするところは、軌道回路や列車を必要とせずに地上側においてレール破断の検査を実現する方法を提供することである。   However, the technique of the above-mentioned patent document 1 detects rail breaks between wheels before and after the train in a train traveling on the rail (the vehicle upper side), and the train needs to travel. On the other hand, the inspection of the rail itself is generally performed by an inspector by visual inspection or actual measurement, and does not require a train. This invention is made | formed in view of the said situation, The place made into the objective is providing the method of implement | achieving a rail fracture | rupture test | inspection on the ground side, without requiring a track circuit and a train.

上記課題を解決するための第1の発明は、
鉄道用のレールに破断が生じているか否かを検査するレール破断検査方法であって、
レールにパルス信号を入射することと、
前記パルス信号の入射位置において前記パルス信号の入射波に対する反射波を観測して、位相が同相の波形が観測された場合に、レール破断の発生可能性有りと判断することと、
を含むレール破断検査方法である。
The first invention for solving the above-described problems is
A rail breakage inspection method for inspecting whether or not a railroad rail is broken.
Entering a pulse signal on the rail;
Observing a reflected wave with respect to the incident wave of the pulse signal at the incident position of the pulse signal, and determining that there is a possibility of rail breakage when a waveform having the same phase is observed;
Is a rail breakage inspection method.

また、他の発明として、
鉄道用のレールに破断が生じているか否かを検査するレール破断検査装置であって、
レールにパルス信号を入射する入射手段と、
前記パルス信号の入射位置において前記パルス信号の入射波に対する反射波を観測して、位相が同相の波形が観測された場合に、レール破断の発生可能性有りと判断する判断手段と、
を備えるレール破断検査装置を構成しても良い。
As another invention,
A rail breakage inspection device for inspecting whether or not a railroad rail is broken.
An incident means for inputting a pulse signal to the rail;
A determination means for observing a reflected wave with respect to the incident wave of the pulse signal at the incident position of the pulse signal and determining that there is a possibility of rail breakage when a waveform having the same phase is observed;
A rail breakage inspection apparatus including the above may be configured.

この第1の発明等によれば、レールにパルス信号を入射し、パルス信号の入射位置において、パルス信号の入射波に対する反射波として位相が同相の反射波が観測された場合に、レール破断の発生可能性有りと判断される。レールのインピーダンスが一様ならば、レール破断の発生位置で入射波が反射されて反射波が観測されることになる。またその場合、レール破断が生じている状態とは、レールがその位置で“開放”されている状態に相当し、入射位置から見た反射係数は正値となる。従って、入射波と同相の反射波が観測されることになる。これにより、軌道回路を用いなくとも、地上側においてレール破断の検査が可能となる。   According to the first aspect of the invention, when a pulse signal is incident on the rail and a reflected wave having the same phase as the reflected wave with respect to the incident wave of the pulse signal is observed at the incident position of the pulse signal, the rail breaks. It is determined that there is a possibility of occurrence. If the impedance of the rail is uniform, the incident wave is reflected at the position where the rail breakage occurs, and the reflected wave is observed. In this case, the state in which the rail is broken corresponds to a state in which the rail is “opened” at that position, and the reflection coefficient viewed from the incident position is a positive value. Therefore, a reflected wave having the same phase as the incident wave is observed. As a result, the rail breakage can be inspected on the ground side without using a track circuit.

第2の発明として、第1の発明のレール破断検査方法であって、
前記レールの特性インピーダンスに相当する負荷インピーダンスをレール間に接続することを更に含み、
前記レール破断の発生可能性の判断は、前記パルス信号の入射位置において、前記パルス信号の入射位置と前記負荷インピーダンスの接続位置間の検査対象区間を前記パルス信号が往復伝播する時間の間、前記反射波の観測を行って当該検査対象区間におけるレール破断の発生可能性を判断することを含む、
レール破断検査方法を構成しても良い。
As a second invention, the rail fracture inspection method of the first invention,
Further comprising connecting a load impedance corresponding to the characteristic impedance of the rail between the rails;
The determination of the possibility of occurrence of the rail breakage is performed at the incident position of the pulse signal during the time that the pulse signal propagates back and forth through the inspection target section between the incident position of the pulse signal and the connection position of the load impedance. Including observing reflected waves to determine the possibility of rail breakage in the section subject to inspection,
A rail breakage inspection method may be configured.

この第2の発明によれば、レールの特性インピーダンスに相当する負荷インピーダンスがレール間に接続され、パルス信号の入射位置において、パルス信号の入射位置と負荷インピーダンスの接続位置間の検査対象区間をパルス信号が往復伝播する時間の間、反射波の観測を行って検査対象区間におけるレール破断の発生可能性が判断される。入射されたパルス信号は、レールを伝播し、負荷インピーダンスの接続位置で反射されて、反射波としてパルス信号の入射位置で観測される。従って、少なくとも、パルス信号が検査対象区間を往復伝播するのに要する時間の間、反射波の観測を行うことで、検査対象区間におけるレール破断の発生可能性を判断できることになる。   According to the second aspect of the present invention, the load impedance corresponding to the characteristic impedance of the rail is connected between the rails, and the inspection target section between the pulse signal incident position and the load impedance connection position is pulsed at the pulse signal incident position. During the time in which the signal propagates back and forth, the reflected wave is observed to determine the possibility of rail breakage in the section to be inspected. The incident pulse signal propagates through the rail, is reflected at the connection position of the load impedance, and is observed as a reflected wave at the incident position of the pulse signal. Therefore, the possibility of rail breakage in the inspection target section can be determined by observing the reflected wave at least for the time required for the pulse signal to travel back and forth in the inspection target section.

