JP2010059095A - Epoxy resin composition and method of manufacturing the same - Google Patents

Epoxy resin composition and method of manufacturing the same Download PDF

Info

Publication number
JP2010059095A
JP2010059095A JP2008226284A JP2008226284A JP2010059095A JP 2010059095 A JP2010059095 A JP 2010059095A JP 2008226284 A JP2008226284 A JP 2008226284A JP 2008226284 A JP2008226284 A JP 2008226284A JP 2010059095 A JP2010059095 A JP 2010059095A
Authority
JP
Japan
Prior art keywords
epoxy resin
resin composition
compound
anhydride
epoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008226284A
Other languages
Japanese (ja)
Inventor
Hirosuke Yamamoto
裕輔 山本
Junko Shigehara
淳孝 重原
Yoshihiro Katayama
義博 片山
Eiji Masai
英司 政井
Masaya Nakamura
雅哉 中村
Yuichiro Otsuka
祐一郎 大塚
Seishi Ohara
誠資 大原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Forestry and Forest Products Research Institute
Nagaoka University of Technology NUC
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Original Assignee
Toyota Industries Corp
Forestry and Forest Products Research Institute
Nagaoka University of Technology NUC
Tokyo University of Agriculture and Technology NUC
Tokyo University of Agriculture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp, Forestry and Forest Products Research Institute, Nagaoka University of Technology NUC, Tokyo University of Agriculture and Technology NUC, Tokyo University of Agriculture filed Critical Toyota Industries Corp
Priority to JP2008226284A priority Critical patent/JP2010059095A/en
Publication of JP2010059095A publication Critical patent/JP2010059095A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Plural Heterocyclic Compounds (AREA)
  • Epoxy Resins (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a biodegradation epoxy resin composition which includes an epoxy compound of PDC and has high tensile bond strength and low-temperature rapid cure property. <P>SOLUTION: A compound is represented by general formula (I). In the formula, n denotes an integer of 1-4. The epoxy resin composition includes the compound. A method of manufacturing the compound and a curing method of the composition are provided. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、接着剤、塗料、電気電子材料等に幅広い用途を持つ、新規エポキシ化合物を含むエポキシ樹脂組成物、及びその製造方法に関する。   The present invention relates to an epoxy resin composition containing a novel epoxy compound, which has a wide range of uses in adhesives, paints, electrical and electronic materials, and a method for producing the same.

本発明者らは、代表的なバイオマス資源であるリグニンからバイオリアクターにより2-ピロン-4,6-ジカルボン酸(2-pyron-4,6-dicarboxylic acid)(以下「PDC」と略す)を効率的に得る方法を確立してきた(特許文献1)。また、本発明者らは、PDCの2官能性を利用して、生分解性のポリエステル、ポリアミド等のポリマーを製造する方法を報告している(例えば、特許文献2)。   The present inventors efficiently used 2-pyron-4,6-dicarboxylic acid (hereinafter abbreviated as “PDC”) from a typical biomass resource, lignin, using a bioreactor. Has been established (Patent Document 1). In addition, the present inventors have reported a method for producing a polymer such as biodegradable polyester or polyamide using the bifunctionality of PDC (for example, Patent Document 2).

一方、エポキシ樹脂はその優れた硬化物性のため、コーティング剤、接着剤等として広く利用されているが、従来のエポキシ樹脂組成物は、使用時に主剤と硬化剤とからなる2成分を混合する二液型のものが主流で、主剤及び硬化剤の計量、混合時の精密な作業が必要な上に、経時的に増粘するという問題点があった。これを解決したものとして一液型の熱硬化性エポキシ樹脂組成物が開発されているが、硬化温度が高く、硬化時間も長い。また、生分解性のエポキシ樹脂も知られてはいるが(例えば、特許文献3)、その数は非常に少ない。   On the other hand, epoxy resins are widely used as coating agents, adhesives, and the like due to their excellent cured properties, but conventional epoxy resin compositions are mixed with two components consisting of a main agent and a curing agent when used. The liquid type is the mainstream, and there is a problem that the measurement of the main agent and the curing agent and precise work at the time of mixing are required and the viscosity increases with time. As a solution to this problem, a one-component thermosetting epoxy resin composition has been developed, but the curing temperature is high and the curing time is long. Biodegradable epoxy resins are also known (for example, Patent Document 3), but the number is very small.

特開2005−278549号公報JP 2005-278549 A 特開2004−256747号公報JP 2004-256747 A 特開2006−111654号公報JP 2006-111654 A

従って、本発明は、PDCのエポキシ化合物を含む、引張接着強度が高くかつ低温速硬化性の生分解性エポキシ樹脂組成物を提供することを目的とする。   Accordingly, an object of the present invention is to provide a biodegradable epoxy resin composition having a high tensile adhesive strength and containing a PDC epoxy compound and having a low temperature fast curing property.

本発明者らは、上記課題を解決するべく鋭意検討した結果、PDCに特定の不飽和アルコールを脱水反応させてエステルとし、次いで該エステルをエポキシ化するか、あるいは脱水縮合剤の存在下に、PDCに特定のエポキシアルコールを反応させることにより、新規なPDCのエポキシ化合物が得られることを見出した。また、該エポキシ化合物を含むエポキシ樹脂組成物、及び該組成物の硬化方法を見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have made PDC to dehydrate a specific unsaturated alcohol to give an ester, and then epoxidize the ester, or in the presence of a dehydration condensing agent, It has been found that a novel epoxy compound of PDC can be obtained by reacting a specific epoxy alcohol with PDC. Moreover, the epoxy resin composition containing this epoxy compound and the hardening method of this composition were discovered, and it came to complete this invention.

