JP2010057262A - Natural energy power generation control system - Google Patents

Natural energy power generation control system Download PDF

Info

Publication number
JP2010057262A
JP2010057262A JP2008219104A JP2008219104A JP2010057262A JP 2010057262 A JP2010057262 A JP 2010057262A JP 2008219104 A JP2008219104 A JP 2008219104A JP 2008219104 A JP2008219104 A JP 2008219104A JP 2010057262 A JP2010057262 A JP 2010057262A
Authority
JP
Japan
Prior art keywords
power generation
value
natural energy
power
energy power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008219104A
Other languages
Japanese (ja)
Other versions
JP4808754B2 (en
Inventor
Tomihiro Takano
富裕 高野
Yasuhiro Kojima
康弘 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008219104A priority Critical patent/JP4808754B2/en
Publication of JP2010057262A publication Critical patent/JP2010057262A/en
Application granted granted Critical
Publication of JP4808754B2 publication Critical patent/JP4808754B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a natural energy power generation control system wherein a predetermined average allowable achievement rate is not deviated from and a power selling amount can be maximized even when a natural energy power generation device, unstable in output and large in power generation estimated error, is used. <P>SOLUTION: A planned power generation device 30 provided in the natural energy power generation control system includes an estimated error analyzer 31, a planning device 32, and a supply and demand controller 33. The estimated error analyzer 31 determines an estimated error distribution with respect to each power generation estimated value based on a power generation actual value and a power generation predicted value. The planning device 32 uses a preset average allowable achievement rate and an estimated error distribution to determine a threshold error and subtracts the absolute value amount of the threshold error from a power generation estimated value to determine a power generation planned value. The supply and demand controller 33 controls power generation by a natural energy power generation device 10 based on the power generation planned value. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、自然エネルギー発電制御システムに係る発明である。   The present invention relates to a natural energy power generation control system.

二酸化炭素削減など環境問題への貢献を目的とし、風力発電や太陽光発電など自然エネルギー発電システムの普及が世界的に進んでいる。自然エネルギー発電は、自然任せの発電であるため、時々刻々と出力が変動する。つまり、自然エネルギー発電は、電力を使用する立場からすれば、頻繁に出力が変動し、消費計画や他電源による補償計画が立てづらい。したがって、自然エネルギー発電は一般的に、電力供給信頼性が低品質であると考えられいる。   For the purpose of contributing to environmental problems such as carbon dioxide reduction, natural energy power generation systems such as wind power generation and solar power generation are spreading worldwide. Since natural energy power generation is power generation that is left to nature, the output fluctuates from moment to moment. In other words, natural energy power generation, from the standpoint of using power, the output fluctuates frequently, making it difficult to make a consumption plan or a compensation plan using other power sources. Therefore, natural energy power generation is generally considered to have low quality power supply reliability.

一方では、天気予報などの天候予測により風や雲の動き・気温などを予想し、それを元に発電予測をし、当該発電予測に基づき発電計画を立案し、東亜偽発電計画に基づき自然エネルギー発電装置を制御する試みがある。   On the other hand, wind and cloud movements and temperatures are predicted based on weather forecasts such as weather forecasts, power generation is predicted based on the forecasts, and power generation plans are formulated based on the power generation predictions. There are attempts to control the generator.

たとえば、本願に関連する先行技術として、特許文献1が存在する。特許文献1に係る技術では、過去の予測誤差(発電予測値と発電実績値との差)と発生頻度との相関関係を統計処理によって求める予測誤差分析装置を備えている。そして、当該特許文献1に係る技術では、当該統計処理の結果を用いて、売電量と売電単価との積(正値)と売電契約未達成時の不測電力量とペナルティ単価との積(負値)との和である、売電収入の期待値が最大となる発電計画値を求めている。   For example, Patent Document 1 exists as a prior art related to the present application. The technology according to Patent Literature 1 includes a prediction error analysis device that obtains a correlation between past prediction errors (difference between a power generation predicted value and a power generation actual value) and an occurrence frequency by statistical processing. In the technique according to Patent Document 1, using the result of the statistical processing, the product of the power sale amount and the power sale unit price (positive value), the unpredictable power amount when the power sale contract is not achieved, and the penalty unit price. The power generation plan value that maximizes the expected value of electricity sales, which is the sum of (negative value), is obtained.

特開2008−54385号公報JP 2008-54385 A

30分単位での電力売買を事前に契約し、当日は売電側は契約通りに発電し、買電側は契約通りに電力を消費する電力取引では、30分毎に同時同量を達成する必要がある。しかし、自然エネルギー発電は出力不安定であるので、自然エネルギー発電に限っては、ある時間については同時同量が達成されなくとも、全体としてある一定以上の同時同量達成率であれば、契約として許容され得る。   In the power transaction in which power purchases are contracted in advance in units of 30 minutes and the power selling side generates power as contracted on the day and the power purchase side consumes power as contracted, the same amount is achieved every 30 minutes. There is a need. However, since renewable energy power generation is unstable, even if the same amount of energy is not achieved for a certain period of time, it will be contracted as long as the overall achievement rate of a certain amount is the same. As acceptable.

当該契約では、たとえば、全体としてある一定以上の同時同量達成率が継続して満たされない場合には、取引を停止するといった内容も含まれることが想定される。自然任せで変動の激しい自然エネルギー発電を用いた発電計画を当該契約通りに達成するには、売電側は、発電予測値に対して計画値を大幅に下方設定すれば良い。しかし、このような場合には、計画値を下方に設定すればするほど、売電できる電力は減少することになり、売電側は利益を逸することになる。   In the contract, for example, it is assumed that the content of stopping the transaction is also included when, for example, a certain amount or more of the same amount achievement rate is not continuously satisfied. In order to achieve a power generation plan that uses natural energy power generation, which is subject to natural fluctuations and is subject to natural fluctuations, according to the contract, the power selling side may set the plan value significantly lower than the predicted power generation value. However, in such a case, as the planned value is set downward, the power that can be sold decreases, and the power selling side loses profit.

そこで、本発明は、出力不安定で発電予測誤差が大きい自然エネルギー発電装置を用いた場合において、予め設定された同時同量達成の平均達成率(以下、平均許容達成率と称する)を逸脱せず、売電量を最大とすることができる自然エネルギー発電制御システムを提供することを目的とする。   Therefore, the present invention deviates from a preset average achievement rate of simultaneous equal amount (hereinafter referred to as an average allowable achievement rate) in the case of using a natural energy generator with unstable output and large power generation prediction error. Therefore, an object is to provide a natural energy power generation control system capable of maximizing the amount of power sold.

上記の目的を達成するために、本発明に係る請求項1に記載の自然エネルギー発電制御システムは、自然エネルギー発電装置と、将来の発電予想値を事前に決定する自然エネルギー発電予想装置と、前記発電予想値を用いて得られた発電計画値に基づいて、前記自然エネルギー発電装置を制御する計画発電装置とを、備えており、前記計画発電装置は、前記自然エネルギー発電装置から出力された発電実績値と前記発電予想値とに基づいて、各前記発電予測値毎に、前記発電予測値に対する前記発電実績値の誤差と当該誤差が発生する頻度との分布を示す予測誤差分布を求める予測誤差分析装置と、前記予測誤差分布を用いて、前記発電予測値に対して前記発電実績値が不足する方向の所定値以上の前記誤差が生じる確率が所定の発電計画逸脱率以内となるときの前記所定値である閾値誤差を求め、前記発電予測値から前記閾値誤差の絶対値量を差分することにより、第一の前記発電計画値を求める計画立案装置と、前記発電計画値に基づいて、前記自然エネルギー発電装置の発電を制御する需給制御装置とを、備えている。   In order to achieve the above object, a natural energy power generation control system according to claim 1 according to the present invention includes a natural energy power generation device, a natural energy power generation prediction device that determines a predicted power generation value in advance, A planned power generation device that controls the natural energy power generation device based on a power generation plan value obtained using the predicted power generation value, and the planned power generation device outputs power generated from the natural energy power generation device. Based on the actual value and the predicted power generation value, for each predicted power generation value, a prediction error for obtaining a prediction error distribution indicating the distribution of the error of the actual power generation value with respect to the predicted power generation value and the frequency of occurrence of the error Using the analysis device and the prediction error distribution, the probability that the error is greater than or equal to a predetermined value in a direction in which the actual power generation value is insufficient with respect to the predicted power generation value is a predetermined power generation plan error. A plan generation device for obtaining a first power generation plan value by obtaining a threshold error that is the predetermined value when the ratio is within a rate, and subtracting an absolute value amount of the threshold error from the power generation prediction value; A supply and demand control device for controlling power generation of the natural energy power generation device based on a planned value.