第3の発明として、第2の発明のレール破断検査方法であって、
前記パルス信号の入射は、前記検査対象区間を前記パルス信号が往復伝播する時間よりも長い時間間隔で前記パルス信号を繰り返し入射することを含み、
前記レール破断の発生可能性の判断は、前記パルス信号が入射される毎に前記レール破断の発生可能性を判断することを含む、
レール破断検査方法を構成しても良い。
As a third invention, the rail fracture inspection method of the second invention,
Incidence of the pulse signal includes repetitively incident the pulse signal at a time interval longer than the time for which the pulse signal propagates back and forth in the inspection target section,
The determination of the possibility of occurrence of the rail break includes determining the possibility of occurrence of the rail break every time the pulse signal is incident.
A rail breakage inspection method may be configured.

この第3の発明によれば、検査対象区間をパルス信号が往復伝播する時間よりも長い時間間隔でパルス信号の入射が繰り返し行われ、パルス信号が入射される毎に、レール破断の発生可能性が判断される。   According to the third aspect of the invention, the incidence of the pulse signal is repeatedly performed at a time interval longer than the time during which the pulse signal travels back and forth in the section to be inspected. Is judged.

第4の発明として、第2又は第3の発明のレール破断検査方法であって、
前記パルス信号のパルス幅を、前記検査対象区間長に応じて変更すること、
を更に含むレール破断検査方法を構成しても良い。
As 4th invention, it is the rail fracture inspection method of 2nd or 3rd invention,
Changing the pulse width of the pulse signal according to the section length to be inspected,
A rail breakage inspection method that further includes:

この第4の発明によれば、レールに入射されるパルス信号のパルス幅が、検査対象区間長に応じて変更される。入射されたパルス信号は、レール中を伝播するに従ってその波形が減衰し、伝播長が長くなるほど減衰の程度が大きくなる。減衰の程度が大きくなると、入射位置において反射波が観測されなくなってしまう。このため、検査対象区間長が長いほど、パルス幅を広くするように変更することで、パルス信号がレール中を伝播することで減衰したとしても、入射位置における反射波が観測可能となる。   According to the fourth aspect of the invention, the pulse width of the pulse signal incident on the rail is changed according to the inspection target section length. The incident pulse signal attenuates its waveform as it propagates through the rail, and the degree of attenuation increases as the propagation length increases. When the degree of attenuation increases, the reflected wave is not observed at the incident position. For this reason, the longer the inspection target section length, the wider the pulse width, so that the reflected wave at the incident position can be observed even if the pulse signal is attenuated by propagating through the rail.

第5の発明として、第2又は第3の発明のレール破断検査方法であって、
正弦波を自乗した正弦自乗波の半周期分の波形を、前記パルス信号として生成することと、
前記正弦波の周波数を、前記検査対象区間長に応じて変更することと、
を更に含むレール破断検査方法を構成しても良い。
As 5th invention, it is the rail fracture inspection method of 2nd or 3rd invention,
Generating a waveform corresponding to a half cycle of a sine square wave obtained by squaring a sine wave as the pulse signal;
Changing the frequency of the sine wave according to the length of the section to be inspected;
A rail breakage inspection method that further includes:

この第5の発明によれば、正弦自乗波の半周期分の波形がパルス信号として生成されるとともに、正弦波の周波数が検査対象区間長に応じて変更される。正弦波の周波数が変更されると、正弦自乗波の半周期の長さが変更されることになり、生成されるパルス信号のパルス幅が変更されることになる。また、パルス信号を正弦自乗波の半周期分の波形といった急峻な波形とすることで、レールを伝播中に減衰したとしても、反射波の波形の検出が容易になる。   According to the fifth aspect, a half-cycle waveform of the sine square wave is generated as a pulse signal, and the frequency of the sine wave is changed according to the length of the inspection target section. When the frequency of the sine wave is changed, the length of the half cycle of the sine square wave is changed, and the pulse width of the generated pulse signal is changed. Further, by making the pulse signal a steep waveform such as a waveform corresponding to a half cycle of the sine square wave, even if the pulse signal is attenuated during propagation, the waveform of the reflected wave can be easily detected.

第6の発明として、第1〜第5の何れかの発明のレール破断検査方法であって、
前記反射波の観測において入射波と位相が同相の波形が観測された場合に、前記パルス信号の入射から当該反射波の観測までに要した時間と、前記パルス信号の前記レール上の信号伝播速度とを用いて、レール破断の被疑対象位置を算出することと、
を更に含むレール破断検査方法を構成しても良い。
As a sixth invention, the rail fracture inspection method of any one of the first to fifth inventions,
In the observation of the reflected wave, when a waveform having the same phase as the incident wave is observed, the time required from the incident of the pulse signal to the observation of the reflected wave, and the signal propagation speed of the pulse signal on the rail To calculate the suspected position of rail breakage, and
A rail breakage inspection method that further includes:

この第6の発明によれば、入射波と位相が同相の波形が観測された場合に、パルス信号の入射から反射波の観測までに要した時間と、パルス信号のレール上の信号伝播速度とを用いて、レール破断の被擬発生位置が算出される。ここで、被擬発生位置とは、レール破断が発生したと推定される位置のことである。   According to the sixth aspect of the present invention, when a waveform having the same phase as the incident wave is observed, the time required from the incidence of the pulse signal to the observation of the reflected wave, the signal propagation speed on the rail of the pulse signal, and Is used to calculate the simulated occurrence position of the rail fracture. Here, the simulated occurrence position is a position where a rail fracture is estimated to have occurred.

