JP2010057547A - Fundus camera - Google Patents

Fundus camera Download PDF

Info

Publication number
JP2010057547A
JP2010057547A JP2008223496A JP2008223496A JP2010057547A JP 2010057547 A JP2010057547 A JP 2010057547A JP 2008223496 A JP2008223496 A JP 2008223496A JP 2008223496 A JP2008223496 A JP 2008223496A JP 2010057547 A JP2010057547 A JP 2010057547A
Authority
JP
Japan
Prior art keywords
image
fundus
color
infrared light
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008223496A
Other languages
Japanese (ja)
Other versions
JP5159526B2 (en
Inventor
Yoshiaki Okumura
淑明 奥村
Toshibumi Masaki
俊文 正木
Shinya Tanaka
信也 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008223496A priority Critical patent/JP5159526B2/en
Publication of JP2010057547A publication Critical patent/JP2010057547A/en
Application granted granted Critical
Publication of JP5159526B2 publication Critical patent/JP5159526B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Eye Examination Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To dispense with a dedicated signal processing means and to have simple structure when observing an object with a near-infrared light and generating a color still image. <P>SOLUTION: This fundus camera includes a near-infrared light generation means for observing an object with a near-infrared light, a visible light generation means for capturing an image with a visible light, an observation/imaging optical system receiving a reflected light from the fundus oculi and focusing a fundus image, a capturing means having three color filters of R, B and G disposed into a mosaic shape in front of respective pixels and capturing a fundus image, and a computing means calculating virtual pixel values of a tricolor image from adjoining pixel values and generating color image data. The color filter R is defined as a color filter transmitting the near-infrared light and the number of the filters R is defined to be more than the numbers of the color filters B and G. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、被検眼の眼底を観察撮影する眼底カメラに関するものである。   The present invention relates to a fundus camera for observing and photographing the fundus of a subject's eye.

従来例1として、アライメント用の近赤外観察用撮像手段と、カラー静止画撮影用の撮像手段とをそれぞれ具備する眼底カメラが実用化されている。   As Conventional Example 1, a fundus camera including an imaging unit for near-infrared observation for alignment and an imaging unit for color still image shooting has been put into practical use.

また従来例2として、1つの撮像手段で近赤外光で位置合わせを行い、可視光で撮影を行う眼底カメラが、特許文献1、2に開示され実用化されている。   Further, as Conventional Example 2, a fundus camera that performs position alignment with near-infrared light using one imaging unit and performs imaging with visible light is disclosed in Patent Documents 1 and 2 and put into practical use.

更に従来例3として、単板の撮像素子で三色分解のためのカラーフィルタと赤外線を透過する専用のフィルタを構成した電子内視鏡が、特許文献3に開示されている。   Furthermore, as a third conventional example, Patent Document 3 discloses an electronic endoscope in which a color filter for three-color separation and a dedicated filter that transmits infrared rays are configured by a single-plate image sensor.

特開平7−79926号公報Japanese Patent Laid-Open No. 7-79926 特開2002−369802号公報JP 2002-369802 A 特開2006−6922号公報JP 2006-6922 A

従来例1のような眼底カメラでは、アライメントのための近赤外観察用撮像手段とカラー静止画撮影用の撮像手段とを備えている。そして撮影時には、撮像手段を観察用から撮影用に瞬時に切換えるためのクイックリターンミラーなどの光路切換機構が必要とされ、機構が複雑で高価となる。   The fundus camera as in Conventional Example 1 includes a near-infrared observation imaging unit for alignment and a color still image imaging unit. At the time of shooting, an optical path switching mechanism such as a quick return mirror for instantaneously switching the imaging means from observation to shooting is required, which makes the mechanism complicated and expensive.

従来例2のような眼底カメラでは、光路切換機構は不要であるが、高価な三色分解プリズムを持つ3板式の撮像手段が必要になる。   The fundus camera as in Conventional Example 2 does not require an optical path switching mechanism, but requires a three-plate type imaging means having an expensive three-color separation prism.

また、従来例3のような撮像素子では、カラーフィルタの構成が一般的なBayerパターンとは異なるため、専用の信号処理回路が必要になる。   Further, in the image pickup device as in Conventional Example 3, since the configuration of the color filter is different from a general Bayer pattern, a dedicated signal processing circuit is required.

本発明の目的は、上述の問題点を解消し、近赤外光による観察時とカラー静止画を生成する際に、専用の信号処理手段を必要とせず、簡素な構成の眼底カメラを提供することにある。   An object of the present invention is to solve the above-mentioned problems and provide a fundus camera having a simple configuration without requiring a dedicated signal processing means when observing with near infrared light and generating a color still image. There is.

上記目的を達成するための本発明に係る眼底カメラは、近赤外光で観察するために被検眼の眼底に近赤外光を照射する近赤外光生成手段と、可視光で撮影するために眼底に可視光領域の光を照射する可視光生成手段と、眼底からの反射光を受光し眼底像を結像する観察撮影光学系と、各画素の前に三色分解のためにモザイク状に配した三色カラーフィルタを有し、前記観察撮影光学系により結像された眼底像を撮像する撮像手段と、近接する前記画素の値から三色分解画像の仮想画素値を算出しカラー画像データを生成する演算手段とを有する眼底カメラにおいて、前記撮像手段は動画の出力と静止画の出力をする単板の撮像素子から成り、前記三色カラーフィルタのうち少なくとも1つの色のカラーフィルタは近赤外光を透過するカラーフィルタとし、このカラーフィルタの数を他の色のカラーフィルタの数よりも多くしたことを特徴とする。   In order to achieve the above object, a fundus camera according to the present invention includes a near-infrared light generating means for irradiating the fundus of a subject's eye with near-infrared light for observation with near-infrared light, and imaging with visible light. Visible light generation means that irradiates the fundus with visible light region, observation imaging optical system that receives the reflected light from the fundus and forms a fundus image, and a mosaic pattern for three-color separation in front of each pixel An image pickup means for picking up a fundus image formed by the observation photographing optical system, and calculating a virtual pixel value of the three-color separation image from the adjacent pixel values, and a color image In the fundus camera having a computing unit for generating data, the imaging unit is composed of a single-plate imaging device that outputs a moving image and a still image, and the color filter of at least one of the three color filters is Color pass that transmits near-infrared light And filter, characterized in that the number of the color filter was greater than the number of color filters of other colors.

本発明に係る眼底カメラによれば、観察時と撮影時の専用の信号処理手段を必要とせず、簡素な構成とすることができる。また、一般的にCCDやCMOSセンサなどの感度が低下する近赤外光に最も感度を有するカラーフィルタの割り当てを多くすることにより、近赤外光の感度(S/N)を高めることができる。   The fundus camera according to the present invention does not require dedicated signal processing means for observation and photographing, and can be configured simply. Also, the sensitivity (S / N) of near-infrared light can be increased by increasing the allocation of color filters that are most sensitive to near-infrared light, such as CCDs and CMOS sensors, which generally decrease in sensitivity. .

本発明を図示の実施例に基づいて詳細に説明する。   The present invention will be described in detail based on the embodiments shown in the drawings.

図1は実施例1における眼底カメラの構成図である。近赤外光生成手段である観察用光源1から対物レンズ2に至る光路O1上には、リング状の開口を有する絞り3、ダイクロイックミラー4が配置されている。ダイクロイックミラー4の入射方向には、リング状開口を有する絞り5、可視光生成手段である撮影用光源6が配置されている。ダイクロイックミラー4の出射方向の光路O1上には、リレーレンズ7、ミラー8、リレーレンズ9、孔あきミラー10が順次に配列され、眼底照明光学系が構成されている。   FIG. 1 is a configuration diagram of a fundus camera in the first embodiment. A diaphragm 3 having a ring-shaped opening and a dichroic mirror 4 are arranged on an optical path O1 from the observation light source 1 which is a near infrared light generation means to the objective lens 2. In the incident direction of the dichroic mirror 4, a diaphragm 5 having a ring-shaped opening and a photographing light source 6 which is a visible light generating means are arranged. On the optical path O1 in the emission direction of the dichroic mirror 4, a relay lens 7, a mirror 8, a relay lens 9, and a perforated mirror 10 are sequentially arranged to constitute a fundus illumination optical system.

ミラー8への入射方向の光路O2上には、2穴絞り11、レンズ12、合焦用指標13、合焦用指標光源14が配置され、合焦用指標投影光学系が構成されている。   On the optical path O2 in the direction of incidence on the mirror 8, a two-hole stop 11, a lens 12, a focusing index 13, and a focusing index light source 14 are arranged to configure a focusing index projection optical system.

孔あきミラー10の後方の光路O3上には、合焦レンズ15、撮影レンズ16、撮像手段17が配列され、観察撮影光学系が構成され、撮像手段17内には、三色波長分解手段18、撮像素子19が設けられている。また、孔あきミラー10の孔部には、光ファイバ20を通じて位置合わせ用指標光源21が配置されている。   On the optical path O3 behind the perforated mirror 10, a focusing lens 15, a photographing lens 16, and an imaging means 17 are arranged to constitute an observation photographing optical system. In the imaging means 17, a three-color wavelength separating means 18 is provided. An image sensor 19 is provided. An alignment index light source 21 is disposed in the hole of the perforated mirror 10 through the optical fiber 20.

合焦用指標投影光学系は合焦レンズ15と連動して光路O1と平行なA方向に動いて、被検眼Eの眼底Erに合焦用指標13を投影し、静止画の撮影時には光路O1と直交するB方向に動いて眼底照明光学系上から退避されるようになっている。   The focusing index projection optical system moves in the direction A parallel to the optical path O1 in conjunction with the focusing lens 15, projects the focusing index 13 on the fundus Er of the eye E, and the optical path O1 when shooting a still image. Is moved away from the fundus illumination optical system.

撮像手段17の出力は画像信号処理部31を経て、演算制御部32と表示器33に接続されている。演算制御部32の出力は、観察用光源駆動回路34を介して観察用光源1に、撮影用光源駆動回路35を介して撮影用光源6に接続されている。また、合焦用指標光源駆動回路36を介して合焦用指標光源14に、位置合わせ用指標光源駆動回路37を介して位置合わせ用指標光源21に接続されている。更に、演算制御部32には入力部38、記録部39が接続されている。   The output of the imaging means 17 is connected to the arithmetic control unit 32 and the display 33 via the image signal processing unit 31. The output of the arithmetic control unit 32 is connected to the observation light source 1 via the observation light source driving circuit 34 and to the imaging light source 6 via the imaging light source driving circuit 35. Further, it is connected to the focusing index light source 14 via the focusing index light source driving circuit 36, and to the positioning index light source 21 via the positioning index light source driving circuit 37. Further, an input unit 38 and a recording unit 39 are connected to the arithmetic control unit 32.

眼底観察時には、演算制御部32は観察用光源駆動回路34を駆動して、観察用光源1を点灯、調光する。観察用光源1を出射した光束は、絞り3、ダイクロイックミラー4を通過する。ここで、観察用光源1は850nmに中心波長を持つ近赤外LEDで構成されており、ダイクロイックミラー4は近赤外光を透過し可視光を反射するので、観察用光源1を出射した光はダイクロイックミラー4に至る。ダイクロイックミラー4を通過した近赤外光は、リレーレンズ7、ミラー8、リレーレンズ9を通り、孔あきミラー10の周辺で反射し、対物レンズ2、被検眼Eの角膜Ec、瞳Epを経て眼底Erを照明する。   At the time of fundus observation, the calculation control unit 32 drives the observation light source drive circuit 34 to turn on and dim the observation light source 1. The light beam emitted from the observation light source 1 passes through the diaphragm 3 and the dichroic mirror 4. Here, the observation light source 1 is composed of a near-infrared LED having a center wavelength at 850 nm, and the dichroic mirror 4 transmits near-infrared light and reflects visible light. Therefore, the light emitted from the observation light source 1 Reaches the dichroic mirror 4. Near-infrared light that has passed through the dichroic mirror 4 passes through the relay lens 7, the mirror 8, and the relay lens 9, is reflected around the perforated mirror 10, and passes through the objective lens 2, the cornea Ec and the pupil Ep of the eye E to be examined. Illuminates the fundus Er.

同時に、演算制御部32は合焦用指標光源駆動回路36を駆動して、合焦用指標光源14を点灯する。合焦用指標光源14は850nmに中心波長を持つ近赤外LEDで構成されている。合焦用指標光源14からの光束は合焦用指標13を照明し、合焦用指標13の像はレンズ12、2穴絞り11を通過し、ミラー8で反射して観察用光源1からの光束に重畳して被検眼Eの眼底Erに投影される。   At the same time, the arithmetic control unit 32 drives the focusing index light source driving circuit 36 to turn on the focusing index light source 14. The focusing index light source 14 is composed of a near-infrared LED having a center wavelength of 850 nm. The light beam from the focusing index light source 14 illuminates the focusing index 13, and the image of the focusing index 13 passes through the lens 12, the two-hole aperture 11, is reflected by the mirror 8, and is reflected from the observation light source 1. It is superimposed on the light beam and projected onto the fundus Er of the eye E to be examined.

眼底Erにおける眼底像及び合焦用指標像は、被検眼Eの瞳Ep、角膜Ec、対物レンズ2、孔あきミラー10の孔部を通り、合焦レンズ15、撮影レンズ16を通過し、撮像手段17内の三色波長分解手段18を経て、撮像素子19に結像する。   The fundus image and the focus index image on the fundus Er pass through the pupil Ep of the eye E, the cornea Ec, the objective lens 2 and the hole of the perforated mirror 10, pass through the focusing lens 15 and the photographing lens 16, and are imaged. An image is formed on the image sensor 19 through the three-color wavelength resolving means 18 in the means 17.

この状態における位置合わせつまりアライメントに際して、演算制御部32は位置合わせ用指標光源駆動回路37を駆動して、位置合わせ用指標光源21を点灯する。位置合わせ用指標光源21は850nmに中心波長を持つ近赤外LEDにより構成されている。位置合わせ用指標光源21からの近赤外光は、光ファイバ20、対物レンズ2を通って被検眼Eの角膜Ecを照射し、その反射光は観察用光源1及び合焦用指標光源14の眼底Erからの反射光と重畳して、撮像素子19に結像される。   At the time of alignment, that is, alignment in this state, the calculation control unit 32 drives the alignment index light source driving circuit 37 to turn on the alignment index light source 21. The alignment index light source 21 is composed of a near infrared LED having a center wavelength of 850 nm. Near-infrared light from the alignment index light source 21 irradiates the cornea Ec of the eye E through the optical fiber 20 and the objective lens 2, and reflected light from the observation light source 1 and the focusing index light source 14. An image is formed on the image sensor 19 by being superimposed on the reflected light from the fundus Er.

撮像素子19では、結像した眼底像、合焦用指標像、位置合わせ用指標像に対して光電変換が行われ、画像信号処理部31によって撮像素子19からのデータの読み出して増幅を行い、動画であるデジタル画像データが生成され、表示器33に表示される。   In the image sensor 19, photoelectric conversion is performed on the formed fundus image, focus index image, and alignment index image, and the image signal processing unit 31 reads and amplifies data from the image sensor 19. Digital image data that is a moving image is generated and displayed on the display 33.

図2は表示器33に表示された状態を示し、観察用光源1、合焦用指標光源14、位置合わせ用指標光源21の中心波長は近赤外光領域であり、無散瞳モードとして動作している。図2(a)は位置及びピントがずれている状態で、操作者はこの位置合わせ用指標を見ながら、図示しない操作部により、装置を前後、左右、上下に移動して被検眼Eの眼底像の位置合わせを行う。次に、合焦用指標像を見ながら、合焦用指標投影光学系を合焦レンズ15と連動して、図1のA方向に移動することによりピント合わせを行う。   FIG. 2 shows the state displayed on the display device 33. The central wavelengths of the observation light source 1, the focusing index light source 14, and the alignment index light source 21 are in the near-infrared light region, and operate as a non-mydriatic mode. is doing. FIG. 2A shows a state in which the position and the focus are deviated, and the operator moves the apparatus back and forth, right and left, and up and down by an operation unit (not shown) while looking at the alignment index. Align the image. Next, focusing is performed by moving the focusing index projection optical system in the direction A in FIG. 1 in conjunction with the focusing lens 15 while viewing the focusing index image.

図2(b)は位置合わせ用指標光源21による位置合わせ用指標像が、指標サークルに一致して位置合わせが完了し、また2つの合焦用指標像が一直線になり、ピント合わせが完了した様子を示している。   In FIG. 2B, the alignment index image by the alignment index light source 21 coincides with the index circle, the alignment is completed, and the two focusing index images are aligned, and the focusing is completed. It shows a state.

撮像手段17内の撮像素子19には、撮像素子19の各画素に一致するように、三色分解のためにモザイク状に配置された赤(R)、緑(G)、青(B)のフィルタから成る三色波長分解手段18が配置されている。画像信号処理部31は撮像素子19からの各画素のデータを読み出して増幅を行い、三色分解画像の仮想画素値の算出を行い画像を生成する。   The image pickup device 19 in the image pickup means 17 includes red (R), green (G), and blue (B) arranged in a mosaic pattern for three-color separation so as to match each pixel of the image pickup device 19. A three-color wavelength resolving means 18 comprising a filter is disposed. The image signal processing unit 31 reads out and amplifies data of each pixel from the image sensor 19 and calculates a virtual pixel value of the three-color separation image to generate an image.