すなわち、(1)本発明は、下記一般式(I):   That is, (1) the present invention provides the following general formula (I):

Figure 2010059095
Figure 2010059095

[式中、nは、1〜4の整数を示す。]
で表される化合物を提供する。
(2)本発明は、前記nが1である、(1)記載の化合物を提供する。
(3)本発明は、(1)又は(2)記載の化合物を含むエポキシ樹脂組成物を提供する。
(4)本発明は、硬化剤を更に含む、(3)記載のエポキシ樹脂組成物を提供する。
(5)本発明は、前記硬化剤が、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物、無水マレイン酸、無水フタル酸、無水コハク酸及び4-メチルフタル酸無水物から選ばれる、(4)記載のエポキシ樹脂組成物を提供する。
(6)本発明は、接着剤組成物である、(4)又は(5)記載のエポキシ樹脂組成物を提供する。
(7)本発明は、2-ピロン-4,6-ジカルボン酸(2-pyron-4,6-dicarboxylic acid)にR1-OH(R1は、CH2=CH-(CH2)n-を示し、nは、1〜4の整数を示す)を脱水反応させてエステルとし、次いで該エステルをエポキシ化するか、又は脱水縮合剤の存在下に、2-ピロン-4,6-ジカルボン酸に下記式:
[Wherein n represents an integer of 1 to 4. ]
The compound represented by these is provided.
(2) The present invention provides the compound according to (1), wherein n is 1.
(3) This invention provides the epoxy resin composition containing the compound as described in (1) or (2).
(4) The present invention provides the epoxy resin composition according to (3), further comprising a curing agent.
(5) In the present invention, the curing agent is selected from 4-methylcyclohexane-1,2-dicarboxylic anhydride, maleic anhydride, phthalic anhydride, succinic anhydride, and 4-methylphthalic anhydride. The epoxy resin composition described above is provided.
(6) The present invention provides the epoxy resin composition according to (4) or (5), which is an adhesive composition.
(7) The present invention relates to 2-pyron-4,6-dicarboxylic acid and R 1 —OH (R 1 is CH 2 ═CH— (CH 2 ) n − N represents an integer of 1 to 4) to give an ester, and then epoxidize the ester, or 2-pyrone-4,6-dicarboxylic acid in the presence of a dehydrating condensing agent. The following formula:

Figure 2010059095
Figure 2010059095

[式中、nは、1〜4の整数を示す。]
で表されるエポキシアルコールを反応させることを特徴とする、(1)又は(2)記載の化合物の製造方法を提供する。
(8)本発明は、(4)〜(6)のいずれか1記載のエポキシ樹脂組成物を100〜130℃の温度で硬化させることを特徴とする、該組成物の硬化方法を提供する。
[Wherein n represents an integer of 1 to 4. ]
A method for producing a compound according to (1) or (2), characterized by reacting an epoxy alcohol represented by the formula:
(8) The present invention provides a method for curing the composition, wherein the epoxy resin composition according to any one of (4) to (6) is cured at a temperature of 100 to 130 ° C.

本発明によれば、引張接着強度が高くかつ低温速硬化性の生分解性エポキシ樹脂組成物を製造できる。従って、本発明のエポキシ樹脂組成物は、特に接着剤に好適に用いることができる。   According to the present invention, it is possible to produce a biodegradable epoxy resin composition having a high tensile adhesive strength and a low temperature fast curing property. Therefore, the epoxy resin composition of the present invention can be suitably used particularly for an adhesive.

本発明の新規エポキシ化合物は、下記一般式(I):   The novel epoxy compound of the present invention has the following general formula (I):

Figure 2010059095
Figure 2010059095

[式中、nは、1〜4の整数を示す。]
で表される。本発明の新規エポキシ化合物は、好ましくは、一般式(I)においてnが1であるPDCのジグリシジルエステルである。
[Wherein n represents an integer of 1 to 4. ]
It is represented by The novel epoxy compound of the present invention is preferably a diglycidyl ester of PDC in which n is 1 in the general formula (I).

本発明の式(I)で表されるエポキシ化合物は、以下の2つの合成法によって製造できる。
合成法1:
The epoxy compound represented by the formula (I) of the present invention can be produced by the following two synthesis methods.
Synthesis method 1:

Figure 2010059095
Figure 2010059095

すなわち、PDCに、式(III):R1-OH(R1は、CH2=CH-(CH2)n-を示し、nは、1〜4の整数を示す)で表されるアルコールを脱水反応させてエステル(IV)とし、次いで該エステル(IV)を常法によりエポキシ化する。以下に合成法1について詳述する。 That is, an alcohol represented by the formula (III): R 1 —OH (R 1 represents CH 2 ═CH— (CH 2 ) n —, n represents an integer of 1 to 4) is added to PDC. Dehydration reaction is carried out to ester (IV), and this ester (IV) is epoxidized by a conventional method. The synthesis method 1 is described in detail below.

先ず、PDCと式(III)で表される不飽和アルコールとを酸触媒の存在下に脱水反応させて、対応するエステルとする。   First, PDC and unsaturated alcohol represented by formula (III) are dehydrated in the presence of an acid catalyst to obtain a corresponding ester.

PDCは、例えば、特開2005-278549号公報に記載の発酵法により、バニリン、シリンガアルデヒド、バニリン酸、シリンガ酸もしくはプロトカテク酸のようなリグニン等の植物由来の低分子化合物、又はその混合物から容易に得ることができる。
式(III)で表される不飽和アルコールとしては、2-プロペン-1-オール(アリルアルコール)、3-ブテン-1-オール、4-ペンテン-1-オール、5-へキセン-1-オールが挙げられる。アリルアルコールは市販されており、他の不飽和アルコールについては例えば特願2006-212496号公報に記載の方法によって合成できる。不飽和アルコールは、理論的にはPDC 1モルに対して2当量以上使用すればよいが、PDCの脱水反応をスムーズに進行させるために10当量以上使用することが好ましい。
PDC is produced from a plant-derived low molecular weight compound such as lignin such as vanillin, syringaldehyde, vanillic acid, syringic acid or protocatechuic acid, or a mixture thereof, for example, by the fermentation method described in JP-A-2005-278549. Can be easily obtained.
Examples of unsaturated alcohols represented by formula (III) include 2-propen-1-ol (allyl alcohol), 3-buten-1-ol, 4-penten-1-ol, and 5-hexen-1-ol. Is mentioned. Allyl alcohol is commercially available, and other unsaturated alcohols can be synthesized by, for example, the method described in Japanese Patent Application No. 2006-212496. Theoretically, the unsaturated alcohol may be used in an amount of 2 equivalents or more relative to 1 mole of PDC, but it is preferably used in an amount of 10 equivalents or more in order to allow the PDC dehydration reaction to proceed smoothly.