第7の発明として、第1〜第6の何れかの発明のレール破断検査方法であって、
前記反射波の観測において入射波と位相が逆相の波形が観測された場合に、軌道短絡の発生可能性有りと判断すること、
を更に含むレール破断検査方法を構成しても良い。
As a seventh invention, the rail fracture inspection method of any one of the first to sixth inventions,
Determining that there is a possibility of an orbital short circuit when a wave having an opposite phase to the incident wave is observed in the observation of the reflected wave;
A rail breakage inspection method that further includes:

この第7の発明によれば、入射波と位相が逆相の波形が観測された場合に、軌道短絡の可能性有りと判断される。レールに軌道短絡が生じた場合、入射位置から見た反射係数は負値となる。従って、入射波と逆相の反射波が観測されることになる。   According to the seventh aspect of the present invention, it is determined that there is a possibility of an orbital short circuit when a waveform having an opposite phase to the incident wave is observed. When a track short circuit occurs in the rail, the reflection coefficient viewed from the incident position is a negative value. Therefore, a reflected wave having a phase opposite to that of the incident wave is observed.

本発明によれば、軌道回路を用いずに地上側でレール破断の検査が可能となる。すなわち、レールにパルス信号を入射し、パルス信号の入射位置において、パルス信号の入射波に対する反射波として位相が同相の反射波が観測された場合に、レール破断の発生可能性有りと判断される。レールのインピーダンスが一様ならば、レール破断の発生位置で入射波が反射されて反射波が観測されることになる。またその場合、レール破断が生じている状態とは、レールがその位置で“開放”されている状態に相当し、入射位置から見た反射係数は正値となる。従って、入射波と同相の反射波が観測されることになる。   According to the present invention, it is possible to inspect a rail fracture on the ground side without using a track circuit. That is, when a pulse signal is incident on the rail and a reflected wave having the same phase as the reflected wave with respect to the incident wave of the pulse signal is observed at the incident position of the pulse signal, it is determined that there is a possibility that the rail breaks. . If the impedance of the rail is uniform, the incident wave is reflected at the position where the rail breakage occurs, and the reflected wave is observed. In this case, the state in which the rail is broken corresponds to a state in which the rail is “opened” at that position, and the reflection coefficient viewed from the incident position is a positive value. Therefore, a reflected wave having the same phase as the incident wave is observed.

以下、図面を参照して、本発明の好適な実施形態を説明する。
[原理]
先ず、本実施形態の鉄道のレール破断検査の原理を説明する。本実施形態のレール破断検査は、TDR(Time Domain Reflectometry:時間領域反射率測定法)を利用している。TDRは、被測定体にパルス信号を入射し、そのパルス信号の反射によって被測定体のインピーダンスの変化を測定する方法である。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
[principle]
First, the principle of rail rail break inspection of this embodiment will be described. The rail fracture inspection of this embodiment uses TDR (Time Domain Reflectometry). TDR is a method in which a pulse signal is incident on a measurement object and a change in impedance of the measurement object is measured by reflection of the pulse signal.

図1は、本実施形態のレール破断検査の原理を説明する図である。同図に示すように、鉄道用レールRの一部区間が、レール破断の検査対象区間として定められる。この検査対象区間の他端側(終端位置)では、レールR間に負荷インピーダンスZが接続されている。つまり、他端側が負荷インピーダンスZで終端されている。そして、検査対象区間の一端側(入射位置)から、入射波としてパルス信号が、終端位置に向けて入射される。入射波はレールRを伝播し、終端部にて反射されて反射波として入射側で観測される。 FIG. 1 is a diagram for explaining the principle of rail break inspection according to this embodiment. As shown in the figure, a partial section of the rail R for rail is defined as a section subject to rail fracture inspection. In the other end of the inspected section (end position), the load impedance Z L is connected between the rails R. That is, the other end is terminated with a load impedance Z L. Then, a pulse signal as an incident wave is incident toward the end position from one end side (incident position) of the inspection target section. The incident wave propagates through the rail R, is reflected at the terminal portion, and is observed on the incident side as a reflected wave.

図2は、入射波と反射波との関係の一例を示す図である。同図において、入射波の振幅をV、反射波の振幅をVとすると、反射係数ρは次式(1)で与えられる。

Figure 2010059688
式(1)において、Zは負荷インピーダンス、ZはレールRの特性インピーダンスである。ここで、負荷インピーダンスZを特性インピーダンスZに一致させる(Z=Z)、反射係数ρはゼロ(ρ=0)となり、反射波は生じない。 FIG. 2 is a diagram illustrating an example of a relationship between an incident wave and a reflected wave. In the figure, the amplitude of V i of the incident wave, when the amplitude V R of the reflected wave, the reflection coefficient ρ is given by the following equation (1).
Figure 2010059688
In Expression (1), Z L is a load impedance, and Z 0 is a characteristic impedance of the rail R. Here, when the load impedance Z L is matched with the characteristic impedance Z 0 (Z L = Z 0 ), the reflection coefficient ρ becomes zero (ρ = 0), and no reflected wave is generated.

また、レール破断や在線列車による軌道短絡等によってレールRにインピーダンス不連続点が生じると、その不連続点で入射波の一部が反射する。   Further, when an impedance discontinuity occurs on the rail R due to a rail break or a track short circuit due to a train on the train, a part of the incident wave is reflected at the discontinuity.

図3は、軌道にレール破断/短絡が生じた場合を示す図である。同図に示すように、検査対象区間内でレール破断が生じた場合、その破断位置でインピーダンスが不連続となって入射波が反射される。これは、その位置でレールRが“開放”された状態に相当する。つまり、式(1)において、Z>Z、とした場合に相当し、反射係数ρは、0<ρ≦1となる。従って、入射波と反射波との波形の正負が一致する。 FIG. 3 is a diagram illustrating a case where a rail break / short circuit occurs on the track. As shown in the figure, when a rail break occurs in the section to be inspected, the impedance becomes discontinuous at the break position and the incident wave is reflected. This corresponds to a state in which the rail R is “opened” at that position. That is, in the formula (1), this corresponds to the case where Z L > Z 0 , and the reflection coefficient ρ is 0 <ρ ≦ 1. Accordingly, the positive and negative waveforms of the incident wave and the reflected wave coincide.