本発明の請求項1に記載の自然エネルギー発電制御システムは、予め設定されている平均許容達成率と予測誤差分布とを用いて閾値誤差を求め、発電予測値から閾値誤差の絶対値量を差分することにより発電計画値を求めている。   The natural energy power generation control system according to claim 1 of the present invention obtains a threshold error using a preset average allowable achievement rate and a prediction error distribution, and calculates a difference between the absolute value of the threshold error from the power generation prediction value. By doing so, the power generation plan value is obtained.

したがって、平均許容達成率が指定された自然エネルギー発電での計画発電において、契約により予め指定された平均許容達成率を逸脱しない範囲で、発電計画値をできるだけ高めに設定される。よって、売電量(換言すれば売電収益)を最大化させることができる。   Therefore, in the planned power generation by the natural energy power generation in which the average allowable achievement rate is designated, the power generation plan value is set as high as possible without departing from the average allowable achievement rate designated in advance by the contract. Therefore, it is possible to maximize the amount of power sold (in other words, power sales revenue).

以下、この発明をその実施の形態を示す図面に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.

<実施の形態1>
図1は、本実施の形態1に関わる自然エネルギー発電制御システムの構成を示す図である。
<Embodiment 1>
FIG. 1 is a diagram showing a configuration of a natural energy power generation control system according to the first embodiment.

図1に示すように、自然エネルギー発電制御システム100は、自然エネルギー発電装置10と、計画発電装置30と、自然エネルギー発電予測装置40とから構成されている。   As shown in FIG. 1, the natural energy power generation control system 100 includes a natural energy power generation device 10, a planned power generation device 30, and a natural energy power generation prediction device 40.

自然エネルギー発電装置10は、自然の力を用いた発電装置であり、たとえば太陽光発電装置もしくは風力発電装置などがある。自然エネルギー発電装置10は、図2に例示するような時々刻々と変化する電力を発電し、当該発電した電力を電力系統20へと送出す。   The natural energy power generation device 10 is a power generation device that uses natural power, such as a solar power generation device or a wind power generation device. The natural energy power generation apparatus 10 generates electric power that changes every moment as illustrated in FIG. 2, and sends the generated electric power to the electric power system 20.

自然エネルギー発電予測装置40は、将来の発電予想値を事前に決定(予想)する。当該自然エネルギー発電予測装置40は、図3に例示するような、自然エネルギー発電装置10での将来(たとえば数時間先から数日先)の発電量(発電予測値)を、所定の時間刻み(たとえば30分刻み)で予想する。ここで、当該発電予測値は、たとえば、季節、天候、風速、風向、気温などの自然エネルギー予測値と相関関係のあるデータ、および地形データ等に基づいて決定される。   The natural energy power generation prediction device 40 determines (predicts) a predicted power generation value in the future. The natural energy power generation prediction device 40, as illustrated in FIG. 3, calculates the power generation amount (power generation predicted value) in the future (for example, several hours to several days ahead) in the predetermined time interval ( (For example, every 30 minutes) Here, the power generation prediction value is determined based on, for example, data correlated with natural energy prediction values such as season, weather, wind speed, wind direction, temperature, and terrain data.

計画発電装置30は、上記発電予想値を用いて所定の時刻毎の発電計画値を算出し、当該発電計画値に基づいて、自然エネルギー発電装置10の発電を制御する。なお、売電契約相手50は、事前(たとえば前日)に計画発電装置30で算出された、所定の時刻毎の発電計画値に従い、電力系統20より電力を消費する。   The planned power generation device 30 calculates a power generation plan value for each predetermined time using the power generation expected value, and controls the power generation of the natural energy power generation device 10 based on the power generation plan value. The power sale contract partner 50 consumes power from the power system 20 in accordance with the power generation plan value for each predetermined time calculated by the planned power generation device 30 in advance (for example, the previous day).

次に、計画発電装置30の内部構成および計画発電装置30内の各構成要素の動作について説明する。   Next, the internal configuration of the planned power generation apparatus 30 and the operation of each component in the planned power generation apparatus 30 will be described.

計画発電装置30は、予測誤差分析装置31、計画立案装置22、および需給制御装置から構成されている。   The planned power generation device 30 includes a prediction error analysis device 31, a planning device 22, and a supply and demand control device.

予測誤差分析装置31は、自然エネルギー発電装置10から過去に出力された発電実績値と上記発電予想値とに基づいて、各発電予測値毎に、予測誤差分布を求める。当該予測誤差分布は、上記発電予測値に対する上記発電実績値の誤差(以下、予想誤差と称する)と、当該予測誤差が発生する頻度との度数分布を示す。   The prediction error analysis device 31 obtains a prediction error distribution for each power generation prediction value based on the power generation actual value output in the past from the natural energy power generation device 10 and the power generation prediction value. The prediction error distribution indicates a frequency distribution of an error of the actual power generation value with respect to the predicted power generation value (hereinafter referred to as a prediction error) and a frequency at which the prediction error occurs.

ある発電予測値に対する予測誤差分布の一例を図4に示す。図4において、横軸は予測誤差であり、縦軸は予測誤差が発生する頻度である。図4において、予測誤差が0とは、発電予測値と発電実績値とが等しいことを示す。また、図4において予測誤差がマイナスとは、発電予測値より発電実績値が下回る(以下、下振れと称する)ことを意味する。これに対して、予測誤差のプラスとは、発電予測値より発電実績値が上回る(以下、上振れと称する)ことを意味する。なお、予測誤差分布は度数分布であるので、図4に示すように当然、予測誤差分布関数は、頻度のプラス方向(ゼロも含む)にのみ存する。   An example of a prediction error distribution for a certain power generation prediction value is shown in FIG. In FIG. 4, the horizontal axis represents the prediction error, and the vertical axis represents the frequency at which the prediction error occurs. In FIG. 4, a prediction error of 0 indicates that the predicted power generation value is equal to the actual power generation value. Further, in FIG. 4, that the prediction error is negative means that the actual power generation value is lower than the predicted power generation value (hereinafter referred to as downward swing). On the other hand, a positive prediction error means that the actual power generation value is higher than the predicted power generation value (hereinafter referred to as upswing). Since the prediction error distribution is a frequency distribution, naturally, as shown in FIG. 4, the prediction error distribution function exists only in the plus direction (including zero) of the frequency.

図5は、予測誤差分析装置31の内部構成を示す図である。   FIG. 5 is a diagram illustrating an internal configuration of the prediction error analysis device 31.

