JP2010053479A - Fiber-reinforced woven cloth and radome using the same - Google Patents

Fiber-reinforced woven cloth and radome using the same Download PDF

Info

Publication number
JP2010053479A
JP2010053479A JP2008219552A JP2008219552A JP2010053479A JP 2010053479 A JP2010053479 A JP 2010053479A JP 2008219552 A JP2008219552 A JP 2008219552A JP 2008219552 A JP2008219552 A JP 2008219552A JP 2010053479 A JP2010053479 A JP 2010053479A
Authority
JP
Japan
Prior art keywords
fiber
woven fabric
olefin
radome
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008219552A
Other languages
Japanese (ja)
Other versions
JP4957681B2 (en
Inventor
Kimihiro Kaneko
公廣 金子
Takashi Iwakura
崇 岩倉
Muneo Murakami
宗雄 村上
Shigeru Uchiumi
茂 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008219552A priority Critical patent/JP4957681B2/en
Publication of JP2010053479A publication Critical patent/JP2010053479A/en
Application granted granted Critical
Publication of JP4957681B2 publication Critical patent/JP4957681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a radome having excellent electric and mechanical properties by using a fiber-reinforced woven cloth that has high adhesion and shear strength and is easy to mechanically process, since when a low-dielectric-constant fiber such as an olefin fiber is used as a reinforcing fiber for FRP of radome, the olefin fiber has difficulty in mechanical processing because the olefin fiber has low adhesion to a matrix resin, easily causes a slippage, has low shear strength and high strength. <P>SOLUTION: An olefin fiber and a glass fiber are used as warp or weft and subjected to mixed weaving so as to make the glass fiber appear at least on one side of the woven cloth. Cloths including at least one fiber-reinforced woven cloth subjected to mixed weaving are piled so that a surface in which the glass fiber mainly appears is stuck close to a matrix resin and laminated along a mold of radome. The laminate is impregnated with the matrix resin and integrated to manufacture the radome. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、電波を送受信する空中線等の電波機器を収納し、外部環境(風、雨、雪、砂、氷、太陽光等)から保護するレドーム等の構造部に使用するFRP(繊維強化樹脂)に関するものである。FRP(繊維強化樹脂)とは、電気及び機械特性の優れた織布を積層しマトリックス樹脂を含浸することにより強化された樹脂である。このようなレドームは、主に、通信、レーダ装置として、航空機、車両、船舶等に使用されている。 FRP (fiber reinforced resin) used for structural parts such as radomes that house radio wave devices such as antennas that transmit and receive radio waves and protect them from the external environment (wind, rain, snow, sand, ice, sunlight, etc.) ). FRP (fiber reinforced resin) is a resin reinforced by laminating a woven fabric having excellent electrical and mechanical properties and impregnating with a matrix resin. Such radomes are mainly used for aircraft, vehicles, ships and the like as communication and radar devices.

レドームは、その収納している電波機器が送受信する電波を妨げず、かつ、電波機器を外部環境から保護するのに必要な強度を有していなければならない。このような特性を有する従来のレドームとしては、繊維強化樹脂を有する第一の複合材料面版と第二の対向する複合材料面版との間に、発泡体等の低密度誘電体から成るコアを挟み込んだサンドイッチ構造板を用いたものがある。このようなサンドイッチ構造板は、低密度誘電体を挟み込むことにより、構造強度を保持しつつ、全体としての誘電率を低くし、レドームの電波透過性を向上させることができる。強化繊維として、ガラス繊維が一般的に用いられているが、ポリエステル−ポリアリレート繊維のような誘電率が低い繊維を用いて誘電率をより一層低下させることも知られている(例えば、特許文献1参照)。 The radome must have a strength necessary to protect the radio wave device from the external environment without interfering with radio waves transmitted and received by the radio wave device housed therein. As a conventional radome having such characteristics, a core made of a low-density dielectric material such as a foam is provided between a first composite material surface plate having a fiber reinforced resin and a second opposing composite material surface plate. There is a thing using the sandwich structure board which sandwiched. By sandwiching a low-density dielectric, such a sandwich structure plate can reduce the overall dielectric constant and improve the radio wave permeability of the radome while maintaining the structural strength. Although glass fiber is generally used as the reinforcing fiber, it is also known to further reduce the dielectric constant by using a fiber having a low dielectric constant such as polyester-polyarylate fiber (for example, patent document). 1).