酸触媒としては、硫酸、クロル硫酸、リン酸等の鉱酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等のスルホン酸類、ヘテロポリ酸、固体酸、ポリマー担持酸など、種々のものを用いることができる。   As the acid catalyst, various acids such as mineral acids such as sulfuric acid, chlorosulfuric acid and phosphoric acid, sulfonic acids such as p-toluenesulfonic acid and trifluoromethanesulfonic acid, heteropolyacid, solid acid, polymer-supported acid, etc. may be used. it can.

反応は、反応溶媒の還流温度で数時間行えばよい。反応溶媒としては、共沸下に水を除去できるものが好ましく、例えば、べンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒が挙げられる。   The reaction may be performed for several hours at the reflux temperature of the reaction solvent. The reaction solvent is preferably one that can remove water under azeotropic conditions, and examples thereof include aromatic hydrocarbon solvents such as benzene, toluene, and xylene.

あるいは、対応するエステル(IV)は、脱水縮合剤の存在下に、PDCと式(III)で表される不飽和アルコールとを反応させて得てもよい。
脱水縮合剤としては、N.N'-ジイソプロピルカルボジイミド(DIC)、ジシクロヘキシルカルボジイミド(DCC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)等が使用できる。脱水縮合剤の添加量はPDC 1モルに対して、1〜3当量、好ましくは1.3〜1.7当量である。
脱水反応には、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、水酸化カリウム、トリメチルアミン、トリエチルアミンン、N,N,N',N'-テトラメチルエチレンジアミン、ジイソプロピルアミン、ジイソプロピルエチルアミン、N-メチルピペリジン、2,2,6,6-テトラメチル-N-メチルジピペリジン、ピリジン、N,N-ジメチルアミノピリジン、N-メチルモルホリン、ナトリウムエトキシド等の塩基を存在させる。
Alternatively, the corresponding ester (IV) may be obtained by reacting PDC with an unsaturated alcohol represented by the formula (III) in the presence of a dehydrating condensing agent.
As the dehydrating condensing agent, N.N′-diisopropylcarbodiimide (DIC), dicyclohexylcarbodiimide (DCC), 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride (EDC) and the like can be used. The amount of the dehydrating condensing agent added is 1 to 3 equivalents, preferably 1.3 to 1.7 equivalents, per 1 mol of PDC.
For dehydration reaction, sodium carbonate, potassium carbonate, sodium hydroxide, potassium hydroxide, trimethylamine, triethylamine, N, N, N ', N'-tetramethylethylenediamine, diisopropylamine, diisopropylethylamine, N-methylpiperidine, 2 , 2,6,6-tetramethyl-N-methyldipiperidine, pyridine, N, N-dimethylaminopyridine, N-methylmorpholine, sodium ethoxide, and other bases are present.

反応は、0℃〜室温の温度で1時間程度行えばよい。反応溶媒としては、テトラヒドロフラン、ジエチルエーテル、1,4-ジオキサン、ジメトキシエタン等のエーテル系溶媒;ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;シクロヘキサン、シクロヘキサノン等の脂環式炭化水素系溶媒;酢酸エステル等のエステル系溶媒;アセトン、メチルエチルケトン等のケトン系溶媒;1,3-プロパンジオール、1,4-ブタンジオール等のジオール系溶媒などが使用できる。   The reaction may be performed at a temperature of 0 ° C. to room temperature for about 1 hour. As a reaction solvent, ether solvents such as tetrahydrofuran, diethyl ether, 1,4-dioxane and dimethoxyethane; aromatic hydrocarbon solvents such as benzene, toluene and xylene; alicyclic hydrocarbon solvents such as cyclohexane and cyclohexanone Ester solvents such as acetate esters; ketone solvents such as acetone and methyl ethyl ketone; diol solvents such as 1,3-propanediol and 1,4-butanediol can be used.

このようにして得られたエステル(IV)を、過酸化物、例えばm-クロロ過安息香酸、によるエポキシ化反応に供することにより、定量的に式(I)の化合物が得られる。   The ester (IV) thus obtained is subjected to an epoxidation reaction with a peroxide, such as m-chloroperbenzoic acid, to quantitatively obtain the compound of formula (I).

合成法2:   Synthesis method 2:

Figure 2010059095
Figure 2010059095

すなわち、脱水縮合剤の存在下に、PDCと上記式(II)(式中、nは、1〜4の整数を示す。)で表されるエポキシアルコールを反応させることにより、式(I)の化合物が得られる。式(II)のエポキシアルコールとしては、2,3-エポキシ-1-プロパノール(グリシドール)、3,4-エポキシ-1-ブタノール、4,5-エポキシ-ヘプタノールが挙げられる。グリシドールは市販されており、他のエポキシアルコールは対応する不飽和アルコールをエポキシ化することにより容易に得ることができる。
あるいは、式(I)の化合物は、PDCを塩化チオニル等により酸クロリドに変換し、塩基存在下にこの酸クロリドを式(II)のエポキシアルコールと反応させて得てもよい。
That is, in the presence of a dehydrating condensing agent, PDC is reacted with an epoxy alcohol represented by the above formula (II) (wherein n represents an integer of 1 to 4), to thereby form the formula (I). A compound is obtained. Examples of the epoxy alcohol of the formula (II) include 2,3-epoxy-1-propanol (glycidol), 3,4-epoxy-1-butanol, and 4,5-epoxy-heptanol. Glycidol is commercially available, and other epoxy alcohols can be easily obtained by epoxidizing the corresponding unsaturated alcohols.
Alternatively, the compound of formula (I) may be obtained by converting PDC to acid chloride with thionyl chloride or the like, and reacting this acid chloride with the epoxy alcohol of formula (II) in the presence of a base.