図5に示すように、予測誤差分析装置31は、誤差計算部311、誤差実績データベース312、統計処理部313、誤差分布データベース314、および誤差分布抽出部315から構成されている。予測誤差分析装置31は、自然エネルギー発電予測装置40から送信される、所定の時間刻み毎の各発電予測値に対して次の動作を行う。   As shown in FIG. 5, the prediction error analysis device 31 includes an error calculation unit 311, an error record database 312, a statistical processing unit 313, an error distribution database 314, and an error distribution extraction unit 315. The prediction error analysis device 31 performs the following operation on each power generation prediction value transmitted from the natural energy power generation prediction device 40 at every predetermined time interval.

誤差計算部311は、発電予測値と、当該発電予測値と同時刻の発電実績値とを、各々入力する。そして、誤差計算部311は、当該発電予測値と当該発電実績値との差分(予測誤差)を算出する。そして、誤差計算部311は当該予測誤差を誤差実績データベース312に送信し、誤差実績データベース312は受信した予測誤差を蓄積する。   The error calculation unit 311 inputs the predicted power generation value and the actual power generation value at the same time as the predicted power generation value. Then, the error calculation unit 311 calculates a difference (prediction error) between the power generation predicted value and the power generation actual value. Then, the error calculation unit 311 transmits the prediction error to the error record database 312, and the error record database 312 stores the received prediction error.

統計処理部313では、一定周期毎(たとえば1日毎)に、誤差実績データベース312から過去の予測誤差情報を読出し、当該一定周期分の予測誤差情報に対して統計処理を行う。当該統計処理により、統計処理部313は、図6に示すように、発電予測値の大きさ段階別(たとえば、自然エネルギー発電装置10の定格比10%刻みで10段階など)に度数分化した予測誤差分布を作成する。当該作成された予測誤差分布は、誤差分布データベース314に記録される。   The statistical processing unit 313 reads past prediction error information from the error record database 312 at regular intervals (for example, every day), and performs statistical processing on the prediction error information for the regular cycles. As a result of the statistical processing, the statistical processing unit 313 predicts frequency-differentiated for each power generation predicted value size level (for example, 10 levels in steps of 10% of the rated ratio of the natural energy power generation apparatus 10), as shown in FIG. Create an error distribution. The created prediction error distribution is recorded in the error distribution database 314.

誤差分布抽出分315では、入力されてきた将来の発電予測値毎に、当該発電予測値に対する予測誤差分布を誤差分布データベース314より抽出する。   In the error distribution extraction portion 315, for each future power generation prediction value that has been input, a prediction error distribution for the power generation prediction value is extracted from the error distribution database 314.

ここで、当該予測誤差分布は、瞬間的な電力値(W)を用いた分析でも、その一定時間の積算である電力量値(Wh)を用いた分析であっても良い。いずれに基づく分析を採用するかは、売電契約の詳細に依存する。たとえば同時同量だけであれば、電力量値で良いが、瞬間的な電力値の変動も契約の制約に含まれているなら、電力値での分析の方が適している。   Here, the prediction error distribution may be an analysis using an instantaneous electric power value (W) or an analysis using an electric energy value (Wh) that is an integration of the predetermined time. Which analysis is used depends on the details of the power sale contract. For example, if only the same amount is the same, the power amount value may be sufficient, but if the fluctuation of the instantaneous power value is also included in the contract constraints, the analysis with the power value is more suitable.

さて、図1に示した計画立案装置32では、入力されてきた将来の発電予測値に対して誤差分布データベース314より抽出された前記予測誤差分布と、予め設定されている平均許容達成率とを用いて、閾値誤差を求める。   In the planning apparatus 32 shown in FIG. 1, the prediction error distribution extracted from the error distribution database 314 with respect to the inputted future power generation prediction value and the preset average allowable achievement rate are obtained. To determine the threshold error.

ここで、当該閾値誤差は、当該発電予測値に対して発電実績値が不足する方向(マイナス方向)に存する予測誤差である。また上記の通り、平均許容達成率とは、自然エネルギー発電を用いた計画発電において、一定の長期期間における同時同量の売電契約で達成すべき計画達成率の平均値である。   Here, the threshold error is a prediction error existing in a direction (minus direction) in which the actual power generation value is insufficient with respect to the power generation prediction value. In addition, as described above, the average allowable achievement rate is an average value of the planned achievement rate that should be achieved with the same amount of power sale contracts in a certain long period in the planned power generation using natural energy power generation.

上記閾値誤差を求めた計画立案装置32は、発電予測値から閾値誤差の絶対値量を差分することにより、将来の発電計画値を求める。   The planning device 32 that has obtained the threshold error obtains a future power generation plan value by subtracting the absolute value of the threshold error from the power generation prediction value.

当該計画立案装置32では、売電契約をしたい将来の期間(たとえば翌日の午前0時から24時)内の、所定時間刻み(たとえば30分毎)毎に与えられた発電予測値に対し、各々の該当する範囲の予測誤差分布を、予測誤差分析装置より得る。図7は、当該得られた予測分布関数の一例を示す図である。   In the planning device 32, for each power generation prediction value given at predetermined time intervals (for example, every 30 minutes) within a future period (for example, midnight to 24:00 on the next day) in which a power sale contract is desired, The prediction error distribution in the corresponding range is obtained from the prediction error analyzer. FIG. 7 is a diagram illustrating an example of the obtained prediction distribution function.

上述したように、図7に例示する予測誤差分布において、予測誤差の負値は発電予測値に対し発電実績値が下回っていた場合であり、予測誤差の正値は発電予測値に対し発電実績値が上回っていた場合である。   As described above, in the prediction error distribution illustrated in FIG. 7, the negative value of the prediction error is a case where the actual power generation value is lower than the predicted power generation value, and the positive value of the prediction error is the actual power generation result relative to the predicted power generation value. This is the case when the value was higher.

通常、発電計画値より発電実績値が上回る(上振れ)ことによって同時同量から逸脱しそうな場合には、図1に示す需給制御装置33は、自然エネルギー発電装置10に発電抑制制御を行う。当該発電抑制制御により、上記上振れの問題は容易に解決できる。ここで、当該発電抑制制御は、たとえば、発電設備の一部解列や、太陽光発電ではパワーコンディショナーによる出力抑制、風力発電では風車のピッチ制御による出力抑制などにより実現される。   Normally, when the actual power generation value exceeds the planned power generation value (upward), the supply and demand control device 33 shown in FIG. 1 performs the power generation suppression control on the natural energy power generation device 10. The power generation suppression control can easily solve the above-mentioned problem of upswing. Here, the power generation suppression control is realized by, for example, partial disconnection of power generation equipment, output suppression by a power conditioner in solar power generation, output suppression by wind turbine pitch control in wind power generation, and the like.

自然エネルギー発電装置10は、上記の通り発電抑制制御は可能であるが、発電上昇制御は不可能である。このため、発電計画値より発電実績値が下回る(下振れ)ことによって同時同量から逸脱する場合は、対処できない。このため、発電計画値より発電実績値が下回る確率が、売電契約で許容される誤差範囲内に収める必要がある。   The natural energy power generation apparatus 10 can perform power generation suppression control as described above, but cannot perform power generation increase control. For this reason, when the actual power generation value falls below the planned power generation value (downward) and deviates from the same amount, it cannot be dealt with. For this reason, the probability that the actual power generation value is lower than the planned power generation value needs to be within an error range permitted by the power sale contract.

そこで、計画立案装置32は、図7に示した予測誤差分布の中で、発電が不足する(予測誤差のマイナス)方向の確率が同時同量の平均許容達成率と合致する予測誤差(閾値誤差)を求める。計画立案装置32は、当該求めた閾値誤差(より具体的には、当該閾値誤差の絶対値)を発電予測値から差し引いた値を、発電計画値として求める。具体的に、図7,8を用いて説明する。   Therefore, the planning device 32 has a prediction error (threshold error) in the prediction error distribution shown in FIG. 7 in which the probability of the direction in which power generation is insufficient (a negative prediction error) matches the average allowable achievement rate of the same amount at the same time. ) The planning device 32 obtains a power generation plan value by subtracting the obtained threshold error (more specifically, the absolute value of the threshold error) from the power generation prediction value. This will be specifically described with reference to FIGS.

図7において、予測誤差の最大値からある負方向の所定の予測誤差までの範囲における、予測誤差軸と予測誤差分布関数とで囲まれた面積が、上記平均許容達成率と同じなる、当該所定の予測誤差の値を計画立案装置32は求める。当該求めた所定の予測誤差が上記閾値誤差(=−A)である。   In FIG. 7, the area surrounded by the prediction error axis and the prediction error distribution function in the range from the maximum value of the prediction error to the predetermined prediction error in the negative direction is the same as the average allowable achievement rate. The planning device 32 obtains the value of the prediction error. The obtained predetermined prediction error is the threshold error (= −A).

ここで、100%から平均許容達成率を差し引いた確率は、発電計画逸脱率である。すると、上記を換言すると次のことを意味していると把握できる。つまり、計画立案装置32は、予測誤差分布を用いて、発電予測値に対して発電実績値が不足する方向の所定値以上の誤差が生じる確率が所定の発電計画逸脱率以内となるときの所定値である閾値誤差(=−A)を求める。たとえば、計画立案装置32は、図7において、斜線部の面積が予め設定されている発電計画逸脱率と同じとなる、所定の予測誤差の値を求める。当該求めた所定の予測誤差が上記閾値誤差(=−A)である。   Here, the probability of subtracting the average allowable achievement rate from 100% is the power generation plan deviation rate. Then, in other words, it can be understood that the following is meant. That is, the planning device 32 uses the prediction error distribution to determine a predetermined value when the probability that an error of a predetermined value or more in a direction in which the actual power generation value is insufficient with respect to the predicted power generation value is within a predetermined power generation plan deviation rate. A threshold error (= −A) as a value is obtained. For example, in FIG. 7, the planning device 32 obtains a predetermined prediction error value in which the area of the shaded portion is the same as the preset power generation plan deviation rate. The obtained predetermined prediction error is the threshold error (= −A).

図7に例示する予測誤差分布において、分布全体の面積に対する、所定の予測誤差(閾値誤差)「−A」以下の分布面積の比が、A以上に下振れする確率を示すことになる(この確率をP(A)とする)。言い換えれば、図8のように、発電予測値からAだけ差し引いた値を発電計画値としておけば、確率論的に、「1−P(A)」の確率で、発電実績は発電計画値以上となる。つまり、同時同量の達成率の期待値が、「1−P(A)」となる。   In the prediction error distribution illustrated in FIG. 7, the ratio of the distribution area equal to or smaller than a predetermined prediction error (threshold error) “−A” to the area of the entire distribution indicates a probability of falling below A (this) The probability is P (A)). In other words, as shown in FIG. 8, if a value obtained by subtracting A from the predicted power generation value is used as the power generation plan value, the power generation result is more than the power generation plan value with a probability of “1-P (A)” stochastically. It becomes. That is, the expected value of the achievement rate of the same amount at the same time is “1-P (A)”.

上記「1−P(A)」は、あくまでも確率論上での期待値であるため、ある時間断面を見れば、発電実績が発電計画値より下回ることも発生する。しかしながら、全体を通しての同時同量の達成率は「1−P(A)」となるはずである。   Since the above “1-P (A)” is an expected value in terms of probability, the actual power generation may be lower than the planned power generation value when a certain time section is seen. However, the achievement rate of the same amount throughout the whole should be “1-P (A)”.

この場合、計画立案装置32は、発電予測値から閾値誤差の絶対値である「A」を差し引いた値を、発電計画値として求める。   In this case, the planning apparatus 32 obtains a value obtained by subtracting “A”, which is the absolute value of the threshold error, from the power generation prediction value as the power generation plan value.

事前に図1で示した売電契約相手50に通告する発電計画は、30分などのある時間刻みのみではなく、30分刻みで1日分の発電計画を提示することになるが、各30分断面で前述のように発電計画値を設定していけば良い。   The power generation plan notified to the power sale contract partner 50 shown in FIG. 1 in advance shows not only a certain time interval such as 30 minutes but also a power generation plan for one day every 30 minutes. What is necessary is just to set a power generation plan value as mentioned above in the cross section.

上記発電計画値を計画立案装置32から受信した需給制御装置は、当該受信した発電計画値に基づいて、上振れによって同時同量から逸脱しそうな場合には、自然エネルギー発電装置10に対して、上振れ分の発電抑制指令(kW値もしくはkWh値形式)の制御信号を送信する。自然エネルギー発電装置10では、上記制御信号に従い、発電計画値に沿った電力が発電されるように発電を制御する。つまり、自然エネルギー発電装置10では、発電計画値に基づき必要以上の発電出力を抑制する。   The supply and demand control device that has received the power generation plan value from the planning device 32, on the basis of the received power generation plan value, when it is likely to deviate from the same amount due to an upside, The control signal of the power generation suppression command (kW value or kWh value format) for the upper deflection is transmitted. The natural energy power generation apparatus 10 controls power generation according to the control signal so that power according to the power generation plan value is generated. In other words, the natural energy power generation apparatus 10 suppresses unnecessary power generation output based on the power generation plan value.

本実施の形態に係る自然エネルギー発電制御システムは上記のように構成されているので、平均許容達成率が指定された自然エネルギー発電での計画発電において、契約により予め指定された平均許容達成率を逸脱しない範囲で、発電計画値をできるだけ高めに設定される。したがって、売電量(換言すれば売電収益)を最大化させることができる。なお、計画発電装置30は簡単な統計処理と簡単な減算処理などにより発電計画値を求めているので、当該発電計画値を容易に決定できる。   Since the natural energy power generation control system according to the present embodiment is configured as described above, in the planned power generation with natural energy power generation in which the average allowable achievement rate is specified, the average allowable achievement rate specified in advance by the contract is set. The power generation plan value is set as high as possible without deviating. Therefore, the amount of power sold (in other words, power sales revenue) can be maximized. Since the planned power generation device 30 obtains the power generation plan value by simple statistical processing and simple subtraction processing, the power generation planned value can be easily determined.

<実施の形態2>
図9は、本発明の実施の形態2に係る自然エネルギー発電制御システムの構成を示す図である。
<Embodiment 2>
FIG. 9 is a diagram showing a configuration of a natural energy power generation control system according to Embodiment 2 of the present invention.

図1と図9との比較より分かるように、本実施の形態に係る自然エネルギー発電制御システムの構成は、実施の形態1に係る自然エネルギー発電制御システム構成に、電力貯蔵装置60が追加されている。当該電力貯蔵装置60は、当該電力貯蔵装置60の定格容量内で、自然エネルギー発電装置10からの発電電力を充放電することができる。   As can be seen from a comparison between FIG. 1 and FIG. 9, the configuration of the natural energy power generation control system according to the present embodiment is obtained by adding the power storage device 60 to the configuration of the natural energy power generation control system according to the first embodiment. Yes. The power storage device 60 can charge and discharge the generated power from the natural energy power generation device 10 within the rated capacity of the power storage device 60.

なお、本実施の形態では、需給制御装置33は、自然エネルギー発電装置10への制御信号の送信に加え、電力貯蔵装置60への充放電制御信号を送信する。   In the present embodiment, the supply and demand control device 33 transmits a charge / discharge control signal to the power storage device 60 in addition to transmission of a control signal to the natural energy power generation device 10.

上記以外の構成は、実施の形態1と実施の形態2とで同じなので、ここでの当該他の構成の説明は省略する。以下、本実施の形態2に係る自然エネルギー発電制御システムの特徴部分について説明する。   Since the configuration other than the above is the same in the first embodiment and the second embodiment, description of the other configuration here is omitted. Hereinafter, the characteristic part of the natural energy power generation control system according to the second embodiment will be described.