一方、在線列車の車輪による軌道短絡が生じた場合、その短絡位置でインピーダンスが不連続となって入射波が反射される。つまり、式(1)において、Z<Z、とした場合に相当し、反射係数ρは、−1≦ρ<0、となる。従って、入射波と反射波との波形の正負が逆となる。 On the other hand, when a track short circuit occurs due to a wheel of a train in line, the impedance becomes discontinuous at the short circuit position, and the incident wave is reflected. That is, in the formula (1), this corresponds to the case where Z L <Z 0 , and the reflection coefficient ρ is −1 ≦ ρ <0. Therefore, the positive and negative waveforms of the incident wave and the reflected wave are reversed.

このように、レールRへの入射波に対する反射波の有無から、レール破断/短絡の発生有無を判断できる。更に、入射波と反射波との波形の正負によって、レール破断が生じたのか列車在線かを判断できる。つまり、入射波と反射との波形の正負が一致するならば、レール破断が発生したのであり、正負が逆ならば、列車在線であることが判断できる。   In this way, it is possible to determine whether or not a rail break / short circuit has occurred based on the presence or absence of a reflected wave with respect to an incident wave on the rail R. Furthermore, it can be determined whether the rail break has occurred or the train is on the basis of the sign of the incident wave and the reflected wave. In other words, if the positive and negative waveforms of the incident wave and the reflected wave coincide with each other, a rail break has occurred, and if the positive and negative are opposite, it can be determined that the train is on the train.

また、入射波の反射位置、すなわち、レール破断/短絡が生じたと推定される位置(被擬発生位置)は、入射波の入射から反射波が観測されるまでに要する時間ΔTをもとに、算出される。すなわち、入射位置から反射位置までの距離Lは、次式(2)で与えられる。

Figure 2010059688
ここで、VはレールR中の電磁波の伝播速度であり、次式(3)で与えられる。
Figure 2010059688
ここで、εは軌道の比誘電率であり、μは軌道の比透磁率である。 In addition, the reflection position of the incident wave, that is, the position where the rail break / short-circuit is estimated to occur (the simulated occurrence position) is based on the time ΔT required until the reflected wave is observed after the incident wave is incident. Calculated. That is, the distance L from the incident position to the reflection position is given by the following equation (2).
Figure 2010059688
Here, V p is the propagation speed of the electromagnetic wave in the rail R, and is given by the following equation (3).
Figure 2010059688
Here, ε is the relative permittivity of the track, and μ is the relative permeability of the track.

[構成]
図4は、上述の原理を利用したレール破断検査装置1の構成図である。レール破断検査装置1は、例えば軌道近傍に設置され、レール破断/短絡の発生を検査する。検査結果は、無線通信等によって中央管理装置や軌道を走行中の列車等に送信される。
[Constitution]
FIG. 4 is a configuration diagram of the rail breakage inspection apparatus 1 using the above-described principle. The rail breakage inspection device 1 is installed, for example, in the vicinity of a track, and inspects the occurrence of a rail breakage / short circuit. The inspection result is transmitted to a central management device or a train traveling on a track by wireless communication or the like.

先ず、レールRの一部区間が、レール破断検査装置1の検査対象区間として設定される。この検査対象区間は、電気的に1本のレールとみなせる区間であり、絶縁継ぎ目を含まないように設定される。なお、理想的には、継ぎ目を含まないように検査対象区間を設定すると良い。検査対象区間の他端側(終端位置)は、レールRの特性インピーダンスZに一致する負荷インピーダンスZがレールR間に接続されて終端されている。そして、レール破断検査装置1は、検査対象区間の一端側から終端側に向けて、入射波としてパルス信号をレールRに送信(入射)し、入射位置で観測される反射波をもとに、対象区間内におけるレール破断/短絡の発生有無やその発生位置を判断する。 First, a partial section of the rail R is set as an inspection target section of the rail breakage inspection apparatus 1. This section to be inspected is a section that can be electrically regarded as one rail, and is set so as not to include an insulation seam. Ideally, the inspection target section should be set so as not to include the joint. The other end of the inspected section (end position), the load impedance Z L which matches the characteristic impedance Z 0 of the rail R is connected between the rails R are terminated. The rail breakage inspection device 1 transmits (incidents) a pulse signal to the rail R as an incident wave from one end side to the end side of the inspection target section, and based on the reflected wave observed at the incident position, The presence / absence and occurrence position of rail break / short circuit in the target section are determined.

なお、レール破断検査装置1とレールRとの間には、レールRの特性インピーダンスとの整合を図るための整合トランスや、レールRから流れ込む交流を阻止するためのブロッキング(静電容量等)が、適宜設けられる。   Between the rail breakage inspection device 1 and the rail R, there is a matching transformer for matching with the characteristic impedance of the rail R and blocking (capacitance or the like) for preventing an alternating current flowing from the rail R. , Provided as appropriate.

また、レール破断検査装置1は、パルス信号生成部10と、送信部20と、受信部30と、制御部40とを備えて構成される。   The rail breakage inspection apparatus 1 includes a pulse signal generation unit 10, a transmission unit 20, a reception unit 30, and a control unit 40.