図3は三色波長分解手段18を構成する通常の三色カラーフィルタの配置図であり、仮想画素P00の演算はカラーディザ法により一般的には次のようになされる。仮想画素P00のRGB各色の値は、仮想画素P00周辺の実線で囲まれた画素のうち、近接するR00、R02、B11、G12、B13、R20、G21、R22、B31、B33の画素の受光データを用いる。仮想画素P00のRGBの値を、それぞれP00r、P00g、P00bとすると、次式のように演算される。
P00g=(G12+G21)/2
P00r=(9・R22+3・R02+3・R20+R00)/16
P00b=(9・B11+3・B13+3・B31+B33)/16
FIG. 3 is an arrangement diagram of a normal three-color filter constituting the three-color wavelength decomposing means 18, and the calculation of the virtual pixel P00 is generally performed as follows by the color dither method. The RGB color values of the virtual pixel P00 are the light reception data of the adjacent pixels R00, R02, B11, G12, B13, R20, G21, R22, B31, and B33 among the pixels surrounded by the solid line around the virtual pixel P00. Is used. If the RGB values of the virtual pixel P00 are P00r, P00g, and P00b, respectively, the calculation is performed as follows.
P00g = (G12 + G21) / 2
P00r = (9 · R22 + 3 · R02 + 3 · R20 + R00) / 16
P00b = (9 · B11 + 3 · B13 + 3 · B31 + B33) / 16

また、右隣の仮想画素P01の場合は、仮想画素P01の周辺の点線で囲まれた画素のうち、R02、R04、B11、G12、B13、R22、G23、R24、B31、B33の画素の受光データから、次式のように演算される。
P01g=(G12+G23)/2
P01r=(9・R22+3・R02+3・R24+R04)/16
P01b=(9・B13+3・B11+3・B33+B31)/16
In the case of the virtual pixel P01 on the right side, light reception of pixels R02, R04, B11, G12, B13, R22, G23, R24, B31, and B33 among the pixels surrounded by a dotted line around the virtual pixel P01. From the data, it is calculated as follows:
P01g = (G12 + G23) / 2
P01r = (9 · R22 + 3 · R02 + 3 · R24 + R04) / 16
P01b = (9 · B13 + 3 · B11 + 3 · B33 + B31) / 16

以下同様にして、各仮想画素Pに隣接した4・4画素の範囲の受光データにより仮想画素値を演算し、1枚のカラー画像データを生成する。   In the same manner, the virtual pixel value is calculated from the received light data in the range of 4 and 4 pixels adjacent to each virtual pixel P to generate one piece of color image data.

図4は本実施例で使用する三色波長分解手段18のカラーフィルタの配置図であり、近赤外光を透過するRフィルタの数は、G、Bフィルタの数よりも多く設けられている。これにより近赤外光による観察時の感度が向上することになる。   FIG. 4 is a layout diagram of the color filters of the three-color wavelength separation means 18 used in this embodiment, and the number of R filters that transmit near-infrared light is larger than the number of G and B filters. . Thereby, the sensitivity at the time of observation by near-infrared light is improved.

このカラーフィルタによる仮想画素P00のRGB各色の値は、仮想画素P00周辺の実線で囲まれた画素のうち、G00、G02、B11、R12、B13、G20、R21、G22、B31、B33の画素の受光データを用いる。仮想画素P00のRGBの値を、それぞれP00r、P00g、P00bとすると、次式のように演算される。
P00r=(R12+R21)/2
P00g=(9・G22+3・G02+3・G20+G00)/16
P00b=(9・B11+3・B13+3・B31+B33)/16
The RGB color values of the virtual pixel P00 by this color filter are the G00, G02, B11, R12, B13, G20, R21, G22, B31, and B33 pixels among the pixels surrounded by the solid line around the virtual pixel P00. The received light data is used. If the RGB values of the virtual pixel P00 are P00r, P00g, and P00b, respectively, the calculation is performed as follows.
P00r = (R12 + R21) / 2
P00g = (9 · G22 + 3 · G02 + 3 · G20 + G00) / 16
P00b = (9 · B11 + 3 · B13 + 3 · B31 + B33) / 16

また、右隣の仮想画素P01の場合は、仮想画素P01の周辺の点線で囲まれた画素のうちの、G02、G04、B11、R12、B13、G22、R23、G24、B31、B33の画素の受光データから、次式のように演算される。
P01r=(R12+R23)/2
P01g=(9・G22+3・G02+3・G24+G04)/16
P01b=(9・B13+3・B11+3・B33+B31)/16
In the case of the virtual pixel P01 on the right side, of the pixels surrounded by dotted lines around the virtual pixel P01, the pixels G02, G04, B11, R12, B13, G22, R23, G24, B31, and B33 It is calculated from the received light data as follows.
P01r = (R12 + R23) / 2
P01g = (9 · G22 + 3 · G02 + 3 · G24 + G04) / 16
P01b = (9 · B13 + 3 · B11 + 3 · B33 + B31) / 16

以下同様にして、各仮想画素Pに隣接した4・4画素の範囲の受光データにより仮想画素値を演算し、1枚のカラー画像データを生成する。   In the same manner, the virtual pixel value is calculated from the received light data in the range of 4 and 4 pixels adjacent to each virtual pixel P to generate one piece of color image data.

このような図4の構成のカラーフィルタを用いることにより、近赤外光透過のRフィルタを増やした構成でも、仮想画素の演算は図3に示す一般的なカラーフィルタの演算式の仮想画素Pにおけるrと、gとの式を入れ換えただけの構成となる。従って、特別な演算手段を必要とすることはない。   By using the color filter having the configuration shown in FIG. 4, the virtual pixel is calculated using the general color filter calculation formula shown in FIG. In this configuration, the expressions r and g in FIG. Therefore, no special calculation means is required.