電力貯蔵装置60が配設されている場合は、電力貯蔵装置60の定格容量範囲で、発電予測値と発電実績値との差分を補償することが可能である。   When the power storage device 60 is provided, it is possible to compensate for the difference between the predicted power generation value and the actual power generation value within the rated capacity range of the power storage device 60.

すなわち、発電予測値より発電実績値が上振れした場合には、余剰電力が発生する。当該余剰余剰電力が発生する可能性がある場合には、実施の形態1では自然エネルギー発電装置10の発電抑制を実施していた。   That is, when the actual power generation value exceeds the predicted power generation value, surplus power is generated. In the case where there is a possibility that the surplus surplus power is generated, the power generation suppression of the natural energy power generation apparatus 10 is performed in the first embodiment.

しかしながら、本実施の形態では、発電予測値より発電実績値が上振れした場合には、需給制御装置33は電力貯蔵装置60に当該余剰電力を充電する旨の充放電制御信号を、充電量(kW値もしくはkWh値形式)の形で送信する。当該充放電制御信号を受信した電力貯蔵装置50は、自然エネルギー発電装置10から出力される電力の一部(充放電制御信号における指令値分)を充電する。なお、自然エネルギー発電装置10から出力される電力の残りは、電力系統20へ供給される。   However, in the present embodiment, when the actual power generation value exceeds the predicted power generation value, the supply and demand control device 33 supplies a charge / discharge control signal indicating that the power storage device 60 is charged with the surplus power to the charge amount ( kW value or kWh value format). The power storage device 50 that has received the charge / discharge control signal charges part of the power output from the natural energy power generation device 10 (the command value in the charge / discharge control signal). The remainder of the power output from the natural energy power generation apparatus 10 is supplied to the power system 20.

また、発電予測値より発電実績値が上振れした場合において、電力貯蔵装置60で充電しきれない余剰電力が発生する場合には、実施の形態1と同様、需給制御装置33は自然エネルギー発電装置10に発電を抑制する旨の制御信号(kW値もしくはkWh値形式)を送信する。自然エネルギー発電装置10では、上記制御信号に従い、自身の発電量を抑制制御する。これにより、当該充電しきれない余剰電力の発電を抑制し、同時同量の電力供給を維持する。   Further, in the case where the actual power generation value exceeds the predicted power generation value, and surplus power that cannot be charged by the power storage device 60 is generated, the supply and demand control device 33 is a natural energy power generation device as in the first embodiment. 10 is transmitted with a control signal (kW value or kWh value format) for suppressing power generation. In the natural energy power generation device 10, the power generation amount of the natural energy power generation device 10 is controlled in accordance with the control signal. This suppresses the generation of surplus power that cannot be fully charged, and maintains the same amount of power supply at the same time.

上記と異なり、発電予測値より発電実績値が下振れした場合には、不足電力が発生する。このような場合には、需給制御装置33は電力貯蔵装置60に当該不足電力分の電気を放電する旨の充放電制御信号(kW値もしくはkWh値形式)を送信する。当該充放電制御信号を受信した電力貯蔵装置50は、自然エネルギー発電装置10から出力される電力に加算されるように、自装置50で充電していた電力を放電する。   Unlike the above, when the actual power generation value falls below the predicted power generation value, insufficient power is generated. In such a case, the supply and demand control device 33 transmits a charge / discharge control signal (kW value or kWh value format) to the electricity storage device 60 to discharge the electricity for the insufficient power. The power storage device 50 that has received the charge / discharge control signal discharges the power charged by the own device 50 so as to be added to the power output from the natural energy power generation device 10.

したがって、電力系統20には、自然エネルギー発電装置10から出力される電力と、電力貯蔵装置60から放電される電力とが供給され、同時同量の電力供給が補償される。つまり、図10に示すように、実施の形態1で説明した発電計画値設定において、実施の形態1で説明した発電計画値(以下、第一の発電計画値と称する)を、電力貯蔵装置60の補償可能容量(この場合は、電力貯蔵装置60の定格容量)分だけ上乗せすることができる(第一の発電計画値+電力貯蔵装置60の補償可能容量=第二の発電計画値)。計画立案装置32は、当該第二の発電計画値を求め、当該求めた第二の発電計画値を需給制御装置33に送信する。   Therefore, the electric power system 20 is supplied with the electric power output from the natural energy power generation apparatus 10 and the electric power discharged from the electric power storage apparatus 60, so that the same amount of electric power supply is compensated simultaneously. That is, as illustrated in FIG. 10, in the power generation plan value setting described in the first embodiment, the power generation plan value described in the first embodiment (hereinafter referred to as the first power generation plan value) is used as the power storage device 60. (In this case, the rated capacity of the power storage device 60) can be added (first power generation plan value + compensable capacity of the power storage device 60 = second power generation plan value). The planning device 32 calculates the second power generation plan value and transmits the determined second power generation plan value to the supply and demand control device 33.

需給制御装置33は、電力貯蔵装置60に補償可能容量の電気を放電する充放電制御信号を送信し、自然エネルギー発電装置10に対しては、電力貯蔵装置60の補償可能容量分を加算する前の第一の発電計画値に基づいた発電制御を行う。   The supply and demand control device 33 transmits a charge / discharge control signal for discharging electricity of a compensable capacity to the power storage device 60, and before adding the compensable capacity of the power storage device 60 to the natural energy power generation device 10. Power generation control based on the first power generation plan value is performed.

ここで、自然エネルギー発電装置10の発電予測値が低出力状態である場合は、たとえば図10の0:00から0:30までのように、発電予測値より第二の発電計画値の方が大きくなる。この状態が長時間継続した場合は、電力貯蔵装置60の蓄電残量が無くなる可能性がある。しかしながら、電力貯蔵装置60の蓄電残量が無くなる場合は、これすなわち電力貯蔵装置60の構成が無い構成を意味するので、実施の形態1で説明した処理を行えば対応可能となる。   Here, when the power generation predicted value of the natural energy power generation apparatus 10 is in a low output state, the second power generation planned value is more than the power generation predicted value, for example, from 0:00 to 0:30 in FIG. growing. When this state continues for a long time, there is a possibility that the remaining amount of electricity stored in the power storage device 60 may be lost. However, when the remaining amount of electricity stored in the power storage device 60 is lost, this means a configuration without the configuration of the power storage device 60, and can be handled by performing the processing described in the first embodiment.

また、発電予測値が上記第二の発電計画値よりも小さい場合は、計画発電は100%の確率で達成可能となる。その結果、長期間を通しての計画発電達成率は必要以上に改善されることになる。これに対して、発電予測値が上記第二の発電計画値よりも大きい場合には、目標とする計画発電達成率を適宜下げることにより、全体として必要最低限の目標達成率を維持しつつ、売電計画量を最大化できる。   When the predicted power generation value is smaller than the second power generation plan value, the planned power generation can be achieved with a probability of 100%. As a result, the planned power generation achievement rate over a long period of time will be improved more than necessary. On the other hand, when the power generation forecast value is larger than the second power generation plan value, by appropriately reducing the target planned power generation achievement rate, while maintaining the minimum necessary target achievement rate as a whole, The planned amount of power sales can be maximized.

本実施の形態に係る自然エネルギー発電制御システムは上記電力貯蔵装置60を備えているので、計画発電の余剰電力を充電するとともに、不足電力を放電により賄うことで、自然エネルギー発電の発電電力をより有効活用した計画発電が実現できる。   Since the natural energy power generation control system according to the present embodiment includes the power storage device 60, the surplus power of the planned power generation is charged, and the shortage power is covered by discharging, so that the generated power of the natural energy power generation can be further increased. Effective power generation can be realized.

なお、電力貯蔵装置60は、自然エネルギー発電装置10おいて発生する短期的な出力変動(たとえば、電力系統20へ悪影響を及ぼす、変動周期が10分以下の変動)を平滑化しても良い。この場合は、電力貯蔵装置60の容量は、平滑化に使用するための容量(第一の容量と称する)と、図10を用いて説明した計画発電に使用する容量(第二の容量と称する)とに分割される。容量が前記のように分割される場合、第二の容量を電力貯蔵装置60の上記補償可能容量と称することとする。   Note that the power storage device 60 may smooth short-term output fluctuations (for example, fluctuations with a fluctuation period of 10 minutes or less that adversely affect the power system 20) that occur in the natural energy power generation apparatus 10. In this case, the capacity of the power storage device 60 is the capacity used for smoothing (referred to as the first capacity) and the capacity used for the planned power generation described with reference to FIG. 10 (referred to as the second capacity). ) And divided. When a capacity | capacitance is divided | segmented as mentioned above, suppose that a 2nd capacity | capacitance is called the said compensation capacity | capacitance of the power storage device 60. FIG.

この場合、第一の発電計画値に上記第二の容量分だけ上乗せすることにより、上記第二の発電計画値が求められる。   In this case, the second power generation plan value is obtained by adding the first power generation plan value by the second capacity.

また、第一の容量は、自然エネルギー発電装置10の短期変動成分の大きさに等しい。このため、計画立案装置32は、自然エネルギー発電の時系列データからフーリエ変換などにより、短期変動成分の大きさ(短期出力変動幅と称する)を抽出し、当該短期出力変動幅を上記第二の発電計画値から差し引くことにより、第三の発電計画値を求める(第二の発電計画値−短期出力変動幅=第三の発電計画値)。計画立案装置32は、当該第三の発電計画値を求め、当該求めた第三の発電計画値を需給制御装置33に送信する。   The first capacity is equal to the magnitude of the short-term fluctuation component of the natural energy power generation apparatus 10. For this reason, the planning device 32 extracts the magnitude of the short-term fluctuation component (referred to as a short-term output fluctuation width) from the time series data of the natural energy power generation by Fourier transform or the like, and the short-term output fluctuation width is extracted from the second short-term output fluctuation width. A third power generation plan value is obtained by subtracting from the power generation plan value (second power generation plan value−short-term output fluctuation range = third power generation plan value). The planning device 32 obtains the third power generation plan value and transmits the obtained third power generation plan value to the supply and demand control device 33.

電力貯蔵装置60が自然エネルギー発電装置10おいて発生する短期的な出力変動を平滑化できることにより、電力系統20には極めて高品質の電力が供給される。   Since the power storage device 60 can smooth out short-term output fluctuations generated in the natural energy power generation device 10, extremely high quality power is supplied to the power system 20.

実施の形態1に係る自然エネルギー発電制御システムの構成を示す図である。It is a figure which shows the structure of the natural energy electric power generation control system which concerns on Embodiment 1. FIG. 自然エネルギー発電の出力データの一例を示す図である。It is a figure which shows an example of the output data of natural energy power generation. 自然エネルギー発電予測装置が出力する発電予測データの一例を示す図である。It is a figure which shows an example of the electric power generation prediction data which a natural energy electric power generation prediction apparatus outputs. 予測誤差分布データの一例を示す図である。It is a figure which shows an example of prediction error distribution data. 予測誤差分析装置の内部構成を示す図である。It is a figure which shows the internal structure of a prediction error analyzer. 予測誤差分析装置から得られる予測誤差分布データの一例を示す図である。It is a figure which shows an example of the prediction error distribution data obtained from a prediction error analyzer. 計画立案装置の動作を説明するための図である。It is a figure for demonstrating operation | movement of the planning apparatus. 発電計画値を決定するための動作を説明するための図である。It is a figure for demonstrating the operation | movement for determining a power generation plan value. 実施の形態2に係る自然エネルギー発電制御システムの構成を示す図である。It is a figure which shows the structure of the natural energy electric power generation control system which concerns on Embodiment 2. FIG. 第二の発電計画値を決定するための動作を説明するための図である。It is a figure for demonstrating the operation | movement for determining a 2nd power generation plan value.

符号の説明Explanation of symbols

10 自然エネルギー発電装置、20 電力系統、30 計画発電装置、31 予測誤差分析装置、32 計画立案装置、33 需給制御装置、40 自然エネルギー発電予測装置、50 売電契約相手、60 電力貯蔵装置、311 誤差計算部、312 誤差実績データベース、313 統計処理部、314 誤差分布データベース、315 誤差分布抽出部。   DESCRIPTION OF SYMBOLS 10 Natural energy power generation device, 20 Electric power system, 30 Planned power generation device, 31 Prediction error analysis device, 32 Planning planning device, 33 Supply and demand control device, 40 Natural energy power generation prediction device, 50 Power sale contract partner, 60 Power storage device, 311 Error calculation unit, 312 error result database, 313 statistical processing unit, 314 error distribution database, 315 error distribution extraction unit.

Claims (6)

自然エネルギー発電装置と、
将来の発電予想値を事前に決定する自然エネルギー発電予想装置と、
前記発電予想値を用いて得られた発電計画値に基づいて、前記自然エネルギー発電装置を制御する計画発電装置とを、備えており、
前記計画発電装置は、
前記自然エネルギー発電装置から出力された発電実績値と前記発電予想値とに基づいて、各前記発電予測値毎に、前記発電予測値に対する前記発電実績値の誤差と当該誤差が発生する頻度との分布を示す予測誤差分布を求める予測誤差分析装置と、
前記予測誤差分布を用いて、前記発電予測値に対して前記発電実績値が不足する方向の所定値以上の前記誤差が生じる確率が所定の発電計画逸脱率以内となるときの前記所定値である閾値誤差を求め、前記発電予測値から前記閾値誤差の絶対値量を差分することにより、第一の前記発電計画値を求める計画立案装置と、
前記第一の発電計画値に基づいて、前記自然エネルギー発電装置の発電を制御する需給制御装置とを、備えている、
ことを特徴とする自然エネルギー発電制御システム。
A natural energy generator,
A renewable energy power generation forecasting device that determines the future power generation forecast value in advance,
A planned power generation device that controls the natural energy power generation device based on a power generation planned value obtained by using the power generation expected value,
The planned power generator
Based on the power generation actual value output from the natural energy power generation device and the power generation predicted value, for each power generation predicted value, an error in the power generation actual value with respect to the power generation predicted value and a frequency at which the error occurs. A prediction error analyzer for obtaining a prediction error distribution indicating the distribution;
Using the prediction error distribution, the predetermined value when the probability of occurrence of the error equal to or greater than a predetermined value in a direction in which the actual power generation value is insufficient with respect to the predicted power generation value is within a predetermined power generation plan deviation rate. Obtaining a threshold error, and by subtracting the absolute value amount of the threshold error from the power generation predicted value, a planning device for obtaining the first power generation plan value
A supply and demand control device that controls power generation of the natural energy power generation device based on the first power generation plan value,
A natural energy power generation control system characterized by that.
前記発電実績値が前記発電予想値よりも大きい場合に、前記自然エネルギー発電装置から出力される電力の一部を充電することができる電力貯蔵装置を、さらに備えている、
ことを特徴とする請求項1に記載の自然エネルギー発電制御システム。
A power storage device capable of charging a part of the power output from the natural energy power generation device when the power generation result value is larger than the power generation expected value;
The natural energy power generation control system according to claim 1.
前記電力貯蔵装置は、
電気の放電が可能であり、
前記発電実績値が前記発電予想値よりも小さい場合に、充電していた電力を放電し、前記自然エネルギー発電装置からの出力電力に加算させる、
ことを特徴とする請求項2に記載の自然エネルギー発電制御システム。
The power storage device includes:
Electric discharge is possible,
When the actual power generation value is smaller than the predicted power generation value, the charged power is discharged and added to the output power from the natural energy power generation device.
The natural energy power generation control system according to claim 2.
前記計画立案装置は、
前記第一の発電計画値に、前記電力貯蔵装置の補償可能容量分を上乗せすることにより、第二の前記発電計画値を求め、
前記需給制御装置は、
前記第二の発電計画値に基づいて、前記自然エネルギー発電装置の発電および前記電力貯蔵装置の放電を制御する、
ことを特徴とする請求項3に記載の自然エネルギー発電制御システム。
The planning device is
By adding the compensable capacity of the power storage device to the first power generation plan value, the second power generation plan value is obtained,
The supply and demand control device
Based on the second power generation plan value, the power generation of the natural energy power generation device and the discharge of the power storage device are controlled.
The natural energy power generation control system according to claim 3.
前記電力貯蔵装置は、
前記自然エネルギー発電装置の所定の期間内に発生した出力変動を平滑化する、
ことを特徴とする請求項2または請求項3に記載の自然エネルギー発電制御システム。
The power storage device includes:
Smoothing fluctuations in output generated within a predetermined period of the natural energy power generation device;
The natural energy power generation control system according to claim 2 or claim 3, wherein:
前記計画立案装置は、
前記第一の発電計画値に、前記電力貯蔵装置の補償可能容量分を上乗せし、前記自然エネルギー発電装置の出力変動幅を差し引くことにより、第三の前記発電計画値を求め、
前記需給制御装置は、
前記第三の発電計画値に基づいて、前記自然エネルギー発電装置の発電および前記電力貯蔵装置の放電を制御する、
ことを特徴とする請求項5に記載の自然エネルギー発電制御システム。
The planning device is
By adding the compensable capacity of the power storage device to the first power generation plan value, and subtracting the output fluctuation range of the natural energy power generation device, the third power generation plan value is obtained,
The supply and demand control device
Based on the third power generation plan value, the power generation of the natural energy power generation device and the discharge of the power storage device are controlled.
The natural energy power generation control system according to claim 5.
JP2008219104A 2008-08-28 2008-08-28 Natural energy power generation control system Active JP4808754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219104A JP4808754B2 (en) 2008-08-28 2008-08-28 Natural energy power generation control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219104A JP4808754B2 (en) 2008-08-28 2008-08-28 Natural energy power generation control system

Publications (2)

Publication Number Publication Date
JP2010057262A true JP2010057262A (en) 2010-03-11
JP4808754B2 JP4808754B2 (en) 2011-11-02

Family

ID=42072599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219104A Active JP4808754B2 (en) 2008-08-28 2008-08-28 Natural energy power generation control system

Country Status (1)

Country Link
JP (1) JP4808754B2 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229205A (en) * 2010-04-15 2011-11-10 Japan Wind Development Co Ltd Electric power management control system used in natural energy generating system incorporating storage battery
JP2012010432A (en) * 2010-06-22 2012-01-12 Fujitsu Ltd Device, method and program for power-leveling control
JP2012023816A (en) * 2010-07-12 2012-02-02 Toshiba Corp Information processing equipment, and program thereof
JP2012060800A (en) * 2010-09-10 2012-03-22 Hitachi Ltd Power selling adjustment server and method
JP2013246746A (en) * 2012-05-29 2013-12-09 Hitachi Ltd Photovoltaic power generation amount estimation system, estimation method and photovoltaic power generation system control system
WO2014169051A1 (en) * 2013-04-09 2014-10-16 Intel Corporation Controlling supply of power to computing devices with dynamically variable energy capacity
KR101490611B1 (en) * 2012-08-10 2015-02-05 가부시키가이샤 히타치 파워 솔루션즈 Wind power system, wind power control apparatus and wind power control method
JP2015089196A (en) * 2013-10-29 2015-05-07 富士通株式会社 Estimate power generation amount calculation device, program, and method
JP2015153346A (en) * 2014-02-19 2015-08-24 辰之 岩崎 Small-amount power aggregation trade support system and small-amount power aggregation trade support method
JP2015231273A (en) * 2014-06-04 2015-12-21 株式会社Nttファシリティーズ Power management device
JP2016038348A (en) * 2014-08-11 2016-03-22 富士通株式会社 Plan formulation method, plan formulation system and plan formulation program
JP2016057152A (en) * 2014-09-09 2016-04-21 株式会社東芝 Weather prediction error analysis device and weather prediction error analysis method
JP2016062191A (en) * 2014-09-16 2016-04-25 株式会社東芝 Power transaction support device, power transaction support system, control method, and program
JP2016093049A (en) * 2014-11-10 2016-05-23 東京電力株式会社 Supply-demand control device and supply-demand control method
JP2016152661A (en) * 2015-02-16 2016-08-22 三菱電機株式会社 Information processing apparatus, information processing method and information processing program
WO2016136237A1 (en) * 2015-02-23 2016-09-01 Okinawa Institute of Science and Technology Graduate University System and method of determining forecast error for renewable energy fluctuations
JP2016192864A (en) * 2015-03-31 2016-11-10 日本電気株式会社 System, method and program for estimating forecast distribution
JP2017060224A (en) * 2015-09-14 2017-03-23 株式会社東芝 Aggregation management device and aggregation management method
WO2017060957A1 (en) * 2015-10-05 2017-04-13 日本電気株式会社 Power control device, power generation device, power control method, power generation method, and recording medium
JP2017182324A (en) * 2016-03-29 2017-10-05 富士通株式会社 Power generation plan automatic creation program, power generation plan automatic creation method and power generation plan creation device
JP2017204949A (en) * 2016-05-12 2017-11-16 株式会社日立製作所 Power supply system
JP2018011452A (en) * 2016-07-14 2018-01-18 積水化学工業株式会社 Method for operating storage battery and storage battery operation device
JP2018014775A (en) * 2016-07-19 2018-01-25 住友電気工業株式会社 Integrated controller, integrated control system, integrated control method and integrated control program
JP2018174623A (en) * 2017-03-31 2018-11-08 積水化学工業株式会社 Power management device, and application power generation amount calculation method
JP2018207669A (en) * 2017-06-05 2018-12-27 中国電力株式会社 Power generation amount prediction device, power generation amount prediction method, and program
JP2020150726A (en) * 2019-03-14 2020-09-17 株式会社Ihi Power supply/demand management device, power supply/demand management system, and power supply/demand management method
JP2020171217A (en) * 2019-04-09 2020-10-22 株式会社セラク Method, apparatus and program for predicting yield
CN113394820A (en) * 2021-07-14 2021-09-14 国网甘肃省电力公司电力科学研究院 Optimized scheduling method for new energy grid-connected power system
US11271400B2 (en) 2015-12-10 2022-03-08 Mitsubishi Electric Corporation Power control device, operation plan planning method, and recording medium

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104283236B (en) * 2014-10-25 2016-06-08 国网重庆武隆县供电有限责任公司 The energy storage of a kind of scene is generated electricity by way of merging two or more grid systems intelligent optimization scheduling method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050834A (en) * 2004-08-06 2006-02-16 Hitachi Ltd Risk management support system for power supply enterprise
JP2006280020A (en) * 2005-03-28 2006-10-12 Tokyo Electric Power Co Inc:The Integrated power turbine generator system
JP2006304402A (en) * 2005-04-15 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> Control device for dispersed energy system, control method, program, and recording medium
JP2008054385A (en) * 2006-08-23 2008-03-06 Mitsubishi Electric Corp System stabilizer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006050834A (en) * 2004-08-06 2006-02-16 Hitachi Ltd Risk management support system for power supply enterprise
JP2006280020A (en) * 2005-03-28 2006-10-12 Tokyo Electric Power Co Inc:The Integrated power turbine generator system
JP2006304402A (en) * 2005-04-15 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> Control device for dispersed energy system, control method, program, and recording medium
JP2008054385A (en) * 2006-08-23 2008-03-06 Mitsubishi Electric Corp System stabilizer