パルス信号生成部10は、パルス信号を生成する。図5は、パルス信号生成部10におけるパルス信号の生成を説明する図である。同図に示すように、パルス信号生成部10では、先ず、周波数Fの正弦波(sin波形)を生成する。なお、発振周波数Fは、制御部40によって制御される。次いで、この正弦波を自乗した正弦自乗波(sin波)を生成する。そして、この正弦自乗波の波形のうち、正値の半周期分の信号波形を取り出してパルス信号とする。ここで、正弦自乗波とするのは、急峻な波形のパルス信号とするためであり、この正弦自乗波の半周期分を取り出すことで、図5の示すパルス電圧Vの半値V/2での幅(半値幅)Twを短くして急峻性を高めた1つのパルス信号波形を生成する。 The pulse signal generation unit 10 generates a pulse signal. FIG. 5 is a diagram illustrating generation of a pulse signal in the pulse signal generation unit 10. As shown in the figure, the pulse signal generator 10 first generates a sine wave (sin waveform) having a frequency F. The oscillation frequency F is controlled by the control unit 40. Next, a sine square wave (sin 2 wave) obtained by squaring this sine wave is generated. Then, a signal waveform corresponding to a positive half-cycle is extracted from the waveform of the sine square wave and used as a pulse signal. Here, the sine square wave is used to make a pulse signal having a steep waveform. By extracting the half cycle of the sine square wave, the half voltage V / 2 of the pulse voltage V shown in FIG. One pulse signal waveform is generated by shortening the width (half-value width) Tw 1 to enhance the steepness.

送信部20は、パルス信号生成部10によって生成されたパルス信号を、入射波としてレールRの一端側から入射(送信)する。このとき、制御部40の制御に従って、所定の時間間隔でパルス信号を間欠的に入射する。受信部30は、レールRの一端側に到達した反射波を受信する。   The transmission unit 20 enters (transmits) the pulse signal generated by the pulse signal generation unit 10 from one end side of the rail R as an incident wave. At this time, a pulse signal is intermittently incident at predetermined time intervals under the control of the control unit 40. The receiving unit 30 receives the reflected wave that has reached one end of the rail R.

制御部40は、検査対象のレールRのレール破断/短絡を検査する処理を行う。すなわち、パルス信号生成部10における正弦波の発振周波数Fを、検査対象区間のレールの長さ(対象区間長)Dに応じて制御する。具体的には、対象区間長Dが長いほど、発振周波数Fを低くして、生成されるパルス信号の幅(パルス幅)Twを大きくする。これは、レールRを伝播する信号の伝播距離が長いほど、その信号波形の減衰が大きくなるためである。図6に、対象区間長Dと発振周波数Fとの関係の一例を示す。なお、同図に示した値は一例であり、レールの設置状況によって異なる。 The control unit 40 performs a process of inspecting a rail break / short circuit of the rail R to be inspected. That is, the oscillation frequency F of the sine wave in the pulse signal generation unit 10 is controlled according to the rail length (target section length) D of the inspection target section. Specifically, the longer the target section length D is, the lower the oscillation frequency F is, and the width (pulse width) Tw 0 of the generated pulse signal is increased. This is because the longer the propagation distance of the signal propagating through the rail R, the greater the attenuation of the signal waveform. FIG. 6 shows an example of the relationship between the target section length D and the oscillation frequency F. In addition, the value shown in the figure is an example, and varies depending on the installation situation of the rail.

また、制御部40は、送信部20におけるパルス信号の送信時間間隔を制御する。具体的には、入射したパルス信号が検査対象区間の終端位置で反射した場合に、反射波が入射側に到達するのに要する時間Ttより長い時間を、パルス信号の送信時間間隔とする。
なお、最長到達時間Ttは、Tt=(1/V)×D×2、で算出される。
Further, the control unit 40 controls the transmission time interval of the pulse signal in the transmission unit 20. Specifically, when the incident pulse signal is reflected at the end position of the section to be inspected, a time longer than the time Tt required for the reflected wave to reach the incident side is set as a transmission time interval of the pulse signal.
The longest arrival time Tt is calculated by Tt = (1 / V p ) × D × 2.

また、制御部40は、送信部20によるパルス信号を送信すると、このパルス信号に対する反射波の受信を待機する。そして、送信部20からのパルス信号の送信から所定の待機時間Trが経過しても、受信部30にて反射波が受信されないならば、対象区間内のレールRには、レール破断も軌道短絡も発生していないと判断する。待機時間Trは、最長到達時間Ttより長く設定される。   Moreover, if the control part 40 transmits the pulse signal by the transmission part 20, it will wait for reception of the reflected wave with respect to this pulse signal. If a reflected wave is not received by the receiving unit 30 even after a predetermined waiting time Tr has elapsed from the transmission of the pulse signal from the transmitting unit 20, the rail R in the target section will also have a rail fracture or a track short circuit. It is determined that no problem has occurred. The standby time Tr is set longer than the longest arrival time Tt.

一方、送信部20にて反射波が受信されたならば、対象区間内のレールRにレール破断/短絡が発生したと判断し、受信した反射波の正負から、レール破断が生じたのか、列車在線による軌道短絡が生じたのかを判断する。すなわち、入射波と反射波との波形の正負が一致するならば、レール破断が生じたと判断し、波形の正負が逆ならば、軌道短絡が生じたと判断する。次いで、送信部20によるパルス信号の送信から、受信部30における反射波の受信までに要した時間ΔTをもとに、式(2)に従って、レール破断/短絡が生じた位置(距離L)を被擬発生位置として算出する。   On the other hand, if the reflected wave is received by the transmission unit 20, it is determined that a rail break / short circuit has occurred in the rail R in the target section, and whether the rail break has occurred based on the positive / negative of the received reflected wave, the train It is judged whether or not a track short circuit has occurred due to a standing wire. That is, if the positive and negative waveforms of the incident wave and the reflected wave match, it is determined that a rail break has occurred, and if the positive and negative waveforms are opposite, it is determined that a track short circuit has occurred. Next, the position (distance L) where the rail breakage / short-circuit occurs is calculated according to the equation (2) based on the time ΔT required from the transmission of the pulse signal by the transmission unit 20 to the reception of the reflected wave at the reception unit 30. Calculated as the simulated occurrence position.

