JP2010053575A - Automatic water faucet device - Google Patents

Automatic water faucet device Download PDF

Info

Publication number
JP2010053575A
JP2010053575A JP2008218726A JP2008218726A JP2010053575A JP 2010053575 A JP2010053575 A JP 2010053575A JP 2008218726 A JP2008218726 A JP 2008218726A JP 2008218726 A JP2008218726 A JP 2008218726A JP 2010053575 A JP2010053575 A JP 2010053575A
Authority
JP
Japan
Prior art keywords
light
cover
light receiving
light projecting
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008218726A
Other languages
Japanese (ja)
Inventor
Yukiharu Ogawa
幸春 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2008218726A priority Critical patent/JP2010053575A/en
Publication of JP2010053575A publication Critical patent/JP2010053575A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Domestic Plumbing Installations (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an automatic water faucet device capable of preventing a cover for protection, or the like, from being misdetected. <P>SOLUTION: In this automatic water faucet device, an interval between an installed chip section 22a on the light-receiving part side in a light-projecting part which is a section for radiating light in the light-projecting part and being the closest to a light-receiving part and an installed chip section 30a on a light-projecting part side in the light-receiving part which is a section for receiving the reflected light in the light-receiving part and being the closest to the light-projecting part is set at such a distance that an area is formed which is in common by intersecting a light-projecting area 40 with a light-receiving area 41 mutually in an area to be detected. Even when the light positioned on the outermost-side section out of the light radiated from the light-projecting part is reflected by the cover 7, the interval between them is set to be a distance such that prevents the reflected light from being received by the light-receiving part. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、人の手などの洗浄対象物体を検知し、自動で出水する自動水栓装置に関する。   The present invention relates to an automatic faucet device that detects an object to be cleaned such as a human hand and automatically discharges water.

従来、この種の自動水栓装置は、吐水口近傍であって検知領域を臨む位置に埋没して設けられる光学ユニットを備えている。この光学ユニットは、検知領域に差し出された人の手等に向けて光を投射する投光部と、人の手等に反射した反射光が入射される受光部と、を備えている(例えば特許文献1参照)。そして、従来の自動水栓装置は、投光部および受光部の表面を汚れから保護するために、光透過性の保護用カバーを備えていることがある。
特開平5−311709号公報
Conventionally, this type of automatic faucet device includes an optical unit that is buried in a position near the water outlet and facing the detection region. This optical unit includes a light projecting unit that projects light toward a human hand or the like that has been pushed out to the detection region, and a light receiving unit that receives reflected light reflected from the human hand or the like ( For example, see Patent Document 1). And the conventional automatic faucet device may be equipped with the cover for light transmission protection in order to protect the surface of a light projection part and a light-receiving part from dirt.
Japanese Patent Laid-Open No. 5-31709

しかしながら、この保護用カバーは投光部および受光部の前面を覆って汚れを防ぎ、検知性能を確保することに寄与するものの、自動水栓装置が保護用カバーおよび保護用カバーの付着物(汚れ、水滴)で反射した光を受光して誤検知してしまうという問題があった。このように保護用カバーを誤検知すると、不意に吐水したり、また、一度このような状況になると水が出っぱなしになるという不具合が生じる。   However, although this protective cover covers the front surface of the light projecting part and the light receiving part to prevent dirt and contribute to ensuring the detection performance, the automatic faucet device is attached to the protective cover and the protective cover. In other words, the light reflected by the water droplets) is received and erroneously detected. If the protective cover is erroneously detected in this way, there is a problem that water is discharged unexpectedly, or once such a situation occurs, water continues to come out.

また、保護用カバーでの反射光が生じないようにするために、投光部および受光部と保護用カバー内表面との隙間が生じないように保護用カバーを設置することが望まれるが、各部品の製造誤差や組立て工程における組付け誤差等により、実際には所望の状態に設置することは困難である。   In order to prevent the reflected light from being generated by the protective cover, it is desirable to install the protective cover so that there is no gap between the light projecting part and the light receiving part and the inner surface of the protective cover. Actually, it is difficult to install in a desired state due to manufacturing errors of each part, assembly errors in the assembly process, and the like.

そこで、本発明は上記問題点に鑑みてなされたものであり、その目的は、保護用カバー等を誤検知することを防止できる自動水栓装置を提供することである。   Accordingly, the present invention has been made in view of the above problems, and an object thereof is to provide an automatic faucet device that can prevent erroneous detection of a protective cover or the like.

上記目的を達成するために以下の技術的手段を採用する。すなわち、請求項1の発明は、検知対象とする検知対象エリアに向けて光を所定の放射角(α)を形成するように末広がり状に放射して投光エリア(40)を形成する投光部(20,22)と、投光部から放射された光が物体に当たって反射した反射光を受光するように、所定の受光角(β)を有する受光エリア(41)を形成する受光部(30)と、投光部および受光部の検知対象エリア側前方を覆うように設けられる光透過性を有するカバー(7)と、を備え、投光エリアに入った手によって反射した反射光を受光部が受光したときに自動的に出水を行う自動水栓装置に係る発明であって、
投光部の光を放射する部位であって受光部に最も近い先端部位(20a,22a)と、受光部の反射光を受光する部位であって投光部に最も近い先端部位(30a)との設置間隔は、
検知対象エリアにおいて投光エリアと受光エリアが交差することにより共有のエリアを形成する距離に設定されるとともに、
投光部から放射される光のうち最外側部位を進行する光がカバーおよびカバーに付着した付着物で反射した場合でも、この反射された光が受光部に受光されない距離に設定されることを特徴とする。
In order to achieve the above object, the following technical means are adopted. That is, the invention according to claim 1 projects light that radiates light toward a detection target area as a detection target so as to form a predetermined radiation angle (α) to form a light projection area (40). A light receiving portion (30) that forms a light receiving area (41) having a predetermined light receiving angle (β) so as to receive reflected light reflected by the light emitted from the light projecting portion and the object. ) And a light-transmitting cover (7) provided so as to cover the front side of the light projecting unit and the light receiving unit on the detection target area side, and the reflected light reflected by the hand entering the light projecting area is received by the light receiving unit Is an invention related to an automatic faucet device that automatically drains water when it receives light,
A tip portion (20a, 22a) closest to the light receiving portion that emits light from the light projecting portion, and a tip portion (30a) closest to the light projecting portion that receives the reflected light of the light receiving portion. The installation interval of
In the detection target area, the light projecting area and the light receiving area intersect to be set to a distance that forms a shared area,
Even if light traveling through the outermost part of the light emitted from the light projecting part is reflected by the cover and the adhering matter attached to the cover, the reflected light is set to a distance at which it is not received by the light receiving part. Features.

この発明によれば、投光部と受光部の当該設置間隔を上記のように設定して配置することにより、投光部から放射された光がカバーで反射したとしても受光部はその反射光を受光しないため、投光部および受光部を保護するためのカバー等の誤検知を防止できる自動水栓装置が得られる。   According to this invention, even if the light radiated from the light projecting unit is reflected by the cover, the light receiving unit reflects the reflected light by arranging and arranging the installation interval between the light projecting unit and the light receiving unit as described above. Therefore, an automatic water faucet device that can prevent erroneous detection of a light emitting unit and a cover for protecting the light receiving unit is obtained.

請求項2に記載の発明では、請求項1における設置間隔をDとし、所定の放射角をαとし、カバー内表面(7a)の垂線方向に対する投光部の軸線(26)の傾き角度をθ1とし、投光部の上記先端部位(20a,22a)からカバーまでの距離をg1とし、受光部の上記先端部位(30a)からカバーまでの距離をg2とした場合に、
上記設置間隔(D)は、下記の式7で示す関係を満たすように設定されることが好ましい。
According to the second aspect of the present invention, the installation interval in the first aspect is D, the predetermined radiation angle is α, and the inclination angle of the axis (26) of the light projecting portion with respect to the perpendicular direction of the cover inner surface (7a) is θ1. When the distance from the tip part (20a, 22a) of the light projecting part to the cover is g1, and the distance from the tip part (30a) of the light receiving part to the cover is g2,
The installation interval (D) is preferably set so as to satisfy the relationship represented by the following Expression 7.

Figure 2010053575
Figure 2010053575

これによれば、投光部の傾きや放射角の大きさを考慮した式7を満たすように投光部と受光部の設置間隔(D)を設定することにより、投光部から放射される光のうち最外側部位に位置する光がカバーで反射した場合でも受光部に対して受光不可能な位置に反射するように制御することができる。これにより、カバーの誤検知防止に係る設計として投光部の各条件に基づいた簡潔な手法を提供することができる。   According to this, by setting the installation interval (D) between the light projecting unit and the light receiving unit so as to satisfy Expression 7 in consideration of the inclination of the light projecting unit and the size of the radiation angle, the light is emitted from the light projecting unit. Even when the light located at the outermost part of the light is reflected by the cover, the light can be controlled to be reflected at a position where it cannot be received by the light receiving unit. Accordingly, a simple method based on each condition of the light projecting unit can be provided as a design for preventing erroneous detection of the cover.

請求項3に記載の発明では、請求項1における設置間隔をDとし、所定の受光角をβとし、カバー内表面(7a)の垂線方向に対する受光部の軸線(36)の傾き角度をθ2とし、投光部の上記先端部位(20a,22a)からカバーまでの距離をg1とし、受光部の上記先端部位(30a)からカバーまでの距離をg2とした場合に、
上記設置間隔(D)は、下記の式8で示す関係を満たすように設定されることが好ましい。
In the invention according to claim 3, the installation interval in claim 1 is D, the predetermined light receiving angle is β, and the inclination angle of the axis (36) of the light receiving portion with respect to the perpendicular direction of the cover inner surface (7a) is θ2. When the distance from the tip part (20a, 22a) of the light projecting part to the cover is g1, and the distance from the tip part (30a) of the light receiving part to the cover is g2,
The installation interval (D) is preferably set so as to satisfy the relationship represented by the following Expression 8.

Figure 2010053575
Figure 2010053575

これによれば、受光部の傾きや受光角の大きさを考慮した式8を満たすように投光部と受光部の設置間隔(D)を設定することにより、投光部から放射される光のうち最外側部位に位置する光がカバーで反射した場合でも受光部に対して受光不可能な位置に反射するように制御することができる。これにより、カバーの誤検知防止に係る設計として受光部の各条件に基づいた簡潔な手法を提供することができる。   According to this, the light radiated from the light projecting unit is set by setting the installation interval (D) between the light projecting unit and the light receiving unit so as to satisfy Expression 8 in consideration of the inclination of the light receiving unit and the size of the light receiving angle. Of these, even when the light located at the outermost part is reflected by the cover, the light can be controlled to be reflected at a position where it cannot be received by the light receiving unit. Thereby, the simple method based on each condition of a light-receiving part can be provided as a design concerning the erroneous detection of a cover.

請求項4に記載の発明では、請求項1における設置間隔をDとし、所定の放射角をαとし、カバー内表面(7a)の垂線方向に対する投光部の軸線(26)の傾き角度をθ1とし、投光部の上記先端部位(20a,22a)からカバーまでの距離をg1とし、受光部の上記先端部位(30a)からカバーまでの距離をg2とし、空気の屈折率をn1とし、カバーの屈折率をn2とし、カバーの厚み寸法をtとした場合に、
上記設置間隔(D)は、下記の式9で示す関係を満たすように設定されることが好ましい。
In the invention according to claim 4, the installation interval in claim 1 is D, the predetermined radiation angle is α, and the inclination angle of the axis (26) of the light projecting portion with respect to the perpendicular direction of the cover inner surface (7a) is θ1. The distance from the tip part (20a, 22a) of the light projecting part to the cover is g1, the distance from the tip part (30a) of the light receiving part to the cover is g2, the refractive index of air is n1, and the cover When the refractive index of n is n2 and the thickness dimension of the cover is t,
The installation interval (D) is preferably set so as to satisfy the relationship represented by the following Expression 9.

Figure 2010053575
Figure 2010053575

これによれば、投光部の傾きや放射角の大きさを考慮した式9を満たすように投光部と受光部の設置間隔(D)を設定することにより、投光部から放射される光のうち最外側部位に位置する光がカバー外表面に付着した汚れ等によって反射した場合でも受光部に対して受光不可能な位置に反射するように制御することができる。これにより、カバーの誤検知防止に係る設計として投光部の各条件およびカバー外表面の付着物に基づいた簡潔な手法を提供することができる。   According to this, by setting the installation interval (D) between the light projecting unit and the light receiving unit so as to satisfy Equation 9 in consideration of the inclination of the light projecting unit and the size of the radiation angle, the light is emitted from the light projecting unit. Even when the light located at the outermost part of the light is reflected by dirt or the like attached to the outer surface of the cover, the light can be controlled to be reflected at a position where it cannot be received by the light receiving unit. Thereby, the simple method based on each condition of a light projection part and the deposit | attachment of an outer surface of a cover can be provided as a design which concerns on the erroneous detection of a cover.

請求項5に記載の発明では、請求項1における設置間隔をDとし、所定の受光角をβとし、カバー内表面(7a)の垂線方向に対する受光部の軸線(36)の傾き角度をθ2とし、投光部の上記先端部位(20a,22a)からカバーまでの距離をg1とし、受光部の上記先端部位(30a)からカバーまでの距離をg2とし、空気の屈折率をn1とし、カバーの屈折率をn2とし、カバーの厚み寸法をtとした場合に、
上記設置間隔(D)は、下記の式10で示す関係を満たすように設定されることが好ましい。
In the invention according to claim 5, the installation interval in claim 1 is D, the predetermined light receiving angle is β, and the inclination angle of the axis (36) of the light receiving portion with respect to the perpendicular direction of the cover inner surface (7a) is θ2. The distance from the tip part (20a, 22a) of the light projecting part to the cover is g1, the distance from the tip part (30a) of the light receiving part to the cover is g2, the refractive index of air is n1, When the refractive index is n2 and the thickness dimension of the cover is t,
The installation interval (D) is preferably set so as to satisfy the relationship represented by the following Expression 10.

Figure 2010053575
Figure 2010053575

これによれば、受光部の傾きや受光角の大きさを考慮した式10を満たすように投光部と受光部の設置間隔(D)を設定することにより、投光部から放射される光のうち最外側部位に位置する光がカバー外表面に付着した汚れ等によって反射した場合でも受光部に対して受光不可能な位置に反射するように制御することができる。これにより、カバーの誤検知防止に係る設計として受光部の各条件およびカバー外表面の付着物に基づいた簡潔な手法を提供することができる。   According to this, the light emitted from the light projecting unit is set by setting the installation interval (D) between the light projecting unit and the light receiving unit so as to satisfy Equation 10 in consideration of the inclination of the light receiving unit and the size of the light receiving angle. Of these, even when the light located at the outermost part is reflected by dirt or the like attached to the outer surface of the cover, the light can be controlled to be reflected at a position where light cannot be received by the light receiving unit. As a result, a simple method based on the conditions of the light receiving unit and the deposits on the outer surface of the cover can be provided as a design for preventing erroneous detection of the cover.

請求項6に記載の発明では、請求項1における設置間隔をDとし、所定の放射角をαとし、カバー内表面(7a)の垂線方向に対する投光部の軸線(26)の傾き角度をθ1とし、投光部の上記先端部位(20a,22a)からカバーまでの距離をg1とし、受光部の上記先端部位(30a)からカバーまでの距離をg2とし、空気の屈折率をn1とし、カバーの屈折率をn2とし、カバーの厚み寸法をtとし、カバーに付着する水滴等の付着面長さを所定長さWとした場合に、
上記設置間隔(D)は、下記の式11で示す関係を満たすように設定されることが好ましい。
In the invention according to claim 6, the installation interval in claim 1 is D, the predetermined radiation angle is α, and the inclination angle of the axis (26) of the light projecting portion with respect to the normal direction of the cover inner surface (7a) is θ1. The distance from the tip part (20a, 22a) of the light projecting part to the cover is g1, the distance from the tip part (30a) of the light receiving part to the cover is g2, the refractive index of air is n1, and the cover When the refractive index of n2 is n2, the thickness dimension of the cover is t, and the length of the attachment surface of water drops attached to the cover is a predetermined length W,
The installation interval (D) is preferably set so as to satisfy the relationship represented by the following Expression 11.

Figure 2010053575
Figure 2010053575

これによれば、投光部の傾きや放射角の大きさを考慮した式11を満たすように投光部と受光部の設置間隔(D)を設定することにより、投光部から放射される光のうち最外側部位に位置する光がカバー外表面に付着した所定長さの水滴によって反射した場合でも受光部に対して受光不可能な位置に反射するように制御することができる。これにより、カバーの誤検知防止に係る設計として投光部の各条件およびカバー外表面の水滴の大きさに基づいた簡潔な手法を提供することができる。   According to this, by setting the installation interval (D) between the light projecting unit and the light receiving unit so as to satisfy Equation 11 in consideration of the inclination of the light projecting unit and the size of the radiation angle, the light is emitted from the light projecting unit. Even when light located at the outermost part of the light is reflected by a predetermined length of water droplets attached to the outer surface of the cover, the light can be controlled to be reflected at a position where it cannot be received by the light receiving unit. As a result, a simple technique based on the conditions of the light projecting unit and the size of water droplets on the outer surface of the cover can be provided as a design for preventing erroneous detection of the cover.

請求項7に記載の発明では、請求項1における設置間隔をDとし、所定の受光角をβとし、カバー内表面(7a)の垂線方向に対する受光部の軸線(36)の傾き角度をθ2とし、投光部の上記先端部位(20a,22a)からカバーまでの距離をg1とし、受光部の上記先端部位(30a)からカバーまでの距離をg2とし、空気の屈折率をn1とし、カバーの屈折率をn2とし、カバーの厚み寸法をtとし、カバーに付着する水滴等の付着面長さを所定長さWとした場合に、
上記設置間隔(D)は、下記の式12で示す関係を満たすように設定されることが好ましい。
In the invention of claim 7, the installation interval in claim 1 is D, the predetermined light receiving angle is β, and the inclination angle of the axis (36) of the light receiving portion with respect to the perpendicular direction of the cover inner surface (7a) is θ2. The distance from the tip part (20a, 22a) of the light projecting part to the cover is g1, the distance from the tip part (30a) of the light receiving part to the cover is g2, the refractive index of air is n1, When the refractive index is n2, the thickness dimension of the cover is t, and the attached surface length of water drops or the like attached to the cover is a predetermined length W,
The installation interval (D) is preferably set so as to satisfy the relationship represented by the following Expression 12.

Figure 2010053575
Figure 2010053575

これによれば、受光部の傾きや受光角の大きさを考慮した式12を満たすように投光部と受光部の設置間隔(D)を設定することにより、投光部から放射される光のうち最外側部位に位置する光がカバー外表面に付着した所定長さの水滴によって反射した場合でも受光部に対して受光不可能な位置に反射するように制御することができる。これにより、カバーの誤検知防止に係る設計として受光部の各条件およびカバー外表面の水滴の大きさに基づいた簡潔な手法を提供することができる。   According to this, the light emitted from the light projecting unit is set by setting the installation interval (D) between the light projecting unit and the light receiving unit so as to satisfy Expression 12 in consideration of the inclination of the light receiving unit and the size of the light receiving angle. Of these, even when the light located at the outermost part is reflected by a predetermined length of water droplets attached to the outer surface of the cover, the light can be controlled to be reflected at a position where it cannot be received by the light receiving unit. As a result, a simple method based on the conditions of the light receiving unit and the size of water droplets on the outer surface of the cover can be provided as a design for preventing erroneous detection of the cover.

請求項8に記載の発明では、自動水栓装置は、さらに、投光部に光を出力する発光素子(102)と、発光素子から出力された光を投光部に導く投光用光ファイバー(4)と、受光部で受光された光が入力される受光素子(103)と、受光部で受光された光を受光素子に導く受光用光ファイバー(5)と、を備えることが好ましい。   In the invention according to claim 8, the automatic water faucet device further includes a light emitting element (102) that outputs light to the light projecting unit, and a light projecting optical fiber that guides the light output from the light emitting element to the light projecting unit ( 4), a light receiving element (103) to which the light received by the light receiving unit is input, and a light receiving optical fiber (5) for guiding the light received by the light receiving unit to the light receiving element.

光ファイバーは、その放射角および受光角が広角であるため、カバーを誤検知しやすい傾向にある。そこで、この発明によれば、投光部と受光部の当該設置間隔を上記の設定にすることにより、カバー誤検知防止のより顕著な効果が得られる。   An optical fiber has a wide emission angle and light reception angle, and thus tends to detect a cover easily. Therefore, according to the present invention, by setting the installation interval between the light projecting unit and the light receiving unit to the above setting, a more remarkable effect of preventing erroneous cover detection can be obtained.

なお、上記各手段の括弧内の符号は、後述する実施形態の具体的手段との対応関係を示す一例である。   In addition, the code | symbol in the bracket | parenthesis of each said means is an example which shows a corresponding relationship with the specific means of embodiment mentioned later.

以下に、図面を参照しながら本発明を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組み合わせが可能であることを明示している部分同士の組み合わせばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。   A plurality of modes for carrying out the present invention will be described below with reference to the drawings. In each embodiment, parts corresponding to the matters described in the preceding embodiment may be denoted by the same reference numerals, and redundant description may be omitted. When only a part of the configuration is described in each mode, the other modes described above can be applied to the other parts of the configuration. Not only combinations of parts that clearly show that combinations are possible in each embodiment, but also combinations of the embodiments even if they are not specified unless there is a problem with the combination. Is also possible.

(第1実施形態)
本発明の一実施形態である第1実施形態について図1〜図7にしたがって説明する。図1は本実施形態に係る自動水栓装置の概略構成を示した模式図である。図2は制御装置100の構成を示したブロック図である。図3は、投光アセンブリ2および受光アセンブリ3の構成を示した部分的断面図である。
(First embodiment)
1st Embodiment which is one Embodiment of this invention is described according to FIGS. FIG. 1 is a schematic diagram showing a schematic configuration of an automatic faucet device according to the present embodiment. FIG. 2 is a block diagram showing the configuration of the control device 100. FIG. 3 is a partial cross-sectional view showing configurations of the light projecting assembly 2 and the light receiving assembly 3.

本自動水栓装置は、水道水が吐出される吐出部の下方空間を対象とする検知対象エリアに人の手等の洗浄対象である洗浄対象物体が存在することが検出された場合に、自動で出水、止水が行われる家庭用または業務用の装置であり、例えば、トイレ、キッチン等の手洗い栓として用いられる。   This automatic faucet device automatically detects when there is an object to be cleaned, such as a human hand, in the detection target area for the space below the discharge part where tap water is discharged. This is a device for home use or business use in which water is discharged and stopped, and is used, for example, as a hand-washing plug in a toilet, a kitchen or the like.

本自動水栓装置は、光を放射する投光部と放射された光の反射光を受光する受光部とを使用して洗浄対象物体を検出するものである。投光部および受光部には、手洗いの動作による、水の飛散、洗剤の付着、その他汚れの付着が起こり得るため、検知性能を確保するためにも、投光部等を覆うカバーによって保護する必要がある。このカバー7は、投光部および受光部の検知対象エリア側前方であって、投光部および受光部の前方を覆うように設けられ、洗浄動作による水滴の飛散や汚れの付着から投光部および受光部を保護している。カバー7の素材は、光を透過させることが可能な透明な樹脂、ガラス等により構成されている。また、カバー7は、光を透過させる窓部を備えていてもよい。   This automatic faucet device detects an object to be cleaned using a light projecting unit that emits light and a light receiving unit that receives reflected light of the emitted light. The light projecting part and the light receiving part may be splashed with water, attached with detergent, or other dirt due to hand-washing operation. Therefore, in order to ensure detection performance, it is protected with a cover that covers the light projecting part There is a need. The cover 7 is provided in front of the light projecting unit and the light receiving unit on the detection target area side so as to cover the front of the light projecting unit and the light receiving unit. And the light receiving part is protected. The material of the cover 7 is made of a transparent resin, glass or the like that can transmit light. Moreover, the cover 7 may be provided with the window part which permeate | transmits light.

投光部から放射された光は、通常、カバー7を透過して検知対象エリアに放射される。そして、受光エリア内に人の手等が存在する場合には、これに反射した反射光が受光エリアを通過して受光部に入射し、受光されることになる。一方、各部品の組立て誤差や製造誤差が起因して、投光部から放射された光がカバーで反射して受光部に受光されてしまうことがある。また、この現象は、カバーに付着物が付着することによって起こることもある。   The light radiated from the light projecting unit is normally radiated to the detection target area through the cover 7. When a human hand or the like is present in the light receiving area, the reflected light reflected by the light passes through the light receiving area and enters the light receiving unit to be received. On the other hand, the light emitted from the light projecting part may be reflected by the cover and received by the light receiving part due to the assembly error or manufacturing error of each part. In addition, this phenomenon may occur due to the adhering matter attached to the cover.

そこで、本自動水栓装置は、投光部および受光部を汚れ等から保護する光透過性を有するカバー7を備え、人の手等の洗浄対象物体を正確に検出するとともに、このカバーで反射する光を検知し、カバーを洗浄対象物であると誤検知することを防止することを提供するものである。   In view of this, the automatic faucet device includes a cover 7 having light permeability that protects the light projecting unit and the light receiving unit from dirt and the like, and accurately detects an object to be cleaned such as a human hand and is reflected by the cover. It is provided that the light to be detected is detected and the cover is prevented from being erroneously detected as the object to be cleaned.

図1に示すように、本自動水栓装置は、制御装置100が内蔵されている本体ケース10と、水道水が出水される吐出部6(吐出口)を備える水栓ケース1と、両ケース間に配された光搬送線および給水ホース14と、を備えている。本体ケース10には、水道水が流れる給水管11が貫通しており、給水管11は吐出部6に接続される給水ホース14の吸入側で接続されている。   As shown in FIG. 1, the automatic faucet device includes a main body case 10 in which a control device 100 is built, a faucet case 1 having a discharge portion 6 (discharge port) through which tap water is discharged, and both cases. And an optical carrier line and a water supply hose 14 disposed therebetween. A water supply pipe 11 through which tap water flows passes through the main body case 10, and the water supply pipe 11 is connected on the suction side of a water supply hose 14 connected to the discharge unit 6.

さらに本体ケース10内部には、電磁弁12および発電機13が設けられている。電磁弁12は、給水管11の途中に設けられ、給水管11の通路を開閉する弁体である。発電機13は、給水管11の途中であって電磁弁12よりも吐出部6寄り(下流側)に設けられている。発電機13は内蔵される水車を給水管11内の水流により回転させることにより発電する。   Further, an electromagnetic valve 12 and a generator 13 are provided inside the main body case 10. The electromagnetic valve 12 is a valve body that is provided in the middle of the water supply pipe 11 and opens and closes the passage of the water supply pipe 11. The generator 13 is provided in the middle of the water supply pipe 11 and closer to the discharge unit 6 (downstream side) than the electromagnetic valve 12. The generator 13 generates electricity by rotating a built-in water wheel by a water flow in the water supply pipe 11.

発電機13は、水車の回転軸に結合されているロータである磁石と、この磁石に対して回転軸の径方向外方に配置されるステータコイルとを有し、電磁弁12が開状態で水流が形成されると水車の回転に伴う磁石の回転によりステータコイルに誘導起電力を発生するようになっている。   The generator 13 includes a magnet that is a rotor coupled to a rotating shaft of a water turbine, and a stator coil that is disposed radially outward of the rotating shaft with respect to the magnet, and the electromagnetic valve 12 is in an open state. When a water flow is formed, an induced electromotive force is generated in the stator coil by the rotation of the magnet accompanying the rotation of the water wheel.

図2に示すように、制御装置100は、マイクロコンピュータ101、発光素子102、受光素子103、および蓄電器112等の各種電子部品を備え、本自動水栓装置の作動全体の制御を司る。マイクロコンピュータ101は、受光素子103等の入力側からの信号を用いて各種演算を実行するものであり、記憶手段としてROMおよびRAMを内蔵し、あらかじめ設定された制御プログラムや更新可能な制御プログラムを有している。   As shown in FIG. 2, the control device 100 includes various electronic components such as a microcomputer 101, a light emitting element 102, a light receiving element 103, and a capacitor 112, and controls the overall operation of the automatic water faucet device. The microcomputer 101 executes various calculations using signals from the input side of the light receiving element 103 and the like, and has a built-in ROM and RAM as storage means and stores a preset control program and an updatable control program. Have.

マイクロコンピュータ101は、駆動回路105を介して発光素子102に光を放射させる信号を送る。受光素子103が出力した検知物体からの反射光の受光信号は、増幅回路106で増幅され、サンプルホールド部108で保持された後、A/D変換器109で変換されてマイクロコンピュータ101に入力される。そして、マイクロコンピュータ101は、このように入力された信号を用いて各種演算を実行し、演算結果に基づいた信号を駆動回路110によって電磁弁12に出力してその開閉を制御する。   The microcomputer 101 sends a signal for causing the light emitting element 102 to emit light via the drive circuit 105. The received light signal of the reflected light from the sensing object output from the light receiving element 103 is amplified by the amplifier circuit 106, held by the sample hold unit 108, converted by the A / D converter 109, and input to the microcomputer 101. The The microcomputer 101 executes various calculations using the signals input in this way, and outputs a signal based on the calculation results to the electromagnetic valve 12 by the drive circuit 110 to control the opening and closing thereof.

蓄電器112は、本自動水栓装置における蓄電手段であり、例えば二次電池からなる蓄電池であって、発電機13で発電された電力を蓄える。発電機13で発電された電力は、マイクロコンピュータ101、発光素子102の発光処理等の本自動水栓装置で必要とする電力を賄う。発電機13の発電電力は、整流器113で整流されてから蓄電器112に蓄えられ、さらに電源111に供給される。   The power storage device 112 is power storage means in the automatic water faucet device, and is a storage battery composed of, for example, a secondary battery, and stores the power generated by the generator 13. The electric power generated by the generator 13 covers the electric power required for the automatic water faucet apparatus such as the microcomputer 101 and the light emitting process of the light emitting element 102. The power generated by the generator 13 is rectified by the rectifier 113, stored in the capacitor 112, and further supplied to the power source 111.

発光素子102は、物体を検知するための光源であって、光搬送線である投光用光ファイバー4によって水栓ケース1に配置された投光アセンブリ2の投光部に接続されている。発光素子102は、可視光を投光用光ファイバー4に向けて発光する発光ダイオード(LED)である。発光素子102から出力された光は、投光用光ファイバー4によって投光アセンブリ2の投光部に導かれる。可視光としては、波長が例えば600〜700nmのものであり、さらに好ましくは約650nmのものがよい。このような可視光を用いると、発光ダイオードの発光効率が向上し、プラスチック製の光ファイバーに対する透過率が優れたものになる。   The light emitting element 102 is a light source for detecting an object, and is connected to a light projecting portion of a light projecting assembly 2 disposed in the faucet case 1 by a light projecting optical fiber 4 which is a light carrying line. The light emitting element 102 is a light emitting diode (LED) that emits visible light toward the light projecting optical fiber 4. The light output from the light emitting element 102 is guided to the light projecting portion of the light projecting assembly 2 by the light projecting optical fiber 4. The visible light has a wavelength of, for example, 600 to 700 nm, more preferably about 650 nm. When such visible light is used, the light emission efficiency of the light emitting diode is improved, and the transmittance of the optical fiber made of plastic is excellent.

受光素子103は、光搬送線である受光用光ファイバー5によって水栓ケース1に配置された受光アセンブリ3の受光部に接続されている。受光素子103は、フォトダイオード等からなり、受光用光ファイバー5により導かれる光を受光し、受光量に応じた電気信号を出力する。受光素子103には、発光素子102が発光する光の波長に対して感度が高い受光素子を使用する。   The light receiving element 103 is connected to a light receiving portion of the light receiving assembly 3 disposed in the faucet case 1 by a light receiving optical fiber 5 which is a light carrying line. The light receiving element 103 is formed of a photodiode or the like, receives light guided by the light receiving optical fiber 5, and outputs an electric signal corresponding to the amount of received light. As the light receiving element 103, a light receiving element having high sensitivity to the wavelength of light emitted from the light emitting element 102 is used.

水栓ケース1は本自動水栓装置が設置される壁52に突出する形態で取り付けられ、水栓ケース1の下方には、略椀状のシンク50が設けられている。そして水栓ケース1の先端側には、吐出部6、投光アセンブリ2および受光アセンブリ3が下方の検知対象エリアに臨むように配置されている。各光ファイバー4,5および給水ホース14は、当該壁52に形成された穴部53を通して配され、水栓ケース1と本体ケース10との間を接続するように配されている。また、投光用光ファイバー4および受光用光ファイバー5は、石英ガラス製よりも可撓性に優れ、曲げに対して強いプラスチック製であることが好ましい。   The faucet case 1 is attached so as to protrude from a wall 52 where the automatic faucet device is installed, and a substantially bowl-shaped sink 50 is provided below the faucet case 1. And at the front end side of the faucet case 1, the discharge part 6, the light projection assembly 2, and the light reception assembly 3 are arrange | positioned so that the detection object area below may be faced. The optical fibers 4 and 5 and the water supply hose 14 are arranged through a hole 53 formed in the wall 52 so as to connect between the faucet case 1 and the main body case 10. In addition, the light projecting optical fiber 4 and the light receiving optical fiber 5 are preferably made of plastic that is more flexible than quartz glass and strong against bending.

図3に示すように、投光アセンブリ2は、投光用光ファイバー4の投光端部22が集光手段であるレンズ20に密着するように設けられ、レンズ20の周囲をホルダ23で保持するようにして構成されている。本実施形態のように、集光手段を備えている場合には、レンズ20は、シンク50上方の検知対象エリアに向けて光を放射する本発明の投光部である。逆に、集光手段を備えていない場合には、投光端部22が本発明の投光部である。   As shown in FIG. 3, the light projecting assembly 2 is provided so that the light projecting end portion 22 of the light projecting optical fiber 4 is in close contact with the lens 20 that is a condensing means, and the periphery of the lens 20 is held by a holder 23. It is configured in this way. When the light condensing means is provided as in the present embodiment, the lens 20 is the light projecting unit of the present invention that emits light toward the detection target area above the sink 50. On the contrary, when the light condensing means is not provided, the light projecting end portion 22 is the light projecting portion of the present invention.

ホルダ23は、レンズ20を圧入により固定し、投光端部22および投光用光ファイバー4の被覆部25を接着剤24を介して固定しており、ホルダ23自身は水栓ケース1に取り付けられている。この構造により、投光用光ファイバー4を傷つけず、強固に固定することができる。また、投光端部22のレンズ20側部分には被覆部25を設けていない。これは被覆部25が熱膨張により伸びてレンズ20とファイバー先端との間に入り込むことを防ぐため、および接着剤24の接着性を良好にするためである。ここで接着剤は光を吸収する効果の高い黒色が望ましく、これにより光の集光や非分散が期待でき、迷光の発生を防ぐことができる。また、投光端部22の先端付近にはOリング21を外嵌めにし、Oリング21を外側からホルダ23で保持することによりシール性を確保し、接着剤24がレンズ面に流れないようにしている。   The holder 23 fixes the lens 20 by press-fitting, and fixes the light projecting end portion 22 and the covering portion 25 of the light projecting optical fiber 4 via an adhesive 24, and the holder 23 itself is attached to the faucet case 1. ing. With this structure, the light projecting optical fiber 4 can be firmly fixed without being damaged. Further, the covering portion 25 is not provided on the lens 20 side portion of the light projecting end portion 22. This is to prevent the covering portion 25 from extending due to thermal expansion and entering between the lens 20 and the fiber tip, and to improve the adhesiveness of the adhesive 24. Here, the adhesive is desirably black, which has a high light-absorbing effect, so that light condensing and non-dispersion can be expected, and generation of stray light can be prevented. Further, an O-ring 21 is externally fitted near the tip of the light projecting end portion 22 and the O-ring 21 is held by a holder 23 from the outside to ensure a sealing property so that the adhesive 24 does not flow on the lens surface. ing.

受光アセンブリ3は、受光用光ファイバー5の受光端部30の周囲をホルダ31で保持するようにして構成されている。ホルダ31は、受光端部30および受光用光ファイバー5の被覆部33を接着剤32を介して固定しており、ホルダ31自身は水栓ケース1に取り付けられている。ここでも接着剤は前述の理由により黒色が望ましい。この構造により、受光用光ファイバー5を傷つけず、強固に固定することができる。   The light receiving assembly 3 is configured so that the holder 31 holds the periphery of the light receiving end 30 of the light receiving optical fiber 5. The holder 31 fixes the light receiving end 30 and the covering portion 33 of the light receiving optical fiber 5 via an adhesive 32, and the holder 31 itself is attached to the faucet case 1. Again, the adhesive is preferably black for the reasons described above. With this structure, the light receiving optical fiber 5 can be firmly fixed without being damaged.

受光アセンブリ3は、レンズ等の集光手段を備えていないため、光ファイバー自身が有する受光角で反射光を受光する。したがって受光アセンブリ3が検知物体で反射した反射光を受光できる対象エリアは広範囲なものとなる。例えばプラスチック製の光ファイバーを用いる場合には、頂角(受光角)が約π/3ラジアン(60°)、すなわち円錐角が約π/6ラジアン(30°)で入射する光を受光することができる。本実施形態のように、集光手段を備えていない場合には、受光端部30は、検知対象エリアの物体によって反射した光を受光する本発明の受光部である。   Since the light receiving assembly 3 does not include a light collecting means such as a lens, the light receiving assembly 3 receives reflected light at a light receiving angle of the optical fiber itself. Therefore, the target area where the light receiving assembly 3 can receive the reflected light reflected by the sensing object is wide. For example, when a plastic optical fiber is used, incident light having an apex angle (light receiving angle) of about π / 3 radians (60 °), that is, a cone angle of about π / 6 radians (30 °) can be received. it can. When the light condensing means is not provided as in the present embodiment, the light receiving end 30 is a light receiving unit of the present invention that receives light reflected by an object in the detection target area.

受光アセンブリ3は、投光アセンブリ2に対して、互いの先端側同士が接近するようにして互いの軸線26と36とが所定の角度(単位:ラジアン)をなして配置されている。図3では一例として投光部の軸線26が鉛直方向に対してθ1(単位:ラジアン)傾いた状態で設置されている。また、互いの軸線26,36はシンク50に向かって形成される検知可能エリアにおいて交差するような関係にある。投光部および受光部は、レンズの受光部側先端部位20aと受光部の投光部側先端部位30aとが距離Dはなれるように配置されている。つまり、投光部の光を放射する部位であって受光部に最も近い先端部位と、受光部の反射光を受光する部位であって投光部に最も近い先端部位との設置間隔は、所定の距離Dに設定されている。   In the light receiving assembly 3, the axes 26 and 36 are arranged at a predetermined angle (unit: radians) so that the tip ends of the light receiving assembly 3 are close to each other. In FIG. 3, as an example, the light emitting unit is installed with the axis 26 inclined by θ1 (unit: radians) with respect to the vertical direction. Further, the axes 26 and 36 are in a relationship such that they intersect in a detectable area formed toward the sink 50. The light projecting unit and the light receiving unit are arranged such that a distance D is formed between the light receiving unit side tip part 20a of the lens and the light projecting unit side tip part 30a of the light receiving unit. In other words, the installation interval between the tip portion that radiates light from the light projecting portion and is closest to the light receiving portion and the tip portion that is the portion that receives reflected light from the light receiving portion and is closest to the light projecting portion is predetermined. Distance D.

投光部の軸線26は、下方のシンク50に向かって投光される光の軸線(光軸)に一致し、この光軸を中心にして頂角α(単位はラジアンであり、円錐角の2倍の角度)をなす円錐体状の投光エリア40(図1の斜線部で示したエリア)が形成される。投光エリア40は、円錐角α/2でシンク50に向かって末広がりに形成される円錐体の内部に含まれるエリアであり、受光エリア41の一部を占める検知エリアでもある。頂角αは、投光用光ファイバー4の先端部から放射される光が光軸を中心として拡散する範囲の角度であり、放射角αともいう。頂角の半分の円錐角α/2は、投光用光ファイバー4自体の放射角度π/3ラジアン(60°)をレンズ20によって例えばπ/36〜π/9ラジアン(5°〜20°)の範囲に絞った角度とする。   The axis 26 of the light projecting unit coincides with the axis (optical axis) of the light projected toward the sink 50 below, and the apex angle α (unit is radians, with the cone angle of the cone angle). A conical light projecting area 40 (an area indicated by a hatched portion in FIG. 1) having a double angle is formed. The light projecting area 40 is an area included in a cone formed so as to widen toward the sink 50 at a cone angle α / 2, and is also a detection area that occupies a part of the light receiving area 41. The apex angle α is an angle in a range in which light emitted from the tip of the light projecting optical fiber 4 diffuses around the optical axis, and is also referred to as a radiation angle α. The cone angle α / 2 which is a half of the apex angle is obtained by changing the radiation angle π / 3 radians (60 °) of the optical fiber 4 for projection by the lens 20 to, for example, π / 36 to π / 9 radians (5 ° to 20 °). The angle is limited to the range.

受光アセンブリ3は、受光部の軸線36方向を中心にして頂角β(αと同様に単位はラジアンであり、円錐角の2倍の角度)をなす円錐体状の受光エリア41を下方のシンク50に向けて形成する。角度βは上記角度αよりも大きな角度であり、本実施形態ではプラスチック製の光ファイバーを用いることから約π/3ラジアン(60°)である。投光エリア40と受光エリア41は、検知対象エリアにおいて交差することにより共有のエリアを形成するようになっており、レンズの受光部側先端部位20aと受光部の投光部側先端部位30aとの間隔Dは、当該共有のエリアを形成する距離に設定されている。   The light receiving assembly 3 sinks a conical light receiving area 41 having an apex angle β (the unit is radians as in α and twice the cone angle) around the axis 36 direction of the light receiving portion. It forms toward 50. The angle β is larger than the angle α, and is approximately π / 3 radians (60 °) because a plastic optical fiber is used in this embodiment. The light projecting area 40 and the light receiving area 41 intersect with each other in the detection target area to form a common area. The light receiving part side tip part 20a of the lens and the light projecting part side tip part 30a of the light receiving part The distance D is set to a distance that forms the shared area.

そして、受光エリア41は、投光エリア40との共有エリアに存在する物体によって反射した光のみを受光する。図1に示す例では、受光エリア41は、投光エリア40の略全体を含む大きさを有し、投光エリア40以外の他のエリアもそのエリア内に含んでいるが、当該他のエリアでは光が投光されないので反射光は生じず、受光アセンブリ3は投光エリア40内の光線による反射光のみを受光する。   The light receiving area 41 receives only the light reflected by the object existing in the area shared with the light projecting area 40. In the example shown in FIG. 1, the light receiving area 41 has a size that includes substantially the entire light projecting area 40, and other areas other than the light projecting area 40 are included in the area. Then, since no light is projected, no reflected light is generated, and the light receiving assembly 3 receives only the reflected light from the light rays in the light projecting area 40.

受光アセンブリ3は、投光エリア40と重なっている受光エリア41内で反射する光のみを集光して受光する。そして、受光された受光信号の電気量(受光量の出力値)は、受光アセンブリ3から受光用光ファイバー5に導かれ、受光素子103に入力される。   The light receiving assembly 3 collects and receives only the light reflected in the light receiving area 41 that overlaps the light projecting area 40. The amount of electricity of the received light reception signal (the output value of the amount of light received) is guided from the light receiving assembly 3 to the light receiving optical fiber 5 and input to the light receiving element 103.

次に、投光部から放射される光が、投光部および受光部の検知対象エリア側前方を覆うように設けられたカバー7によって反射するときに、受光部が反射光を受光する場合と受光しない場合について、光が進行する各状態を図4〜図7を例に挙げて説明する。まず、放射角αが受光角βよりも大きく設定されている場合について、図4および図5を一例として説明する。図4の各図は、投光部および受光部が傾かずカバーの内表面7aの垂線方向Zに設置されている場合に、放射光がカバーで反射するときの光の進行状態を説明する模式図である。   Next, when the light emitted from the light projecting unit is reflected by the cover 7 provided so as to cover the front side of the detection target area of the light projecting unit and the light receiving unit, the light receiving unit receives the reflected light and When light is not received, each state in which light travels will be described with reference to FIGS. First, the case where the radiation angle α is set larger than the light receiving angle β will be described with reference to FIGS. 4 and 5 as an example. Each figure of FIG. 4 is a schematic diagram for explaining the progress of light when radiated light is reflected by the cover when the light projecting part and the light receiving part are not inclined and are installed in the perpendicular direction Z of the inner surface 7a of the cover. FIG.

図4(a)は、投光部の受光部側先端部位22aと受光部の投光部側先端部位30aの設置間隔(以下、投光部と受光部の設置間隔ということもある)Dが十分に大きく、投光エリア40と受光エリア41とがカバーの内表面7a上で交差せず共有のエリアを形成しない場合である。この状態では、投光部の受光部側先端部位22aと、投光部の最外側部位から放射される光がカバーの内表面7aで反射後、戻ってくる点22Rとの間の距離D1が、投光部と受光部の設置間隔Dよりも小さい(D1<D)ため、放射光は受光端部30に受光されることはない。   FIG. 4A shows an installation interval D (hereinafter also referred to as an installation interval between the light projecting unit and the light receiving unit) D between the light receiving unit side front end region 22a of the light projecting unit and the light projecting unit side front end region 30a of the light receiving unit. This is a case where the light projecting area 40 and the light receiving area 41 do not intersect on the inner surface 7a of the cover and do not form a common area. In this state, there is a distance D1 between the light receiving part-side tip part 22a of the light projecting part and the point 22R returning after the light emitted from the outermost part of the light projecting part is reflected by the inner surface 7a of the cover. Since the installation interval D between the light projecting unit and the light receiving unit is smaller (D1 <D), the radiated light is not received by the light receiving end 30.

図4(b)は、投光部と受光部の設置間隔Dが上記距離D1よりも小さく、投光エリア40と受光エリア41とがカバーの内表面7a上で交差せず共有のエリアを形成しない場合である。さらにこのとき、投光部と受光部の設置間隔Dは、受光部の投光部側先端部位30aと、受光エリア41の最外側部位をカバーの内表面7aで反射させて戻ってくる点30Rとの間の距離D2よりも大きくなっている(D2<D<D1)。この状態では、放射光は受光端部30に入射するものの、受光端部30に受光されることはない。   In FIG. 4B, the installation distance D between the light projecting part and the light receiving part is smaller than the distance D1, and the light projecting area 40 and the light receiving area 41 do not intersect on the inner surface 7a of the cover to form a common area. This is the case. Further, at this time, the installation interval D between the light projecting unit and the light receiving unit is a point 30R where the light projecting unit side tip portion 30a of the light receiving unit and the outermost site of the light receiving area 41 are reflected by the inner surface 7a of the cover and returned. It is larger than the distance D2 between (D2 <D <D1). In this state, the emitted light is incident on the light receiving end 30, but is not received by the light receiving end 30.

これは、受光部は、自身が形成する受光エリア41外から光が入射してきたとしても、その光信号を受信しない(受光しない)ように構成されているからである。換言すれば、受光部は、受光エリア41外において反射した光の光信号を受信しないからである。さらに換言すれば、受光部は、カバーの内表面7aの垂線方向Zに対して受光角の半分(β/2)よりも小さい角度で入射してきた光のみを受光するように構成されているからである。   This is because the light receiving unit is configured not to receive (receive no light) the optical signal even if light enters from outside the light receiving area 41 formed by itself. In other words, the light receiving unit does not receive the optical signal of the light reflected outside the light receiving area 41. In other words, the light receiving portion is configured to receive only light incident at an angle smaller than half the light receiving angle (β / 2) with respect to the perpendicular direction Z of the inner surface 7a of the cover. It is.

図4(c)は、投光部と受光部の設置間隔Dが上記距離D1よりも小さく(D<D1)、投光エリア40と受光エリア41とがカバーの内表面7a上で交差し共有のエリア42を形成している場合である。この状態では、投光部の最外側部位から放射される光は受光端部30を飛び越えて入射しないが、その他の光であって共有のエリア42で反射する反射光の一部は受光端部30に入射して受光するため、受光部はカバー7での反射光を受光してしまうことになる。   In FIG. 4C, the installation distance D between the light projecting part and the light receiving part is smaller than the distance D1 (D <D1), and the light projecting area 40 and the light receiving area 41 intersect and share on the inner surface 7a of the cover. This is a case where the area 42 is formed. In this state, the light emitted from the outermost part of the light projecting unit does not enter the light receiving end 30 and is not incident on the light receiving end 30, but part of the reflected light reflected by the common area 42 is a part of the light receiving end. Since the light is incident on the light receiving portion 30, the light receiving portion receives the reflected light from the cover 7.

図5の各図は、投光部および受光部がカバーの内表面7aの垂線方向Zに対して傾いて設置されている場合に、放射光がカバー7で反射するときの光の進行状態を説明する模式図である。図5(a)は、投光部と受光部の設置間隔Dが十分に大きく、投光エリア40と受光エリア41とがカバーの内表面7a上で交差せず共有のエリアを形成しない場合である。この状態では、投光部の受光部側先端部位22aと、投光部の最外側部位から放射される光がカバーの内表面7aで反射後、戻ってくる点22Rとの間の距離D1が、投光部と受光部の設置間隔Dよりも小さい(D1<D)ため、放射光は受光端部30に受光されることはない。   Each figure of FIG. 5 shows the progress of light when the radiated light is reflected by the cover 7 when the light projecting part and the light receiving part are installed inclined with respect to the perpendicular direction Z of the inner surface 7a of the cover. It is a schematic diagram to explain. FIG. 5A shows a case where the installation distance D between the light projecting part and the light receiving part is sufficiently large, and the light projecting area 40 and the light receiving area 41 do not intersect on the inner surface 7a of the cover and do not form a shared area. is there. In this state, there is a distance D1 between the light receiving part-side tip part 22a of the light projecting part and the point 22R returning after the light emitted from the outermost part of the light projecting part is reflected by the inner surface 7a of the cover. Since the distance between the light projecting part and the light receiving part is smaller than D (D1 <D), the emitted light is not received by the light receiving end part 30.

図5(b)は、投光部と受光部の設置間隔Dが上記距離D1よりも小さく、投光エリア40と受光エリア41とがカバーの内表面7a上で交差せず共有のエリアを形成しない場合である。さらにこのとき、投光部と受光部の設置間隔Dは、受光部の投光部側先端部位30aと、受光エリア41の最外側部位をカバーの内表面7aで反射させて戻ってくる点30Rとの間の距離D2よりも大きくなっている(D2<D<D1)。この状態では、放射光は受光端部30に入射するものの、受光エリア41外から入射してきた光であるため、受光端部30に受光されることはない。   In FIG. 5B, the installation distance D between the light projecting part and the light receiving part is smaller than the distance D1, and the light projecting area 40 and the light receiving area 41 do not intersect on the inner surface 7a of the cover to form a common area. This is the case. Further, at this time, the installation interval D between the light projecting unit and the light receiving unit is a point 30R where the light projecting unit side tip portion 30a of the light receiving unit and the outermost site of the light receiving area 41 are reflected by the inner surface 7a of the cover and returned. It is larger than the distance D2 between (D2 <D <D1). In this state, the radiated light is incident on the light receiving end 30, but is not incident on the light receiving end 30 because it is light incident from outside the light receiving area 41.

図5(c)は、投光部と受光部の設置間隔Dが上記距離D1よりも小さく(D<D1)、投光エリア40と受光エリア41とがカバーの内表面7a上で交差し共有のエリア42を形成している場合である。この状態では、共有のエリア42で反射した放射光の一部は受光端部30に入射して受光するため、受光部はカバー7での反射光を受光してしまうことになる。   In FIG. 5C, the installation distance D between the light projecting part and the light receiving part is smaller than the distance D1 (D <D1), and the light projecting area 40 and the light receiving area 41 intersect and share on the inner surface 7a of the cover. This is a case where the area 42 is formed. In this state, a part of the radiated light reflected by the shared area 42 enters the light receiving end 30 and receives the light, so that the light receiving unit receives the reflected light from the cover 7.

次に、受光角βが放射角αよりも大きく設定されている場合について、図6および図7を一例として説明する。図6の各図は、投光部および受光部が傾かずカバーの内表面7aの垂線方向Zに設置されている場合に、放射光がカバーで反射するときの光の進行状態を説明する模式図である。図7の各図は、投光部および受光部がカバーの内表面7aの垂線方向Zに対して傾いて設置されている場合に、放射光がカバー7で反射するときの光の進行状態を説明する模式図である。   Next, the case where the light receiving angle β is set larger than the radiation angle α will be described with reference to FIGS. 6 and 7 as an example. FIGS. 6A and 6B are schematic diagrams for explaining the progress of light when radiated light is reflected by the cover when the light projecting unit and the light receiving unit are not inclined and are installed in the perpendicular direction Z of the inner surface 7a of the cover. FIG. Each figure of FIG. 7 shows the light traveling state when the radiated light is reflected by the cover 7 when the light projecting part and the light receiving part are installed inclined with respect to the perpendicular direction Z of the inner surface 7a of the cover. It is a schematic diagram to explain.

図6(a)は、投光部と受光部の設置間隔D(図6(a)の22aと30aの距離)が十分に大きく、投光エリア40と受光エリア41とがカバーの内表面7a上で交差せず共有のエリアを形成しない場合である。この状態では、投光部の受光部側先端部位22aと、投光部の最外側部位から放射される光がカバーの内表面7aで反射後、戻ってくる点22Rとの間の距離D1が、投光部と受光部の設置間隔Dよりも小さい(D1<D)ため、放射光は受光端部30に受光されることはない。   In FIG. 6A, the installation distance D between the light projecting part and the light receiving part (the distance between 22a and 30a in FIG. 6A) is sufficiently large, and the light projecting area 40 and the light receiving area 41 are the inner surface 7a of the cover. This is a case where no common area is formed without crossing above. In this state, there is a distance D1 between the light receiving part-side tip part 22a of the light projecting part and the point 22R returning after the light emitted from the outermost part of the light projecting part is reflected by the inner surface 7a of the cover. Since the installation interval D between the light projecting unit and the light receiving unit is smaller (D1 <D), the radiated light is not received by the light receiving end 30.

また、特に図示していないが、投光エリア40と受光エリア41とが共有のエリアを形成しても、放射光が受光端部30に受光されない位置関係にある場合がある。この場合には、図6(a)に示す状態よりも投光部と受光部とが接近して設置間隔Dは小さくなる。そして、投光エリア40と受光エリア41とがカバーの内表面7a上で交差し共有のエリア42を形成するが、上記距離D1が投光部と受光部の設置間隔Dよりも小さい(D1<D)ため、放射光は受光端部30に受光されることはない。   Although not shown in particular, even if the light projecting area 40 and the light receiving area 41 form a common area, there may be a positional relationship in which the emitted light is not received by the light receiving end 30. In this case, the light projecting unit and the light receiving unit are closer to each other than the state shown in FIG. The light projecting area 40 and the light receiving area 41 intersect on the inner surface 7a of the cover to form a shared area 42, but the distance D1 is smaller than the installation interval D between the light projecting part and the light receiving part (D1 < D) Therefore, the emitted light is not received by the light receiving end 30.

図6(b)は、投光部と受光部の設置間隔Dが上記距離D1よりも小さく、投光エリア40と受光エリア41とがカバーの内表面7a上で交差し共有のエリア42を形成している場合である。この状態では、投光部から放射される光は、共有のエリア42で反射し、受光端部30に入射して受光されるため、受光部はカバー7での反射光を受光してしまうことになる。   In FIG. 6B, the installation distance D between the light projecting part and the light receiving part is smaller than the distance D1, and the light projecting area 40 and the light receiving area 41 intersect on the inner surface 7a of the cover to form a shared area 42. This is the case. In this state, the light emitted from the light projecting unit is reflected by the shared area 42 and incident on the light receiving end 30 to be received, so that the light receiving unit receives the reflected light from the cover 7. become.

図7(a)は、投光部と受光部の設置間隔D(図7(a)の22aと30aの距離)が十分に大きく、投光エリア40と受光エリア41とがカバーの内表面7a上で交差せず共有のエリアを形成しない場合である。この状態では、投光部の受光部側先端部位22aと、投光部の最外側部位から放射される光がカバーの内表面7aで反射後、戻ってくる点22Rとの間の距離D1が、投光部と受光部の設置間隔Dよりも小さい(D1<D)ため、放射光は受光端部30に受光されることはない。   In FIG. 7A, the installation distance D between the light projecting part and the light receiving part (the distance between 22a and 30a in FIG. 7A) is sufficiently large, and the light projecting area 40 and the light receiving area 41 are the inner surface 7a of the cover. This is a case where no common area is formed without crossing above. In this state, there is a distance D1 between the light receiving part-side tip part 22a of the light projecting part and the point 22R returning after the light emitted from the outermost part of the light projecting part is reflected by the inner surface 7a of the cover. Since the installation interval D between the light projecting unit and the light receiving unit is smaller (D1 <D), the radiated light is not received by the light receiving end 30.

また、特に図示していないが、投光エリア40と受光エリア41とが共有のエリアを形成しても、放射光が受光端部30に受光されない位置関係にある場合がある。この場合には、図7(a)に示す状態よりも投光部と受光部とが接近して設置間隔Dは小さくなる。そして、投光エリア40と受光エリア41とがカバーの内表面7a上で交差し共有のエリア42を形成するが、上記距離D1が投光部と受光部の設置間隔Dよりも小さい(D1<D)ため、放射光は受光端部30に受光されることはない。   Although not shown in particular, even if the light projecting area 40 and the light receiving area 41 form a common area, there may be a positional relationship in which the emitted light is not received by the light receiving end 30. In this case, the light projecting unit and the light receiving unit come closer to each other than the state shown in FIG. The light projecting area 40 and the light receiving area 41 intersect on the inner surface 7a of the cover to form a shared area 42, but the distance D1 is smaller than the installation interval D between the light projecting part and the light receiving part (D1 < D) Therefore, the emitted light is not received by the light receiving end 30.

図7(b)は、投光部と受光部の設置間隔Dが上記距離D1よりも小さく、投光エリア40と受光エリア41とがカバーの内表面7a上で交差し共有のエリア42を形成している場合である。この状態では、投光部から放射される光は、共有のエリア42で反射し、受光端部30に入射して受光されるため、受光部はカバー7での反射光を受光してしまうことになる。   In FIG. 7B, the installation distance D between the light projecting part and the light receiving part is smaller than the distance D1, and the light projecting area 40 and the light receiving area 41 intersect on the inner surface 7a of the cover to form a shared area 42. This is the case. In this state, the light emitted from the light projecting unit is reflected by the shared area 42 and incident on the light receiving end 30 to be received, so that the light receiving unit receives the reflected light from the cover 7. become.

次に、本自動水栓装置において、投光アセンブリ2と受光アセンブリ3とを設置する設定条件について、図8および図9にしたがって説明する。図8は、投光部の放射角αと傾きθ1に基づいた投光部と受光部との設置間隔Dの設定概念を説明する模式図である。図9は、受光部の受光角βと傾きθ2に基づいた投光部と受光部との設置間隔Dを説明する模式図である。   Next, setting conditions for installing the light projecting assembly 2 and the light receiving assembly 3 in the automatic faucet device will be described with reference to FIGS. FIG. 8 is a schematic diagram for explaining the concept of setting the installation interval D between the light projecting unit and the light receiving unit based on the emission angle α and the inclination θ1 of the light projecting unit. FIG. 9 is a schematic diagram for explaining the installation interval D between the light projecting unit and the light receiving unit based on the light receiving angle β and the inclination θ2 of the light receiving unit.

図8および図9に示す投光部と受光部との設置間隔Dの設定概念は、投光端部22から放射された光は、カバーの内表面7aで反射して戻ってくる場合を想定している。そして、図に示された当該設置間隔Dは、カバーの内表面7aでの反射光が受光部に受光される場合の上限の距離Dである。このため、図8の投光部の放射角αと傾きθ1に基づいた設定概念では、本自動水栓装置の当該設置間隔Dを、下記の式13の右辺を演算することによって求めた値よりも大きい値に設定すればよい。   The setting concept of the installation interval D between the light projecting unit and the light receiving unit shown in FIGS. 8 and 9 assumes that the light emitted from the light projecting end 22 is reflected by the inner surface 7a of the cover and returns. is doing. The installation interval D shown in the figure is the upper limit distance D when the reflected light from the inner surface 7a of the cover is received by the light receiving unit. For this reason, in the setting concept based on the emission angle α and the inclination θ1 of the light projecting unit in FIG. 8, the installation interval D of the automatic faucet device is calculated from the value obtained by calculating the right side of the following Expression 13. May be set to a larger value.

つまり、当該設置間隔Dは下記の式13で示す関係を満たすように設定し、これにしたがった位置関係で投光部と受光部を配置する。   That is, the installation interval D is set so as to satisfy the relationship represented by the following Expression 13, and the light projecting unit and the light receiving unit are arranged in a positional relationship according to the relationship.

Figure 2010053575
Figure 2010053575

式13において、αは所定の放射角であり、θ1はカバーの内表面7aの垂線方向Zに対する投光部の軸線26の傾き角度であり、g1は投光部の受光部側先端部位22aからカバー7までの距離であり、g2は受光部の投光部側先端部位30aからカバー7までの距離である。   In Expression 13, α is a predetermined radiation angle, θ1 is the inclination angle of the axis 26 of the light projecting unit with respect to the perpendicular direction Z of the inner surface 7a of the cover, and g1 is from the light receiving unit side tip region 22a of the light projecting unit. This is the distance to the cover 7, and g <b> 2 is the distance from the light projecting part side tip portion 30 a of the light receiving part to the cover 7.

この式13で求められる投光部の各条件に基づいた簡潔な設定手法によれば、投光部から放射される光のうち最外側部位に位置する光がカバー7で反射した場合でも受光部が反射光を受光できない位置に反射させる光学系を得ることができる。また、式13を満たすように当該設置間隔Dを設定すれば、投光部と受光部との間に遮光するための遮光板を別個に設ける必要がないため、部品点数を低減できる。   According to the simple setting method based on each condition of the light projecting unit obtained by Expression 13, even when the light located at the outermost part of the light emitted from the light projecting unit is reflected by the cover 7, the light receiving unit. It is possible to obtain an optical system that reflects the reflected light to a position where it cannot receive the reflected light. Further, if the installation interval D is set so as to satisfy Expression 13, it is not necessary to separately provide a light shielding plate for shielding light between the light projecting unit and the light receiving unit, so that the number of parts can be reduced.

次に、図9の受光部の受光角βと傾きθ2に基づいた設定概念では、本自動水栓装置の当該設置間隔Dを、下記の式14の右辺を演算することによって求めた値よりも大きい値に設定すればよい。   Next, in the setting concept based on the light receiving angle β and the inclination θ2 of the light receiving unit in FIG. 9, the installation interval D of the automatic water faucet device is larger than the value obtained by calculating the right side of the following Expression 14. A large value may be set.

つまり、当該設置間隔Dは下記の式14で示す関係を満たすように設定し、これにしたがった位置関係で投光部と受光部を配置する。   That is, the installation interval D is set so as to satisfy the relationship represented by the following Expression 14, and the light projecting unit and the light receiving unit are arranged in a positional relationship according to the relationship.

Figure 2010053575
Figure 2010053575

式14において、βは所定の受光角であり、θ2はカバーの内表面7aの垂線方向Zに対する受光部の軸線36の傾き角度であり、g1およびg2は図8と同様の距離である。   In Expression 14, β is a predetermined light receiving angle, θ2 is an inclination angle of the light receiving portion axis 36 with respect to the perpendicular direction Z of the inner surface 7a of the cover, and g1 and g2 are the same distances as in FIG.

この式14で求められる受光部の各条件に基づいた簡潔な設定手法によっても、投光部から放射される光のうち最外側部位に位置する光がカバー7で反射した場合でも受光部が反射光を受光できない位置または角度に反射させる光学系を得ることができる。また、式14を満たすように当該設置間隔Dを設定すれば、投光部と受光部との間に遮光するための遮光板を別個に設ける必要がないため、部品点数を低減できる。   Even with a simple setting method based on each condition of the light receiving part obtained by the equation 14, the light receiving part is reflected even when light located at the outermost part of the light emitted from the light projecting part is reflected by the cover 7. An optical system that reflects light at a position or angle where light cannot be received can be obtained. Further, if the installation interval D is set so as to satisfy Expression 14, it is not necessary to separately provide a light shielding plate for shielding light between the light projecting unit and the light receiving unit, so that the number of parts can be reduced.

本実施形態に係る自動水栓装置がもたらす作用効果を以下に述べる。本自動水栓装置においては、投光部の光を放射する部位であって受光部に最も近い投光部の受光部側先端部位22aと、受光部の反射光を受光する部位であって投光部に最も近い受光部の投光部側先端部位30aとの設置間隔Dは、検知対象エリアにおいて投光エリア40と受光エリア41が交差することにより共有のエリアを形成する距離に設定されるとともに、投光部から放射される光のうち最外側部位を進行する光がカバー7で反射した場合でも、放射された光が受光部に受光されない距離に設定されるようになっている。   The effects brought about by the automatic faucet device according to this embodiment will be described below. In this automatic water faucet device, the light emitting part is a part that emits light and is the light receiving part side tip part 22a of the light projecting part closest to the light receiving part, and the part that receives the reflected light of the light receiving part. The installation interval D between the light-receiving unit closest to the light unit and the light-projecting-unit-side tip portion 30a is set to a distance that forms a shared area when the light-projecting area 40 and the light-receiving area 41 intersect in the detection target area. At the same time, even when light traveling through the outermost part of the light emitted from the light projecting part is reflected by the cover 7, the distance is set such that the emitted light is not received by the light receiving part.

この構成によれば、投光部から放射された光がカバー7で反射したとしても受光部はその反射光を受光しないため、投光部および受光部を保護するためのカバー7の誤検知を防止することができる。さらに、投光部と受光部の当該設置間隔Dは、検知対象エリアにおいて投光エリア40と受光エリア41が交差して共有のエリア42を形成する距離に設定されることが前提条件であり、この前提条件を満たすことが当該設置間隔Dの上限条件ともいえ、これに加え、放射光のうち最外側部位を進行する光がカバー7で反射した場合に、放射光が受光部に受光されない距離に設定されることが当該設置間隔Dの下限条件でもある。よって、投光部と受光部の当該設置間隔Dを離しすぎず、近すぎない距離に設定することができるので、カバー7の誤検知防止と自動水栓装置の小型化の両効果が得られる。   According to this configuration, even if the light emitted from the light projecting unit is reflected by the cover 7, the light receiving unit does not receive the reflected light, and thus erroneous detection of the cover 7 for protecting the light projecting unit and the light receiving unit is prevented. Can be prevented. Further, it is a precondition that the installation interval D between the light projecting unit and the light receiving unit is set to a distance at which the light projecting area 40 and the light receiving area 41 intersect to form a common area 42 in the detection target area. Satisfying this precondition is also the upper limit condition of the installation interval D. In addition, when the light traveling through the outermost part of the radiated light is reflected by the cover 7, the distance at which the radiated light is not received by the light receiving unit Is also a lower limit condition of the installation interval D. Accordingly, the installation distance D between the light projecting unit and the light receiving unit can be set to a distance that is not too close and not too close, so that both effects of preventing erroneous detection of the cover 7 and miniaturization of the automatic water faucet device can be obtained. .

また、上記式13、式14のうち右辺の算出値が小さくなる方のDを選択し、これに基づいた当該設置間隔Dを設定することにより、投光部と受光部の配置を決定することが好ましい。この構成によれば、当該設置間隔Dの下限条件をより小さくすることができ、装置の一層の小型化が図れる。   Moreover, the arrangement | positioning of a light projection part and a light-receiving part is determined by selecting D with the smaller calculated value of a right side among the said Formula 13 and Formula 14, and setting the said installation space | interval D based on this. Is preferred. According to this configuration, the lower limit condition of the installation interval D can be further reduced, and the apparatus can be further miniaturized.

(第2実施形態)
第2実施形態は、投光部と受光部との設置間隔Dを設定するために用いられる他の設定概念である。本実施形態では、カバー7に付着物があり、この付着物によって放射光が反射することを考慮して当該設置間隔Dを設定する概念について図10および図11にしたがって説明する。そして、図10は、投光部の放射角αと傾きθ1に基づいた投光部と受光部との設置間隔Dの設定概念を説明する模式図である。図11は、受光部の受光角βと傾きθ2に基づいた投光部と受光部との設置間隔Dの設定概念を説明する模式図である。
(Second Embodiment)
2nd Embodiment is another setting concept used in order to set the installation space | interval D of a light projection part and a light-receiving part. In the present embodiment, the concept of setting the installation interval D in consideration of the fact that there are deposits on the cover 7 and the radiated light is reflected by the deposits will be described with reference to FIGS. 10 and 11. FIG. 10 is a schematic diagram for explaining the concept of setting the installation interval D between the light projecting unit and the light receiving unit based on the radiation angle α and the inclination θ1 of the light projecting unit. FIG. 11 is a schematic diagram illustrating a setting concept of the installation interval D between the light projecting unit and the light receiving unit based on the light receiving angle β and the inclination θ2 of the light receiving unit.

図10および図11に示す投光部と受光部との設置間隔Dの設定概念は、投光端部22から放射された光は、カバーの内表面7aから内部で屈折し、カバーの外表面7bに付着している汚れ等の付着物で反射し、さらにカバー7の内部から内表面7a側の空気層で屈折して戻ってくる場合を想定している。そして、図に示された当該設置間隔Dは、付着物での反射光が受光部に受光される場合の上限の距離Dである。このため、図10の投光部の放射角αと傾きθ1に基づいた設定概念では、本自動水栓装置の当該設置間隔Dを、下記の式15の右辺を演算することによって求めた値よりも大きい値に設定すればよい。   The setting concept of the installation distance D between the light projecting unit and the light receiving unit shown in FIGS. 10 and 11 is that the light emitted from the light projecting end 22 is refracted from the inner surface 7a of the cover, and the outer surface of the cover It is assumed that the light is reflected by an adhering matter such as dirt adhering to 7b, and is further refracted and returned from the inside of the cover 7 by the air layer on the inner surface 7a side. And the said installation space | interval D shown by the figure is the upper limit distance D in case the reflected light in an attachment is received by a light-receiving part. For this reason, in the setting concept based on the emission angle α and the inclination θ1 of the light projecting unit in FIG. 10, the installation interval D of the automatic faucet device is calculated from the value obtained by calculating the right side of the following Expression 15. May be set to a larger value.

つまり、当該設置間隔Dは下記の式15で示す関係を満たすように設定し、これにしたがった位置関係で投光部と受光部を配置する。   That is, the installation interval D is set so as to satisfy the relationship expressed by the following Expression 15, and the light projecting unit and the light receiving unit are arranged in a positional relationship according to the relationship.

Figure 2010053575
Figure 2010053575

式15において、αは所定の放射角であり、θ1は、カバーの内表面7aの垂線方向Zに対する投光部の軸線26の傾き角度であり、g1は投光部の受光部側先端部位22aからカバー7までの距離であり、g2は受光部の投光部側先端部位30aからカバー7までの距離である。さらに、n1は空気の屈折率であり、n2はカバーの屈折率であり、tはカバーの厚み寸法である。   In Expression 15, α is a predetermined radiation angle, θ1 is an inclination angle of the axis 26 of the light projecting unit with respect to the perpendicular direction Z of the inner surface 7a of the cover, and g1 is a light receiving unit side tip portion 22a of the light projecting unit. Is a distance from the light projecting portion side tip portion 30a of the light receiving portion to the cover 7. Furthermore, n1 is the refractive index of air, n2 is the refractive index of the cover, and t is the thickness dimension of the cover.

式15の右辺の数式は、図10に示すように、g1・tan(θ1+α/2),X1,X1,g2・tan(θ1+α/2)の和である。以下に、X1の算出方法について説明する。   As shown in FIG. 10, the equation on the right side of Equation 15 is the sum of g1 · tan (θ1 + α / 2), X1, X1, g2 · tan (θ1 + α / 2). Below, the calculation method of X1 is demonstrated.

まず、屈折の法則により、
n1・cosA1=n2・cosB1…(式15a)が成り立ち、
式15aより、B1=cos−1{(n1/n2)・cosA1}…(式15b)となる。
First, according to the law of refraction,
n1 · cosA1 = n2 · cosB1 (Equation 15a) holds,
From Expression 15a, B1 = cos −1 {(n1 / n2) · cosA1} (Expression 15b).

また、A1=(θ1+α/2)+π/2…(式15c)であり、
X1=t・tan(B1−π/2)…(式15d)であるから、
式15dに、式15bおよび式15cを代入すると、
X1
=t・tan[cos−1{(n1/n2)・cos(θ1+α/2+π/2)}−π/2]となる。このX1を2倍した式に、(g1+g2)・tan(θ1+α/2)を加えると、式15の右辺の数式が得られることになる。
A1 = (θ1 + α / 2) + π / 2 (Equation 15c)
Since X1 = t · tan (B1−π / 2) (Equation 15d),
Substituting Equation 15b and Equation 15c into Equation 15d,
X1
= T · tan [cos −1 {(n1 / n2) · cos (θ1 + α / 2 + π / 2)} − π / 2]. When (g1 + g2) · tan (θ1 + α / 2) is added to the expression obtained by doubling X1, the expression on the right side of Expression 15 is obtained.

以上のように、式15で求められる投光部の各条件に基づいた簡潔な設定手法によれば、カバー7に汚れ等が付着しているときに、投光部から放射される光のうち最外側部位に位置する光がカバー7内で屈折してカバー7の付着物で反射した場合でも受光部が反射光を受光できない位置に反射させる光学系が得られ、誤検知を防止する装置を提供できる。また、式15を満たすように当該設置間隔Dを設定すれば、投光部と受光部との間に遮光板を別個に設ける必要がないため、部品点数を低減できる。   As described above, according to the simple setting method based on the conditions of the light projecting unit obtained by Expression 15, when dirt or the like is attached to the cover 7, the light emitted from the light projecting unit Even if light located at the outermost part is refracted in the cover 7 and reflected by the deposit on the cover 7, an optical system is obtained in which the light receiving part reflects the reflected light to a position where it cannot receive the reflected light. Can be provided. Further, if the installation interval D is set so as to satisfy Expression 15, it is not necessary to separately provide a light shielding plate between the light projecting unit and the light receiving unit, so that the number of parts can be reduced.

次に、図11の受光部の受光角βと傾きθ2に基づいた設定概念では、本自動水栓装置の当該設置間隔Dを、下記の式16の右辺を演算することによって求めた値よりも大きい値に設定すればよい。   Next, in the setting concept based on the light receiving angle β and the inclination θ2 of the light receiving unit in FIG. 11, the installation interval D of the automatic faucet device is more than the value obtained by calculating the right side of the following Expression 16. A large value may be set.

つまり、当該設置間隔Dは下記の式16で示す関係を満たすように設定し、これにしたがった位置関係で投光部と受光部を配置する。   That is, the installation interval D is set so as to satisfy the relationship expressed by the following Expression 16, and the light projecting unit and the light receiving unit are arranged in a positional relationship according to the relationship.

Figure 2010053575
Figure 2010053575

式16において、βは所定の受光角であり、θ2は、カバーの内表面7aの垂線方向Zに対する受光部の軸線36の傾き角度である。   In Expression 16, β is a predetermined light receiving angle, and θ2 is an inclination angle of the axis 36 of the light receiving portion with respect to the perpendicular direction Z of the inner surface 7a of the cover.

式16の右辺の数式は、図11に示すように、g1・tan(θ2+β/2),X2,X2,g2・tan(θ2+β/2)の和である。以下に、X2の算出方法について説明する。   As shown in FIG. 11, the equation on the right side of Equation 16 is the sum of g1 · tan (θ2 + β / 2), X2, X2, g2 · tan (θ2 + β / 2). Below, the calculation method of X2 is demonstrated.

まず、屈折の法則により、
n1・cosA2=n2・cosB2…(式16a)が成り立ち、
式16aより、B2=cos−1{(n1/n2)・cosA2}…(式16b)となる。
First, according to the law of refraction,
n1 · cosA2 = n2 · cosB2 (Equation 16a) holds,
From Expression 16a, B2 = cos −1 {(n1 / n2) · cosA2} (Expression 16b).

また、A2=(θ2+β/2)+π/2…(式16c)であり、
X2=t・tan(B2−π/2)…(式16d)であるから、
式16dに、式16bおよび式16cを代入すると、
X2
=t・tan[cos−1{(n1/n2)・cos(θ2+β/2+π/2)}−π/2]となる。このX2を2倍した式に、(g1+g2)・tan(θ2+β/2)を加えると、式16の右辺の数式が得られることになる。
A2 = (θ2 + β / 2) + π / 2 (Equation 16c)
Since X2 = t · tan (B2−π / 2) (Expression 16d),
When Expression 16b and Expression 16c are substituted into Expression 16d,
X2
= T · tan [cos −1 {(n1 / n2) · cos (θ2 + β / 2 + π / 2)} − π / 2]. When (g1 + g2) · tan (θ2 + β / 2) is added to the expression obtained by doubling X2, the expression on the right side of Expression 16 is obtained.

以上のように、式16で求められる受光部の各条件に基づいた簡潔な設定手法によれば、カバー7に汚れ等が付着しているときに、投光部から放射される光のうち最外側部位に位置する光がカバー7内で屈折してカバー7の付着物で反射した場合でも受光部が反射光を受光できない位置または角度に反射させる光学系が得られ、誤検知を防止する装置を提供できる。また、式16を満たすように当該設置間隔Dを設定すれば、投光部と受光部との間に遮光板を別個に設ける必要がないため、部品点数を低減できる。   As described above, according to the simple setting method based on each condition of the light receiving part obtained by Expression 16, when dirt or the like is attached to the cover 7, the light emitted from the light projecting part is the maximum. An apparatus for preventing an erroneous detection by obtaining an optical system in which a light receiving unit reflects light at a position or an angle where reflected light cannot be received even when light located at an outer portion is refracted in the cover 7 and reflected by an object attached to the cover 7 Can provide. Further, if the installation interval D is set so as to satisfy Expression 16, it is not necessary to separately provide a light shielding plate between the light projecting unit and the light receiving unit, so that the number of parts can be reduced.

(第3実施形態)
第3実施形態は、投光部と受光部との設置間隔Dを設定するために用いられる他の設定概念である。本実施形態では、カバーの外表面7bに水滴等が付着しており、この水滴を通って光が反射することを考慮して当該設置間隔Dを設定する概念について図12および図13にしたがって説明する。そして、図12は、投光部の放射角αと傾きθ1に基づいた投光部と受光部との設置間隔Dの設定概念を説明する模式図である。図13は、受光部の受光角βと傾きθ2に基づいた投光部と受光部との設置間隔Dの設定概念を説明する模式図である。
(Third embodiment)
3rd Embodiment is another setting concept used in order to set the installation space | interval D of a light projection part and a light-receiving part. In the present embodiment, the concept of setting the installation interval D in consideration of the fact that water droplets or the like are attached to the outer surface 7b of the cover and the light is reflected through the water droplets will be described with reference to FIGS. To do. FIG. 12 is a schematic diagram for explaining the concept of setting the installation interval D between the light projecting unit and the light receiving unit based on the emission angle α and the inclination θ1 of the light projecting unit. FIG. 13 is a schematic diagram illustrating a setting concept of the installation interval D between the light projecting unit and the light receiving unit based on the light receiving angle β and the inclination θ2 of the light receiving unit.

図12および図13に示す投光部と受光部との設置間隔Dの設定概念は、投光端部22から放射された光は、カバーの内表面7aから内部で屈折し、カバーの外表面7bに付着している水滴等の付着物内で反射し、さらにカバー7の内部から内表面7a側の空気層で屈折して戻ってくる場合を想定している。   The setting concept of the installation interval D between the light projecting unit and the light receiving unit shown in FIGS. 12 and 13 is that the light emitted from the light projecting end 22 is refracted from the inner surface 7a of the cover, and the outer surface of the cover It is assumed that the light is reflected in a deposit such as water droplets adhering to 7b, and is further refracted and returned from the inside of the cover 7 by the air layer on the inner surface 7a side.

この想定の場合には、水滴等の付着面長さを考慮する必要がある。本実施形態ではこの水滴等の付着面長さを所定長さWとしている。所定長さWは、カバー7の形状、設置姿勢、材質により変化する値であるため、実験等に基づいた経験則や、本自動水栓装置が使用される状況を考慮して決定される値であり、例えば10mm以下に決定される。   In the case of this assumption, it is necessary to consider the length of the adhesion surface such as water droplets. In this embodiment, the adhering surface length of the water droplet or the like is a predetermined length W. Since the predetermined length W is a value that varies depending on the shape, installation posture, and material of the cover 7, it is a value that is determined in consideration of empirical rules based on experiments and the situation in which the automatic faucet device is used. For example, it is determined to be 10 mm or less.

そして、図に示された当該設置間隔Dは、付着物での反射光が受光部に受光される場合の上限の距離Dである。このため、図12の投光部の放射角αと傾きθ1に基づいた設定概念では、本自動水栓装置の当該設置間隔Dを、下記の式17の右辺を演算することによって求めた値よりも大きい値に設定すればよい。   And the said installation space | interval D shown by the figure is the upper limit distance D in case the reflected light in an attachment is received by a light-receiving part. For this reason, in the setting concept based on the emission angle α and the inclination θ1 of the light projecting unit in FIG. 12, the installation interval D of the automatic faucet device is calculated from the value obtained by calculating the right side of the following Expression 17. May be set to a larger value.

つまり、当該設置間隔Dは下記の式17で示す関係を満たすように設定し、これにしたがった位置関係で投光部と受光部を配置する。また、下記式17の右辺は、第2実施形態における式15の右辺に所定長さWを加えた式である。   That is, the installation interval D is set so as to satisfy the relationship represented by the following Expression 17, and the light projecting unit and the light receiving unit are arranged in a positional relationship according to the relationship. Further, the right side of Expression 17 below is an expression obtained by adding a predetermined length W to the right side of Expression 15 in the second embodiment.

Figure 2010053575
Figure 2010053575

以上のように、式17で求められる投光部の各条件に基づいた簡潔な設定手法によれば、カバー7に水滴等が付着しているときに、投光部から放射される光のうち最外側部位に位置する光がカバー7内で屈折し、カバーの外表面7bに付着している水滴等の内部で反射した場合でも受光部が反射光を受光できない位置に反射させる光学系が得られ、誤検知を防止する装置を提供できる。また、式17を満たすように当該設置間隔Dを設定すれば、投光部と受光部との間に遮光板を別個に設ける必要がないため、部品点数を低減できる。   As described above, according to the simple setting method based on the conditions of the light projecting unit obtained by Expression 17, when water droplets or the like are attached to the cover 7, the light emitted from the light projecting unit Even when light located at the outermost part is refracted in the cover 7 and reflected inside a water droplet or the like adhering to the outer surface 7b of the cover, an optical system that reflects the reflected light to a position where the reflected light cannot be received is obtained. Therefore, it is possible to provide a device that prevents erroneous detection. Further, if the installation interval D is set so as to satisfy Expression 17, it is not necessary to separately provide a light shielding plate between the light projecting unit and the light receiving unit, so that the number of parts can be reduced.

次に、図13の受光部の受光角βと傾きθ2に基づいた設定概念では、本自動水栓装置の当該設置間隔Dを、下記の式18の右辺を演算することによって求めた値よりも大きい値に設定すればよい。   Next, in the setting concept based on the light receiving angle β and the inclination θ2 of the light receiving unit in FIG. 13, the installation interval D of the automatic faucet device is more than the value obtained by calculating the right side of the following Equation 18. A large value may be set.

つまり、当該設置間隔Dは下記の式18で示す関係を満たすように設定し、これにしたがった位置関係で投光部と受光部を配置する。また、下記式18の右辺は、第2実施形態における式16の右辺に水滴等の付着面長さを考慮した所定長さWを加えた式である。   That is, the installation interval D is set so as to satisfy the relationship expressed by the following equation 18, and the light projecting unit and the light receiving unit are arranged in a positional relationship according to the relationship. Moreover, the right side of the following formula 18 is a formula in which a predetermined length W is added to the right side of the formula 16 in the second embodiment in consideration of the attached surface length of a water droplet or the like.

Figure 2010053575
Figure 2010053575

以上のように、式18で求められる受光部の各条件に基づいた簡潔な設定手法によれば、カバー7に水滴等が付着しているときに、投光部から放射される光のうち最外側部位に位置する光がカバー7内で屈折し、カバーの外表面7bに付着している水滴等の内部で反射した場合でも受光部が反射光を受光できない位置または角度に反射させる光学系が得られ、誤検知を防止する装置を提供できる。また、式18を満たすように当該設置間隔Dを設定すれば、投光部と受光部との間に遮光板を別個に設ける必要がないため、部品点数を低減できる。   As described above, according to the simple setting method based on each condition of the light receiving unit obtained by Expression 18, when water droplets or the like are attached to the cover 7, the light emitted from the light projecting unit is the maximum. An optical system that reflects light at a position or angle at which the light receiving unit cannot receive reflected light even when light located at the outer portion is refracted in the cover 7 and reflected inside a water droplet or the like attached to the outer surface 7b of the cover. It is possible to provide a device that is obtained and prevents erroneous detection. Further, if the installation interval D is set so as to satisfy Expression 18, it is not necessary to separately provide a light shielding plate between the light projecting unit and the light receiving unit, so that the number of parts can be reduced.

また、上記式17、式18のうち右辺の算出値が小さくなる方のDを選択し、これに基づいた当該設置間隔Dを設定することにより、投光部と受光部の配置を決定することが好ましい。この構成によれば、当該設置間隔Dの下限条件をより小さくすることができ、装置の一層の小型化が図れる。   Moreover, the arrangement | positioning of a light projection part and a light-receiving part is determined by selecting D with the smaller calculated value of a right side among the said Formula 17 and Formula 18, and setting the said installation space | interval D based on this. Is preferred. According to this configuration, the lower limit condition of the installation interval D can be further reduced, and the apparatus can be further miniaturized.

第1実施形態に係る自動水栓装置の概略構成を示した模式図である。It is the mimetic diagram showing the schematic structure of the automatic faucet device concerning a 1st embodiment. 制御装置100の構成を示したブロック図である。2 is a block diagram illustrating a configuration of a control device 100. FIG. 投光アセンブリ2および受光アセンブリ3の構成を示した部分的断面図である。FIG. 3 is a partial cross-sectional view showing configurations of a light projecting assembly 2 and a light receiving assembly 3. (a)〜(c)は、放射角が受光角よりも大きく投光部および受光部がカバー内表面の垂線方向に設置される場合に、放射光がカバーで反射するときの光の進行状態を説明する模式図である。(A)-(c) are the progress states of the light when the emitted light is reflected by the cover when the emission angle is larger than the reception angle and the light projecting part and the light receiving part are installed in the direction perpendicular to the inner surface of the cover. FIG. (a)〜(c)は、放射角が受光角よりも大きく投光部および受光部がカバー内表面の垂線方向に対して傾いて設置される場合に、放射光がカバーで反射するときの光の進行状態を説明する模式図である。(A) to (c) are the cases where the emitted light is reflected by the cover when the emission angle is larger than the reception angle and the light projecting part and the light reception part are installed inclined with respect to the normal direction of the inner surface of the cover. It is a schematic diagram explaining the advancing state of light. (a)および(b)は、受光角が放射角よりも大きく投光部および受光部がカバー内表面の垂線方向に設置される場合に、放射光がカバーで反射するときの光の進行状態を説明する模式図である。(A) and (b) show the progress of light when the radiated light is reflected by the cover when the light receiving angle is larger than the radiation angle and the light projecting part and the light receiving part are installed in the direction perpendicular to the inner surface of the cover. FIG. (a)および(b)は、受光角が放射角よりも大きく投光部および受光部がカバー内表面の垂線方向に対して傾いて設置される場合に、放射光がカバーで反射するときの光の進行状態を説明する模式図である。(A) and (b) are the results when the radiated light is reflected by the cover when the light receiving angle is larger than the radiation angle and the light projecting part and the light receiving part are installed inclined with respect to the normal direction of the inner surface of the cover. It is a schematic diagram explaining the advancing state of light. 第1実施形態における、投光部の放射角αと傾きθ1に基づいた投光部と受光部との設置間隔Dの設定概念を説明する模式図である。It is a schematic diagram explaining the setting concept of the installation interval D between the light projecting unit and the light receiving unit based on the radiation angle α and the inclination θ1 of the light projecting unit in the first embodiment. 第1実施形態における、受光部の受光角βと傾きθ2に基づいた投光部と受光部との設置間隔Dの設定概念を説明する模式図である。It is a schematic diagram explaining the setting concept of the installation space | interval D of the light projection part and light reception part based on the light reception angle (beta) and inclination (theta) 2 of a light reception part in 1st Embodiment. 第2実施形態における、投光部の放射角αと傾きθ1に基づいた投光部と受光部との設置間隔Dの設定概念を説明する模式図である。It is a schematic diagram explaining the setting concept of the installation space | interval D of a light projection part and a light-receiving part based on radiation angle (alpha) and inclination (theta) 1 of a light projection part in 2nd Embodiment. 第2実施形態における、受光部の受光角βと傾きθ2に基づいた投光部と受光部との設置間隔Dの設定概念を説明する模式図である。It is a schematic diagram explaining the setting concept of the installation space | interval D of a light projection part and a light-receiving part based on the light reception angle (beta) and inclination (theta) 2 of a light-receiving part in 2nd Embodiment. 第3実施形態における、投光部の放射角αと傾きθ1に基づいた投光部と受光部との設置間隔Dの設定概念を説明する模式図である。It is a schematic diagram explaining the setting concept of the installation space | interval D of the light projection part and light reception part based on radiation angle (alpha) and inclination (theta) 1 of a light projection part in 3rd Embodiment. 第3実施形態における、受光部の受光角βと傾きθ2に基づいた投光部と受光部との設置間隔Dの設定概念を説明する模式図である。It is a schematic diagram explaining the setting concept of the installation space | interval D of the light projection part and light reception part based on the light reception angle (beta) and inclination (theta) 2 of a light reception part in 3rd Embodiment.

符号の説明Explanation of symbols

4…投光用光ファイバー
5…受光用光ファイバー
7…カバー
7a…カバーの内表面(カバー内表面)
20…レンズ(投光部)
22…投光端部(投光部)
20a…レンズの受光部側先端部位(先端部位)
22a…投光部の受光部側先端部位(先端部位)
26…投光部の軸線
30…受光端部(受光部)
30a…受光部の投光部側先端部位(先端部位)
36…受光部の軸線
40…投光エリア
41…受光エリア
102…発光素子
103…受光素子
4 ... Optical fiber for light emission 5 ... Optical fiber for light reception 7 ... Cover 7a ... Inner surface of cover (inner surface of cover)
20 ... Lens (projecting part)
22 ... Projection end (projection unit)
20a... Light receiving part side tip part (tip part) of the lens
22a ... Light receiving part side tip part (tip part) of the light projecting part
26: Axial line of light projecting unit 30: Light receiving end (light receiving unit)
30a: Light projecting portion side tip portion (tip portion) of the light receiving portion
36: Axis of light receiving portion 40: Light emitting area 41 ... Light receiving area 102 ... Light emitting element 103 ... Light receiving element

Claims (8)

検知対象とする検知対象エリアに向けて光を所定の放射角(α)を形成するように末広がり状に放射して投光エリア(40)を形成する投光部(20,22)と、
前記投光部から放射された光が物体に当たって反射した反射光を受光するように、所定の受光角(β)を有する受光エリア(41)を形成する受光部(30)と、
前記投光部および前記受光部の前記検知対象エリア側前方を覆うように設けられる光透過性を有するカバー(7)と、を備え、前記投光エリアに入った手によって反射した反射光を前記受光部が受光したときに自動的に出水を行う自動水栓装置であって、
前記投光部の光を放射する部位であって前記受光部に最も近い先端部位(20a,22a)と、前記受光部の前記反射光を受光する部位であって前記投光部に最も近い先端部位(30a)との設置間隔は、
前記検知対象エリアにおいて前記投光エリアと前記受光エリアが交差することにより共有のエリアを形成する距離に設定されるとともに、
前記投光部から放射される光のうち最外側部位を進行する光が前記カバーおよび前記カバーに付着した付着物で反射した場合でも、前記反射れた光が前記受光部に受光されない距離に設定されることを特徴とする自動水栓装置。
A light projecting section (20, 22) that radiates light toward a detection target area as a detection target so as to form a predetermined radiation angle (α) and forms a light projection area (40);
A light receiving portion (30) that forms a light receiving area (41) having a predetermined light receiving angle (β) so as to receive the reflected light reflected by the light emitted from the light projecting portion hitting an object;
A light-transmitting cover (7) provided so as to cover the front side of the detection target area of the light projecting unit and the light receiving unit, and reflected light reflected by a hand entering the light projecting area An automatic faucet device that automatically discharges water when the light receiving part receives light,
The tip portion (20a, 22a) closest to the light receiving portion that emits light from the light projecting portion, and the tip closest to the light projecting portion that receives the reflected light of the light receiving portion. The installation interval with the part (30a) is
In the detection target area, the light projecting area and the light receiving area intersect to be set to a distance that forms a shared area,
Even if light traveling through the outermost part of the light emitted from the light projecting part is reflected by the cover and the adhering matter attached to the cover, the reflected light is set at a distance that is not received by the light receiving part. Automatic faucet device characterized by being made.
前記設置間隔をDとし、前記所定の放射角をαとし、前記カバー内表面(7a)の垂線方向に対する前記投光部の軸線(26)の傾き角度をθ1とし、前記投光部の前記先端部位(20a,22a)から前記カバーまでの距離をg1とし、前記受光部の前記先端部位(30a)から前記カバーまでの距離をg2とした場合に、
前記設置間隔(D)は、下記の式1で示す関係を満たすように設定されることを特徴とする請求項1に記載の自動水栓装置。
Figure 2010053575
The installation interval is D, the predetermined radiation angle is α, the inclination angle of the axis (26) of the light projecting unit with respect to the perpendicular direction of the cover inner surface (7a) is θ1, and the tip of the light projecting unit When the distance from the part (20a, 22a) to the cover is g1, and the distance from the tip part (30a) of the light receiving unit to the cover is g2,
The automatic faucet device according to claim 1, wherein the installation interval (D) is set so as to satisfy a relationship represented by the following formula 1.
Figure 2010053575
前記設置間隔をDとし、前記所定の受光角をβとし、前記カバー内表面(7a)の垂線方向に対する前記受光部の軸線(36)の傾き角度をθ2とし、前記投光部の前記先端部位(20a,22a)から前記カバーまでの距離をg1とし、前記受光部の前記先端部位(30a)から前記カバーまでの距離をg2とした場合に、
前記設置間隔(D)は、下記の式2で示す関係を満たすように設定されることを特徴とする請求項1に記載の自動水栓装置。
Figure 2010053575
The installation interval is D, the predetermined light receiving angle is β, the inclination angle of the axis (36) of the light receiving unit with respect to the perpendicular direction of the inner surface (7a) of the cover is θ2, and the tip portion of the light projecting unit When the distance from (20a, 22a) to the cover is g1, and the distance from the tip portion (30a) of the light receiving unit to the cover is g2,
The automatic faucet device according to claim 1, wherein the installation interval (D) is set so as to satisfy a relationship represented by the following expression 2.
Figure 2010053575
前記設置間隔をDとし、前記所定の放射角をαとし、前記カバー内表面(7a)の垂線方向に対する前記投光部の軸線(26)の傾き角度をθ1とし、前記投光部の前記先端部位(20a,22a)から前記カバーまでの距離をg1とし、前記受光部の前記先端部位(30a)から前記カバーまでの距離をg2とし、空気の屈折率をn1とし、前記カバーの屈折率をn2とし、前記カバーの厚み寸法をtとした場合に、
前記設置間隔(D)は、下記の式3で示す関係を満たすように設定されることを特徴とする請求項1に記載の自動水栓装置。
Figure 2010053575
The installation interval is D, the predetermined radiation angle is α, the inclination angle of the axis (26) of the light projecting unit with respect to the perpendicular direction of the cover inner surface (7a) is θ1, and the tip of the light projecting unit The distance from the part (20a, 22a) to the cover is g1, the distance from the tip part (30a) of the light receiving part to the cover is g2, the refractive index of air is n1, and the refractive index of the cover is When n2 and the thickness dimension of the cover is t,
The automatic faucet device according to claim 1, wherein the installation interval (D) is set so as to satisfy a relationship represented by the following Expression 3.
Figure 2010053575
前記設置間隔をDとし、前記所定の受光角をβとし、前記カバー内表面(7a)の垂線方向に対する前記受光部の軸線(36)の傾き角度をθ2とし、前記投光部の前記先端部位(20a,22a)から前記カバーまでの距離をg1とし、前記受光部の前記先端部位(30a)から前記カバーまでの距離をg2とし、空気の屈折率をn1とし、前記カバーの屈折率をn2とし、前記カバーの厚み寸法をtとした場合に、
前記設置間隔(D)は、下記の式4で示す関係を満たすように設定されることを特徴とする請求項1に記載の自動水栓装置。
Figure 2010053575
The installation interval is D, the predetermined light receiving angle is β, the inclination angle of the axis (36) of the light receiving unit with respect to the perpendicular direction of the inner surface (7a) of the cover is θ2, and the tip portion of the light projecting unit The distance from (20a, 22a) to the cover is g1, the distance from the tip part (30a) of the light receiving portion to the cover is g2, the refractive index of air is n1, and the refractive index of the cover is n2. When the thickness dimension of the cover is t,
The automatic faucet device according to claim 1, wherein the installation interval (D) is set so as to satisfy a relationship represented by the following expression (4).
Figure 2010053575
前記設置間隔をDとし、前記所定の放射角をαとし、前記カバー内表面(7a)の垂線方向に対する前記投光部の軸線(26)の傾き角度をθ1とし、前記投光部の前記先端部位(20a,22a)から前記カバーまでの距離をg1とし、前記受光部の前記先端部位(30a)から前記カバーまでの距離をg2とし、空気の屈折率をn1とし、前記カバーの屈折率をn2とし、前記カバーの厚み寸法をtとし、前記カバーに付着する水滴等の付着面長さを所定長さWとした場合に、
前記設置間隔(D)は、下記の式5で示す関係を満たすように設定されることを特徴とする請求項1に記載の自動水栓装置。
Figure 2010053575
The installation interval is D, the predetermined radiation angle is α, the inclination angle of the axis (26) of the light projecting unit with respect to the perpendicular direction of the cover inner surface (7a) is θ1, and the tip of the light projecting unit The distance from the part (20a, 22a) to the cover is g1, the distance from the tip part (30a) of the light receiving part to the cover is g2, the refractive index of air is n1, and the refractive index of the cover is When n2 is set, the thickness dimension of the cover is t, and the attachment surface length of water droplets or the like attached to the cover is a predetermined length W,
The automatic faucet device according to claim 1, wherein the installation interval (D) is set so as to satisfy a relationship represented by the following formula (5).
Figure 2010053575
前記設置間隔をDとし、前記所定の受光角をβとし、前記カバー内表面(7a)の垂線方向に対する前記受光部の軸線(36)の傾き角度をθ2とし、前記投光部の前記先端部位(20a,22a)から前記カバーまでの距離をg1とし、前記受光部の前記先端部位(30a)から前記カバーまでの距離をg2とし、空気の屈折率をn1とし、前記カバーの屈折率をn2とし、前記カバーの厚み寸法をtとし、前記カバーに付着する水滴等の付着面長さを所定長さWとした場合に、
前記設置間隔(D)は、下記の式6で示す関係を満たすように設定されることを特徴とする請求項1に記載の自動水栓装置。
Figure 2010053575
The installation interval is D, the predetermined light receiving angle is β, the inclination angle of the axis (36) of the light receiving unit with respect to the perpendicular direction of the inner surface (7a) of the cover is θ2, and the tip portion of the light projecting unit The distance from (20a, 22a) to the cover is g1, the distance from the tip part (30a) of the light receiving portion to the cover is g2, the refractive index of air is n1, and the refractive index of the cover is n2. When the thickness dimension of the cover is t, and the attachment surface length of water drops etc. attached to the cover is a predetermined length W,
The automatic faucet device according to claim 1, wherein the installation interval (D) is set so as to satisfy a relationship represented by the following expression (6).
Figure 2010053575
さらに、前記投光部に光を出力する発光素子(102)と、前記発光素子から出力された光を前記投光部に導く投光用光ファイバー(4)と、前記受光部で受光された光が入力される受光素子(103)と、前記受光部で受光された光を前記受光素子に導く受光用光ファイバー(5)と、を備えることを特徴とする請求項1〜7のいずれか一項に記載の自動水栓装置。   Furthermore, a light emitting element (102) that outputs light to the light projecting unit, a light projecting optical fiber (4) that guides light output from the light emitting element to the light projecting unit, and light received by the light receiving unit A light receiving element (103) to which light is input and a light receiving optical fiber (5) for guiding light received by the light receiving unit to the light receiving element. Automatic faucet device as described in.
JP2008218726A 2008-08-27 2008-08-27 Automatic water faucet device Pending JP2010053575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008218726A JP2010053575A (en) 2008-08-27 2008-08-27 Automatic water faucet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008218726A JP2010053575A (en) 2008-08-27 2008-08-27 Automatic water faucet device

Publications (1)

Publication Number Publication Date
JP2010053575A true JP2010053575A (en) 2010-03-11

Family

ID=42069771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008218726A Pending JP2010053575A (en) 2008-08-27 2008-08-27 Automatic water faucet device

Country Status (1)

Country Link
JP (1) JP2010053575A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601584A (en) * 1983-06-20 1985-01-07 Toshiba Corp Optical switch
JP2004116083A (en) * 2002-09-25 2004-04-15 Toto Ltd Automatic faucet

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS601584A (en) * 1983-06-20 1985-01-07 Toshiba Corp Optical switch
JP2004116083A (en) * 2002-09-25 2004-04-15 Toto Ltd Automatic faucet

Similar Documents

Publication Publication Date Title
EP2196793B1 (en) Optical sensor device
US7812708B2 (en) Manipulation protection for a fire detector
JP2009299431A (en) Automatic faucet device
EP2511435B1 (en) Automatic faucet
US5838454A (en) Sensor arrangement for detecting the degree of wetting of a windshield
JP2010053575A (en) Automatic water faucet device
JP5128232B2 (en) Reflective photoelectric sensor
JP5800472B2 (en) Light source device
JP4537568B2 (en) Leak sensor
JP2009289739A (en) Photoelectric sensor
JP2009287352A (en) Automatic faucet device
EP3553500A1 (en) Gas sensor
EP3811058B1 (en) Optical rain sensor with dynamic optical configuration control
JP5196400B2 (en) Specific gravity measuring device for liquid sample
JP4365258B2 (en) Drainage pollution concentration detection system, drainage pollution detection device, and drainage pollution detection piping unit
JP2006153730A (en) Range sensor and apparatus equipped with the same
JP2005122437A (en) Flame sensor
JP2003207578A (en) Sanitary device
JP5541703B2 (en) Automatic faucet
WO2023013314A1 (en) Density measurement device
JP2011153408A (en) Water supply product
JP2011187416A (en) Photoelectric sensor
JP2014238392A (en) Reflector used in reflex mode detection device
JP4710886B2 (en) Security detection device
EP3382346A1 (en) A reader for reading a utility meter and a method of reading a utility meter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121023