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011229205A (en) * 2010-04-15 2011-11-10 Japan Wind Development Co Ltd Electric power management control system used in natural energy generating system incorporating storage battery
JP2012010432A (en) * 2010-06-22 2012-01-12 Fujitsu Ltd Device, method and program for power-leveling control
JP2012023816A (en) * 2010-07-12 2012-02-02 Toshiba Corp Information processing equipment, and program thereof
JP2012060800A (en) * 2010-09-10 2012-03-22 Hitachi Ltd Power selling adjustment server and method
JP2013246746A (en) * 2012-05-29 2013-12-09 Hitachi Ltd Photovoltaic power generation amount estimation system, estimation method and photovoltaic power generation system control system
KR101490611B1 (en) * 2012-08-10 2015-02-05 가부시키가이샤 히타치 파워 솔루션즈 Wind power system, wind power control apparatus and wind power control method
US8970058B2 (en) 2012-08-10 2015-03-03 Hitachi Power Solutions Co., Ltd. Wind power generation system, wind power generation control device and wind power generation control method
WO2014169051A1 (en) * 2013-04-09 2014-10-16 Intel Corporation Controlling supply of power to computing devices with dynamically variable energy capacity
US9798367B2 (en) 2013-04-09 2017-10-24 Intel Corporation Controlling supply of power to computing devices with dynamically variable energy capacity
JP2015089196A (en) * 2013-10-29 2015-05-07 富士通株式会社 Estimate power generation amount calculation device, program, and method
JP2015153346A (en) * 2014-02-19 2015-08-24 辰之 岩崎 Small-amount power aggregation trade support system and small-amount power aggregation trade support method
JP2015231273A (en) * 2014-06-04 2015-12-21 株式会社Nttファシリティーズ Power management device
JP2016038348A (en) * 2014-08-11 2016-03-22 富士通株式会社 Plan formulation method, plan formulation system and plan formulation program
JP2016057152A (en) * 2014-09-09 2016-04-21 株式会社東芝 Weather prediction error analysis device and weather prediction error analysis method
JP2016062191A (en) * 2014-09-16 2016-04-25 株式会社東芝 Power transaction support device, power transaction support system, control method, and program
JP2016093049A (en) * 2014-11-10 2016-05-23 東京電力株式会社 Supply-demand control device and supply-demand control method
JP2016152661A (en) * 2015-02-16 2016-08-22 三菱電機株式会社 Information processing apparatus, information processing method and information processing program
WO2016136237A1 (en) * 2015-02-23 2016-09-01 Okinawa Institute of Science and Technology Graduate University System and method of determining forecast error for renewable energy fluctuations
CN107251356B (en) * 2015-02-23 2020-09-11 学校法人冲绳科学技术大学院大学学园 System and method for determining prediction error of renewable energy fluctuations
US10742040B2 (en) 2015-02-23 2020-08-11 Okinawa Institute Of Science And Technology School Corporation System and method of determining forecast error for renewable energy fluctuations
CN107251356A (en) * 2015-02-23 2017-10-13 冲绳科学技术大学院大学 The system and method for determining the predicated error of regenerative resource fluctuation
JP2018506258A (en) * 2015-02-23 2018-03-01 学校法人沖縄科学技術大学院大学学園 System and method for determining prediction error for fluctuations in renewable energy
JP2016192864A (en) * 2015-03-31 2016-11-10 日本電気株式会社 System, method and program for estimating forecast distribution
JP2017060224A (en) * 2015-09-14 2017-03-23 株式会社東芝 Aggregation management device and aggregation management method
WO2017060957A1 (en) * 2015-10-05 2017-04-13 日本電気株式会社 Power control device, power generation device, power control method, power generation method, and recording medium
JPWO2017060957A1 (en) * 2015-10-05 2018-07-26 日本電気株式会社 Power control apparatus, power control method, and program
US11271400B2 (en) 2015-12-10 2022-03-08 Mitsubishi Electric Corporation Power control device, operation plan planning method, and recording medium
JP2017182324A (en) * 2016-03-29 2017-10-05 富士通株式会社 Power generation plan automatic creation program, power generation plan automatic creation method and power generation plan creation device
JP2020043757A (en) * 2016-05-12 2020-03-19 株式会社日立製作所 Power supply system
JP2017204949A (en) * 2016-05-12 2017-11-16 株式会社日立製作所 Power supply system
JP2018011452A (en) * 2016-07-14 2018-01-18 積水化学工業株式会社 Method for operating storage battery and storage battery operation device
JP2018014775A (en) * 2016-07-19 2018-01-25 住友電気工業株式会社 Integrated controller, integrated control system, integrated control method and integrated control program
JP2018174623A (en) * 2017-03-31 2018-11-08 積水化学工業株式会社 Power management device, and application power generation amount calculation method
JP2018207669A (en) * 2017-06-05 2018-12-27 中国電力株式会社 Power generation amount prediction device, power generation amount prediction method, and program
JP2020150726A (en) * 2019-03-14 2020-09-17 株式会社Ihi Power supply/demand management device, power supply/demand management system, and power supply/demand management method
JP2020171217A (en) * 2019-04-09 2020-10-22 株式会社セラク Method, apparatus and program for predicting yield
CN113394820A (en) * 2021-07-14 2021-09-14 国网甘肃省电力公司电力科学研究院 Optimized scheduling method for new energy grid-connected power system

Also Published As

Publication number Publication date
JP4808754B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
JP4808754B2 (en) Natural energy power generation control system
JP4064334B2 (en) Energy system control device and control method
JP4527092B2 (en) System stabilization device
JP5639540B2 (en) Storage battery supply and demand plan creation device and storage battery supply and demand plan creation method
JP6216377B2 (en) Power adjustment device, power adjustment method, power adjustment system, power storage device, server, program
US8536835B2 (en) Supply and demand control apparatus for electric power system, and storage medium storing supply and demand control program
JP2006304402A (en) Control device for dispersed energy system, control method, program, and recording medium
WO2014115556A1 (en) Power system control system
WO2015037307A1 (en) Power storage control device, management system, power storage control method, power storage control program, and memory medium
CN106953362A (en) The energy management method and system of grid type micro-capacitance sensor
JP2008271723A (en) Power supply/demand controller and method for the same
JP6192531B2 (en) Power management system, power management apparatus, power management method, and program
KR20140075617A (en) Method for estimating smart energy consumption
KR102251476B1 (en) Method for estimating the capacity of an energy storage system associated with renewable energy and apparatus therefor
JP6122364B2 (en) Power control apparatus, power control method, and power control program
JP6623514B2 (en) Supply and demand control device, supply and demand control method, and power supply system
US20230352937A1 (en) Power regulation method and power regulation device
CN110635519A (en) Active power distribution network distributed new energy day-ahead active power dispatching plan generation method
US20130144450A1 (en) Generator system
JP6543167B2 (en) Renewable energy power generation system, controller of renewable energy power generation system, and control method of renewable energy power generation system
WO2015118744A1 (en) Energy management system
Jurković et al. Robust unit commitment with large-scale battery storage
WO2017163934A1 (en) Power control system, control device, control method, and computer program
US12081028B2 (en) Power adjustment method and power adjustment device
JP2017042032A (en) Method for managing energy production of energy system, and related management device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110705

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110817

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140826

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4808754

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250