[作用・効果]
このように、本実施形態によれば、レールRの一部区間がレール破断検査装置1の検査対象区間として設定され、この設定された検査対象区間の他端側は、レールR間に、レールRの特性インピーダンスZ0に等しい負荷インピーダンスZが接続されて終端されている。そして、レール破断検査装置1では、検査対象区間の一端側から他端側に向けてパルス信号を入射(送信)し、入射位置において受信(観測)された反射波の波形をもとに、検査対象区間内のレール破断/短絡の発生有無を判断する。更に、レール破断/短絡の発生有りと判断した場合には、レールRへのパルス信号の入射から反射波の受信までに要した時間ΔTから、入射位置から発生位置までの距離Lを算出する。これにより、軌道回路を用いなくとも、レール破断/短絡の発生有無の検査が可能となるとともに、レール破断/短絡の発生位置の算出が可能となる。
[Action / Effect]
Thus, according to this embodiment, a partial section of the rail R is set as an inspection target section of the rail breakage inspection apparatus 1, and the other end side of the set inspection target section is between the rails R. equal the load impedance Z L to the characteristic impedance Z0 of R is connected is terminated. In the rail fracture inspection apparatus 1, a pulse signal is incident (transmitted) from one end side to the other end side of the section to be inspected, and the inspection is performed based on the waveform of the reflected wave received (observed) at the incident position. Judge whether rail break / short circuit occurs in the target section. Further, when it is determined that the rail break / short circuit has occurred, the distance L from the incident position to the generation position is calculated from the time ΔT required from the incidence of the pulse signal to the rail R until the reception of the reflected wave. Accordingly, it is possible to inspect whether or not a rail break / short circuit has occurred without using a track circuit, and to calculate the occurrence position of the rail break / short circuit.

[変形例]
なお、本発明の適用可能な実施形態は、上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲で適宜変更可能なのは勿論である。
[Modification]
It should be noted that embodiments to which the present invention can be applied are not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit of the present invention.

(A)負荷インピーダンスZ
レールが無限に長いと仮定できる理想的な場合には、検査対象区間の他端側を、負荷インピーダンスZで終端しなくとも良い。この場合、レール破断/短絡が生じていないならば、入射波(パルス信号)は反射されず、入射位置において反射波が観測されないことになる。一方、レール破断/短絡が生じているならば、その発生位置で入射波が反射されて、入射位置で反射波が観測されることになる。また、長さDの検査対象区間を設定した場合、パルス信号の入射から、この入射波が入射位置から対象区間長Dだけ離れた位置で反射されて入射位置に戻ってくるのに要する時間Ttの間、反射波の観測を待機し、反射波が観測されなければ、検査対象区間内ではレール破断/短絡が生じていないと判断できる。
(A) Load impedance Z L
Rail when it is ideally be assumed infinitely long, the other end of the inspection target section may not be terminated with a load impedance Z L. In this case, if no rail break / short circuit occurs, the incident wave (pulse signal) is not reflected, and no reflected wave is observed at the incident position. On the other hand, if a rail break / short-circuit occurs, the incident wave is reflected at the position where the rail breakage / short circuit occurs, and the reflected wave is observed at the incident position. In addition, when an inspection target section having a length D is set, a time Tt required for the incident wave to be reflected at a position separated by the target section length D from the incident position and return to the incident position after the pulse signal is incident. During this time, the observation of the reflected wave is awaited, and if the reflected wave is not observed, it can be determined that the rail break / short circuit has not occurred in the inspection target section.

(B)入射波(パルス信号)
また、入射波として入射するパルス信号は正弦自乗波の半周期分の波形に限らず、正弦三乗波の半周期分の波形としても良いし、矩形波やインパルス波としても良い。
(B) Incident wave (pulse signal)
The pulse signal incident as the incident wave is not limited to a waveform corresponding to a half cycle of a sine square wave, but may be a waveform corresponding to a half cycle of a sine square wave, or may be a rectangular wave or an impulse wave.

レール破断検査原理の説明図。Explanatory drawing of a rail fracture inspection principle. 入射波及び反射波の一例。An example of an incident wave and a reflected wave. レール破断/短絡の発生時の入射波と反射波との関係図。The relationship diagram of the incident wave and reflected wave at the time of rail fracture / short-circuit occurrence. レール破断検査装置の構成図。The block diagram of a rail fracture inspection apparatus. パルス信号生成方法の説明図。Explanatory drawing of a pulse signal generation method. 対象区間長と正弦波の発振周波数との関係の一例。An example of the relationship between object section length and the oscillation frequency of a sine wave.

符号の説明Explanation of symbols

1 レール破断検査装置
10 パルス信号生成部、20 送信部、30 受信部、40 制御部
R レール
DESCRIPTION OF SYMBOLS 1 Rail break inspection apparatus 10 Pulse signal production | generation part, 20 Transmission part, 30 Reception part, 40 Control part R Rail

Claims (8)

鉄道用のレールに破断が生じているか否かを検査するレール破断検査方法であって、
レールにパルス信号を入射することと、
前記パルス信号の入射位置において前記パルス信号の入射波に対する反射波を観測して、位相が同相の波形が観測された場合に、レール破断の発生可能性有りと判断することと、
を含むレール破断検査方法。
A rail breakage inspection method for inspecting whether or not a railroad rail is broken.
Entering a pulse signal on the rail;
Observing a reflected wave with respect to the incident wave of the pulse signal at the incident position of the pulse signal, and determining that there is a possibility of rail breakage when a waveform having the same phase is observed;
Rail break inspection method including
前記レールの特性インピーダンスに相当する負荷インピーダンスをレール間に接続することを更に含み、
前記レール破断の発生可能性の判断は、前記パルス信号の入射位置において、前記パルス信号の入射位置と前記負荷インピーダンスの接続位置間の検査対象区間を前記パルス信号が往復伝播する時間の間、前記反射波の観測を行って当該検査対象区間におけるレール破断の発生可能性を判断することを含む、
請求項1に記載のレール破断検査方法。
Further comprising connecting a load impedance corresponding to the characteristic impedance of the rail between the rails;
The determination of the possibility of occurrence of the rail breakage is performed at the incident position of the pulse signal during the time that the pulse signal propagates back and forth through the inspection target section between the incident position of the pulse signal and the connection position of the load impedance. Including observing reflected waves to determine the possibility of rail breakage in the section subject to inspection,
The rail fracture inspection method according to claim 1.
前記パルス信号の入射は、前記検査対象区間を前記パルス信号が往復伝播する時間よりも長い時間間隔で前記パルス信号を繰り返し入射することを含み、
前記レール破断の発生可能性の判断は、前記パルス信号が入射される毎に前記レール破断の発生可能性を判断することを含む、
請求項2に記載のレール破断検査方法。
The incident of the pulse signal includes repeatedly incident the pulse signal at a time interval longer than the time for the pulse signal to travel back and forth in the inspection target section,
The determination of the possibility of occurrence of the rail break includes determining the possibility of occurrence of the rail break every time the pulse signal is incident.
The rail fracture inspection method according to claim 2.
前記パルス信号のパルス幅を、前記検査対象区間長に応じて変更すること、
を更に含む請求項2又は3に記載のレール破断検査方法。
Changing the pulse width of the pulse signal according to the section length to be inspected,
The rail fracture inspection method according to claim 2 or 3, further comprising:
正弦波を自乗した正弦自乗波の半周期分の波形を、前記パルス信号として生成することと、
前記正弦波の周波数を、前記検査対象区間長に応じて変更することと、
を更に含む請求項2又は3に記載のレール破断検査方法。
Generating a waveform corresponding to a half cycle of a sine square wave obtained by squaring a sine wave as the pulse signal;
Changing the frequency of the sine wave according to the length of the section to be inspected;
The rail fracture inspection method according to claim 2 or 3, further comprising:
前記反射波の観測において入射波と位相が同相の波形が観測された場合に、前記パルス信号の入射から当該反射波の観測までに要した時間と、前記パルス信号の前記レール上の信号伝播速度とを用いて、レール破断の被疑発生位置を算出することと、
を更に含む請求項1〜5の何れか一項に記載のレール破断検査方法。
In the observation of the reflected wave, when a waveform having the same phase as the incident wave is observed, the time required from the incident of the pulse signal to the observation of the reflected wave, and the signal propagation speed of the pulse signal on the rail To calculate the suspected occurrence position of the rail break, and
The rail fracture inspection method according to any one of claims 1 to 5, further comprising:
前記反射波の観測において入射波と位相が逆相の波形が観測された場合に、軌道短絡の発生可能性有りと判断すること、
を更に含む請求項1〜6の何れか一項に記載のレール破断検査方法。
Determining that there is a possibility of an orbital short circuit when a wave having an opposite phase to the incident wave is observed in the observation of the reflected wave;
The rail fracture inspection method according to any one of claims 1 to 6, further comprising:
鉄道用のレールに破断が生じているか否かを検査するレール破断検査装置であって、
レールにパルス信号を入射する入射手段と、
前記パルス信号の入射位置において前記パルス信号の入射波に対する反射波を観測して、位相が同相の波形が観測された場合に、レール破断の発生可能性有りと判断する判断手段と、
を備えるレール破断検査装置。
A rail breakage inspection device for inspecting whether or not a railroad rail is broken.
An incident means for inputting a pulse signal to the rail;
A determination means for observing a reflected wave with respect to the incident wave of the pulse signal at the incident position of the pulse signal and determining that there is a possibility of rail breakage when a waveform having the same phase is observed;
Rail breakage inspection apparatus comprising:
JP2008226519A 2008-09-03 2008-09-03 Rail break inspection method and rail break inspection apparatus Active JP5091811B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226519A JP5091811B2 (en) 2008-09-03 2008-09-03 Rail break inspection method and rail break inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226519A JP5091811B2 (en) 2008-09-03 2008-09-03 Rail break inspection method and rail break inspection apparatus

Publications (2)

Publication Number Publication Date
JP2010059688A true JP2010059688A (en) 2010-03-18
JP5091811B2 JP5091811B2 (en) 2012-12-05

Family

ID=42186776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226519A Active JP5091811B2 (en) 2008-09-03 2008-09-03 Rail break inspection method and rail break inspection apparatus

Country Status (1)

Country Link
JP (1) JP5091811B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205944A1 (en) 2020-04-06 2021-10-14 東日本旅客鉄道株式会社 Maintenance device, maintenance system, and maintenance method
CN114137364A (en) * 2021-11-12 2022-03-04 天津航空机电有限公司 Interference wave elimination method based on time domain reflection method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105113349B (en) * 2015-08-05 2016-09-28 湘潭大学 A kind of non-fragment orbit safety detection method