式(II)のエポキシアルコールは、PDC 1モルに対して、1〜3当量、好ましくは1.3〜1.7当量使用すればよい。また、使用できる脱水縮合剤、及びその添加量は、合成法1と同様である。   The epoxy alcohol of the formula (II) may be used in an amount of 1 to 3 equivalents, preferably 1.3 to 1.7 equivalents, relative to 1 mol of PDC. Further, the dehydrating condensation agent that can be used and the amount of addition thereof are the same as those in Synthesis Method 1.

本発明の組成物は、上記の方法によって得られた式(I)のエポキシ化合物を含み、好ましくは硬化剤を更に含む。硬化剤としては、種々の酸無水物やポリアミンが使用できるが、硬化を加温下で行う場合には、例えば、無水マレイン酸、無水コハク酸、無水フタル酸、4-メチルフタル酸無水物、4-メチルシクロヘキサンジカルボン酸無水物、無水トリメリット酸、無水ピロメリット酸、テトラヒドロ無水フタル酸等の酸無水物を使用することが好ましい。これらの中で、無水マレイン酸、無水コハク酸、無水フタル酸、4-メチルフタル酸無水物、又は4-メチルシクロヘキサンジカルボン酸無水物がより好ましい。
硬化剤は、式(I)のエポキシ化合物に対する当量比(硬化剤/エポキシ化合物)が、0.3〜1.5の範囲内であって、組成物全体量において30〜60質量%の範囲内で含まれていることが好ましい。
The composition of the present invention comprises an epoxy compound of formula (I) obtained by the above method, preferably further comprising a curing agent. As the curing agent, various acid anhydrides and polyamines can be used, but when curing is performed under heating, for example, maleic anhydride, succinic anhydride, phthalic anhydride, 4-methylphthalic anhydride, 4 -It is preferable to use acid anhydrides such as methylcyclohexanedicarboxylic anhydride, trimellitic anhydride, pyromellitic anhydride, tetrahydrophthalic anhydride. Among these, maleic anhydride, succinic anhydride, phthalic anhydride, 4-methylphthalic anhydride, or 4-methylcyclohexanedicarboxylic anhydride is more preferable.
The curing agent has an equivalent ratio (curing agent / epoxy compound) to the epoxy compound of formula (I) in the range of 0.3 to 1.5, and is included in the range of 30 to 60% by mass in the total amount of the composition. Preferably it is.

本発明のエポキシ樹脂組成物の硬化は、本発明のエポキシ樹脂組成物を例えば接着剤として使用する場合には、該組成物をガラス、セラミックス、金属、耐熱性プラスチック等の材料間に介在させ、必要により最大50 MPaの圧力を加えて圧着しながら、100〜130℃の比較的低い温度で、約10分間〜約1時間、好ましくは約10〜約30分間で行うことができる。   When the epoxy resin composition of the present invention is used as an adhesive, for example, the epoxy resin composition of the present invention is interposed between materials such as glass, ceramics, metal, and heat-resistant plastic, It can be carried out at a relatively low temperature of 100 to 130 ° C. for about 10 minutes to about 1 hour, preferably about 10 to about 30 minutes, while applying a pressure of up to 50 MPa if necessary.

硬化反応においては、アミン系化合物、イミダゾール系化合物、イミダゾリン系化合物、アミド系化合物等の、一般的な硬化促進剤を添加してもよい。また、本発明の組成物には、本発明の効果を損なわない範囲で、反応性希釈剤、可塑剤、シリカ等の無機充填剤、難燃剤、離型剤、消泡剤、沈降防止剤、酸化防止剤、シランカップリング剤、染料、顔料、着色剤等を配合することができる。   In the curing reaction, general curing accelerators such as amine compounds, imidazole compounds, imidazoline compounds, and amide compounds may be added. Further, in the composition of the present invention, a reactive diluent, a plasticizer, an inorganic filler such as silica, a flame retardant, a mold release agent, an antifoaming agent, an anti-settling agent, as long as the effects of the present invention are not impaired. Antioxidants, silane coupling agents, dyes, pigments, colorants and the like can be blended.

本発明の組成物は、接着剤、コーティング剤、塗料、電気電子材料等に利用できる。また、本発明の接着剤組成物は、各種のガラス、セラミックス、金属、耐熱性プラスチック等に適用可能である。   The composition of the present invention can be used for adhesives, coating agents, paints, electrical and electronic materials, and the like. Further, the adhesive composition of the present invention is applicable to various glasses, ceramics, metals, heat resistant plastics and the like.

本発明の式(I)の化合物は、上記の組成物の主剤の他に、PDCを含む生分解性グリーンプラスチックス製造の原料として好適に使用できる。例えば、式(I)の化合物をジオール、ジカルボン酸又はジアミンとそれぞれ反応させて、ポリ(エステル-エーテル)、ポリ(エステル-エステル)、ポリ(エステル-アミン)を製造できる。   The compound of the formula (I) of the present invention can be suitably used as a raw material for producing biodegradable green plastics containing PDC in addition to the main ingredient of the above composition. For example, a compound of formula (I) can be reacted with a diol, dicarboxylic acid or diamine, respectively, to produce poly (ester-ether), poly (ester-ester), poly (ester-amine).

次に実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples at all.

