JP2010056116A - Heat sink test method - Google Patents

Heat sink test method Download PDF

Info

Publication number
JP2010056116A
JP2010056116A JP2008216403A JP2008216403A JP2010056116A JP 2010056116 A JP2010056116 A JP 2010056116A JP 2008216403 A JP2008216403 A JP 2008216403A JP 2008216403 A JP2008216403 A JP 2008216403A JP 2010056116 A JP2010056116 A JP 2010056116A
Authority
JP
Japan
Prior art keywords
heat sink
temperature
heat
test method
generating member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008216403A
Other languages
Japanese (ja)
Inventor
zhi-peng Chen
志蓬 陳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kiko Kagi Kofun Yugenkoshi
Original Assignee
Kiko Kagi Kofun Yugenkoshi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kiko Kagi Kofun Yugenkoshi filed Critical Kiko Kagi Kofun Yugenkoshi
Priority to JP2008216403A priority Critical patent/JP2010056116A/en
Publication of JP2010056116A publication Critical patent/JP2010056116A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy and sure test method of the performance of a heat sink. <P>SOLUTION: The temperature of fluid which is blown under a fixed condition by installing a blowing fan 3 to a heat sink body 2 to be tested set on a heating element 4 and flows in a cooled heat sink is defined as a first temperature, and the temperature when power is inputted to the heating element in contact with the heat sink is defined as a second temperature. When the second temperature reaches a prescribed value, an input power is blocked and the performance of the heat sink is determined by a ratio of the input power to a temperature difference between the second temperature and the first temperature. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ヒートシンク試験方法に関し、特に、ヒートシンクのヒートシンク性能を測定する試験方法に関する。 The present invention relates to a heat sink test method, and more particularly to a test method for measuring the heat sink performance of a heat sink.

電子情報機器(例:パソコン等)の使用が日増しに普及し、且つ応用が更に広がり、電子情報産業技術の急速な発展に伴い、電子情報の演算速度を向上させ、記憶容量を増加させることが要求され、これらの要請に応えて発達してきた電子機器の構成部品は、その高速動作に伴って高熱を発生することとなった。 The use of electronic information devices (eg personal computers) is becoming more and more popular, and the applications are expanding further. With the rapid development of electronic information industry technology, the calculation speed of electronic information is improved and the storage capacity is increased. Therefore, the components of electronic equipment that have been developed in response to these demands have generated high heat in accordance with their high-speed operation.

パソコンのマザーボードを例とすると、内部のCPUが発生する熱量が大部分を占め、また、CPUの熱量の上昇が性能を低下させ、且つ発熱量の累積が許容範囲を超えると、パソコンの予期せぬ停止が発生する恐れが有り、更には、損傷が生じる可能性がある。また、電磁波輻射の問題を解決する為、通常、シャーシハウジングは、該パソコンのマザーボードを密閉した構造であり、CPUおよびその他の発熱部材の熱エネルギーを如何に迅速に導出するかが重要な課題となっている。 Taking the motherboard of a personal computer as an example, the amount of heat generated by the internal CPU occupies the majority, and if the increase in the heat amount of the CPU degrades the performance and the accumulated heat generation exceeds the allowable range, the computer's expectation There is a risk of unforeseen outages and even damage may occur. In order to solve the problem of electromagnetic radiation, the chassis housing is usually a structure in which the motherboard of the personal computer is sealed, and how to quickly derive the thermal energy of the CPU and other heat generating members is an important issue. It has become.

現在の電子機器中、通常、発熱部材上にヒートシンク動作を補助するヒートシンクを設置し、発熱部材のヒートシンク動作を補助するが、ヒートシンクの生産工程において、ヒートシンク性能試験を行う必要があり、前記ヒートシンク性能の試験により前記ヒートシンクのヒートシンク性能の優劣を判断している。従来技術において、ヒートシンクに対して行うヒートシンク性能試験は、ヒートシンクを前記発熱部材上に設置し、前記ヒートシンクの一側にヒートシンクファンを設置し、前記ヒートシンクに対してヒートシンク流体を導入してヒートシンクを行い、前記ヒートシンク流体が前記ヒートシンクに進入する前に有する温度を第1温度とし、前記ヒートシンク流体が前記ヒートシンクを通過後、即ち、前記ヒートシンク上の熱量を持ち去り、発生する温度を第2温度とし、更に、前記発熱部材は電力を入力時、熱エネルギーを発生し、前記発熱部材の熱エネルギーが前記発熱ユニット上に設置したヒートシンクに伝達され、且つ同時に前記発熱部材と前記ヒートシンク間の温度を第3温度とし、従来技術においてヒートシンクのヒートシンク性能の優劣を判断する方法は、ヒートシンク間の熱抵抗値の高低により判断していた。
熱抵抗値は、ヒートシンクの温度変化(第3温度―第1温度)と発熱部材の電力入力時に発生する熱エネルギーの比値であるので、従来技術は、前記発熱部材を発熱させる電力を制御して発生する熱エネルギーが一定値であり、前記ヒートシンクのヒートシンクと前記発熱部材間の第3温度の高低により前記ヒートシンクのヒートシンク性能の優劣を判定するが、前記第3温度と第1温度の両者の間の変動差異が小さく、且つ前記ヒートシンクファンの送風またはその他の原因から影響を受け、第1温度の変動が不定になり易く、前記変動温度も不安定であり、ヒートシンクのヒートシンク機能の優劣の判断が困難である。
特開2007−315906号公報 特開2002−83908号公報
In current electronic devices, a heat sink that assists the heat sink operation is usually installed on the heat generating member to assist the heat sink operation of the heat generating member, but it is necessary to perform a heat sink performance test in the heat sink production process. In this test, the heat sink performance of the heat sink is judged to be superior or inferior. In the prior art, a heat sink performance test performed on a heat sink is performed by installing a heat sink on the heat generating member, installing a heat sink fan on one side of the heat sink, and introducing a heat sink fluid into the heat sink. The temperature that the heat sink fluid has before entering the heat sink is a first temperature, and after the heat sink fluid passes through the heat sink, that is, the amount of heat on the heat sink is taken away, the generated temperature is the second temperature, Furthermore, the heat generating member generates heat energy when power is input, and the heat energy of the heat generating member is transmitted to a heat sink installed on the heat generating unit, and at the same time, the temperature between the heat generating member and the heat sink is set to a third temperature. The heat sink performance of the heat sink in the prior art with temperature How to determine the relative merits, it has been judged by the height of the thermal resistance between the heat sink.
Since the thermal resistance value is a ratio value between the temperature change of the heat sink (third temperature-first temperature) and the heat energy generated when power is input to the heat generating member, the prior art controls the power that generates heat from the heat generating member. The heat energy generated by the heat sink is a constant value, and the heat sink performance of the heat sink is judged based on the level of the third temperature between the heat sink of the heat sink and the heat generating member. Both of the third temperature and the first temperature are determined. The fluctuation difference between the two is small and affected by the air flow of the heat sink fan or other causes, the fluctuation of the first temperature is likely to be indefinite, the fluctuation temperature is also unstable, and the heat sink function of the heat sink is judged to be superior or inferior Is difficult.
JP 2007-315906 A JP 2002-83908 A

本発明の目的は、ヒートシンクのヒートシンク性能の優劣を簡単、かつ確実に判定する試験方法を提供することである。 An object of the present invention is to provide a test method for easily and reliably determining the superiority or inferiority of the heat sink performance of the heat sink.

上記の目的を達成する為、本発明が提供するヒートシンク試験方法は、ヒートシンクのヒートシンク性能を測定する以下のステップによって行う:少なくとも1つの流体装置によって流体を発生し、前記流体は、第1温度を有し、ヒートシンクを通過する。発熱部材の入力電力を調整し、それに応じて前期発熱部材が発生する熱エネルギーを前記ヒートシンクに伝達し、前記ヒートシンクと発熱部材間で該熱エネルギーに相当する第2温度を発生する。前記発熱部材調整の入力電力は、前記熱エネルギーの第2温度が所定の上限値に達したところで遮断し、前記発熱部材の入力電力によって前記ヒートシンクのヒートシンク機能を判断する。 In order to achieve the above object, the heat sink test method provided by the present invention is performed by the following steps of measuring the heat sink performance of the heat sink: the fluid is generated by at least one fluid device, and the fluid has a first temperature. And pass through the heat sink. The input power of the heat generating member is adjusted, the thermal energy generated by the previous heat generating member is transmitted to the heat sink accordingly, and a second temperature corresponding to the heat energy is generated between the heat sink and the heat generating member. The input power for adjusting the heat generating member is cut off when the second temperature of the heat energy reaches a predetermined upper limit value, and the heat sink function of the heat sink is determined based on the input power of the heat generating member.

本考案は、下記の利点を有する。
1.性能の判定が精確である。
2.外部の要因により判定が影響を受け易くない。
3.パラメータを随時調整することができる。
The present invention has the following advantages.
1. Judgment of performance is accurate.
2. The judgment is not easily affected by external factors.
3. Parameters can be adjusted at any time.

本考案の上記目的およびその構造と機能上の特性について、実施例を図面と併せて以下に詳細に説明する。 The above object and the characteristics of the structure and function of the present invention will be described in detail below with reference to the drawings.

図1、図2に示すように、本考案のヒートシンクの試験方法は、少なくとも1つの流体装置によって流体を発生させ、前記流体は、第1温度を有し、ヒートシンク2を通過し、ヒートシンク性能試に供するヒートシンク2の一側に設けたファン3を介し、前記ファン3は、ヒートシンク流体の流動が前記ヒートシンク2を経過するよう導入して前記ヒートシンク2に対して冷却を行う。前記ヒートシンク流体が有する第1温度Tinは一般に常温である。 As shown in FIGS. 1 and 2, the heat sink test method of the present invention generates a fluid by at least one fluid device, and the fluid has a first temperature, passes through the heat sink 2, and performs a heat sink performance test. The fan 3 cools the heat sink 2 by introducing the heat sink fluid through the heat sink 2 through the fan 3 provided on one side of the heat sink 2. The first temperature Tin that the heat sink fluid has is generally room temperature.

発熱部材の入力電力を調整して、その調整された入力電力により前記発熱部材が発生する熱エネルギーを前記ヒートシンクに伝達し、前記ヒートシンクと発熱部材の間に第2温度とする熱エネルギーを発生する。 The input power of the heat generating member is adjusted, the heat energy generated by the heat generating member is transmitted to the heat sink by the adjusted input power, and the heat energy having the second temperature is generated between the heat sink and the heat generating member. .

前記ヒートシンク2は、発熱部材4上に設置され、前記発熱部材4はその調整された入力電力Qinによって、熱エネルギーを発生し、該熱エネルギーを前記ヒートシンク2に伝達し、同時に前記発熱部材4と前記ヒートシンク2の間に第2温度Tcを発生する。   The heat sink 2 is installed on the heat generating member 4, and the heat generating member 4 generates heat energy by the adjusted input power Qin and transmits the heat energy to the heat sink 2. A second temperature Tc is generated between the heat sinks 2.

前記発熱部材の入力電力は、第2温度が所定の上限値に到達すると停止され、前記発熱部材の入力電力によって前記ヒートシンクのヒートシンク性能13を判断する。   The input power of the heat generating member is stopped when the second temperature reaches a predetermined upper limit value, and the heat sink performance 13 of the heat sink is determined based on the input power of the heat generating member.

前記ヒートシンク2のヒートシンク性能の測定は、前記発熱部材4の入力電力Qinによって前記発熱部材4が発生する熱エネルギーを増加させて、前記第2温度Tcを上昇させ、本発明が設定する前記第2温度Tcが所定の上限値で前記発熱部材4の入力電力Qinを遮断し、前記発熱部材4の入力電力Qinによって前記ヒートシンク2のヒートシンク性能の優劣を判別する。   The heat sink performance of the heat sink 2 is measured by increasing the second temperature Tc by increasing the thermal energy generated by the heat generating member 4 by the input power Qin of the heat generating member 4 and setting the second temperature Tc. When the temperature Tc is a predetermined upper limit, the input power Qin of the heat generating member 4 is cut off, and the superiority or inferiority of the heat sink performance of the heat sink 2 is determined by the input power Qin of the heat generating member 4.

前記ヒートシンク試験方法において、第2温度Tcと前記発熱部材4の入力電力Qin間の比値は熱抵抗値Rcaであり、且つ該熱抵抗値Rcaの計算公式は以下の通りである:

Figure 2010056116
Tcは、該第2温度値であって上記上限値を有し、Tinは、該第1温度値であり、 一般には常温であり、Rcaは、該熱抵抗値であり、Qinは、該発熱部材の入力 電力である。 In the heat sink test method, a ratio value between the second temperature Tc and the input power Qin of the heat generating member 4 is a thermal resistance value Rca, and a calculation formula of the thermal resistance value Rca is as follows:
Figure 2010056116
Tc is the second temperature value and has the above upper limit value, Tin is the first temperature value, generally room temperature, Rca is the thermal resistance value, and Qin is the heat generation This is the input power of the member.

前記発熱部材4の入力電力Qinは、前記Tinの第1温度値が発生する変動要素により調整することができる。   The input power Qin of the heat generating member 4 can be adjusted by a variable factor that generates the first temperature value of the Tin.

本発明のヒートシンク試験方法は、前記第2温度Tcに上限値を設け、前記発熱部材4の入力電力Qinが発生する熱エネルギーによって前記第2温度Tcを上昇させて所定の上限値に達した後、前記入力電力の入力を停止し、前記入力電力Qinによって前記ヒートシンク2のヒートシンク性能を判断し、ΔTに対する前記入力電力Qin値が高くなるほど、ヒートシンク性能は良好である。   In the heat sink test method of the present invention, an upper limit value is set for the second temperature Tc, and the second temperature Tc is increased by the thermal energy generated by the input power Qin of the heat generating member 4 to reach a predetermined upper limit value. The input of the input power is stopped, the heat sink performance of the heat sink 2 is determined based on the input power Qin, and the higher the input power Qin value with respect to ΔT, the better the heat sink performance.

なお、本発明では好ましい実施例を前述の通り開示したが、これらは決して本発明に限定するものではなく、当該技術を熟知する者なら誰でも、本考案の精神と領域を脱しない均等の範囲内で各種の変動や潤色を加えることができることは勿論である。 In the present invention, preferred embodiments have been disclosed as described above. However, these are not intended to limit the present invention in any way, and anyone who is familiar with the technology can make an equivalent range without departing from the spirit and scope of the present invention. Of course, various fluctuations and moist colors can be added.

本発明のヒートシンク試験方法の実施例ブロック図である。It is an Example block diagram of the heat sink test method of this invention. 本発明のヒートシンク試験方法の構造説明図である。It is structure explanatory drawing of the heat sink test method of this invention.

符号の説明Explanation of symbols

2 ヒートシンク
3 ファン
4 発熱部材
Tin 第1温度
Qin 入力電力
Tc 第2温度
Rca 熱抵抗値
2 Heat sink 3 Fan 4 Heat generating member Tin First temperature Qin Input power Tc Second temperature Rca Thermal resistance value

Claims (4)

発熱部材上に被試験体となるヒートシンクをセットし、
ヒートシンク中を循環する流体の基準となる温度を第1温度とし、
発熱部材に対しする入力電力値を調整して該発熱部材とヒートシンク間の温度を予め設定した第2温度まで上昇させ、
その電力値によって該ヒートシンクの性能を判定することを特徴とするヒートシンク試験方法。
Set the heat sink to be tested on the heat generating member,
The reference temperature of the fluid circulating in the heat sink is the first temperature,
Adjusting the input power value to the heating member to increase the temperature between the heating member and the heat sink to a preset second temperature;
A heat sink test method, wherein the performance of the heat sink is determined by the power value.
前記熱エネルギーの第2温度は、前記発熱部材の電力調整に基づき発生することを特徴とする請求項1記載のヒートシンク試験方法。   The heat sink test method according to claim 1, wherein the second temperature of the heat energy is generated based on power adjustment of the heat generating member. 前記ヒートシンク試験方法中、第2温度と前記発熱部材の出力電力間の比値が熱抵抗値であり、且つ該熱抵抗値の計算公式が
Figure 2010056116
Tcは、該第2温度値であり、上限値を有し、Tinは、該第1温度値であって常温 であり、Rcaは、該熱抵抗値であり、Qinは、該発熱部材の出力電力である請 求項1記載のヒートシンク試験方法。
In the heat sink test method, a ratio value between the second temperature and the output power of the heat generating member is a thermal resistance value, and a calculation formula for the thermal resistance value is
Figure 2010056116
Tc is the second temperature value and has an upper limit value, Tin is the first temperature value and normal temperature, Rca is the thermal resistance value, and Qin is the output of the heating member. The heat sink test method according to claim 1, which is electric power.
前記発熱部材に対する入力電力は、前記Tin第1温度値における総風量、外気温などの変動要素に応じて調整することを特徴とする請求項2または3記載のヒートシンク試験方法。   4. The heat sink test method according to claim 2, wherein the input power to the heat generating member is adjusted according to a variation factor such as a total air volume and an outside air temperature at the first Tin temperature value. 5.
JP2008216403A 2008-08-26 2008-08-26 Heat sink test method Pending JP2010056116A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008216403A JP2010056116A (en) 2008-08-26 2008-08-26 Heat sink test method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216403A JP2010056116A (en) 2008-08-26 2008-08-26 Heat sink test method

Publications (1)

Publication Number Publication Date
JP2010056116A true JP2010056116A (en) 2010-03-11

Family

ID=42071754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216403A Pending JP2010056116A (en) 2008-08-26 2008-08-26 Heat sink test method

Country Status (1)

Country Link
JP (1) JP2010056116A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108693898A (en) * 2018-06-22 2018-10-23 珠海格力电器股份有限公司 A kind of two-way temperature control system, method and air-conditioning equipment
WO2019095740A1 (en) * 2017-11-20 2019-05-23 格力电器(武汉)有限公司 Control method for smart power module, device, storage medium and processor
CN110006675A (en) * 2019-03-05 2019-07-12 江苏理工学院 A kind of fan radiator test fixture and its test method
CN112649184A (en) * 2020-12-22 2021-04-13 青岛海尔空调电子有限公司 Method and device for testing heat dissipation capacity of radiator and test box

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019095740A1 (en) * 2017-11-20 2019-05-23 格力电器(武汉)有限公司 Control method for smart power module, device, storage medium and processor
US10806061B2 (en) 2017-11-20 2020-10-13 Gree Electric Appliances (Wuhan) Co., Ltd Control method and apparatus for smart power component, storage medium and processor
CN108693898A (en) * 2018-06-22 2018-10-23 珠海格力电器股份有限公司 A kind of two-way temperature control system, method and air-conditioning equipment
CN108693898B (en) * 2018-06-22 2023-08-15 珠海格力电器股份有限公司 Double-path temperature control system and method and air conditioning equipment
CN110006675A (en) * 2019-03-05 2019-07-12 江苏理工学院 A kind of fan radiator test fixture and its test method
CN110006675B (en) * 2019-03-05 2021-01-19 江苏理工学院 Fan radiator test fixture and test method thereof
CN112649184A (en) * 2020-12-22 2021-04-13 青岛海尔空调电子有限公司 Method and device for testing heat dissipation capacity of radiator and test box

Similar Documents

Publication Publication Date Title
TWI534405B (en) Control method for cooling film and heat-dissipating module using the same
CN103821747B (en) Fan control system, computer system and fan control method thereof
TWI540262B (en) Fan controll system and method for controlling fan speed
JP2008275512A (en) Aging device
CN106068603B (en) Semi-conductor electricity force transducer
JP2009042211A (en) Power estimation for semiconductor device
KR20080085995A (en) Computer
JP2010056116A (en) Heat sink test method
US20100034235A1 (en) Heat sink testing method
JP6257018B2 (en) Heat transfer body temperature change system
JP5672099B2 (en) Device equipped with electronic device, cooling program for device equipped with electronic device, and method for cooling device equipped with electronic device
Han et al. Evaluation of the thermal performance with different fin shapes of the air-cooled heat sink for power electronic applications
JP2014149158A (en) Device and method for controlling heating of test piece to be heated
US9541972B2 (en) Monitoring control device, monitoring control method, and recording medium
Belarbi et al. Experimental investigation on controlled cooling by coupling of thermoelectric and an air impinging jet for CPU
US9345175B2 (en) Electronic apparatus and cooling method
US20150323396A1 (en) Variable frequency drive temperature determination
Khalili et al. An Experimental Investigation on the Fluid Distribution in a Two-Phase Cooled Rack Under Steady and Transient Information Technology Loads
CN101667055B (en) Radiator detection method
JP2015119599A (en) Power conversion device and method
Mitterhuber et al. Investigation of the temperature-dependent heat path of an LED module by thermal simulation and design of experiments
JP5453444B2 (en) Environmental control in wireless network nodes
US11630003B2 (en) Temperature control system for central processing unit and temperature control method thereof
Zhang et al. Optimized thermoelectric module-heat sink assemblies for precision temperature control
Sanchez et al. Experimental and Numerical Investigation of Liquid-to-Air Heat Exchangers