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343586A (en) * 1976-10-01 1978-04-19 Hitachi Ltd Method and apparatus for ultrasonic inspector for dissimilar metals# welded portion
JPS58135450A (en) * 1982-02-05 1983-08-12 Hitachi Ltd Method and device for discrimination of defect by using ultrasonic wave
JPS60104436U (en) * 1983-12-16 1985-07-16 五洋建設株式会社 Drain material cutting detection device
JPH0317569A (en) * 1989-06-14 1991-01-25 Shikoku Electric Power Co Inc Apparatus for detecting disconnection trouble point of electric cable
JPH06167528A (en) * 1992-11-30 1994-06-14 Isuzu Motors Ltd Connection inspecting method for connector
JPH1032143A (en) * 1996-07-12 1998-02-03 Mitsubishi Heavy Ind Ltd Impedance-matching device for high-voltage pulse power supply
JPH1164176A (en) * 1997-06-13 1999-03-05 Shimizu Corp Monitoring device for structural member
JP2000224870A (en) * 1999-02-02 2000-08-11 Nissin High Voltage Co Ltd Pulse power-supply apparatus for klystron
JP2001153848A (en) * 1999-11-25 2001-06-08 Railway Technical Res Inst Ultrasonic measuring method, ultrasonic flaw detecting method and ultrasonic measuring device
WO2002021120A1 (en) * 2000-09-04 2002-03-14 The Nippon Signal Co., Ltd. Flaw detection system
WO2002067410A1 (en) * 2001-02-22 2002-08-29 Mitsubishi Denki Kabushiki Kaisha Discharge pulse generator
JP2002294609A (en) * 2001-04-03 2002-10-09 Mitsubishi Electric Corp Rail breakage detecting device
JP2004061361A (en) * 2002-07-30 2004-02-26 Toshiba Corp Piping breakage investigating apparatus
JP2007155733A (en) * 2005-12-06 2007-06-21 Southwest Research Inst Automatic discrimination method for welded part signal from defective part signal in long distance waveguide inspection using phase comparison

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5343586A (en) * 1976-10-01 1978-04-19 Hitachi Ltd Method and apparatus for ultrasonic inspector for dissimilar metals# welded portion
JPS58135450A (en) * 1982-02-05 1983-08-12 Hitachi Ltd Method and device for discrimination of defect by using ultrasonic wave
JPS60104436U (en) * 1983-12-16 1985-07-16 五洋建設株式会社 Drain material cutting detection device
JPH0317569A (en) * 1989-06-14 1991-01-25 Shikoku Electric Power Co Inc Apparatus for detecting disconnection trouble point of electric cable
JPH06167528A (en) * 1992-11-30 1994-06-14 Isuzu Motors Ltd Connection inspecting method for connector
JPH1032143A (en) * 1996-07-12 1998-02-03 Mitsubishi Heavy Ind Ltd Impedance-matching device for high-voltage pulse power supply
JPH1164176A (en) * 1997-06-13 1999-03-05 Shimizu Corp Monitoring device for structural member
JP2000224870A (en) * 1999-02-02 2000-08-11 Nissin High Voltage Co Ltd Pulse power-supply apparatus for klystron
JP2001153848A (en) * 1999-11-25 2001-06-08 Railway Technical Res Inst Ultrasonic measuring method, ultrasonic flaw detecting method and ultrasonic measuring device
WO2002021120A1 (en) * 2000-09-04 2002-03-14 The Nippon Signal Co., Ltd. Flaw detection system
WO2002067410A1 (en) * 2001-02-22 2002-08-29 Mitsubishi Denki Kabushiki Kaisha Discharge pulse generator
JP2002294609A (en) * 2001-04-03 2002-10-09 Mitsubishi Electric Corp Rail breakage detecting device
JP2004061361A (en) * 2002-07-30 2004-02-26 Toshiba Corp Piping breakage investigating apparatus
JP2007155733A (en) * 2005-12-06 2007-06-21 Southwest Research Inst Automatic discrimination method for welded part signal from defective part signal in long distance waveguide inspection using phase comparison

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021205944A1 (en) 2020-04-06 2021-10-14 東日本旅客鉄道株式会社 Maintenance device, maintenance system, and maintenance method
KR20220149607A (en) 2020-04-06 2022-11-08 히가시니혼료카쿠데츠도 가부시키가이샤 Conservation Devices, Conservation Systems and Conservation Methods
CN115397714A (en) * 2020-04-06 2022-11-25 株式会社京三制作所 Maintenance device, maintenance system, and maintenance method
CN115397714B (en) * 2020-04-06 2024-06-04 株式会社京三制作所 Maintenance device, maintenance system, and maintenance method
CN114137364A (en) * 2021-11-12 2022-03-04 天津航空机电有限公司 Interference wave elimination method based on time domain reflection method
CN114137364B (en) * 2021-11-12 2024-02-09 天津航空机电有限公司 Interference wave elimination method based on time domain reflection method

Also Published As

Publication number Publication date
JP5091811B2 (en) 2012-12-05

Similar Documents

Publication Publication Date Title
AU2010366614B2 (en) Locating of partial-discharge-generating faults
CN108333476A (en) A kind of cable fault TDR localization methods and system considering cable attenuation characteristic
CN102809715B (en) On-line fault location device for high-voltage power cable
US20050076716A1 (en) Method and apparatus for detecting guideway breaks and occupation
US20180011063A1 (en) System for monitoring the condition of structural elements
CN106627662B (en) A kind of train positioning device and method
JP6618640B2 (en) Rail break detection device and rail break detection system
CN209590197U (en) A kind of cable fault positioning device based on time-domain pulse reflection method
RU2287883C1 (en) Method for ice detection on power transmission line conductors
Burger A practical continuous operating rail break detection system using guided waves
JP5091811B2 (en) Rail break inspection method and rail break inspection apparatus
US20240278815A1 (en) Broken rail detector
Wei et al. Research on broken rail real-time detection system for ultrasonic guided wave
CN104279424B (en) Detection and the method and system of display pipes structural failure situation
KR101110070B1 (en) Monitoring system of pipeline inner wall using sensor networks
CN203759193U (en) Direct-current partial discharge detection device of converter transformer
RU2511644C1 (en) Acoustic method of rail track failure detection
US20220111878A1 (en) Device, system and method for monitoring conditions on a railway track
EP3391064B1 (en) A method of locating a fault in a power transmission medium
CN110672722B (en) Locomotive wheel tread defect online detection system and method based on electromagnetic ultrasound
JPH074942A (en) Measuring method of inside diameter
CN105424803B (en) A kind of Railway wheelset flaw detection processing method and processing device
JP3129881B2 (en) Train position detection method and device
US20020053914A1 (en) Arc location
JP2008157897A (en) Signal line inspection system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120914

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5091811

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150921

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250