製造例1 2-ピロン-4,6-ジカルボン酸 ジグリシジルエステル(合成法1)
塩化カルシウム管、フットボール型磁気攪拌子、ディーンスターク装置、及びジムロート冷却器を備えた100 ml四つ口フラスコに、PDC(1.0 g,5.43 mmol)、アリルアルコール(75 ml)、乾燥ベンゼン(75 ml)、触媒としてp-トルエンスルホン酸一水和物(0.1 g)を加えて、沸点還流下に6時間反応した。反応途中、ディーンスターク装置から、随時、水混じりのベンゼンを抜き取り、相当する分量の乾燥ベンゼンを加える操作を10回行った。反応終了後に液体を減圧留去して得られる薄茶色固体にメタノール(25 ml)を加えて60℃に加温して溶解させ、−5℃に冷却してPDCのジアリルエステル(DAPDC)を再結晶させ、ろ集し、乾燥させた。収率97.5%、1.40 g。融点 59.8℃(DSC, 10℃/分の昇温速度におけるピーク温度)。
1H-NMR (300 MHz, CDCl3)δ(ppm):7.48 (1.0H, d, J = 0.9 Hz), 7.12 (1.0H, d, J = 1.1 Hz), 6.01-5.88 (2.1H, m), 5.34 (4.4H, dt, J = 20.8, 8.6 Hz), 4.79 (4.5H, t, J = 2.8 Hz)。
13C-NMR (300 MHz, CDCl3)δ(ppm):161.95, 159.44, 158.53, 149.43, 142.90, 130.70, 130.60, 122.64, 120.02, 119.92, 108.22, 67.24, 67.06。
FT-IR (液状,ν(cm-1)):3091, 2950, 1734, 1647, 1560, 1452, 1414, 1398, 1370, 1328, 1247, 1173, 1116, 982, 942, 869, 779, 762, 713, 652, 557。
Production Example 1 2-pyrone-4,6-dicarboxylic acid diglycidyl ester (synthesis method 1)
In a 100 ml four-necked flask equipped with a calcium chloride tube, a football-type magnetic stirrer, a Dean-Stark apparatus, and a Dimroth condenser, PDC (1.0 g, 5.43 mmol), allyl alcohol (75 ml), dry benzene (75 ml) ), P-toluenesulfonic acid monohydrate (0.1 g) was added as a catalyst, and the mixture was reacted for 6 hours under reflux at the boiling point. During the reaction, from the Dean Stark apparatus, water-containing benzene was withdrawn from time to time, and the corresponding amount of dry benzene was added 10 times. After completion of the reaction, the liquid was distilled off under reduced pressure. Methanol (25 ml) was added to the resulting light brown solid, heated to 60 ° C to dissolve, cooled to -5 ° C, and PDC diallyl ester (DAPDC) was regenerated. Crystallize, collect by filtration and dry. Yield 97.5%, 1.40 g. Melting point 59.8 ° C (DSC, peak temperature at a heating rate of 10 ° C / min).
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.48 (1.0H, d, J = 0.9 Hz), 7.12 (1.0H, d, J = 1.1 Hz), 6.01-5.88 (2.1H, m ), 5.34 (4.4H, dt, J = 20.8, 8.6 Hz), 4.79 (4.5H, t, J = 2.8 Hz).
13 C-NMR (300 MHz, CDCl 3 ) δ (ppm): 161.95, 159.44, 158.53, 149.43, 142.90, 130.70, 130.60, 122.64, 120.02, 119.92, 108.22, 67.24, 67.06.
FT-IR (Liquid, ν (cm -1 )): 3091, 2950, 1734, 1647, 1560, 1452, 1414, 1398, 1370, 1328, 1247, 1173, 1116, 982, 942, 869, 779, 762, 713, 652, 557.

次いで、塩化カルシウム管、フットボール型磁気攪拌子及びジムロート還流管を備えた100 mL四つ口フラスコに、上で得られたDAPDC(0.302 g,1.14 mmol)とクロロホルム(5 ml)を入れ、攪拌した。m-クロロ過安息香酸(1.44 g,5.44 mmol)のクロロホルム(60 ml)溶液を加え、油浴中で66℃に昇温、5日間沸点温度で還流した。反応後生じた固体をろ去し、ろ液を10 %-Na2SO3水溶液、0.05 M-塩酸水溶液、飽和食塩水でそれぞれ1回ずつ洗浄し、無水硫酸マグネシウムで乾燥した。乾燥剤をろ去後、溶媒を減圧留去し、得られた黄色の粘性液体を60℃のメタノール(10 ml)に溶解した。−5℃に冷却して析出する無色針状結晶をろ集し、標題化合物(DGPDC)を収率89 %(収量0.301 g)で得た。融点 59.8℃(DSC, 10℃/分の昇温速度におけるピーク温度)。
1H-NMR (300 MHz, CDCl3) δ(ppm):7.52 (1.0H, d, J = 1.5 Hz), 7.16 (1.0H, d, J = 1.5 Hz), 4.65 (2.2H, ddd, J = 14.6, 11.9, 2.6 Hz), 4.14 (2.2H, ddd, J = 13.4, 6.9, 5.4 Hz), 3.30 (2.1H, tt, J = 5.3, 2.0 Hz), 2.88 (2.2H, q, J = 4.7 Hz), 2.70-2.67 (2.2H, m)。
13C-NMR (300 MHz, CDCl3) δ(ppm):161.95, 159.17, 158.49, 149.02, 142.36, 123.14, 108.45, 67.32, 66.99, 48.71, 48.69, 44.65, 44.56。
FT-IR (液状,ν(cm-1)):3086, 3005, 1738, 1641, 1564, 1398, 1358, 1327, 1245, 1176, 1118, 982, 907, 861, 762, 709, 668, 615, 559, 505, 440, 404。
Next, the DAPDC (0.302 g, 1.14 mmol) obtained above and chloroform (5 ml) were placed in a 100 mL four-necked flask equipped with a calcium chloride tube, a football-type magnetic stirrer and a Dimroth reflux tube and stirred. . A solution of m-chloroperbenzoic acid (1.44 g, 5.44 mmol) in chloroform (60 ml) was added, and the mixture was heated to 66 ° C. in an oil bath and refluxed at the boiling point for 5 days. The solid produced after the reaction was removed by filtration, and the filtrate was washed once each with 10% -Na 2 SO 3 aqueous solution, 0.05 M-hydrochloric acid aqueous solution and saturated brine, and dried over anhydrous magnesium sulfate. After removing the desiccant by filtration, the solvent was distilled off under reduced pressure, and the resulting yellow viscous liquid was dissolved in methanol (10 ml) at 60 ° C. The colorless needle crystals that precipitated upon cooling to −5 ° C. were collected by filtration to give the title compound (DGPDC) in 89% yield (0.301 g yield). Melting point 59.8 ° C (DSC, peak temperature at a heating rate of 10 ° C / min).
1 H-NMR (300 MHz, CDCl 3 ) δ (ppm): 7.52 (1.0H, d, J = 1.5 Hz), 7.16 (1.0H, d, J = 1.5 Hz), 4.65 (2.2H, ddd, J = 14.6, 11.9, 2.6 Hz), 4.14 (2.2H, ddd, J = 13.4, 6.9, 5.4 Hz), 3.30 (2.1H, tt, J = 5.3, 2.0 Hz), 2.88 (2.2H, q, J = 4.7 Hz), 2.70-2.67 (2.2H, m).
13 C-NMR (300 MHz, CDCl 3 ) δ (ppm): 161.95, 159.17, 158.49, 149.02, 142.36, 123.14, 108.45, 67.32, 66.99, 48.71, 48.69, 44.65, 44.56.
FT-IR (liquid, ν (cm -1 )): 3086, 3005, 1738, 1641, 1564, 1398, 1358, 1327, 1245, 1176, 1118, 982, 907, 861, 762, 709, 668, 615, 559, 505, 440, 404.

製造例2 2-ピロン-4,6-ジカルボン酸 ジグリシジルエステル(合成法1)
塩化カルシウム管及びフットボール型磁気攪拌子を備えた100 ml四つ口フラスコに、PDC(1.00 g,5.43 mmol)、アリルアルコール(1.02 ml,15.0 mmol)のTHF(20 ml)溶液を入れ、攪拌した。0〜5℃に冷却し、N,N’-ジイソプロピルカルボジイミド (DIC) (1.64 ,13.0 mmol) と4-(N,N-ジメチルアミノ)ピリジン (DMAP)(0.133 g,1.09 mmol) のTHF(20 ml)溶液を10分かけて滴下した。その後30分間攪拌し、常温以下で減圧濃縮して溶液量を約1/2に減じ、0〜5℃に冷却して副生成物の尿素誘導体をろ去した。溶媒を減圧留去してクロロホルム(50 ml)を加え、0.05M-塩酸、蒸留水、飽和食塩水で各1回ずつ洗浄、無水硫酸マグネシウムで乾燥し、乾燥剤をろ去し、減圧濃縮した。この溶液を5φ×20 cmの200メッシュシリカゲルカラムクロマトグラフィー(展開溶媒:クロロホルム: THF = 20: 1) で精製、第一流出分を集めて減圧留去し、ジイソプロピルエーテルで再結晶してDAPDCを白色塊状固体として収率95.0 % (収量1.36 g) で得た。
次いで、製造例1と同様にして、標題化合物を収率87 %(収量0.294 g)で得た。該化合物の融点、1H-NMR、13C-NMR及びFT-IRスペクトルは、製造例1で得られたDGPDCのそれと同じであった。
Production Example 2 2-pyrone-4,6-dicarboxylic acid diglycidyl ester (Synthesis Method 1)
PDC (1.00 g, 5.43 mmol) and allyl alcohol (1.02 ml, 15.0 mmol) in THF (20 ml) were placed in a 100 ml four-necked flask equipped with a calcium chloride tube and a football-type magnetic stir bar and stirred. . Cool to 0-5 ° C and add N, N'-diisopropylcarbodiimide (DIC) (1.64, 13.0 mmol) and 4- (N, N-dimethylamino) pyridine (DMAP) (0.133 g, 1.09 mmol) in THF (20 ml) The solution was added dropwise over 10 minutes. Thereafter, the mixture was stirred for 30 minutes, concentrated under reduced pressure at room temperature or lower to reduce the amount of the solution to about 1/2, cooled to 0 to 5 ° C., and the by-product urea derivative was removed by filtration. The solvent was distilled off under reduced pressure, chloroform (50 ml) was added, washed once with 0.05M hydrochloric acid, distilled water and saturated brine, dried over anhydrous magnesium sulfate, the desiccant was filtered off and concentrated under reduced pressure. . This solution was purified by 5φ × 20 cm 200 mesh silica gel column chromatography (developing solvent: chloroform: THF = 20: 1). The first effluent was collected, distilled off under reduced pressure, and recrystallized with diisopropyl ether to obtain DAPDC. Obtained as a white solid solid in 95.0% yield (1.36 g yield).
Then, in the same manner as in Production Example 1, the title compound was obtained in a yield of 87% (a yield of 0.294 g). The melting point, 1 H-NMR, 13 C-NMR and FT-IR spectrum of the compound were the same as those of DGPDC obtained in Production Example 1.

製造例3 2-ピロン-4,6-ジカルボン酸 ジグリシジルエステル(合成法2)
塩化カルシウム管及びフットボール型磁気攪拌子を備えた100 ml 四つ口フラスコにPDC(10.0 g,54.3 mmol)、グリシドール(11.1 g,150 mmol)、THF(50 ml)を加え、攪拌した。0〜5℃に冷却して、DIC(16.4 g,130 mmol)とDMAP(1.31 g,10.8 mmol)のTHF(27 ml)溶液を10分かけて滴下した。その後20分間攪拌し、常温以下で減圧濃縮して溶液量を約1/2に減じ、0〜5℃に冷却して副生成物の尿素誘導体をろ去した。溶媒を減圧留去して50 ml のクロロホルムを加え、0.05M-塩酸、蒸留水、飽和食塩水で各1回ずつ洗浄、無水硫酸マグネシウムで乾燥し、乾燥剤をろ去し、減圧留去した。メタノール(20 ml)を加えて60℃にて溶解し、室温まで放冷した後、0〜5℃に冷却して、標題化合物を無色針状結晶として収率81.5 %(収量13.11 g)で得た。該化合物の融点や1H-NMR、13C-NMR及びFT-IRスペクトルは、製造例1で得られたDGPDCのそれと同じであった。
Production Example 3 2-pyrone-4,6-dicarboxylic acid diglycidyl ester (Synthesis Method 2)
PDC (10.0 g, 54.3 mmol), glycidol (11.1 g, 150 mmol), and THF (50 ml) were added to a 100 ml four-necked flask equipped with a calcium chloride tube and a football-type magnetic stirrer and stirred. After cooling to 0 to 5 ° C., a solution of DIC (16.4 g, 130 mmol) and DMAP (1.31 g, 10.8 mmol) in THF (27 ml) was added dropwise over 10 minutes. Thereafter, the mixture was stirred for 20 minutes, concentrated under reduced pressure at room temperature or lower to reduce the amount of the solution to about 1/2, cooled to 0 to 5 ° C., and the by-product urea derivative was removed by filtration. The solvent was distilled off under reduced pressure, 50 ml of chloroform was added, washed once each with 0.05M hydrochloric acid, distilled water and saturated brine, dried over anhydrous magnesium sulfate, the desiccant was filtered off and evaporated under reduced pressure. . Methanol (20 ml) was added and dissolved at 60 ° C, allowed to cool to room temperature, and then cooled to 0 to 5 ° C to give the title compound as colorless needle crystals in a yield of 81.5% (yield 13.11 g). It was. The melting point, 1 H-NMR, 13 C-NMR, and FT-IR spectrum of the compound were the same as those of DGPDC obtained in Production Example 1.

実施例1
磁気攪拌子を備えた試験管に、DGPDC(0.50 g,1.69 mmol)と硬化剤として無水マレイン酸(MA)(0.282 g,2.88 mmol)を入れ、試験管内を窒素置換して40℃に加温しながら攪拌、混合した。更に、硬化促進剤としてN,N−ジメチルベンジルアミン(0.025 ml)を加えて減圧脱気を行い、淡黄色透明の粘性液状の接着剤組成物を得た。5.0×28.0×50.0 mmのステンレス(SUS306、シックスナイン純度)板材の5.0×28.0 mm端面(表面粗さRa=0.6〜0.7 μm)の両側に均一になるように接着剤組成物を塗布し、液膜厚みを0.10 mmに保ちながら、130℃にて30分間硬化させた。常温に戻した後、インストロン引張試験機(鷺宮製作所製「油圧サーボ疲労試験機 FT-5S」)により、JIS K6849に基づき、歪み速度0.6/秒の歪み速度一定モードで測定したところ、引張接着強度は41.9 MPaであり、強力な接着効果を示すことが分かった。なお、破断面の観察から、界面剥離ではなく、硬化した接着剤組成物膜の中央付近で材料破壊されていることが分かった。また、応力−歪み曲線(図示せず)から、硬化した接着剤組成物膜はほとんど伸び歪みを示さず、0.2%以内の歪みで破断されていた。
Example 1
DGPDC (0.50 g, 1.69 mmol) and maleic anhydride (MA) (0.282 g, 2.88 mmol) as a hardener are placed in a test tube equipped with a magnetic stir bar, and the inside of the test tube is purged with nitrogen and heated to 40 ° C. While stirring, the mixture was mixed. Furthermore, N, N-dimethylbenzylamine (0.025 ml) was added as a curing accelerator and degassed under reduced pressure to obtain a pale yellow transparent viscous liquid adhesive composition. Apply the adhesive composition so that it is uniform on both sides of the 5.0 × 28.0 mm end face (surface roughness Ra = 0.6 to 0.7 μm) of a 5.0 × 28.0 × 50.0 mm stainless steel (SUS306, Six Nine purity) plate. While maintaining the thickness at 0.10 mm, it was cured at 130 ° C. for 30 minutes. After returning to normal temperature, the tensile bond was measured with an Instron tensile tester (“Hydraulic Servo Fatigue Tester FT-5S” manufactured by Kakinomiya Seisakusho) in a constant strain rate mode with a strain rate of 0.6 / sec based on JIS K6849. The strength was 41.9 MPa, and it was found that a strong adhesive effect was exhibited. From the observation of the fracture surface, it was found that the material was broken near the center of the cured adhesive composition film, not at the interface peeling. Further, from the stress-strain curve (not shown), the cured adhesive composition film showed almost no elongation strain and was broken at a strain within 0.2%.

実施例2
硬化剤として無水フタル酸(PA)(0.423 g,2.88 mmol)を用いる以外は実施例1と同様にして接着試験を行った。引張接着強度は66.4 MPaであり、極めて強力な接着効果を示すことが分かった。
Example 2
An adhesion test was conducted in the same manner as in Example 1 except that phthalic anhydride (PA) (0.423 g, 2.88 mmol) was used as a curing agent. The tensile bond strength was 66.4 MPa, and it was found that an extremely strong bonding effect was exhibited.

実施例3、4
SUS306の代わりにシックスナイン純度の鉄の板材を用いる以外は実施例1、2と同様にして接着試験を行った(それぞれ、実施例3、4)。それぞれの引張接着強度を、実施例1、2の結果と併せて表1に示す。
Examples 3 and 4
An adhesion test was performed in the same manner as in Examples 1 and 2 except that a six nine purity iron plate was used instead of SUS306 (Examples 3 and 4 respectively). The respective tensile adhesive strengths are shown in Table 1 together with the results of Examples 1 and 2.

比較例1〜4
DGPDCの代わりに、エポキシ樹脂として周知のビスフェノールAジグリシジルエーテル(BADGE)を用いる以外は、実施例1、2と同様にして接着試験を行った(それぞれ、比較例1、2)。また、DGPDCの代わりにBADGEを用いる以外は、実施例3、4と同様にして接着試験を行った(それぞれ、比較例3、4)(表1)。
Comparative Examples 1-4
An adhesion test was conducted in the same manner as in Examples 1 and 2 except that bisphenol A diglycidyl ether (BADGE), which is well known as an epoxy resin, was used instead of DGPDC (Comparative Examples 1 and 2, respectively). Further, an adhesion test was conducted in the same manner as in Examples 3 and 4 except that BADGE was used instead of DGPDC (Comparative Examples 3 and 4 respectively) (Table 1).

Figure 2010059095
Figure 2010059095

表1から明らかなように、本発明のエポキシ樹脂組成物は、従来のエポキシ樹脂組成物とほぼ同等又はそれ以上の引張接着強度を示した。   As is apparent from Table 1, the epoxy resin composition of the present invention exhibited a tensile adhesive strength substantially equal to or higher than that of the conventional epoxy resin composition.