図5は図4の三色波長分解手段18と撮像素子19を組み合わせた撮像手段17の分光感度特性を示している。合焦用指標光源14、位置合わせ用指標光源21、観察用光源1の近赤外光を中心とする波長は、この分光感度特性により近赤外光を透過する赤(R)の成分にのみ感度があることが分かる。   FIG. 5 shows the spectral sensitivity characteristics of the image pickup means 17 in which the three-color wavelength resolving means 18 and the image pickup device 19 in FIG. 4 are combined. The focusing index light source 14, the alignment index light source 21, and the observation light source 1 centered on near-infrared light have only the red (R) component that transmits near-infrared light due to this spectral sensitivity characteristic. It can be seen that there is sensitivity.

従って眼底観察時には、撮像素子19に結像した画像眼底像、合焦用指標像、位置合わせ用指標像は、近赤外光を透過するR画素にしか感度を持たないため、画像信号処理部31によって、rの仮想画素のデータのみをモノクロ画像として、表示器33に表示する。   Accordingly, at the time of fundus observation, the image fundus image, the focus index image, and the alignment index image formed on the image sensor 19 are sensitive only to R pixels that transmit near-infrared light. By 31, only the data of r virtual pixels is displayed on the display 33 as a monochrome image.

カラー画像による眼底撮影時には、操作者は表示器33に表示された図2(a)に示すような画像を見ながら位置合わせ、ピント合わせを行い、図2(b)に示すように位置とピントが合ったところで、入力部38に構成される撮影スイッチを押す。演算制御部32はこれを検知し、撮影用光源駆動回路35を駆動して撮影用光源6による可視光を発光させる。また、位置合わせ用指標光源駆動回路37により位置合わせ用指標光源21を消灯し、合焦用指標投影光学系をB方向に駆動し光路外に退避させる。   At the time of fundus photographing using a color image, the operator performs alignment and focusing while viewing the image shown in FIG. 2A displayed on the display device 33, and the position and focus as shown in FIG. 2B. When the right position is met, the photographing switch configured in the input unit 38 is pressed. The arithmetic control unit 32 detects this and drives the photographing light source drive circuit 35 to emit visible light from the photographing light source 6. Further, the alignment index light source 21 is turned off by the alignment index light source driving circuit 37, and the focusing index projection optical system is driven in the B direction to be retracted from the optical path.

撮影用光源6を出射した光束は絞り5を通過し、可視光領域の光束を反射するダイクロイックミラー4で反射し、観察用光源1と同じ経路で被検眼Eの眼底Erを照明し、その反射光である眼底像は三色波長分解手段18を介して撮像素子19に結像する。   The light beam emitted from the imaging light source 6 passes through the diaphragm 5, is reflected by the dichroic mirror 4 that reflects the light beam in the visible light region, and illuminates the fundus Er of the eye E to be examined through the same path as the observation light source 1. The fundus image, which is light, is formed on the image sensor 19 via the three-color wavelength resolving means 18.

眼底像は撮像素子19で光電変換が行われて可視光による撮影がなされ、画像信号処理部31によって読み出され、静止画であるデジタルによるカラー画像データの生成がなされ、表示器33に表示される。同時に、このカラー画像データは演算制御部32を経由して記録部39に記録される。   The fundus image is photoelectrically converted by the image sensor 19 and photographed with visible light, read by the image signal processing unit 31, digital color image data that is a still image is generated, and displayed on the display 33. The At the same time, the color image data is recorded in the recording unit 39 via the arithmetic control unit 32.

なお、撮影用光源6は可視光全域の波長の光を出力するので、眼底観察時と同じ演算により得られた仮想画素Pのr、g、bのデータを用いて、眼底のカラー画像データが生成される。   Since the imaging light source 6 outputs light having a wavelength in the entire visible light range, the color image data of the fundus is obtained using the r, g, and b data of the virtual pixel P obtained by the same calculation as in fundus observation. Generated.

実施例2においては、図4に示す実施例1と同様の配置の三色波長分解手段18の三色カラーフィルタを用いている。撮像手段17の分光感度特性は図5と同様に、合焦用指標光源14、位置合わせ用指標光源21、観察用光源1は、近赤外光を透過する赤(R)の成分にしか感度がなく、可視光領域に比べて感度が低い。   In the second embodiment, the three-color filter of the three-color wavelength separating means 18 having the same arrangement as that of the first embodiment shown in FIG. 4 is used. As in FIG. 5, the spectral sensitivity characteristics of the imaging means 17 are such that the focus index light source 14, the alignment index light source 21, and the observation light source 1 are sensitive only to the red (R) component that transmits near-infrared light. The sensitivity is low compared to the visible light region.

図4に示す仮想画素P00の近赤外画像の仮想画素P00irとすると、周辺の実線で囲まれた画素のうち、R01、R03、R10、R12、R21、R23、R30、R32の画素値から、次式のように演算することができる。   If the virtual pixel P00ir of the near-infrared image of the virtual pixel P00 shown in FIG. 4, among the pixels surrounded by the surrounding solid line, the pixel values of R01, R03, R10, R12, R21, R23, R30, R32 It can be calculated as:

P00ir=R01+R03+R10+R12+R21+R23+R30+R32
また、右隣の仮想画素P01の近赤外画像の仮想画素P01irとすると、P01の周辺の点線で囲まれた画素のうち、R01、R03、R12、R14、R21、R23、R32、R34の画素値から、次式のように演算される。
P00ir = R01 + R03 + R10 + R12 + R21 + R23 + R30 + R32
Also, assuming that the virtual pixel P01ir of the near-infrared image of the virtual pixel P01 on the right is the pixels R01, R03, R12, R14, R21, R23, R32, and R34 among the pixels surrounded by the dotted lines around P01. From the value, it is calculated as follows:

P01ir=R01+R03+R12+R14+R21+R23+R32+R34
眼底観察時には、撮像素子19に結像した画像眼底像、合焦用指標像、位置合わせ用指標像は、近赤外光を透過するRフィルタがある画素にしか感度を持たない。従って、画像信号処理部31によって、仮想画素Pの近赤外光を用いてモノクロ動画像とすることにより、感度が低い近赤外光でも感度(S/N)を高め、表示器33に表示することができる。なお、カラー画像の演算、撮影など、モノクロ動画像の演算以外は、実施例1と同様である。
P01ir = R01 + R03 + R12 + R14 + R21 + R23 + R32 + R34
At the time of fundus observation, the image fundus image, the focus index image, and the alignment index image formed on the image sensor 19 are sensitive only to pixels having an R filter that transmits near-infrared light. Accordingly, the image signal processing unit 31 uses the near-infrared light of the virtual pixel P to produce a monochrome moving image, thereby increasing the sensitivity (S / N) even with near-infrared light with low sensitivity and displaying it on the display 33. can do. Note that, except for the calculation of a monochrome moving image, such as calculation of a color image and shooting, the same as in the first embodiment.

なお実施例2では、R画素値の単純な加算としたが、必要な感度や、周波数帯域によっては、加算する場合に各画素値に係数による重み付けを行ってもよい。   In the second embodiment, the R pixel value is simply added. However, depending on the required sensitivity and frequency band, each pixel value may be weighted by a coefficient when adding.

実施例3では、図3と同様の一般的な三色カラーフィルタの配置を用い、Gフィルタを近赤外光が透過するフィルタとし、その数はR、Bフィルタの数よりも多くされている。   In the third embodiment, a general three-color filter arrangement similar to that in FIG. 3 is used, and the G filter is a filter that transmits near-infrared light, and the number thereof is larger than the number of R and B filters. .

図6は本実施例3における三色波長分解手段18と撮像素子19とを組み合わせた撮像手段17の分光感度特性を示している。合焦用指標光源14、位置合わせ用指標光源21、観察用光源1の波長は、図5に示す分光感度特性によりも近赤外光を透過する緑(G)の成分にのみ感度があることが分かる。このカラーフィルタの仮想画素P00の演算は、次のように緑(G)を近赤外光が透過するかどうかに拘らず、次のように表される。   FIG. 6 shows the spectral sensitivity characteristics of the image pickup means 17 combining the three-color wavelength resolving means 18 and the image pickup device 19 in the third embodiment. The wavelengths of the focusing index light source 14, the alignment index light source 21, and the observation light source 1 are sensitive only to the green (G) component that transmits near-infrared light according to the spectral sensitivity characteristics shown in FIG. I understand. The calculation of the virtual pixel P00 of the color filter is expressed as follows regardless of whether or not near-infrared light passes through green (G) as follows.

仮想画素P00のRGB各色の値は、図3に示す仮想画素P00周辺の実線で囲まれた画素のうち、R00、R02、B11、G12、B13、R20、G21、R22、B31、B33の画素の受光データから、次のように演算される。仮想画素P00のRGBの値をそれぞれP00r、P00g、P00bとすると、次式のようになる。
P00g=(G12+G21)/2
P00r=(9・R22+3・R02+3・R20+R00)/16
P00b=(9・B11+3・B13+3・B31+B33)/16
The RGB color values of the virtual pixel P00 are the R00, R02, B11, G12, B13, R20, G21, R22, B31, and B33 pixels among the pixels surrounded by the solid line around the virtual pixel P00 shown in FIG. It is calculated from the received light data as follows. If the RGB values of the virtual pixel P00 are P00r, P00g, and P00b, respectively, the following equation is obtained.
P00g = (G12 + G21) / 2
P00r = (9 · R22 + 3 · R02 + 3 · R20 + R00) / 16
P00b = (9 · B11 + 3 · B13 + 3 · B31 + B33) / 16

また、右隣の仮想画素P01の場合は、仮想画素P01の周辺の点線で囲まれた画素のうち、R02、R04、B11、G12、B13、R22、G23、R24、B31、B33の画素の受光データから、次式のように演算される。
P01g=(G12+G23)/2
P01r=(9・R22+3・R02+3・R24+R04)/16
P01b=(9・B13+3・B11+3・B33+B31)/16
In the case of the virtual pixel P01 on the right side, light reception of pixels R02, R04, B11, G12, B13, R22, G23, R24, B31, and B33 among the pixels surrounded by a dotted line around the virtual pixel P01. From the data, it is calculated as follows:
P01g = (G12 + G23) / 2
P01r = (9 · R22 + 3 · R02 + 3 · R24 + R04) / 16
P01b = (9 · B13 + 3 · B11 + 3 · B33 + B31) / 16

以下同様にして、各仮想画素Pに隣接した4・4画素の範囲の受光データにより仮想画素値を演算し、1枚のカラー画像データを生成する。   In the same manner, the virtual pixel value is calculated from the received light data in the range of 4 and 4 pixels adjacent to each virtual pixel P to generate one piece of color image data.

眼底観察時には、撮像素子19に結像した画像眼底像、合焦用指標像、位置合わせ用指標像は、近赤外光を透過するG画素にしか感度を持たない。従って、画像信号処理部31によって、仮想画素Pのgの仮想画素のデータのみをモノクロ動画像として、表示器33に表示する。   At the time of fundus observation, the image fundus image, the focus index image, and the alignment index image formed on the image sensor 19 are sensitive only to G pixels that transmit near infrared light. Therefore, the image signal processing unit 31 displays only the virtual pixel data of the virtual pixel P on the display device 33 as a monochrome moving image.

眼底撮影時には、撮影用光源6は可視光全域の波長光を出力するので、眼底観察時と同じ演算により得られた仮想画素Pのr、g、bのデータを用いることにより、カラー眼底画像データが生成される。   At the time of fundus photographing, since the photographing light source 6 outputs wavelength light in the entire visible light range, color fundus image data is obtained by using the r, g, and b data of the virtual pixel P obtained by the same calculation as in fundus observation. Is generated.

なお実施例3では、Gフィルタを近赤外光透過としたが、Bフィルタを近赤外光透過としてもよい。また本フィルタ構成で、実施例2のようにGフィルタから仮想画素Pのir(近赤外光成分)を演算して、モノクロ動画像とすることもできる。   In the third embodiment, the G filter is made to transmit near infrared light, but the B filter may be made to transmit near infrared light. Also, with this filter configuration, it is possible to calculate a ir (near infrared light component) of the virtual pixel P from the G filter as in the second embodiment to obtain a monochrome moving image.

実施例1の眼底カメラの構成図である。1 is a configuration diagram of a fundus camera of Example 1. FIG. 位置合わせ、ピント合わせの説明図である。It is explanatory drawing of position alignment and a focus adjustment. 従来の一般的な三色波長分解手段のフィルタ配置図である。It is a filter arrangement diagram of a conventional general three-color wavelength resolving means. 実施例1で使用する三色波長分解手段のフィルタ配置図である。FIG. 3 is a filter layout diagram of the three-color wavelength resolving means used in the first embodiment. 実施例2の図4の三色波長分解手段と撮像素子とを組合わせた分光感度特性図である。FIG. 6 is a spectral sensitivity characteristic diagram in which the three-color wavelength resolving unit and the image sensor in FIG. 4 of Example 2 are combined. 実施例3の図3の三色波長分解手段と撮像素子とを組合わせた分光感度特性図である。FIG. 6 is a spectral sensitivity characteristic diagram in which the three-color wavelength resolving means of FIG. 3 in Example 3 and an image sensor are combined.

符号の説明Explanation of symbols

1 観察用光源
2 対物レンズ
4 ダイクロイックミラー
6 撮影用光源
8 ミラー
10 孔あきミラー
11 2穴絞り
13 合焦用指標
14 合焦用指標光源
15 合焦レンズ
16 撮影レンズ
17 撮像手段
18 三色波長分解手段
19 撮像素子
20 光ファイバ
21 位置合わせ用指標光源
31 画像信号処理部
32 演算制御部
33 表示器
38 入力部
39 記録部
DESCRIPTION OF SYMBOLS 1 Light source for observation 2 Objective lens 4 Dichroic mirror 6 Light source for imaging 8 Mirror 10 Perforated mirror 11 2 hole aperture 13 Focusing index 14 Focusing index light source 15 Focusing lens 16 Shooting lens 17 Imaging means 18 Three-color wavelength separation Means 19 Image pickup device 20 Optical fiber 21 Alignment index light source 31 Image signal processing unit 32 Arithmetic control unit 33 Display unit 38 Input unit 39 Recording unit

Claims (2)

近赤外光で観察するために被検眼の眼底に近赤外光を照射する近赤外光生成手段と、可視光で撮影するために眼底に可視光領域の光を照射する可視光生成手段と、眼底からの反射光を受光し眼底像を結像する観察撮影光学系と、各画素の前に三色分解のためにモザイク状に配した三色カラーフィルタを有し、前記観察撮影光学系により結像された眼底像を撮像する撮像手段と、近接する前記画素の値から三色分解画像の仮想画素値を算出しカラー画像データを生成する演算手段とを有する眼底カメラにおいて、前記撮像手段は動画の出力と静止画の出力をする単板の撮像素子から成り、前記三色カラーフィルタのうち少なくとも1つの色のカラーフィルタは近赤外光を透過するカラーフィルタとし、このカラーフィルタの数を他の色のカラーフィルタの数よりも多くしたことを特徴とする眼底カメラ。   Near-infrared light generation means for irradiating the fundus of the subject's eye with near-infrared light for observation with near-infrared light, and visible light generation means for irradiating the fundus with light in the visible light region for imaging with visible light An observation imaging optical system that receives reflected light from the fundus and forms a fundus image, and a three-color color filter arranged in a mosaic pattern for three-color separation in front of each pixel. In the fundus camera comprising: an imaging unit that captures a fundus image formed by a system; and an arithmetic unit that calculates a virtual pixel value of a three-color separation image from values of the adjacent pixels and generates color image data The means comprises a single-plate image sensor that outputs a moving image and a still image, and the color filter of at least one of the three-color filters is a color filter that transmits near-infrared light. Number of other colors Fundus camera, characterized in that the more than the number of filter. 近赤外光によるモノクロ画像のデータを生成する際の前記仮想画素値の算出は、近赤外光に感度を有する隣接した画素により算出することを特徴とする請求項1に記載の眼底カメラ。   The fundus camera according to claim 1, wherein the virtual pixel value when generating monochrome image data using near-infrared light is calculated using adjacent pixels having sensitivity to near-infrared light.
JP2008223496A 2008-09-01 2008-09-01 Fundus camera Expired - Fee Related JP5159526B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008223496A JP5159526B2 (en) 2008-09-01 2008-09-01 Fundus camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008223496A JP5159526B2 (en) 2008-09-01 2008-09-01 Fundus camera

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012265273A Division JP2013046850A (en) 2012-12-04 2012-12-04 Fundus camera

Publications (2)

Publication Number Publication Date
JP2010057547A true JP2010057547A (en) 2010-03-18
JP5159526B2 JP5159526B2 (en) 2013-03-06

Family

ID=42185059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008223496A Expired - Fee Related JP5159526B2 (en) 2008-09-01 2008-09-01 Fundus camera

Country Status (1)

Country Link
JP (1) JP5159526B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9918629B2 (en) 2014-02-11 2018-03-20 Welch Allyn, Inc. Fundus imaging system
US10136804B2 (en) 2015-07-24 2018-11-27 Welch Allyn, Inc. Automatic fundus image capture system
US10154782B2 (en) 2015-11-02 2018-12-18 Welch Allyn, Inc. Retinal image capturing
US10159409B2 (en) 2014-02-11 2018-12-25 Welch Allyn, Inc. Opthalmoscope device
US10602926B2 (en) 2016-09-29 2020-03-31 Welch Allyn, Inc. Through focus retinal image capturing
US10799115B2 (en) 2015-02-27 2020-10-13 Welch Allyn, Inc. Through focus retinal image capturing
US11045088B2 (en) 2015-02-27 2021-06-29 Welch Allyn, Inc. Through focus retinal image capturing
US11096574B2 (en) 2018-05-24 2021-08-24 Welch Allyn, Inc. Retinal image capturing

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013046850A (en) * 2012-12-04 2013-03-07 Canon Inc Fundus camera

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294134A (en) * 1985-10-18 1987-04-30 キヤノン株式会社 Non-mydriasis eyeground camera
JPS6294135A (en) * 1985-10-18 1987-04-30 キヤノン株式会社 Medical television apparatus
JP2000296112A (en) * 1999-04-15 2000-10-24 Canon Inc Ophthalmic photographing device
JP2001285885A (en) * 2000-03-31 2001-10-12 Fuji Photo Film Co Ltd Solid-state image pickup element and signal processing method
JP2006314650A (en) * 2005-05-16 2006-11-24 Kowa Co Ophthalmic photography apparatus
JP2008079937A (en) * 2006-09-28 2008-04-10 Fujifilm Corp Image processor, endoscope, and image processing program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6294134A (en) * 1985-10-18 1987-04-30 キヤノン株式会社 Non-mydriasis eyeground camera
JPS6294135A (en) * 1985-10-18 1987-04-30 キヤノン株式会社 Medical television apparatus
JP2000296112A (en) * 1999-04-15 2000-10-24 Canon Inc Ophthalmic photographing device
JP2001285885A (en) * 2000-03-31 2001-10-12 Fuji Photo Film Co Ltd Solid-state image pickup element and signal processing method
JP2006314650A (en) * 2005-05-16 2006-11-24 Kowa Co Ophthalmic photography apparatus
JP2008079937A (en) * 2006-09-28 2008-04-10 Fujifilm Corp Image processor, endoscope, and image processing program

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10674907B2 (en) 2014-02-11 2020-06-09 Welch Allyn, Inc. Opthalmoscope device
US10159409B2 (en) 2014-02-11 2018-12-25 Welch Allyn, Inc. Opthalmoscope device
US9918629B2 (en) 2014-02-11 2018-03-20 Welch Allyn, Inc. Fundus imaging system
US10376141B2 (en) 2014-02-11 2019-08-13 Welch Allyn, Inc. Fundus imaging system
US10335029B2 (en) 2014-02-11 2019-07-02 Welch Allyn, Inc. Opthalmoscope device
US11045088B2 (en) 2015-02-27 2021-06-29 Welch Allyn, Inc. Through focus retinal image capturing
US10799115B2 (en) 2015-02-27 2020-10-13 Welch Allyn, Inc. Through focus retinal image capturing
US10758119B2 (en) 2015-07-24 2020-09-01 Welch Allyn, Inc. Automatic fundus image capture system
US10136804B2 (en) 2015-07-24 2018-11-27 Welch Allyn, Inc. Automatic fundus image capture system
US10524653B2 (en) 2015-11-02 2020-01-07 Welch Allyn, Inc. Retinal image capturing
US10772495B2 (en) 2015-11-02 2020-09-15 Welch Allyn, Inc. Retinal image capturing
US10154782B2 (en) 2015-11-02 2018-12-18 Welch Allyn, Inc. Retinal image capturing
US11819272B2 (en) 2015-11-02 2023-11-21 Welch Allyn, Inc. Retinal image capturing
US10602926B2 (en) 2016-09-29 2020-03-31 Welch Allyn, Inc. Through focus retinal image capturing
US11096574B2 (en) 2018-05-24 2021-08-24 Welch Allyn, Inc. Retinal image capturing
US11779209B2 (en) 2018-05-24 2023-10-10 Welch Allyn, Inc. Retinal image capturing

Also Published As

Publication number Publication date
JP5159526B2 (en) 2013-03-06

Similar Documents

Publication Publication Date Title
JP5159526B2 (en) Fundus camera
US7794084B2 (en) Eye fundus camera
JP2013046850A (en) Fundus camera
US20180249065A1 (en) Focus adjustment device and imaging apparatus
US20190230267A1 (en) Imaging apparatus
JP2018160800A (en) Imaging apparatus and imaging method
WO2016080130A1 (en) Observation apparatus
JP7219208B2 (en) Endoscope device
JP2009153074A (en) Image photographing apparatus
US8752962B2 (en) Ophthalmic apparatus
US8596784B2 (en) Opthalmology photographing apparatus
JP5383076B2 (en) Ophthalmic equipment
JP5108013B2 (en) Color imaging device, imaging device using the same, and filter
JP2011232615A (en) Imaging device
JP2011237638A (en) Photographing apparatus
JP2011097264A (en) Imaging apparatus
JP5335586B2 (en) Fundus camera
JP2013003486A (en) Focus detector and imaging apparatus
JP7477158B2 (en) 3-chip camera
WO2019123600A1 (en) Image capture device
US20240015411A1 (en) Imaging apparatus, imaging method, and storage medium
JP2764872B2 (en) Imaging device
JP5691440B2 (en) Imaging device
JP2016057456A (en) Lens device and imaging device
JP2005152130A (en) Endoscope imaging system

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100218

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110811

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121211

R151 Written notification of patent or utility model registration

Ref document number: 5159526

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees