JP2010054272A - Spin polarization scanning electron microscope - Google Patents

Spin polarization scanning electron microscope Download PDF

Info

Publication number
JP2010054272A
JP2010054272A JP2008218035A JP2008218035A JP2010054272A JP 2010054272 A JP2010054272 A JP 2010054272A JP 2008218035 A JP2008218035 A JP 2008218035A JP 2008218035 A JP2008218035 A JP 2008218035A JP 2010054272 A JP2010054272 A JP 2010054272A
Authority
JP
Japan
Prior art keywords
spin
sample
gas
electron microscope
scanning electron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008218035A
Other languages
Japanese (ja)
Inventor
Makoto Konofuji
真 甲野藤
Hiroshi Akaho
博司 赤穗
Yoshinori Tokura
好紀 十倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008218035A priority Critical patent/JP2010054272A/en
Publication of JP2010054272A publication Critical patent/JP2010054272A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24507Intensity, dose or other characteristics of particle beams or electromagnetic radiation
    • H01J2237/24557Spin polarisation (particles)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spin polarization scanning electron microscope having a surface purifying method having no varying spin state in purifying a surface of an oxide magnetic material sample. <P>SOLUTION: The spin polarization scanning electron microscope 1 includes a spin analysis section 2 and a sample surface purifying section 3 interconnected via a gate valve 4. Especially, in order to remove hydrocarbon B of a surface of an oxide magnetic material A with a chemical action of active oxygen 32a, the sample surface purifying section 3 includes a purifying gas source 31 for generating mixed gas of argon gas and oxygen gas, an active oxygen generating source 32 for applying voltage to the mixed gas supplied from the purifying gas source 31 to generate argon oxygen plasma to generate active oxygen 32a from the inside of the argon oxygen plasma, a gas flow channel 33 for making the active oxygen 32a flow, a sample stage 51 for mounting the oxide magnetic material A in the gas flow channel 33, and a vacuum pump 34 for exhausting the active oxygen 32a from the gas flow channel 33 to the outside. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、酸化物磁性体を試料の対象としたスピン偏極走査電子顕微鏡に関する。   The present invention relates to a spin-polarized scanning electron microscope using an oxide magnetic material as a sample.

一般に、スピン偏極走査電子顕微鏡(例えば、下記特許文献1参照)においては、検出信号の発生領域が試料の最表面1nmであり(例えば、下記非特許文献1参照)、通常の電子顕微鏡に比較して非常に浅い。このため、炭化水素などのわずかな表面吸着物によって試料の信号が検出されなくなるという問題が生じる。したがって、試料表面の吸着物を分析直前に除去し、再吸着が起きない状態で分析を行うことによって、信号強度を確保する必要がある。   In general, in a spin-polarized scanning electron microscope (see, for example, Patent Document 1 below), the detection signal generation region is 1 nm on the outermost surface of the sample (see, for example, Non-Patent Document 1 below), which is compared with a normal electron microscope. And very shallow. For this reason, there arises a problem that the signal of the sample cannot be detected by a slight surface adsorbate such as hydrocarbon. Therefore, it is necessary to secure the signal intensity by removing the adsorbate on the sample surface immediately before the analysis and performing the analysis without re-adsorption.

例えば、下記特許文献1にて開示されるスピン偏極走査電子顕微鏡では、上記問題に対し、金属磁性体を対象とした表面清浄化技術として、イオンを加速して試料表面に衝突させ、吸着物を試料の表面原子ごとスパッタエッチングして、物理的に除去することが提案されている。   For example, in the spin-polarized scanning electron microscope disclosed in Patent Document 1 below, as a surface cleaning technique for a metal magnetic material, ions are accelerated and collided with the sample surface to solve the above problem. It has been proposed that the surface atoms of the sample be physically removed by sputter etching.

しかし、酸化物磁性体のような非金属元素を含む化合物磁性体をスパッタエッチングする場合には、選択スパッタによって表面の元素組成や結晶構造が変化するため、結果的に試料表面のスピン状態も変質してしまう問題が生じている。
特開昭60−177539号公報 Applied Physics Letters, Vol.83, No.14, pp. 2925-2927, 2003
However, when sputter etching a compound magnetic material containing a non-metallic element such as an oxide magnetic material, the elemental composition and crystal structure of the surface change due to selective sputtering, resulting in a change in the spin state of the sample surface. There is a problem.
JP-A-60-177539 Applied Physics Letters, Vol.83, No.14, pp. 2925-2927, 2003

上記の通り、酸化物磁性体などの非金属元素を含む化合物磁性体の表面清浄化の際に、従来のスパッタエッチング法を利用した場合には、表面原子もエッチングされて化合物磁性体の表面のスピン状態が変化してしまうという課題がある。   As described above, when the surface of a compound magnetic body containing a non-metallic element such as an oxide magnetic body is cleaned, when a conventional sputter etching method is used, surface atoms are also etched and the surface of the compound magnetic body is removed. There is a problem that the spin state changes.

本願発明は、上記実情に鑑み提案され、酸化物磁性体などの化合物磁性体の表面清浄化の際に、スピン状態が変化しない表面清浄化法を開発し、酸化物磁性体などの化合物磁性体を分析可能なスピン偏極走査電子顕微鏡を提供することを目的とする。   The present invention has been proposed in view of the above circumstances, and has developed a surface cleaning method in which the spin state does not change during the surface cleaning of a compound magnetic body such as an oxide magnetic body. An object of the present invention is to provide a spin-polarized scanning electron microscope capable of analyzing the above.

上記目的を達成するために、本願発明は、スピン偏極走査電子顕微鏡内において、表面スピン状態を変化させずに、試料としての、例えば、酸化物磁性体の表面清浄化を行うため、酸化物磁性体を酸化ガスのガス流路の設置部に配置し、表面に酸化ガスを拡散させることによって、化学的な反応を用いて酸化物磁性体の表面の吸着物を選択的に除去することを特徴とする。   In order to achieve the above object, the present invention provides an oxide oxide for cleaning the surface of, for example, an oxide magnetic material as a sample without changing the surface spin state in a spin-polarized scanning electron microscope. It is possible to selectively remove the adsorbate on the surface of the oxide magnetic body using a chemical reaction by disposing the magnetic body in the installation part of the gas flow path of the oxidizing gas and diffusing the oxidizing gas on the surface. Features.

具体的には、本願発明に係るスピン偏極走査電子顕微鏡は、仕切弁を介して接続されたスピン分析部と試料表面浄化部とを具備し、前記試料表面浄化部は、酸化ガス生成源と、該酸化ガス生成源で生成された酸化ガスを流すガス流路と、該ガス流路に流れる前記酸化ガスを外部へ排出する真空ポンプとを具備して、前記ガス流路の内部の設置部に設置された試料の表面に前記酸化ガスを拡散させて、前記試料の表面の吸着物を分解し、前記スピン分析部にて前記試料を分析する、ことを特徴とする。   Specifically, the spin-polarized scanning electron microscope according to the present invention includes a spin analysis unit and a sample surface purification unit connected via a gate valve, and the sample surface purification unit includes an oxidizing gas generation source, A gas flow path for flowing the oxidizing gas generated in the oxidizing gas generation source, and a vacuum pump for discharging the oxidizing gas flowing in the gas flow path to the outside, and an installation portion inside the gas flow path The oxidizing gas is diffused on the surface of the sample placed on the surface, the adsorbate on the surface of the sample is decomposed, and the sample is analyzed by the spin analysis unit.

特に、上記設置部に設置された試料を、高真空を維持しつつ、仕切弁を通してスピン分析部へ搬送する試料搬送手段を具備することが好ましい。   In particular, it is preferable to provide a sample transport means for transporting the sample installed in the installation section to the spin analysis section through a gate valve while maintaining a high vacuum.

また、試料が酸化物磁性体であることがさらに好ましい。   More preferably, the sample is an oxide magnetic material.

本願発明に係るスピン偏極走査電子顕微鏡は、仕切弁を介して接続されたスピン分析部と試料表面浄化部とを具備し、試料表面浄化部は、酸化ガス生成源と、酸化ガス生成源で生成された酸化ガスを流すガス流路と、ガス流路に流れる酸化ガスを外部へ排出する真空ポンプとを具備して、ガス流路の内部の設置部に設置された試料の表面に酸化ガスを拡散させて、試料の表面における吸着物を分解し、スピン分析部にて吸着物が分解された試料を分析するので、スピン偏極走査電子顕微鏡内の試料表面浄化部に形成されたガス流路を拡散する酸化ガスを利用し、試料に吸着した炭化水素などの吸着物を酸化によって化学的に分解することができるため、試料の表面のスピン状態に影響を及ぼさずに試料の表面清浄化を行うことができるスピン偏極走査電子顕微鏡を提供することができる。   A spin-polarized scanning electron microscope according to the present invention includes a spin analysis unit and a sample surface purification unit connected via a gate valve, and the sample surface purification unit includes an oxidation gas generation source and an oxidation gas generation source. A gas flow path for flowing the generated oxidizing gas, and a vacuum pump for discharging the oxidizing gas flowing in the gas flow path to the outside, and oxidizing gas on the surface of the sample installed in the installation part inside the gas flow path Is diffused, the adsorbate on the sample surface is decomposed, and the sample in which the adsorbate is decomposed is analyzed by the spin analysis unit. Therefore, the gas flow formed in the sample surface purification unit in the spin-polarized scanning electron microscope is analyzed. Using oxidizing gas that diffuses in the channel, hydrocarbons and other adsorbates adsorbed on the sample can be chemically decomposed by oxidation, so the surface of the sample can be cleaned without affecting the spin state of the sample surface. Can do spin It is possible to provide an electrode scanning electron microscope.

特に、設置部に設置された試料を、高真空を維持しつつ、仕切弁を通してスピン分析部へ搬送する試料搬送手段を具備したので、スピン偏極走査電子顕微鏡内の高真空を維持しつつ、試料の表面清浄化後に、試料表面浄化部からスピン分析部へ仕切弁を介して試料を直接搬送することができるため、表面清浄化後の試料への炭化水素などの吸着物の再吸着を防ぐことができる。また、試料表面浄化部からスピン分析部への搬送が仕切弁を介して行われるため、スピン偏極走査電子顕微鏡内を高真空に維持することが可能となる。   In particular, because the sample installed in the installation unit is equipped with a sample transport means for transporting the sample installed in the installation unit to the spin analysis unit through the gate valve while maintaining a high vacuum, while maintaining a high vacuum in the spin polarized scanning electron microscope, After cleaning the surface of the sample, the sample can be transported directly from the sample surface cleaning section to the spin analysis section via a gate valve, preventing re-adsorption of adsorbed substances such as hydrocarbons on the sample after the surface cleaning. be able to. Further, since the transfer from the sample surface purification unit to the spin analysis unit is performed via the gate valve, the inside of the spin polarized scanning electron microscope can be maintained at a high vacuum.

また、本願発明では、分析の対象となる試料を酸化物磁性体としたので、表面清浄化の際に、酸化物磁性体の表面のスピン状態を変化させずに、酸化分解という化学的な反応を用いて酸化物磁性体の表面の吸着物を選択的に除去することができるため、スピン偏極走査電子顕微鏡において酸化物磁性体の鮮明なスピン情報を得ることができる。   In the present invention, since the sample to be analyzed is an oxide magnetic material, a chemical reaction called oxidative decomposition is performed without changing the spin state of the surface of the oxide magnetic material during surface cleaning. Can be used to selectively remove the adsorbate on the surface of the oxide magnetic body, so that clear spin information of the oxide magnetic body can be obtained in a spin-polarized scanning electron microscope.

以下、本願発明に係るスピン偏極走査電子顕微鏡の実施形態について、図面に基づいて詳述する。
図1は、本願発明に係るスピン偏極走査電子顕微鏡の概略を示す説明図である。
Hereinafter, embodiments of a spin-polarized scanning electron microscope according to the present invention will be described in detail with reference to the drawings.
FIG. 1 is an explanatory diagram showing an outline of a spin-polarized scanning electron microscope according to the present invention.

本願発明に係るスピン偏極走査電子顕微鏡は、スピン偏極走査電子顕微鏡内において試料表面のスピン状態を変化させずに試料の表面清浄化を行うため、試料をガス流路内の設置部に配置し、その表面に酸化ガスを拡散させることによって、酸化分解という化学的な反応を用いて試料表面の炭化水素などの吸着物を選択的に除去するものである。
以下、一実施形態を例示して説明する。
In the spin-polarized scanning electron microscope according to the present invention, the sample is arranged in the installation section in the gas flow path in order to clean the surface of the sample without changing the spin state of the sample surface in the spin-polarized scanning electron microscope. Then, by diffusing oxidizing gas on the surface, adsorbates such as hydrocarbons on the sample surface are selectively removed using a chemical reaction called oxidative decomposition.
Hereinafter, an embodiment will be exemplified and described.

本願発明に係るスピン偏極走査電子顕微鏡1は、図1に示すとおり、仕切弁4を介して接続されたスピン分析部2と試料表面浄化部3とを具備している。
試料表面浄化部3は、浄化ガスとしての、例えば、アルゴンガスと酸素ガスとの混合ガスを生成する浄化ガス源31と、この浄化ガス源31にて生成された混合ガスが供給されるとともに、供給された混合ガスに電圧を加えてアルゴン酸素プラズマを発生させ、このアルゴン酸素プラズマ内部から酸化ガス、例えば、活性酸素32aを生成する酸化ガス発生源としての活性酸素生成源32と、この活性酸素生成源32にて生成された活性酸素32aを流すガス流路33と、このガス流路33に流れる活性酸素32aを外部に排出するとともに、ガス流路33内を高真空状態に維持する真空ポンプ34と、を具備している。
スピン分析部2には、スピン分析部2内を試料表面浄化部3のガス流路よりも高真空状態に維持するための真空ポンプ21が備え付けられている。
The spin-polarized scanning electron microscope 1 according to the present invention includes a spin analysis unit 2 and a sample surface purification unit 3 connected via a gate valve 4 as shown in FIG.
The sample surface purification unit 3 is supplied with a purified gas source 31 that generates, for example, a mixed gas of argon gas and oxygen gas as a purified gas, and a mixed gas generated by the purified gas source 31. A voltage is applied to the supplied mixed gas to generate an argon oxygen plasma, and an active oxygen generating source 32 as an oxidizing gas generating source for generating an oxidizing gas, for example, active oxygen 32a, from the argon oxygen plasma, and the active oxygen A gas flow path 33 for flowing the active oxygen 32a generated in the generation source 32, and a vacuum pump for discharging the active oxygen 32a flowing in the gas flow path 33 to the outside and maintaining the inside of the gas flow path 33 in a high vacuum state 34.
The spin analysis unit 2 is provided with a vacuum pump 21 for maintaining the inside of the spin analysis unit 2 in a higher vacuum state than the gas flow path of the sample surface purification unit 3.

また、スピン偏極走査電子顕微鏡1は、表面の吸着物、例えば、炭化水素Bを選択的に除去した後の分析の対象となる試料としての、例えば、酸化物磁性体Aを、高真空を維持しつつ、試料表面浄化部3のガス流路33から仕切弁4を通して、スピン分析部2へ直接搬出するための試料搬送手段として試料搬送装置5を具備している。
試料搬送装置5は、例えば、真空内部の磁石に固定された搬送棒50を、真空外部の磁石からの磁気結合力を利用して駆動することにより、表面の炭化水素Bが分解された酸化物磁性体Aを、試料表面浄化部3のガス流路33からスピン分析部2へ仕切弁4を通して直接搬出する。また、試料搬送装置5の搬送棒50の先端部に、酸化物磁性体Aをガス流路33内部にて載置するための載置部としての試料ステージ51を具備している。
In addition, the spin-polarized scanning electron microscope 1 is configured such that, for example, an oxide magnetic substance A as a sample to be analyzed after selectively removing adsorbed material on the surface, for example, hydrocarbon B, is subjected to high vacuum. While maintaining, the sample transport device 5 is provided as a sample transport means for transporting directly from the gas flow path 33 of the sample surface purification section 3 through the gate valve 4 to the spin analysis section 2.
For example, the sample transport device 5 is an oxide in which hydrocarbon B on the surface is decomposed by driving a transport rod 50 fixed to a magnet inside a vacuum by using a magnetic coupling force from a magnet outside the vacuum. The magnetic substance A is directly carried out from the gas flow path 33 of the sample surface purification unit 3 to the spin analysis unit 2 through the gate valve 4. In addition, a sample stage 51 as a mounting portion for mounting the oxide magnetic body A inside the gas flow path 33 is provided at the tip of the transport rod 50 of the sample transport device 5.

試料搬送装置5の試料ステージ51は、酸化物磁性体Aが載置された状態で、試料表面浄化部3のガス流路33に搬入され、酸化物磁性体Aが清浄化されて、炭化水素Bが除去されるまで、試料表面浄化部3のガス流路33に留まる。続いて、酸化物磁性体Aが清浄化され、炭化水素Bが除去された後、試料搬送装置5が上述のとおりに作動することにより、試料ステージ51は、酸化物磁性体Aが載置されたまま、試料表面浄化部3のガス流路33からスピン分析部2へと仕切弁4を通って直接搬出される。   The sample stage 51 of the sample transport device 5 is carried into the gas flow path 33 of the sample surface purification unit 3 in a state where the oxide magnetic material A is placed, and the oxide magnetic material A is cleaned and hydrocarbons are obtained. It remains in the gas flow path 33 of the sample surface purification unit 3 until B is removed. Subsequently, after the oxide magnetic body A is cleaned and the hydrocarbon B is removed, the sample transport device 5 operates as described above, whereby the oxide magnetic body A is placed on the sample stage 51. As it is, it is directly carried out from the gas flow path 33 of the sample surface purification unit 3 to the spin analysis unit 2 through the gate valve 4.

なお、試料表面浄化部3のガス流路33は、少なくとも酸化物磁性体Aが清浄化され、炭化水素Bが除去され、スピン分析部2へ搬出されるまで、真空ポンプ34によって1×10-5 Pa以下の圧力まで排気され、高真空状態に維持されている。また、スピン分析部2の真空ポンプ21は、酸化物磁性体Aの搬出入に関わらず一貫して、スピン分析部2を試料表面浄化部3のガス流路33よりも超高真空状態に維持している。 The gas flow path 33 of the sample surface cleaning unit 3, at least the oxide magnetic material A is cleaned, hydrocarbons B is removed, until it is unloaded to the spin analyzer 2, the vacuum pump 34 1 × 10 - It is evacuated to a pressure of 5 Pa or less and maintained in a high vacuum state. Further, the vacuum pump 21 of the spin analysis unit 2 maintains the spin analysis unit 2 in an ultra-high vacuum state consistently with the gas flow path 33 of the sample surface purification unit 3 regardless of whether the oxide magnetic substance A is carried in or out. is doing.

以下、スピン偏極走査電子顕微鏡1における、酸化物磁性体Aを分析するに至るまでの表面清浄化方法について説明する。   Hereinafter, a method for cleaning the surface of the spin-polarized scanning electron microscope 1 until the magnetic oxide A is analyzed will be described.

まず、酸化物磁性体Aの分析準備のため、試料表面浄化部3のガス流路33内に搬入された試料搬送装置5の試料ステージ51に、酸化物磁性体Aを載置する。さらに、試料表面浄化部3の真空ポンプ34及びスピン分析部2の真空ポンプ21を作動させ、スピン偏極走査電子顕微鏡1内を高真空状態にする。具体的には、試料表面浄化部3のガス流路33を1×10-5 Pa以下の圧力まで排気するとともに、スピン分析部2を試料表面浄化部3のガス流路33よりも超高真空状態になるまで排気する。 First, in preparation for analysis of the oxide magnetic substance A, the oxide magnetic substance A is placed on the sample stage 51 of the sample transport device 5 carried into the gas flow path 33 of the sample surface purification unit 3. Further, the vacuum pump 34 of the sample surface purification unit 3 and the vacuum pump 21 of the spin analysis unit 2 are operated to bring the inside of the spin polarized scanning electron microscope 1 into a high vacuum state. Specifically, the gas flow path 33 of the sample surface purification unit 3 is evacuated to a pressure of 1 × 10 −5 Pa or less, and the spin analysis unit 2 is ultra-high vacuum than the gas flow path 33 of the sample surface purification unit 3. Exhaust until condition is reached.

次に、浄化ガス源31にて混合ガス、例えば、75%アルゴン25%酸素の混合ガスを生成し、この混合ガスを活性酸素生成源32に導入し、100Paの圧力に調整する。導入された混合ガスは、電圧印加によりアルゴン酸素プラズマとなり、このアルゴン酸素プラズマ内部において活性酸素32aが生成する。   Next, a mixed gas, for example, a mixed gas of 75% argon and 25% oxygen is generated in the purified gas source 31, and this mixed gas is introduced into the active oxygen generation source 32 and adjusted to a pressure of 100 Pa. The introduced mixed gas becomes argon oxygen plasma by voltage application, and active oxygen 32a is generated inside the argon oxygen plasma.

続いて、アルゴン酸素プラズマ内部から生成した活性酸素32aを、ガス流路33へ向けて拡散させ、試料搬送装置5の試料ステージ51に載置された酸化物磁性体Aの表面の吸着物としての炭化水素Bと反応させる。   Subsequently, the active oxygen 32 a generated from the inside of the argon oxygen plasma is diffused toward the gas flow path 33, and is used as an adsorbate on the surface of the oxide magnetic substance A placed on the sample stage 51 of the sample transport device 5. React with hydrocarbon B.

このとき、ガス流路33内部において、酸化物磁性体Aが載置された試料搬送装置5の試料ステージ51は、アルゴン酸素プラズマに曝されず、かつ、酸素の活性が失われない距離に配置されている。アルゴン酸素プラズマに曝されず、かつ、酸素の活性が失われない距離とは、本実施例では、典型的には、ガス流路入り口から130mmの位置であり、酸化物磁性体Aがその距離にて配置され、酸化物磁性体Aの表面が拡散している活性酸素32aと反応することが望ましい。   At this time, in the gas flow path 33, the sample stage 51 of the sample transport device 5 on which the oxide magnetic substance A is placed is disposed at a distance that is not exposed to the argon oxygen plasma and does not lose the oxygen activity. Has been. In this embodiment, the distance that is not exposed to the argon oxygen plasma and the oxygen activity is not lost is typically at a position of 130 mm from the gas channel entrance, and the oxide magnetic substance A is the distance. It is desirable to react with the active oxygen 32a, which is disposed at the surface of the oxide magnetic body A and is diffused.

また、活性酸素32aと酸化物磁性体Aの表面の炭化水素Bとの反応中においては、真空ポンプ34が常時作動しているため、酸化物磁性体Aの表面の炭化水素Bが酸化分解されて発生する反応生成物Cが、酸化物磁性体Aの表面から速やかに外部に排出される。さらに、活性酸素生成源32から新たな活性酸素32aが供給されて、酸化物磁性体Aの表面に拡散されるため、新たな活性酸素32aは、酸化物磁性体Aの表面に残存する炭化水素Bと反応する。   In addition, during the reaction between the active oxygen 32a and the hydrocarbon B on the surface of the oxide magnetic body A, the vacuum pump 34 is always operating, so that the hydrocarbon B on the surface of the oxide magnetic body A is oxidized and decomposed. The reaction product C generated in this manner is quickly discharged from the surface of the oxide magnetic body A to the outside. Furthermore, since new active oxygen 32a is supplied from the active oxygen generation source 32 and diffused to the surface of the oxide magnetic body A, the new active oxygen 32a is a hydrocarbon remaining on the surface of the oxide magnetic body A. Reacts with B.

このような表面清浄化を20分程度行うとともに、ガス流路33内部のガスを最終的に排気して高真空状態に維持されていることを確認した後、試料搬送装置5により、表面清浄化済みの酸化物磁性体Aが載置された試料ステージ51を超高真空状態のスピン分析部2へ仕切弁4を通して直接搬送する。この際、スピン偏極走査電子顕微鏡1内は、高真空状態に維持されているので、炭化水素Bが酸化物磁性体Aに再吸着することはない。   After performing such surface cleaning for about 20 minutes and confirming that the gas in the gas flow path 33 is finally exhausted and maintained in a high vacuum state, the surface is cleaned by the sample transport device 5. The sample stage 51 on which the finished oxide magnetic material A is placed is directly transferred to the spin analysis unit 2 in an ultra-high vacuum state through the gate valve 4. At this time, since the inside of the spin-polarized scanning electron microscope 1 is maintained in a high vacuum state, the hydrocarbon B does not re-adsorb to the oxide magnetic material A.

以上のような清浄化処理を施した酸化物磁性体Aの表面のスピン偏極走査電子顕微鏡像を図2に示す。図2には、鮮明なスピン情報が現れていることが分かる。   FIG. 2 shows a spin-polarized scanning electron microscope image of the surface of the oxide magnetic material A that has been subjected to the cleaning treatment as described above. FIG. 2 shows that clear spin information appears.

比較例として、清浄化処理を施さない酸化物磁性体Aの表面のスピン偏極走査電子顕微鏡像を図3に示す。図3から明らかなように、清浄化処理を施さないと、酸化物磁性体Aの表面のスピン偏極走査電子顕微鏡像から有効なスピン情報を得ることは困難である。   As a comparative example, FIG. 3 shows a spin-polarized scanning electron microscope image of the surface of the oxide magnetic material A not subjected to the cleaning treatment. As is clear from FIG. 3, it is difficult to obtain effective spin information from the spin-polarized scanning electron microscope image of the surface of the oxide magnetic body A unless the cleaning process is performed.

このように、試料表面浄化部3において、活性酸素32aにより酸化物磁性体Aの表面の炭化水素Bを化学的に除去することにより、鮮明なスピン情報を得ることが可能になる。   As described above, in the sample surface purification unit 3, it is possible to obtain clear spin information by chemically removing the hydrocarbon B on the surface of the oxide magnetic body A by the active oxygen 32a.

したがって、本願発明に係るスピン偏極走査電子顕微鏡1は、試料表面浄化部3に、アルゴンガスと酸素ガスとの混合ガスを生成する浄化ガス源31と、この浄化ガス源31から供給された混合ガスに電圧を加えてアルゴン酸素プラズマを発生させ、このアルゴン酸素プラズマ内部から活性酸素32aが生成する活性酸素生成源32と、この活性酸素源32にて生成された活性酸素32aを流すガス流路33と、このガス流路33に流れる活性酸素32aを外部に排出する真空ポンプ34とを具備しているので、スピン偏極走査電子顕微鏡1内の試料表面浄化部3のガス流路33を拡散する活性酸素32aを利用し、試料ステージ51に載置された酸化物磁性体Aに吸着した炭化水素Bを酸化分解によって化学的に除去することができるため、酸化物磁性体Aの表面のスピン状態に影響を及ぼさずに、酸化物磁性体Aの表面清浄化を行うことができる。   Therefore, the spin-polarized scanning electron microscope 1 according to the present invention includes a purified gas source 31 that generates a mixed gas of argon gas and oxygen gas in the sample surface purification unit 3, and a mixed gas supplied from the purified gas source 31. A voltage is applied to the gas to generate argon oxygen plasma, and an active oxygen generation source 32 that generates active oxygen 32a from the inside of the argon oxygen plasma, and a gas flow path through which the active oxygen 32a generated by the active oxygen source 32 flows. 33 and the vacuum pump 34 for discharging the active oxygen 32a flowing through the gas flow path 33 to the outside, the gas flow path 33 of the sample surface purification unit 3 in the spin-polarized scanning electron microscope 1 is diffused. The hydrocarbon B adsorbed on the oxide magnetic body A placed on the sample stage 51 can be chemically removed by oxidative decomposition using the active oxygen 32a. Without affecting the spin state of the surface of the oxide magnetic material A, it is possible to perform surface cleaning of the oxide magnetic body A.

また、清浄化した酸化物磁性体Aを、高真空状態を維持しつつ、試料表面浄化部3のガス流路33からスピン分析部2へ仕切弁4を通して直接搬出入させるための試料搬送装置5を具備しているので、表面清浄化後の酸化物磁性体Aへの炭化水素Bの再吸着を防ぎながら、表面清浄化後の酸化物磁性体Aをスピン分析部2に直接搬送することができ、鮮明なスピン情報が現れるスピン偏極走査電子顕微鏡1像を得ることが可能となる。   Further, the sample transport device 5 for directly carrying in and out the cleaned oxide magnetic substance A through the gate valve 4 from the gas flow path 33 of the sample surface purification unit 3 to the spin analysis unit 2 while maintaining a high vacuum state. Therefore, the oxide magnetic body A after surface cleaning can be directly transported to the spin analysis unit 2 while preventing re-adsorption of the hydrocarbon B onto the oxide magnetic body A after surface cleaning. Thus, it is possible to obtain one image of a spin-polarized scanning electron microscope in which clear spin information appears.

特に、分析の対象となる試料を酸化物磁性体Aとしたので、表面清浄化の際に、酸化物磁性体Aの表面のスピン状態を変化させずに、酸化分解という化学的な反応を用いて酸化物磁性体Aの表面の炭化水素Bを選択的に除去することができるため、スピン偏極走査電子顕微鏡1において酸化物磁性体Aの鮮明なスピン情報を得ることができる。   In particular, since the sample to be analyzed is the oxide magnetic material A, a chemical reaction called oxidative decomposition is used without changing the spin state of the surface of the oxide magnetic material A when cleaning the surface. Since the hydrocarbon B on the surface of the oxide magnetic body A can be selectively removed, clear spin information of the oxide magnetic body A can be obtained in the spin-polarized scanning electron microscope 1.

このように、本願発明では、表面清浄化の際に、酸化物磁性体Aの表面のスピン状態を変化させないで表面の吸着物の炭化水素Bを除去することができ、従来困難であった酸化物磁性体Aのスピン状態の分析を可能にしたスピン偏極走査電子顕微鏡1を提供することができる。   As described above, in the present invention, when the surface is cleaned, the hydrocarbon B of the adsorbed material on the surface can be removed without changing the spin state of the surface of the oxide magnetic body A. The spin-polarized scanning electron microscope 1 that enables analysis of the spin state of the magnetic substance A can be provided.

ここで、上述した実施形態では、酸化ガスに活性酸素を用いた例を説明したが、本願発明における酸化ガスは、1重項酸素、スーパーオキシドアニオンラジカル等の所謂狭義の活性酸素に限定されるものではなく、所謂広義の活性酸素を含む。さらに、本願発明における酸化ガスは、試料の表面に吸着している吸着物を酸化分解することができ、かつ、ガス流路をはじめとする周辺の構成を傷めないような酸化力を有する酸化ガスであれば、ハロゲンガスなど適宜のものを使用することが可能である。   Here, in the embodiment described above, an example in which active oxygen is used as the oxidizing gas has been described. However, the oxidizing gas in the present invention is limited to so-called narrowly-defined active oxygen such as singlet oxygen and superoxide anion radical. It contains not so-called active oxygen in a broad sense. Furthermore, the oxidizing gas in the present invention can oxidize and decompose the adsorbed material adsorbed on the surface of the sample, and has an oxidizing power that does not damage the surrounding structure including the gas flow path. If so, it is possible to use an appropriate material such as a halogen gas.

また、上述した実施形態では、スピン偏極走査電子顕微鏡の構成を詳述するために、アルゴンと酸素との混合ガスを生成する浄化ガス源を含めた構成を例示したが、酸化ガス生成源において直接、酸化ガスを生成させ、続いて、生成した酸化ガスをガス経路に向けて拡散させるようにすることも可能である。   In the above-described embodiment, in order to describe the configuration of the spin-polarized scanning electron microscope in detail, the configuration including the purified gas source that generates a mixed gas of argon and oxygen is exemplified. It is also possible to generate the oxidizing gas directly and then diffuse the generated oxidizing gas toward the gas path.

このほか、上述した実施形態で例示して説明したスピン偏極走査電子顕微鏡は、酸化物磁性体を含む様々な化合物磁性体を試料の対象とすることができる。また、金属磁性体であっても容易に酸化されない性質を有するものであれば、本願発明のスピン偏極走査電子顕微鏡で分析可能である。   In addition, the spin-polarized scanning electron microscope exemplified and described in the above-described embodiment can target various compound magnetic bodies including oxide magnetic bodies as samples. Moreover, even if it is a metal magnetic body, if it has a property which is not easily oxidized, it can be analyzed with the spin-polarized scanning electron microscope of the present invention.

以上、本願発明に係る実施形態を説明したが、本願発明は上記実施形態に限定されるものではない。そして本願発明は、特許請求の範囲に記載された事項を逸脱することがなければ、種々の設計変更を行うことが可能である。   As mentioned above, although embodiment which concerns on this invention was described, this invention is not limited to the said embodiment. The present invention can be modified in various ways without departing from the matters described in the claims.

例えば、本願発明は、スピン偏極走査電子顕微鏡内において、表面スピン状態を変化させずに試料の表面清浄化を行うために、試料表面に酸化ガスを拡散させることによって、酸化分解という化学的な反応を用いて試料表面の吸着物を選択的に除去するので、酸化ガスにより酸化分解される有機物、無機物等の吸着物である限り、任意の吸着物を除去することができ、鮮明なスピン情報を得ることができるスピン偏極走査電子顕微鏡を提供することができる。   For example, in the present invention, in the spin-polarized scanning electron microscope, in order to clean the surface of the sample without changing the surface spin state, a chemical process called oxidative decomposition is performed by diffusing an oxidizing gas on the surface of the sample. Since the adsorbate on the sample surface is selectively removed using a reaction, any adsorbate can be removed as long as it is an adsorbate such as an organic or inorganic substance that is oxidatively decomposed by an oxidizing gas. It is possible to provide a spin-polarized scanning electron microscope capable of obtaining the above.

本願発明に係るスピン偏極走査電子顕微鏡の概略を示す説明図である。It is explanatory drawing which shows the outline of the spin polarization scanning electron microscope which concerns on this invention. 本願発明に係るスピン偏極走査電子顕微鏡における清浄化処理を施した酸化物磁性体の表面のスピン偏極走査電子顕微鏡像である。It is a spin-polarization scanning electron microscope image of the surface of the oxide magnetic body which performed the cleaning process in the spin-polarization scanning electron microscope which concerns on this invention. 清浄化処理を施さない酸化物磁性体の表面のスピン偏極走査電子顕微鏡像(比較例)である。It is a spin-polarized scanning electron microscope image (comparative example) of the surface of the oxide magnetic body which does not perform a cleaning process.

符号の説明Explanation of symbols

1 スピン偏極走査電子顕微鏡
2 スピン分析部
21 真空ポンプ
3 試料表面浄化部
31 浄化ガス源
32 活性酸素生成源(酸化ガス生成源)
32a 活性酸素(酸化ガス)
33 ガス流路
34 真空ポンプ
4 仕切弁
5 試料搬送装置(試料搬送手段)
50 搬送棒
51 試料ステージ(載置部)
A 酸化物磁性体(試料)
B 炭化水素(吸着物)
C 反応生成物
DESCRIPTION OF SYMBOLS 1 Spin polarization scanning electron microscope 2 Spin analysis part 21 Vacuum pump 3 Sample surface purification part 31 Purified gas source 32 Active oxygen production source (oxidation gas production source)
32a Active oxygen (oxidizing gas)
33 Gas flow path 34 Vacuum pump 4 Gate valve 5 Sample transport device (sample transport means)
50 Transfer rod 51 Sample stage (mounting section)
A Magnetic oxide (sample)
B Hydrocarbon (adsorbent)
C reaction product

Claims (3)

仕切弁を介して接続されたスピン分析部と試料表面浄化部とを具備し、
前記試料表面浄化部は、酸化ガス生成源と、該酸化ガス生成源で生成された酸化ガスを流すガス流路と、該ガス流路に流れる前記酸化ガスを外部へ排出する真空ポンプとを具備して、前記ガス流路の内部の設置部に設置された試料の表面に前記酸化ガスを拡散させて、前記試料の表面の吸着物を分解し、
前記スピン分析部にて前記試料を分析する、
ことを特徴とするスピン偏極走査電子顕微鏡。
Comprising a spin analysis unit and a sample surface purification unit connected via a gate valve;
The sample surface purification unit includes an oxidizing gas generation source, a gas flow path for flowing the oxidizing gas generated by the oxidizing gas generation source, and a vacuum pump for discharging the oxidizing gas flowing in the gas flow path to the outside. Then, the oxidizing gas is diffused on the surface of the sample installed in the installation part inside the gas flow path, and the adsorbate on the surface of the sample is decomposed,
Analyzing the sample in the spin analysis unit;
A spin-polarized scanning electron microscope.
前記設置部に設置された試料を、高真空を維持しつつ、前記仕切弁を通して前記スピン分析部へ搬送する試料搬送手段を具備する、
ことを特徴とする請求項1に記載のスピン偏極走査電子顕微鏡。
A sample transporting means for transporting the sample installed in the installation unit to the spin analysis unit through the gate valve while maintaining a high vacuum,
The spin-polarized scanning electron microscope according to claim 1.
前記試料が、酸化物磁性体である、
ことを特徴とする請求項1又は請求項2に記載のスピン偏極走査電子顕微鏡。
The sample is a magnetic oxide;
The spin-polarized scanning electron microscope according to claim 1 or 2.
JP2008218035A 2008-08-27 2008-08-27 Spin polarization scanning electron microscope Pending JP2010054272A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218035A JP2010054272A (en) 2008-08-27 2008-08-27 Spin polarization scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218035A JP2010054272A (en) 2008-08-27 2008-08-27 Spin polarization scanning electron microscope

Publications (1)

Publication Number Publication Date
JP2010054272A true JP2010054272A (en) 2010-03-11

Family

ID=42070371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218035A Pending JP2010054272A (en) 2008-08-27 2008-08-27 Spin polarization scanning electron microscope

Country Status (1)

Country Link
JP (1) JP2010054272A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019224919A1 (en) * 2018-05-22 2019-11-28 株式会社日立ハイテクノロジーズ Spin analysis device
US11067486B2 (en) 2016-07-29 2021-07-20 United Kingdom Research And Innovation Electron microscopy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177539A (en) * 1984-02-24 1985-09-11 Hitachi Ltd Scanning electron microscope
JPS61284690A (en) * 1985-06-07 1986-12-15 ダニエル テイ− パ−ス Device and method of detecting electron spin polarized pole
JPS6273184A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Spin detector
JPS6273185A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Spin detector
JPH06232238A (en) * 1993-02-05 1994-08-19 Hitachi Ltd Method and apparatus for sample processing
JPH08335449A (en) * 1995-06-06 1996-12-17 Kawasaki Steel Corp Pretreatment method for sample for scanning electron microscope and its device
JP2000123363A (en) * 1998-10-12 2000-04-28 Internatl Business Mach Corp <Ibm> Patterning of magnetic medium
JP2006509999A (en) * 2002-08-02 2006-03-23 イー エイ フィシオネ インストルメンツ インコーポレーテッド Microscope sample preparation method and apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60177539A (en) * 1984-02-24 1985-09-11 Hitachi Ltd Scanning electron microscope
JPS61284690A (en) * 1985-06-07 1986-12-15 ダニエル テイ− パ−ス Device and method of detecting electron spin polarized pole
JPS6273184A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Spin detector
JPS6273185A (en) * 1985-09-27 1987-04-03 Hitachi Ltd Spin detector
JPH06232238A (en) * 1993-02-05 1994-08-19 Hitachi Ltd Method and apparatus for sample processing
JPH08335449A (en) * 1995-06-06 1996-12-17 Kawasaki Steel Corp Pretreatment method for sample for scanning electron microscope and its device
JP2000123363A (en) * 1998-10-12 2000-04-28 Internatl Business Mach Corp <Ibm> Patterning of magnetic medium
JP2006509999A (en) * 2002-08-02 2006-03-23 イー エイ フィシオネ インストルメンツ インコーポレーテッド Microscope sample preparation method and apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11067486B2 (en) 2016-07-29 2021-07-20 United Kingdom Research And Innovation Electron microscopy
WO2019224919A1 (en) * 2018-05-22 2019-11-28 株式会社日立ハイテクノロジーズ Spin analysis device
JPWO2019224919A1 (en) * 2018-05-22 2021-05-13 株式会社日立ハイテク Spin analyzer

Similar Documents

Publication Publication Date Title
Ferrah et al. XPS investigations of graphene surface cleaning using H2‐and Cl2‐based inductively coupled plasma
Yu et al. Increased chemical enhancement of Raman spectra for molecules adsorbed on fluorinated reduced graphene oxide
KR101285750B1 (en) Plasma processing method and plasma processing apparatus
US8507879B2 (en) Oxidative cleaning method and apparatus for electron microscopes using UV excitation in an oxygen radical source
JP2010054272A (en) Spin polarization scanning electron microscope
JP5152851B2 (en) Manufacturing method of semiconductor device
WO2017081953A1 (en) Processing method in processing device that uses halogen-based gas
JP2005134170A (en) Electron spectroscopic analysis method and analysis apparatus
Burwell et al. Investigation of the utility of cellulose acetate butyrate in minimal residue graphene transfer, lithography, and plasma treatments
Kim et al. High density plasma reactive ion etching of CoFeB magnetic thin films using a CH4/Ar plasma
JPH09171999A (en) Plasma cleaning treatment method
JP4933728B2 (en) Etching method for tunnel junction element
JPWO2004075277A1 (en) Etching method and semiconductor device manufacturing method
KR20180133224A (en) Boron film removing method, and pattern forming method and apparatus using boron film
JPH11329328A (en) Electron beam inspection device
JP4772610B2 (en) Analysis method
Ashkhotov et al. Effect of Bombardment with Oxygen Ions on the Surface Composition of Polycrystalline Silver
JPH033328A (en) Modification of surface of solid sample
EP2879158B1 (en) Phase plate for a transmission electron microscope
JP2006165032A (en) Etching method and apparatus thereof
JP2006222243A (en) Cleaning method of semiconductor manufacturing equipment
JPH04213824A (en) Plasma polymerized film and method of removing heavy metal contamination
Tankut et al. An XPS study on the evolution of type 304 stainless steel surface during routine TCSU operation
JP2015099778A5 (en)
JP2022048074A (en) Method for processing carbon nanomaterial-containing membrane

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110203

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110203

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120524

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002