また、当社は、特許文献2に示すように、「レドーム及びその製造方法」の特許を出願した。この特許では、まず、ガラス繊維織布をオレフィン繊維織布よりもレドーム内部側に配置し型に沿わせて積層する。次に、型内を真空状態にしつつ、マトリックス樹脂を型内に注入し硬化させ、一体化したFRPを形成してレドームを製作することを特徴とする。
この結果、低誘電率であるオレフィン織布により電波透過性を確保しながら、ガラス織布により高強度を確保し、電気及び機械特性の優れたレドームを製作出来る。
特表2007−519298号(第1−12頁、第1図) 特願2007−316821号(第1−13頁、第1図)
In addition, as shown in Patent Document 2, the Company applied for a patent for “radome and its manufacturing method”. In this patent, first, a glass fiber woven fabric is disposed on the inner side of the radome with respect to the olefin fiber woven fabric, and is laminated along a mold. Next, while the inside of the mold is in a vacuum state, the matrix resin is injected into the mold and cured to form an integrated FRP to produce a radome.
As a result, it is possible to manufacture a radome having excellent electrical and mechanical properties while ensuring high strength with a glass woven fabric while ensuring radio wave transmission with an olefin woven fabric having a low dielectric constant.
Special table 2007-519298 (page 1-12, Fig. 1) Japanese Patent Application No. 2007-316821 (page 1-13, Fig. 1)

しかし、オレフィン繊維のような低誘電率の有機繊維を強化繊維として用いた場合は、マトリックス樹脂との密着力が弱く、オレフィン織布とマトリックス樹脂の界面に応力が発生すると容易にすべりが生じてしまうことが判明した。このため、オレフィン織布の表面に対してコロナ放電処理を行ない、少しは密着性を改善できたが、不十分だった。
またオレフィン繊維は高強度であるため、通常のドリルによる穴加工等の機械加工が困難であった。
However, when organic fibers with a low dielectric constant such as olefin fibers are used as reinforcing fibers, the adhesive strength with the matrix resin is weak, and slipping occurs easily when stress is generated at the interface between the olefin woven fabric and the matrix resin. It turned out that. For this reason, corona discharge treatment was performed on the surface of the olefin woven fabric, and the adhesion could be improved a little, but it was insufficient.
In addition, since the olefin fiber has high strength, it is difficult to perform machining such as drilling with a normal drill.

本発明はこの問題を解決する為に、オレフィン繊維とガラス繊維をたて糸またはよこ糸とし、ガラス繊維が少なくとも片面に主に現れるように交織する(異なる繊維をたて糸、よこ糸として織る)。交織した織布を少なくとも1枚含めて、ガラス繊維が主に現れる面が密着するように積み重ね、レドームの型に沿わせて積層する。この積層にマトリックス樹脂を含浸し硬化させレドームを製作したものである。 In order to solve this problem, the present invention uses olefin fibers and glass fibers as warp yarns or weft yarns, and interwoven so that the glass fibers mainly appear on at least one side (weave different fibers as warp yarns and weft yarns). At least one woven fabric that has been interwoven is included and stacked so that the surfaces on which the glass fibers mainly appear are in close contact with each other, and are stacked along the shape of the radome. The laminate is impregnated with a matrix resin and cured to produce a radome.

本発明は、オレフィン繊維とガラス繊維を交織することにより、オレフィン繊維によりレドームに要求される電波透過性を確保しながら、ガラス繊維により要求される強度を確保し、電気及び機械特性の優れた繊維強化織布を提供できる。
また、織布の少なくとも片面にマトリックス樹脂との密着性に優れたガラス繊維が主に現れるように構成したので、マトリックス樹脂との界面でも、すべりが発生せず、せん断強度が向上する。
第3に、オレフィン繊維のみの織布は高強度であるため、機械加工が困難であった。しかし、オレフィン繊維とガラス繊維を交織することにより、機械加工出来るようになった。
第4に、オレフィン繊維は、密度がガラス繊維の38%しかなく非常に軽い(図2参照)。従って、オレフィン繊維を多く織り込むことにより軽量化できる効果が有る。
The present invention is a fiber excellent in electrical and mechanical properties by securing the strength required by glass fiber while ensuring the radio wave transmission required by radome by olefin fiber by interweaving olefin fiber and glass fiber. Reinforced woven fabric can be provided.
Further, since the glass fiber excellent in adhesion to the matrix resin appears mainly on at least one surface of the woven fabric, no slip occurs at the interface with the matrix resin, and the shear strength is improved.
Thirdly, since the woven fabric made only of olefin fibers has high strength, it is difficult to machine. However, it became possible to machine by interweaving olefin fiber and glass fiber.
Fourth, olefin fibers are very light with a density of only 38% of glass fibers (see FIG. 2). Therefore, there is an effect that the weight can be reduced by weaving many olefin fibers.