Claims (8)

下記一般式(I):
Figure 2010059095
[式中、nは、1〜4の整数を示す。]
で表される化合物。
The following general formula (I):
Figure 2010059095
[Wherein n represents an integer of 1 to 4. ]
A compound represented by
前記nが1である、請求項1記載の化合物。   The compound according to claim 1, wherein n is 1. 請求項1又は2記載の化合物を含むエポキシ樹脂組成物。   The epoxy resin composition containing the compound of Claim 1 or 2. 硬化剤を更に含む、請求項3記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 3, further comprising a curing agent. 前記硬化剤が、4-メチルシクロヘキサン-1,2-ジカルボン酸無水物、無水マレイン酸、無水フタル酸、無水コハク酸及び4-メチルフタル酸無水物から選ばれる、請求項4記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 4, wherein the curing agent is selected from 4-methylcyclohexane-1,2-dicarboxylic anhydride, maleic anhydride, phthalic anhydride, succinic anhydride, and 4-methylphthalic anhydride. . 接着剤組成物である、請求項4又は5記載のエポキシ樹脂組成物。   The epoxy resin composition according to claim 4 or 5, which is an adhesive composition. 2-ピロン-4,6-ジカルボン酸(2-pyron-4,6-dicarboxylic acid)にR1-OH(R1は、CH2=CH-(CH2)n-を示し、nは、1〜4の整数を示す)を脱水反応させてエステルとし、次いで該エステルをエポキシ化するか、又は脱水縮合剤の存在下に、2-ピロン-4,6-ジカルボン酸に下記式:
Figure 2010059095
[式中、nは、1〜4の整数を示す。]
で表されるエポキシアルコールを反応させることを特徴とする、請求項1又は2記載の化合物の製造方法。
2-pyron-4,6-dicarboxylic acid is R 1 -OH (R 1 is CH 2 = CH- (CH 2 ) n- , where n is 1 Dehydration reaction to give an ester and then epoxidize the ester, or 2-pyrone-4,6-dicarboxylic acid in the presence of a dehydrating condensing agent:
Figure 2010059095
[Wherein n represents an integer of 1 to 4. ]
The method for producing a compound according to claim 1, wherein an epoxy alcohol represented by the formula is reacted.
請求項4〜6のいずれか1項記載のエポキシ樹脂組成物を100〜130℃の温度で硬化させることを特徴とする、該組成物の硬化方法。   A method for curing the composition, comprising curing the epoxy resin composition according to any one of claims 4 to 6 at a temperature of 100 to 130 ° C.
JP2008226284A 2008-09-03 2008-09-03 Epoxy resin composition and method of manufacturing the same Withdrawn JP2010059095A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008226284A JP2010059095A (en) 2008-09-03 2008-09-03 Epoxy resin composition and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008226284A JP2010059095A (en) 2008-09-03 2008-09-03 Epoxy resin composition and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010059095A true JP2010059095A (en) 2010-03-18

Family

ID=42186342

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008226284A Withdrawn JP2010059095A (en) 2008-09-03 2008-09-03 Epoxy resin composition and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010059095A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149900A (en) * 2016-02-26 2017-08-31 日本化薬株式会社 Epoxy resin composition, and cured product thereof, and adhesive prepared therewith
KR20230016344A (en) * 2021-07-26 2023-02-02 한국화학연구원 Novel acid anhydride-based epoxy compound, epoxy resin two-component composition containing the same, and cured product prepared therefrom

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017149900A (en) * 2016-02-26 2017-08-31 日本化薬株式会社 Epoxy resin composition, and cured product thereof, and adhesive prepared therewith
KR20230016344A (en) * 2021-07-26 2023-02-02 한국화학연구원 Novel acid anhydride-based epoxy compound, epoxy resin two-component composition containing the same, and cured product prepared therefrom
KR102566321B1 (en) 2021-07-26 2023-08-14 한국화학연구원 Novel acid anhydride-based epoxy compound, epoxy resin two-component composition containing the same, and cured product prepared therefrom

Similar Documents

Publication Publication Date Title
Huang et al. Preparation of biobased epoxies using tung oil fatty acid-derived C21 diacid and C22 triacid and study of epoxy properties
Xin et al. Study of green epoxy resins derived from renewable cinnamic acid and dipentene: synthesis, curing and properties
Huang et al. Exploration of the complementary properties of biobased epoxies derived from rosin diacid and dimer fatty acid for balanced performance
Fourcade et al. Renewable resource-based epoxy resins derived from multifunctional poly (4-hydroxybenzoates)
US9353213B2 (en) Functional norbornanyl ester derivatives, polymers and process for preparing same
JP2926262B2 (en) Composition comprising novel alicyclic compound and method for producing the same
JP4688503B2 (en) High purity alicyclic diepoxy compound and process for producing the same
JP2015502963A (en) Oxirane-containing bisanhydrohexitol derivatives and uses thereof
JP2002275169A (en) Method for epoxy compound production
US9029566B2 (en) Rosin derived epoxides and curing agents
KR101050728B1 (en) Polymerizable Unsaturated Compound and Method for Producing the Same
JPH04233935A (en) Thermosetting composition for producing epoxide network structure, and manufacture and use thereof
JP2010059095A (en) Epoxy resin composition and method of manufacturing the same
US5198509A (en) Lactone-modified alicyclic composition and an epoxidized composition thereof
US3231586A (en) Diepoxide compositions
JPH11140161A (en) Rapidly curable epoxy resin composition
WO2014073429A1 (en) Epoxy compound, production method therefor, and curable epoxy resin composition
US6080872A (en) Cycloaliphatic epoxy compounds
KR20170139026A (en) Cyclic carbonate
KR101298539B1 (en) Novel Thermosetting Cyanate Compound and Preparing Method
JP4509715B2 (en) Diglycidyl ether, curable composition and cured product
JP2009209117A (en) Epoxy compound, method for producing the same, epoxy resin composition and cured product thereof
JP2007277129A (en) Phenol compound and epoxy compound
JP2012006879A (en) Novel epoxy compound using 3-carboxy muconolactone as raw material, and its production method
JP2011246689A (en) Diepoxy compound, method for manufacturing the same, composition containing the compound, and cured material obtained by curing the composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110817

Free format text: JAPANESE INTERMEDIATE CODE: A621

A521 Written amendment

Effective date: 20110817

Free format text: JAPANESE INTERMEDIATE CODE: A821

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20130325