実施の形態1.
図1は、本実施の形態によるレドーム1の説明図である。図1において、レドーム1は、台座2に固定用ボルト4で固定され、また、レドーム1の内部には空中線を含む電波機器3が収納されている。レドーム1は、外部環境(例えば、風、太陽光、雨及び海水等の自然環境、外部からの衝撃、並びに埃)から電波機器3を保護すると共に、外部と電波機器3との間で電波を受送信する際には電波を透過する。
Embodiment 1 FIG.
FIG. 1 is an explanatory diagram of a radome 1 according to this embodiment. In FIG. 1, a radome 1 is fixed to a pedestal 2 with fixing bolts 4, and a radio wave device 3 including an antenna is housed inside the radome 1. The radome 1 protects the radio wave device 3 from the external environment (for example, natural environments such as wind, sunlight, rain, and seawater, impacts from outside, and dust) and transmits radio waves between the outside and the radio wave device 3. When transmitting and receiving, radio waves are transmitted.

ここで、レドーム1の形状は、電波機器3が可動する場合にはレドーム1と電波機器3とが干渉しないようにする必要がある。レドーム1は、電波機器3中心部からレドーム1までの距離が、電波機器3の電波出力方向に対して出来るだけ等距離で、且つレドーム1に対して垂直に電波が入射するような形状となる。
また、レドーム1を電波が容易に透過するためには、誘電率が低く、誘電損失の少ない材料を使用する必要がある。図2には、本発明でFRPに使用する繊維である、オレフィン繊維(ダイニーマ)とガラス繊維の機械的、電気的特性値を示す。
ダイニーマは、東洋紡績株式会社から市販されている商品名である。オレフィン繊維の中でも超高分子量ポリエチレン繊維と称されるもので、低誘電率、高弾性率、高強度でかつ軽量である優れた繊維である。E-ガラスは、日東紡績株式会社製の一般的なガラス繊維である。NE-ガラスも、日東紡績株式会社製であり、誘電率の低いガラス繊維である。
Here, the shape of the radome 1 needs to prevent the radome 1 and the radio wave device 3 from interfering when the radio wave device 3 is movable. The radome 1 is shaped such that the distance from the center of the radio wave device 3 to the radome 1 is as equal as possible to the radio wave output direction of the radio wave device 3 and the radio wave is incident on the radome 1 perpendicularly. .
Further, in order to easily transmit radio waves through the radome 1, it is necessary to use a material having a low dielectric constant and a low dielectric loss. FIG. 2 shows mechanical and electrical characteristic values of olefin fiber (Dyneema) and glass fiber, which are fibers used for FRP in the present invention.
Dyneema is a trade name commercially available from Toyobo Co., Ltd. Among olefin fibers, it is called an ultra high molecular weight polyethylene fiber, and is an excellent fiber having a low dielectric constant, a high elastic modulus, a high strength and a light weight. E-glass is a common glass fiber manufactured by Nitto Boseki Co., Ltd. NE-glass is also a glass fiber with a low dielectric constant, manufactured by Nitto Boseki Co.

図3は、本実施の形態にて使用する織布の代表的な例として、たて二重織り織布5の概略断面図である。図において、表たて糸6と裏たて糸8にはガラス繊維、よこ糸7にはオレフィン繊維を用いる。この結果、表裏面ともにガラス繊維が主に現れるので、よこ糸7であるオレフィン繊維は表裏面共にガラス繊維によりほとんどカバーされる。従って、含浸されるマトリックス樹脂との界面には必ずガラス繊維が密着するように構成している。
ガラス繊維はマトリックス樹脂との密着性が良いので、本織布により強化された樹脂は、オレフィン織布がすべり易くせん断強度が低いのとは異なり、すべることが無くせん断強度も高い。その上に、ガラス繊維に覆われたオレフィン繊維は誘電率が低く誘電損失が少ないので、電波透過性が良好であり、レドームの特性も向上する。
FIG. 3 is a schematic cross-sectional view of a warp double woven fabric 5 as a typical example of the woven fabric used in the present embodiment. In the figure, glass fiber is used for the warp yarn 6 and the back warp yarn 8, and olefin fiber is used for the weft yarn 7. As a result, since glass fibers mainly appear on both the front and back surfaces, the olefin fibers that are the weft yarns 7 are almost covered with the glass fibers on both the front and back surfaces. Accordingly, the glass fibers are always in close contact with the interface with the matrix resin to be impregnated.
Since the glass fiber has good adhesion to the matrix resin, the resin reinforced by the main woven fabric has no shear and high shear strength unlike the olefin woven fabric which easily slips and has low shear strength. In addition, since the olefin fiber covered with glass fiber has a low dielectric constant and low dielectric loss, the radio wave transmission is good and the characteristics of the radome are improved.

オレフィン繊維とガラス繊維の配合比率は、太さが同じであれば、約1:2である。しかし、電波透過率を向上する場合には、オレフィン繊維の撚り本数を増やすことによりオレフィン繊維の配合比率を増やして、よこ糸6を製作する。機械的強度を向上する場合には、ガラス繊維の配合比率を増やすことにより、同様にコントロールできる。 If the thickness is the same, the blending ratio of the olefin fiber and the glass fiber is about 1: 2. However, in order to improve the radio wave transmittance, the weft yarn 6 is manufactured by increasing the blending ratio of the olefin fibers by increasing the number of twisted olefin fibers. In the case of improving the mechanical strength, it can be similarly controlled by increasing the blending ratio of the glass fibers.

図4には、レドーム断面構造図の例を示す。たて二重織り織布9を例えば2層、レドーム1の型に沿わせて積層する。この積層にマトリックス樹脂10を含浸し硬化させレドーム1を製作する。11はレドーム外表面、12はレドーム内表面である。 FIG. 4 shows an example of a radome cross-sectional structure diagram. For example, two layers of the double woven fabric 9 are laminated along the shape of the radome 1. The laminate is impregnated with a matrix resin 10 and cured to produce a radome 1. 11 is a radome outer surface, and 12 is a radome inner surface.

オレフィン繊維としては、超高分子量ポリエチレン繊維を用いる。この繊維であれば、その優れた引張強度及び弾性率をレドーム1の特性に反映できる。超高分子量ポリエチレン繊維としては、例えば、東洋紡績株式会社から市販されているダイニーマ(比誘電率:2.2、分子量400万)を用いることができる。 As the olefin fiber, ultra high molecular weight polyethylene fiber is used. With this fiber, the excellent tensile strength and elastic modulus can be reflected in the characteristics of the radome 1. As the ultrahigh molecular weight polyethylene fiber, for example, Dyneema (relative permittivity: 2.2, molecular weight: 4 million) commercially available from Toyobo Co., Ltd. can be used.

本実施の形態で用いられるガラス繊維の例としては、低誘電特性ガラス繊維であるNE−ガラス(日東紡績株式会社製、比誘電率:4.7)を挙げることができる。また、ガラス繊維は一般的に水酸基を多数有しており、且つマトリックス樹脂7との密着性を向上させるためにカップリング剤処理等の表面処理も容易であるので、E−ガラス、D−ガラス及びT−ガラス等のガラス繊維も使用することができる。 As an example of the glass fiber used in the present embodiment, NE-glass (manufactured by Nitto Boseki Co., Ltd., relative dielectric constant: 4.7) which is a low dielectric property glass fiber can be given. Moreover, since glass fiber generally has many hydroxyl groups and surface treatment such as coupling agent treatment is easy to improve adhesion to the matrix resin 7, E-glass, D-glass Glass fibers such as T-glass can also be used.

マトリックス樹脂10としては、レドーム1の製造性を考慮すると、未硬化の状態で含浸性を確保し得る液状熱硬化性樹脂が好ましい。また、硬化後に水酸基を高密度に有し、水素結合を容易に形成するものが好ましい。このようなマトリックス樹脂10の例としては、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂及びシリコーン樹脂等を挙げることができる。
マトリックス樹脂10の硬化剤としては、特に限定されることはなく、当該技術分野において公知のものを使用することができる。かかる硬化剤としては、有機化酸化物や酸無水物等が挙げられる。また、硬化剤の配合量も、特に限定されることはない。
The matrix resin 10 is preferably a liquid thermosetting resin capable of ensuring impregnation properties in an uncured state in consideration of manufacturability of the radome 1. Moreover, what has a high density of hydroxyl groups after hardening and forms a hydrogen bond easily is preferable. Examples of such matrix resin 10 include epoxy resin, vinyl ester resin, unsaturated polyester resin, and silicone resin.
The curing agent for the matrix resin 10 is not particularly limited, and those known in the technical field can be used. Examples of such curing agents include organic oxides and acid anhydrides. Further, the blending amount of the curing agent is not particularly limited.

本実施の形態では、オレフィン繊維とガラス繊維を交織することにより、オレフィン繊維によりレドームとして要求される電波透過性を確保しながら、ガラス繊維により要求される強度を確保し、電気及び機械特性の優れたFRPを提供できる。
第2に、織布の両面に、マトリックス樹脂10との密着性に優れたガラス繊維が主に現れるように構成したので、マトリックス樹脂との界面においても、すべりが発生せず、せん断強度が向上する。
第3に、オレフィン繊維のみの織布は高強度であるため、機械加工が困難であった。しかし、オレフィン繊維とガラス繊維を交織することにより、機械加工出来るようになった。
第4に、オレフィン繊維は、密度がガラス繊維の38%しかなく非常に軽い(表1参照)。従って、オレフィン繊維を多く用いることにより軽量化できる効果が有る。
実施の形態2.
In this embodiment, by interweaving olefin fiber and glass fiber, while ensuring radio wave permeability required as a radome by olefin fiber, it ensures the strength required by glass fiber, and has excellent electrical and mechanical properties. FRP can be provided.
Secondly, since glass fibers excellent in adhesion to the matrix resin 10 mainly appear on both sides of the woven fabric, slip does not occur at the interface with the matrix resin, and the shear strength is improved. To do.
Thirdly, since the woven fabric made only of olefin fibers has high strength, it is difficult to machine. However, it became possible to machine by interweaving olefin fiber and glass fiber.
Fourth, olefin fibers are very light with a density of only 38% of glass fibers (see Table 1). Therefore, there exists an effect which can be reduced in weight by using many olefin fibers.
Embodiment 2. FIG.

図5には、実施の形態2として、朱子織り(しゅすおり)の例を示す。朱子織りは、たて糸・よこ糸5本以上で完全組織が作られ、交錯点は一定間隔でしかも隣り合わないように配置されている。たて糸・よこ糸どちらかの糸の浮きが非常に少なく、たて糸またはよこ糸のみが主に現れているように見える組織である。
オレフィン繊維をよこ糸13としガラス繊維をたて糸14とし朱子織りすると、主にガラス繊維が現れる面と主にオレフィン繊維が現れる面ができる。ガラス繊維はマトリックス樹脂との密着性が良いので、主にガラス繊維が現れる面を密着させた状態で、他の層と積層する必要がある。
なお、片面に主にガラス繊維が現れるような織り方(組織)であれば、斜文織り、たて二重織り、よこ二重織り、たてよこ二重織り、その他の組織も使用できる。
FIG. 5 shows an example of satin weaving as a second embodiment. The satin weave is composed of 5 or more warps and wefts, and the complete structure is made. The intersections are arranged at regular intervals and not adjacent to each other. It is a structure in which either the warp or the weft is very little floating, and only the warp or the weft appears to appear mainly.
When weft weaving with olefin fiber as weft 13 and glass fiber as warp 14, a surface where glass fiber mainly appears and a surface where mainly olefin fiber appears are formed. Since the glass fiber has good adhesion to the matrix resin, it is necessary to laminate it with another layer in a state where the surface on which the glass fiber appears mainly is in close contact.
In addition, as long as the glass fiber appears on one side (texture) (texture), it is also possible to use oblique weave, warp double weave, weft double weave, warp double weave, and other structures.

次にこの織布の積層法を、図6に示すレドームの断面構造を用いて説明する。
前記朱子織り織布を2枚とガラス繊維織布1枚を、互いのガラス繊維が主に現れる面を密着して積層する。つまり、中央にガラス繊維織布17が位置し、その両側に朱子織り織布15,16をガラス繊維が主に現れる面15a,16aを密着させた状態で積層する。このように積層すると、ガラス繊維はマトリックス樹脂との密着性が良いので、マトリックス樹脂との界面においても、すべりが発生せず、せん断強度が向上する。
なお、必要な強度を得られるのであれば、ガラス繊維織布を取り除くこともできる。
或いは、ガラス繊維織布の替わりに、実施の形態1のたて二重織り織布を用いることもできる。
Next, a method for laminating the woven fabric will be described using the cross-sectional structure of the radome shown in FIG.
The two satin woven fabrics and the one glass fiber woven fabric are laminated so that the surfaces on which the glass fibers mainly appear are closely adhered. That is, the glass fiber woven fabric 17 is located in the center, and the satin weave woven fabrics 15 and 16 are laminated on both sides thereof with the surfaces 15a and 16a on which the glass fibers mainly appear adhered to each other. When laminated in this manner, the glass fiber has good adhesion to the matrix resin, so that slip does not occur at the interface with the matrix resin and the shear strength is improved.
If the required strength can be obtained, the glass fiber woven fabric can be removed.
Alternatively, the warp double woven fabric of the first embodiment can be used instead of the glass fiber woven fabric.

図7には、実施の形態1の他の例として、たてよこ二重織り18の概略断面を示す。
表織布19はたて糸19a、よこ糸19b共にオレフィン繊維を用いて平織りし、裏織布20はたて糸20a、よこ糸20b共にガラス繊維を用いて平織りする。但し、裏たて糸20aの一部を表よこ糸19bに掛けて表織布19と裏織布20を接合し、表面をオレフィン繊維が覆い、裏面をガラス繊維で覆ったものである。従って、片面に主にガラス繊維が現れる織り方であるので、この組織を使用してもよい。
FIG. 7 shows a schematic cross section of a warp double weave 18 as another example of the first embodiment.
Both the warp yarn 19a and the weft yarn 19b are plain woven using olefin fibers, and the back woven fabric 20 is plain woven using both the warp yarn 20a and the weft yarn 20b using glass fibers. However, a part of the back warp yarn 20a is hung on the front weft yarn 19b to join the front woven fabric 19 and the back woven fabric 20, the surface is covered with olefin fibers, and the back surface is covered with glass fibers. Therefore, since this is a weaving method in which glass fibers mainly appear on one side, this structure may be used.

本実施の形態2では、オレフィン繊維を多く(約半分)含むように構成したので、交織した織布としては電波透過性が良好であり、軽量化もできる。
また、実施の形態1で使用した、たて二重織りと比較して、一般的な簡単な組織(朱子織り等)を用いているので容易に製作できる。
実施の形態3.
In this Embodiment 2, since it comprised so that many (about half) olefin fibers might be included, as a woven fabric which interwoven, radio wave permeability is favorable and weight reduction can also be performed.
Further, compared with the warp double weave used in the first embodiment, since a general simple structure (eg, satin weave) is used, it can be easily manufactured.
Embodiment 3 FIG.

オレフィン繊維織布を表布としガラス繊維織布を裏布とし重ね合わせ、ガラス繊維の糸を用いて2枚の織布がすべらないように充分縫い合わせることも可能である。
これには、オレフィン繊維のみの織布とガラス繊維のみの織布を使用するため、交織する必要が無く、比較的単純な縫い合せ作業で製作できる。また、オレフィン繊維とマトリックス樹脂10の界面でのすべりを無くし、せん断強度を向上できる。
It is also possible to superimpose an olefin fiber woven fabric as a front fabric and a glass fiber woven fabric as a back fabric and sew together using glass fiber threads so that the two woven fabrics do not slip.
For this, since a woven fabric made of only olefin fibers and a woven fabric made of only glass fibers are used, there is no need to interweave and it can be manufactured by a relatively simple sewing operation. Further, slip at the interface between the olefin fiber and the matrix resin 10 can be eliminated, and the shear strength can be improved.

この発明の実施の形態1を示すレドーム説明図Radome explanatory drawing which shows Embodiment 1 of this invention この発明の実施の形態1を示すダイニーマ、ガラス繊維の機械的、電気的特性値Dyneema showing the first embodiment of the present invention, mechanical and electrical characteristic values of glass fiber この発明の実施の形態1を示す たて二重織り織布の概略断面図1 is a schematic cross-sectional view of a warp double woven fabric showing Embodiment 1 of the present invention. この発明の実施の形態1を示すレドームの断面構造Sectional structure of radome showing Embodiment 1 of the present invention この発明の実施の形態2を示す朱子織り織布の概略構造図Schematic structural diagram of satin weaving woven fabric showing Embodiment 2 of the present invention この発明の実施の形態2を示すレドームの断面構造Sectional structure of radome showing embodiment 2 of the present invention この発明の実施の形態2を示す たてよこ2重織り織布の概略断面図Schematic sectional view of a warp double weave woven fabric showing Embodiment 2 of the present invention

符号の説明Explanation of symbols

1 レドーム、2 台座、3 電波機器、4 固定用ボルト、5 たて二重織り織布、
6 表たて糸(ガラス繊維)、7 よこ糸(オレフィン繊維)、
8 裏たて糸(ガラス繊維)、9 たて二重織り織布、10 マトリックス樹脂、
11 レドーム外表面、12 レドーム内表面、
13 よこ糸(オレフィン繊維)、14 たて糸(ガラス繊維)、
15 朱子織り織布、15a 朱子織り織布15の主にガラス繊維が現れる面、
16 朱子織り織布、16a 朱子織り織布16の主にガラス繊維が現れる面、
17 ガラス繊維織布、18 たてよこ二重織り織布、
19 表織布(オレフィン繊維)、20 裏織布(ガラス繊維)、
19a 表たて糸(オレフィン繊維)、19b 表よこ糸(オレフィン繊維)、
20a 裏たて糸(ガラス繊維) 、20b 裏よこ糸(ガラス繊維)。
1 radome, 2 pedestals, 3 radio wave equipment, 4 fixing bolts, 5 vertical double woven fabric,
6 warp yarn (glass fiber), 7 weft yarn (olefin fiber),
8 Back warp yarn (glass fiber), 9 Warp double woven fabric, 10 Matrix resin,
11 radome outer surface, 12 radome inner surface,
13 weft yarn (olefin fiber), 14 warp yarn (glass fiber),
15 satin weaving woven fabric, 15a satin weaving weaving surface 15 on which glass fiber mainly appears,
16 satin weaving woven fabric, 16a surface of satin weaving weaving fabric 16 on which glass fiber mainly appears,
17 Glass fiber woven fabric, 18 Vertical woven fabric,
19 front woven fabric (olefin fiber), 20 back woven fabric (glass fiber),
19a Front warp yarn (olefin fiber), 19b Front weft yarn (olefin fiber),
20a Back warp yarn (glass fiber), 20b Back weft yarn (glass fiber).

Claims (7)

オレフィン繊維とガラス繊維をたて糸又はよこ糸とし、交織したことを特徴とする繊維強化織布。 A fiber-reinforced woven fabric characterized by cross-weaving olefin fiber and glass fiber as warp or weft. 前記ガラス繊維を表面と裏面のたて糸とし前記オレフィン繊維をよこ糸とし、表面と裏面共に前記ガラス繊維が主に現れるように交織したことを特徴とする繊維強化織布。 A fiber-reinforced woven fabric, wherein the glass fibers are warps on the front and back surfaces, the olefin fibers are wefts, and are interwoven so that the glass fibers mainly appear on both the front and back surfaces. 前記オレフィン繊維が主に現れる面と前記ガラス繊維が主に現れる面とを有するように交織したことを特徴とする繊維強化織布。 A fiber-reinforced woven fabric, which is interwoven so as to have a surface on which the olefin fiber mainly appears and a surface on which the glass fiber mainly appears. 前記オレフィン繊維織布の表布と、前記ガラス繊維織布の裏布とを、前記ガラス繊維の糸を用いて縫い合わせたこと特徴とする繊維強化織布。 A fiber-reinforced woven fabric, wherein a surface fabric of the olefin fiber woven fabric and a backing fabric of the glass fiber woven fabric are stitched together using the yarn of the glass fiber. 前記オレフィン繊維が、超高分子量ポリエチレン繊維であることを特徴とする請求項1ないし請求項4のいずれかに記載の繊維強化織布。 The fiber-reinforced woven fabric according to any one of claims 1 to 4, wherein the olefin fiber is an ultrahigh molecular weight polyethylene fiber. 前記ガラス繊維が、低誘電率ガラス繊維であることを特徴とする請求項1ないし請求項4のいずれかに記載の繊維強化織布。 The fiber-reinforced woven fabric according to any one of claims 1 to 4, wherein the glass fiber is a low dielectric constant glass fiber. 前記請求項1ないし請求項6のいずれかに記載の繊維強化織布を少なくとも1枚含めて、ガラス繊維が主に現れる面を密着して積み重ねた積層に、マトリックス樹脂を含浸し一体化した繊維強化樹脂を構造材料として用いたことを特徴とするレドーム。 A fiber comprising at least one fiber-reinforced woven fabric according to any one of claims 1 to 6 and impregnated with a matrix resin in a laminate in which glass fibers are mainly brought into close contact with each other and stacked. A radome characterized by using reinforced resin as a structural material.
JP2008219552A 2008-08-28 2008-08-28 Radome Expired - Fee Related JP4957681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008219552A JP4957681B2 (en) 2008-08-28 2008-08-28 Radome

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008219552A JP4957681B2 (en) 2008-08-28 2008-08-28 Radome

Publications (2)

Publication Number Publication Date
JP2010053479A true JP2010053479A (en) 2010-03-11
JP4957681B2 JP4957681B2 (en) 2012-06-20

Family

ID=42069680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008219552A Expired - Fee Related JP4957681B2 (en) 2008-08-28 2008-08-28 Radome

Country Status (1)

Country Link
JP (1) JP4957681B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512117A (en) * 2011-03-22 2014-05-19 ディーエスエム アイピー アセッツ ビー.ブイ. Inflatable radome
CN106532253A (en) * 2016-11-28 2017-03-22 重庆浙升科技有限公司 Polyurethane antenna cover
JP2017531099A (en) * 2014-09-16 2017-10-19 ディーエスエム アイピー アセッツ ビー.ブイ. Space frame radome with polymer sheet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3082667B1 (en) * 2018-06-14 2021-06-11 Dassault Aviat RADOME INCLUDING A LAMINATED STRUCTURE INCLUDING COMPOSITE LAYERS WHOSE FIBER REINFORCEMENT IS CONSISTING OF POLYOLEFIN FIBERS
CN114786947A (en) 2019-12-30 2022-07-22 美国圣戈班性能塑料公司 Antenna cover design

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829581Y1 (en) * 1969-11-11 1973-09-07
JPS6017646A (en) * 1983-07-11 1985-01-29 Yoshio Nanri Dehumidification method
JPH02173044A (en) * 1988-12-26 1990-07-04 Toyobo Co Ltd Fiber-reinforced plastics and reinforcing material therefor
JPH02291703A (en) * 1989-05-02 1990-12-03 Tech Res & Dev Inst Of Japan Def Agency Radar dome made of fiber reinforced plastic
JPH06226867A (en) * 1993-01-29 1994-08-16 Toyobo Co Ltd Very low temperature fiber reinforced plastic material
JP2001055642A (en) * 1999-08-12 2001-02-27 Nitto Boseki Co Ltd Cloth for reinforcing resin and laminated board by using the same
JP2005271220A (en) * 2004-03-22 2005-10-06 Nippon Steel Composite Co Ltd Base material for fiber-reinforced composite material and fiber-reinforced composite material molded product
JP2007046280A (en) * 2005-08-09 2007-02-22 Sangyo Shizai Center:Kk Highly strong protective sheet
WO2007145927A1 (en) * 2006-06-15 2007-12-21 Innegrity, Llc Composite materials including amorphous thermoplastic fibers
JP2008121146A (en) * 2006-11-13 2008-05-29 Shinetsu Quartz Prod Co Ltd Composite woven fabric and printed wiring board

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4829581Y1 (en) * 1969-11-11 1973-09-07
JPS6017646A (en) * 1983-07-11 1985-01-29 Yoshio Nanri Dehumidification method
JPH02173044A (en) * 1988-12-26 1990-07-04 Toyobo Co Ltd Fiber-reinforced plastics and reinforcing material therefor
JPH02291703A (en) * 1989-05-02 1990-12-03 Tech Res & Dev Inst Of Japan Def Agency Radar dome made of fiber reinforced plastic
JPH06226867A (en) * 1993-01-29 1994-08-16 Toyobo Co Ltd Very low temperature fiber reinforced plastic material
JP2001055642A (en) * 1999-08-12 2001-02-27 Nitto Boseki Co Ltd Cloth for reinforcing resin and laminated board by using the same
JP2005271220A (en) * 2004-03-22 2005-10-06 Nippon Steel Composite Co Ltd Base material for fiber-reinforced composite material and fiber-reinforced composite material molded product
JP2007046280A (en) * 2005-08-09 2007-02-22 Sangyo Shizai Center:Kk Highly strong protective sheet
WO2007145927A1 (en) * 2006-06-15 2007-12-21 Innegrity, Llc Composite materials including amorphous thermoplastic fibers
JP2008121146A (en) * 2006-11-13 2008-05-29 Shinetsu Quartz Prod Co Ltd Composite woven fabric and printed wiring board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014512117A (en) * 2011-03-22 2014-05-19 ディーエスエム アイピー アセッツ ビー.ブイ. Inflatable radome
JP2017531099A (en) * 2014-09-16 2017-10-19 ディーエスエム アイピー アセッツ ビー.ブイ. Space frame radome with polymer sheet
CN106532253A (en) * 2016-11-28 2017-03-22 重庆浙升科技有限公司 Polyurethane antenna cover

Also Published As

Publication number Publication date
JP4957681B2 (en) 2012-06-20

Similar Documents

Publication Publication Date Title
JP4957681B2 (en) Radome
US10128566B2 (en) Advanced radome designs with tailorable reinforcement and methods of manufacturing the same
JP5737428B2 (en) Fiber-reinforced composite material molded body and method for producing the same
JP4906695B2 (en) Radome and manufacturing method thereof
JP5638940B2 (en) Fiber reinforced resin composite material
JP7284287B2 (en) Low dielectric constant, low loss radome
JP4620664B2 (en) Radome with polyester-polyarylate fibers and method for producing the same
JP2016149756A (en) Radome for aviation body and manufacturing method of the same
KR101173147B1 (en) Fabric reinforcement for composites and fiber reinforced composite prepreg having the fabric reinforcement
JP4720877B2 (en) Structural members and radomes
US20050024289A1 (en) Rigid radome with polyester-polyarylate fibers and a method of making same
KR102200951B1 (en) Fiber reinforced plastic sheet and stack structure including the same
KR101388242B1 (en) Method for making hybrid fpr having carbon fiber and aramid fiber
US9685710B1 (en) Reflective and permeable metalized laminate
JP3337243B2 (en) Windmill wing
EP3782811B1 (en) Sound waves absorbing laminate composite material structure
JPH04267139A (en) Carbon fiber reinforced composite material prepreg sheet
KR100952213B1 (en) Complex fiber reinforcement
CN110741113A (en) Woven 3D fiber reinforced structure and method of making same
TWI761007B (en) Radome design
CN213166984U (en) Corrosion-resistant fiber winding pultrusion pipe
KR102510604B1 (en) Radar absorbing structure
CN220661915U (en) Shock-resistant glass fiber cloth
CN117087218A (en) Preparation method of integrated three-dimensional weaving light-structure wave-transmitting radome
JPS61102452A (en) Cloth for fiber reinforced plastic

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150330

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees