JP2010053371A - Method for producing high-strength cold-rolled steel sheet - Google Patents

Method for producing high-strength cold-rolled steel sheet Download PDF

Info

Publication number
JP2010053371A
JP2010053371A JP2008216252A JP2008216252A JP2010053371A JP 2010053371 A JP2010053371 A JP 2010053371A JP 2008216252 A JP2008216252 A JP 2008216252A JP 2008216252 A JP2008216252 A JP 2008216252A JP 2010053371 A JP2010053371 A JP 2010053371A
Authority
JP
Japan
Prior art keywords
steel sheet
rolled steel
mass
strength
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008216252A
Other languages
Japanese (ja)
Other versions
JP5256936B2 (en
JP2010053371A5 (en
Inventor
Hiroki Nakamaru
裕樹 中丸
Junichiro Hirasawa
淳一郎 平澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008216252A priority Critical patent/JP5256936B2/en
Publication of JP2010053371A publication Critical patent/JP2010053371A/en
Publication of JP2010053371A5 publication Critical patent/JP2010053371A5/ja
Application granted granted Critical
Publication of JP5256936B2 publication Critical patent/JP5256936B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a high-strength cold-rolled steel sheet which has excellent chemical-processing property and corrosion-resistance after electrostatic-deposition coating even in the case of a comparatively high content of Si. <P>SOLUTION: The cold-rolled steel sheet containing Si of 0.8-2.0 mass%, and Mn of 1.0-3.0 mass%, is first subjected to annealing in atmosphere of N<SB>2</SB>-H<SB>2</SB>in a furnace and at a ratio of PH<SB>2</SB>O/PH<SB>2</SB>of ≤1.0×10<SP>-3</SP>. Successively, a quenching and a tempering, are applied, and thereafter, a pickling is performed with an alternating current electrolysis having ≥1A/dm<SP>2</SP>current density. After passing through such sequential process, the high-strength cold-rolled steel sheet having strength of ≥590 MPa TS and excellent in the chemical-processing property and the corrosion-resistance after electrostatic-deposition coating, is obtained. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、自動車用鋼板等に使用される高強度冷延鋼板の製造方法に関するものであり、特に、Si含有量が比較的多い場合でも優れた化成処理性及び電着塗装後の耐食性を有する高強度冷延鋼板の製造方法に関するものである。   The present invention relates to a method for producing a high-strength cold-rolled steel sheet used for automobile steel sheets and the like, and particularly has excellent chemical conversion property and corrosion resistance after electrodeposition coating even when the Si content is relatively large. The present invention relates to a method for producing a high-strength cold-rolled steel sheet.

近年、地球環境保全という観点から、自動車の燃費改善が要求されている。さらに加えて、衝突時に乗員を保護するため、自動車車体の安全性向上も要求されている。そのため、自動車車体の軽量化および自動車車体の強化が積極的に進められている。
自動車車体の軽量化と強化を同時に満足させるためには、部品素材を高強度化することが有効であると言われており、これを受けて、最近では、自動車部品に対して高強度鋼板が積極的に使用されている。
In recent years, there has been a demand for improving fuel efficiency of automobiles from the viewpoint of global environmental conservation. In addition, in order to protect passengers in the event of a collision, it is also required to improve the safety of automobile bodies. Therefore, the weight reduction of the automobile body and the reinforcement of the automobile body are being actively promoted.
In order to satisfy the weight reduction and strengthening of automobile bodies at the same time, it is said that it is effective to increase the strength of component materials. Used actively.

一方、自動車用鋼板には厳しい加工が施されることから、強度とともに、延性に優れることも重要である。このような機械的特性を有する高強度鋼板としては、フェライトとマルテンサイトの複合組織を有する二相組織鋼板(DP鋼板)や、残留オーステナイトに起因する変態誘起塑性(Transformation Induced Plasticity:TRIP)を利用した高延性鋼板が挙げられ、実用化の段階に至っている。また、高強度化に有効な鋼中添加元素としてSi、Mn、Cr、P等が利用されており、中でも、Siは高強度と高延性の両立に効果的であることから多用されている。   On the other hand, since the steel sheet for automobiles is subjected to severe processing, it is important to have excellent ductility as well as strength. As a high-strength steel plate having such mechanical properties, a dual-phase steel plate (DP steel plate) having a composite structure of ferrite and martensite, or transformation induced plasticity (TRIP) caused by retained austenite is used. The high ductility steel plate which was made is mentioned, and it has reached the stage of practical use. In addition, Si, Mn, Cr, P, and the like are used as additive elements in steel effective for increasing the strength. Among them, Si is frequently used because it is effective in achieving both high strength and high ductility.

ところで、自動車部品として用いられる鋼板は、成形された後、塗装に先立つ下地処理として一般にりん酸塩処理が行われる。この様なりん酸塩処理を施すことによって、次工程の塗装における塗膜密着性を向上させることができる。
しかしながら、上記Si等の添加された鋼板に対してりん酸塩処理を行った場合、以下の問題がある。Si等の添加された鋼板は、通常の製造工程で実施される還元焼鈍の雰囲気で、易酸化性元素であるSiが優先的に酸化されて鋼板表面に濃化し、表面にSi含有酸化物層を形成する。そして、表面にこの様なSi含有酸化物層が形成された鋼板にりん酸塩処理を行った場合、均一かつ微細にりん酸亜鉛の結晶を形成させることができず、部分的にりん酸塩結晶が欠損した表面状態となる。更に、この様なりん酸塩処理不良の鋼板表面に電着塗装等の塗装を施した場合、密着性の良好な塗膜が得られなかったり、塗装後
の耐食性が劣化することになる。
By the way, a steel sheet used as an automobile part is generally subjected to a phosphate treatment as a base treatment prior to coating after being formed. By applying such a phosphate treatment, the adhesion of the coating film in the coating of the next step can be improved.
However, when the phosphate treatment is performed on the steel sheet to which Si or the like is added, there are the following problems. The steel sheet to which Si and the like are added is an atmosphere of reduction annealing carried out in a normal manufacturing process, Si, which is an easily oxidizable element, is preferentially oxidized and concentrated on the steel sheet surface, and a Si-containing oxide layer on the surface Form. And, when a phosphate treatment is performed on a steel sheet having such a Si-containing oxide layer formed on the surface, zinc phosphate crystals cannot be formed uniformly and finely, and the phosphate is partially It becomes a surface state in which crystals are deficient. Furthermore, when a coating such as electrodeposition coating is applied to the surface of such a steel sheet with poor phosphate treatment, a coating film with good adhesion cannot be obtained, or the corrosion resistance after coating is deteriorated.

上記課題に対して、これまでにも課題を解決すべく様々な技術が提案されている。
例えば、特許文献1では、20〜1500mg/m2 の鉄被覆層を電気めっき法を用いて鋼板上に形成する方法が開示されている。しかしながら、この方法では、電気めっき設備が別途必要となり工程が増加する分コストも増大するという問題がある。
また、特許文献2では、Mn/Si比率を規定し、特許文献3ではNiを添加することによって、各々りん酸塩処理性を向上させている。しかしながら、その効果は鋼板中のSi含有量に依存するものであり、Si含有量の高い鋼板については更なる改善が必要であると考えられる。
更に、特許文献4では、焼鈍時の露点を-25〜0℃にすることで、鋼板素地表面から深さ1μm以内にSi含有酸化物からなる内部酸化層を形成し、鋼板表面長さ10μmに占めるSi含有酸化物の割合を80%以下にする方法が開示されている。しかしながら、特許文献4に記載の方法の場合、化成処理性は向上するものの、化成処理皮膜の直下にSi含有酸化物が存在することから電着塗装後の耐食性が悪いという問題があった。
特開平5-320952号公報 特開平6-104878号公報 特許第2951480号公報 特許第3840392号公報
In order to solve the above problems, various techniques have been proposed so far.
For example, Patent Document 1 discloses a method of forming an iron coating layer of 20 to 1500 mg / m 2 on a steel plate using an electroplating method. However, in this method, there is a problem that the cost is increased due to the additional steps required for the electroplating equipment.
In Patent Document 2, the Mn / Si ratio is defined, and in Patent Document 3, Ni is added to improve the phosphate treatment property. However, the effect depends on the Si content in the steel sheet, and it is considered that further improvement is necessary for the steel sheet having a high Si content.
Furthermore, in Patent Document 4, by setting the dew point during annealing to -25 to 0 ° C., an internal oxide layer made of an Si-containing oxide is formed within a depth of 1 μm from the surface of the steel sheet substrate, and the steel sheet surface length is 10 μm. A method is disclosed in which the proportion of the Si-containing oxide is 80% or less. However, in the case of the method described in Patent Document 4, although the chemical conversion treatment property is improved, there is a problem that the corrosion resistance after electrodeposition coating is poor because the Si-containing oxide exists immediately below the chemical conversion treatment film.
JP-A-5-320952 JP-A-6-104878 Japanese Patent No. 2951480 Japanese Patent No. 3803992

本発明は、かかる事情に鑑み、Si含有量が比較的多い場合でも優れた化成処理性及び電着塗装後の耐食性を有する高強度冷延鋼板の製造方法を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a method for producing a high-strength cold-rolled steel sheet having excellent chemical conversion property and corrosion resistance after electrodeposition coating even when the Si content is relatively large.

本発明の要旨は以下の通りである。
[1]Si:0.8〜2.0mass%、Mn:1.0〜3.0mass%を含有する冷延鋼板を焼鈍し、次いで、焼き入れ、焼き戻しを行い、その後電解酸洗処理することでTS≧590Mpaの強度を有する高強度冷延鋼板を製造するにあたり、前記焼鈍は、炉内雰囲気をN2-H2とし、H2Oの分圧(PH2O)とH2分圧(PH2)の比であるPH2O/PH2を1.0×10-3以下に保持し、前記電解酸洗は、電流密度が1A/dm2以上の交番電解とすることを特徴とする高強度冷延鋼板の製造方法。
The gist of the present invention is as follows.
[1] Cold-rolled steel sheet containing Si: 0.8 to 2.0 mass%, Mn: 1.0 to 3.0 mass% is annealed, then quenched and tempered, and then subjected to electrolytic pickling so that TS ≧ 590 MPa in producing a high strength cold rolled steel sheet having a strength, the annealing, the ratio of the furnace atmosphere and N 2 -H 2, H 2 O partial pressure (PH 2 O) and H 2 partial pressure (PH 2) The PH 2 O / PH 2 is maintained at 1.0 × 10 −3 or less, and the electrolytic pickling is an alternating electrolysis having a current density of 1 A / dm 2 or more. Method.

なお、本明細書において、鋼の成分を示す%は、すべてmass%である。   In addition, in this specification,% which shows the component of steel is all mass%.

本発明によれば、Si含有量が比較的多い場合でも優れた化成処理性および電着塗装後耐食性を有する高強度冷延鋼板が得られる。
また、新たな設備等を設けることなく上記鋼板が得られるため、産業上有益な発明である。
According to the present invention, a high-strength cold-rolled steel sheet having excellent chemical conversion properties and corrosion resistance after electrodeposition coating can be obtained even when the Si content is relatively large.
Moreover, since the said steel plate is obtained without providing new equipment etc., it is an industrially useful invention.

本発明において対象とする鋼板は、TS(引っ張り強度)が590Mpa以上の強度を有する高強度冷延鋼板である。そのため、本発明では、Si:0.8〜2.0mass%、Mn:1.0〜3.0mass%を含有する。Si及びMnは加工性を低下させずに強度を上げる元素であり、強度と加工性のバランスを向上させるために必要である。
590Mpa以上のTSを得るためには、Si:0.8mass%以上、Mn:1.0mass%以上の添加が必要である。一方、過度に添加すると脆化が顕著となることからSiの上限は2.0mass%、Mnの上限は3.0mass%とする。
The steel plate targeted in the present invention is a high-strength cold-rolled steel plate having a TS (tensile strength) of 590 Mpa or more. Therefore, in this invention, Si: 0.8-2.0mass% and Mn: 1.0-3.0mass% are contained. Si and Mn are elements that increase strength without degrading workability, and are necessary to improve the balance between strength and workability.
In order to obtain TS of 590 MPa or more, addition of Si: 0.8 mass% or more and Mn: 1.0 mass% or more is necessary. On the other hand, if added excessively, embrittlement becomes significant, so the upper limit of Si is 2.0 mass% and the upper limit of Mn is 3.0 mass%.

以上の添加元素で本発明鋼は目的とする特性が得られるが、上記の添加元素に加えて、下記の元素を添加することが好ましい。これらの元素を添加する場合の好ましい範囲は以下の通りである。
C量は0.01〜0.20mass%であることが好ましく、0.04〜0.15mass%であればさらに好ましい。C量が下限値未満であると、固溶、析出、細粒化、変態等による強化の効果がほとんど見られず、C量が上限値超であると、固溶、析出、細粒化、変態等による強化の効果は飽和し、コストがかかるためである。
P量は、0.03mass%以下が好ましく、0.02mass%以下がさらに好ましい。上限値超になると耐食性が劣化傾向となるためである。
S量は、0.005mass%以下が好ましく、0.002mass%以下がさらに好ましい。上限値超になると耐食性が劣化傾向となるためである。
また、上記に加え、必要に応じて、さらにTi、Nb、V、Mo、Cu、Niの1種または2種以上を含有することもできる。
Although the steel of the present invention can achieve the desired characteristics with the above additive elements, it is preferable to add the following elements in addition to the above additive elements. The preferred range when these elements are added is as follows.
The amount of C is preferably 0.01 to 0.20 mass%, more preferably 0.04 to 0.15 mass%. If the amount of C is less than the lower limit, the effect of strengthening due to solid solution, precipitation, fine graining, transformation, etc. is hardly seen, and if the amount of C exceeds the upper limit, solid solution, precipitation, fine graining, This is because the effect of strengthening by transformation or the like is saturated and costly.
The amount of P is preferably 0.03 mass% or less, and more preferably 0.02 mass% or less. This is because if the upper limit is exceeded, the corrosion resistance tends to deteriorate.
The amount of S is preferably 0.005 mass% or less, and more preferably 0.002 mass% or less. This is because if the upper limit is exceeded, the corrosion resistance tends to deteriorate.
In addition to the above, one or more of Ti, Nb, V, Mo, Cu, and Ni can be further contained as necessary.

そして、本発明では、上記組成からなる鋼板を焼鈍し、次いで、焼き入れ、焼き戻しを行い、その後電解酸洗処理する。焼鈍された冷延鋼板を引き続き焼き入れ及び焼き戻しすることで鋼の組織制御を行い強度と伸びのバランスの取れた材質を得ることができる。
この時、焼鈍は、炉内雰囲気をN2-H2とし、H2Oの分圧(PH2O)とH2分圧(PH2)の比であるPH2O/PH2を1.0×10-3以下に保持する。また、焼鈍温度は750℃〜900℃、焼き戻し温度は150〜400℃で行うことが好ましい。なお、焼鈍温度、焼き戻し温度は目標とする材質特性に応じて適宜選択可能であり特に限定はしない。
また、電解酸洗は、電流密度が1A/dm2以上の交番電解とする。
これらは、本発明において、最も重要な要件である。
And in this invention, the steel plate which consists of the said composition is annealed, Then, quenching and tempering are performed, and an electrolytic pickling process is carried out after that. By subsequently quenching and tempering the annealed cold-rolled steel sheet, the structure of the steel can be controlled to obtain a material with a balance between strength and elongation.
In this case, annealing, the furnace atmosphere and N 2 -H 2, H 2 O partial pressure (PH 2 O) and H 2 partial pressure (PH 2) PH 2 O / PH 2 of 1.0 × the ratio of Hold below 10-3 . The annealing temperature is preferably 750 to 900 ° C., and the tempering temperature is preferably 150 to 400 ° C. The annealing temperature and the tempering temperature can be appropriately selected according to the target material characteristics and are not particularly limited.
Electrolytic pickling is an alternating electrolysis with a current density of 1 A / dm 2 or more.
These are the most important requirements in the present invention.

以下、上記焼鈍炉内雰囲気および電解酸洗条件について、詳細に説明する。
一般的にこのような焼き入れを伴う焼鈍では、焼鈍工程及び焼き入れ工程において表面に形成された酸化物が残存すると化成処理性を阻害することが知られている。このため、焼き戻し後に酸洗することで表面酸化物を除去する必要がある。ただし、表面酸化物の中でも、ヘマタイト、マグネタイト、ウスタイト等のFe系の酸化物は硫酸や塩酸の水溶液に浸漬する通常の酸洗処理で容易に除去できるが、SiやMnを含有する酸化物の除去は困難である。
そこで、まず、本発明者らは、SiやMnを含有する酸化物の除去について検討を行った。そうしたところ、Siのみを含有する酸化物は極性を交互に変える交番電解酸洗でも除去が困難であるが、SiとMnの両者を含有する複合酸化物は極性を交互に変える交番電解酸洗を行なうことで除去可能となることを見いだした。また、SiやMnを含有する酸化物は処理温度の高い焼鈍工程で形成され、比較的温度の低い焼き戻し工程では形成されないことも判った。
以上のことから、本発明者らは焼鈍時の炉内雰囲気を制御することで、化成処理性に影響する表面酸化物の微細構造を制御できるのではと考え、種々検討を行なった。
その結果、焼鈍時に炉内に不可避的に存在するH2Oの分圧(PH2O)とH2分圧(PH2)の比の制御が表面酸化物の微細構造に対して極めて重要であることを見出した。
図1および図2は、1.4mass%Si, 2.0mass%Mnを含有する冷延鋼板をH2-5%H2、露点-35℃(PH2O/PH2=3.8×10-3)、及びH2-7%H2、露点-45℃(PH2O/PH2=0.9×10-3)、の雰囲気中で、830℃×30秒の焼鈍処理を行なったサンプルの断面透過電子顕微鏡写真(明視野像)である。なお、H2Oの分圧は露点計で測定した露点の値から換算した。
図1では、鋼板の極表層にSiとMnの複合酸化物であるMn2SiO4が形成され、その内層にはSiのみからなる酸化物であるSiO2が形成されている。一方、図2では、鋼板の極表層にSiとMnの複合酸化物であるMn2SiO4が形成されているだけで内部にSiO2の形成は見られない。同じ焼鈍温度でありながらこのような違いが生じる理由は以下のように考えられる。
図3は焼鈍時の界面反応を模式的に示したものである。図3によれば、まず、式(1)に示すH2O分子の解離によって鋼板表面にOが生成する。次いで、そのOにより極表層のSi及びMnが酸化され、表面付近の鋼中Si、Mnの活量が低下する。そして、この活量の勾配が駆動力となり、Si及びMnは内部から表面に向かって拡散する。
H2O=H2+O -----(1)
このとき、Siに比べてMn拡散速度は遅いことから、極表層の内部にMn欠乏層が生じる。
また、図4によれば、PH2O/PH2の比が高いとH2O分子の解離によって鋼板表面に生成するOのポテンシャルが高くなるために鋼中から表面に向かうSiやMnの拡散速度よりも鋼板表面から内部に向かうOの拡散速度の方が速くなり内部のMn欠乏層の領域でSiのみを含有するSiO2が生成する。
一方で、PH2O/PH2の比が低いとH2O分子の解離によって鋼板表面に生成するOのポテンシャルが低くなるために酸化量そのものが少なくなり、極表層にSi、Mnの複合酸化物のみを形成する。
このように、焼鈍時のPH2O/PH2を制御することで表面に生成する酸化物の微細構造を制御することが可能となる。
そして、上記結果を基にすれば、電解酸洗を行なってもSiO2は除去困難であるが、SiとMnの複合酸化物だけであれば電解酸洗で除去可能であることから、焼鈍時のPH2O/PH2制御と電解酸洗の組み合わせを最適化することで化成処理性の良好な表面を創り出すことが可能となる。すなわち、表面酸化物をSiとMnの複合酸化物に制御し、交番電解酸洗を行うことで表面の酸化物が除去され、化成処理性が向上する。
これらの知見を基に、さらに検討を進めた結果、表面酸化物をSi、Mnの複合酸化物に制御するためには、Mnを所定の量とすることに加えて、PH2O/PH2が1.0×10-3以下が必要であることがわかった。PH2O/PH2が1.0×10-3超えであると、極表層にMn2SiO4が、そしてその内部にSiO2が形成され、この内部に形成されたSiO2は、電解酸洗で除去が困難であるためである。
また、炉内雰囲気はN2-H2とする。H2濃度は、鋼板表面を還元できる量が含まれていればよく、好ましくは1%以上、さらに好ましくは5%以上である。さらに、焼鈍温度は、750℃以上900℃以下が好ましい。750℃未満では、焼き入れ後に十分な強度が得られないためである。一方、900℃超えでは炉内破断の恐れがあるためである。
また、電解酸洗は、電流密度が1A/dm2以上の交番電解とする。
電流密度を1A/dm2以上とすることで、表層の酸化物が除去可能となる。好ましくは5A/dm2以上である。
そして、陰極→陽極、もしくは陽極→陰極の交番電解が必要である。鋼板を陰極に保持したままでは酸洗効果が小さい。逆に鋼板を陽極に保持したままでは電解時に溶出するFeが酸洗液中に蓄積し、酸洗液中のFe濃度が増大する。このような酸洗液が鋼板表面に付着すると乾き汚れ等の問題が発生する。以上の理由から、本発明においては、交番電解とする。
電解酸洗に用いる酸洗液は特に限定しないが、硝酸やフッ化水素酸は設備に対する腐食性が強く取り扱いに注意を要するため好ましくない。また塩酸は陰極から塩素ガスを発生する可能性があり好ましくない。このため、腐食性や環境を考慮すると硫酸の使用が好ましい。硫酸濃度は5mass%以上、20mass%以下が好ましく、より望ましくは10mass%以上、15mass%以下である。硫酸濃度が5mass%未満では導電率が低くなることから電解時の浴電圧が上昇し、電源への負荷が大きくなる。一方、硫酸濃度が20mass%超えでは、ドラグアウトによる損失が大きくコスト的に問題となる。
酸洗液の温度は40℃以上70℃以下が好ましく、より好ましくは50℃以上60℃以下である。連続電解することによる発熱で浴温が上昇することから、40℃未満に温度を維持することは困難である。また、電解槽のライニングの耐久性の観点から温度が70℃を超えることは問題である。
その他の焼き入れ、焼き戻しの条件は特に限定しない。焼き戻しは、150〜400℃の温度で行われるのが好ましい。150℃未満では伸びが劣化し、一方、400℃超えでは硬度が低下するためである。
以上のようにして製造することにより、化成処理性と電着塗装後の耐食性に優れた高強度冷延鋼板が得られる。このようにして製造された高強度冷延鋼板が優れた化成処理性と優れた電着塗装性を有する理由としては、鋼板表面から板厚方向1μmまでの板厚断面領域におけるSi含有酸化物の割合が5%程度以下と極めて低い値になっているためと考えられる。
鋼板表面から板厚方向1μmまでの板厚断面領域におけるSi含有酸化物の存在割合は、以下の方法にて確認することができる。
鋼板表面と直行する方向の断面を電子顕微鏡にて50000倍以上の倍率で、鋼板表面長さ10μm、表面及び表面から板厚方向1μmの領域において、Si含有酸化物の占める面積をマッピング処理により確認する。Si含有酸化物は、表層に層状に形成されているか、析出物の形態で存在するため、そのような通常の鋼板成分と異なる部分の成分を測定し、Si含有酸化物の部分の面積を測定すればよい。
Hereinafter, the atmosphere in the annealing furnace and the electrolytic pickling conditions will be described in detail.
In general, it is known that, in such annealing involving quenching, if oxides formed on the surface remain in the annealing process and the quenching process, the chemical conversion treatment property is hindered. For this reason, it is necessary to remove the surface oxide by pickling after tempering. However, among surface oxides, Fe-based oxides such as hematite, magnetite, and wustite can be easily removed by ordinary pickling treatment immersed in an aqueous solution of sulfuric acid or hydrochloric acid. Removal is difficult.
Therefore, first, the present inventors examined removal of oxides containing Si and Mn. As a result, oxides containing only Si are difficult to remove even by alternating electrolytic pickling with alternating polarity, but complex oxides containing both Si and Mn do not have alternating electrolytic pickling with alternating polarity. I found that it was possible to remove by doing. It has also been found that oxides containing Si and Mn are formed in an annealing process at a high processing temperature and not formed in a tempering process at a relatively low temperature.
From the above, the present inventors considered that the fine structure of the surface oxide that affects the chemical conversion property can be controlled by controlling the atmosphere in the furnace at the time of annealing.
As a result, extremely important for the microstructure of the control surface oxides in the ratio of the partial pressure (PH 2 O) and H 2 partial pressure of H 2 O which inevitably present in the furnace during annealing (PH 2) I found out.
Figures 1 and 2 show that cold rolled steel sheet containing 1.4 mass% Si and 2.0 mass% Mn is H 2 -5% H 2 , dew point -35 ° C (PH 2 O / PH 2 = 3.8 × 10-3), And H 2 -7% H 2 , dew point -45 ° C (PH 2 O / PH 2 = 0.9 × 10-3) in a cross-sectional transmission electron microscope of a sample that was annealed at 830 ° C for 30 seconds It is a photograph (bright field image). The partial pressure of H 2 O was converted from the value of the dew point measured with a dew point meter.
In FIG. 1, Mn 2 SiO 4 which is a complex oxide of Si and Mn is formed on the extreme surface layer of a steel sheet, and SiO 2 which is an oxide composed only of Si is formed on the inner layer. On the other hand, in FIG. 2, Mn 2 SiO 4, which is a complex oxide of Si and Mn, is only formed on the extreme surface layer of the steel sheet, and no SiO 2 is formed inside. The reason why such a difference occurs even at the same annealing temperature is considered as follows.
FIG. 3 schematically shows the interface reaction during annealing. According to FIG. 3, first, O is generated on the surface of the steel sheet by the dissociation of H 2 O molecules shown in Formula (1). Next, Si and Mn in the extreme surface layer are oxidized by the O, and the activities of Si and Mn in the steel near the surface decrease. The gradient of activity becomes a driving force, and Si and Mn diffuse from the inside toward the surface.
H 2 O = H 2 + O ----- (1)
At this time, since the Mn diffusion rate is slower than that of Si, an Mn-deficient layer is formed inside the extreme surface layer.
In addition, according to Fig. 4, when the ratio of PH 2 O / PH 2 is high, the potential of O generated on the steel sheet surface due to dissociation of H 2 O molecules increases, so that diffusion of Si and Mn from the steel toward the surface The diffusion rate of O from the steel sheet surface to the inside is faster than the velocity, and SiO 2 containing only Si is generated in the region of the Mn-deficient layer inside.
On the other hand, if the ratio of PH 2 O / PH 2 is low, the potential of O generated on the surface of the steel sheet due to the dissociation of H 2 O molecules decreases, so the amount of oxidation itself decreases, and the combined oxidation of Si and Mn occurs on the extreme surface layer. Form only things.
Thus, it becomes possible to control the fine structure of the oxide generated on the surface by controlling PH 2 O / PH 2 during annealing.
Then, if based on the above results, since the SiO 2 be subjected to electrolytic pickling is difficult removal, it can be removed by electrolytic pickling if only a composite oxide of Si and Mn, during annealing By optimizing the combination of PH 2 O / PH 2 control and electrolytic pickling, it is possible to create a surface with good chemical conversion treatment. That is, by controlling the surface oxide to be a complex oxide of Si and Mn and carrying out alternating electrolytic pickling, the surface oxide is removed and the chemical conversion treatment performance is improved.
As a result of further investigation based on these findings, in order to control the surface oxide to be a complex oxide of Si and Mn, in addition to a predetermined amount of Mn, PH 2 O / PH 2 It was found that 1.0 × 10 −3 or less is necessary. If PH 2 O / PH 2 is at more than 1.0 × 10 -3, Mn 2 SiO 4 in the surface layer electrode, and SiO 2 is formed therein, SiO 2 formed in the interior, the electrolytic pickling This is because removal is difficult.
The atmosphere in the furnace is N 2 —H 2 . The H 2 concentration only needs to contain an amount capable of reducing the steel sheet surface, and is preferably 1% or more, more preferably 5% or more. Furthermore, the annealing temperature is preferably 750 ° C. or higher and 900 ° C. or lower. This is because if it is less than 750 ° C., sufficient strength cannot be obtained after quenching. On the other hand, if it exceeds 900 ° C., there is a risk of breakage in the furnace.
Electrolytic pickling is an alternating electrolysis with a current density of 1 A / dm 2 or more.
When the current density is 1 A / dm 2 or more, the surface oxide can be removed. Preferably it is 5 A / dm 2 or more.
Then, alternating electrolysis of cathode → anode or anode → cathode is necessary. The pickling effect is small when the steel plate is held on the cathode. Conversely, if the steel plate is held on the anode, Fe eluted during electrolysis accumulates in the pickling solution, and the Fe concentration in the pickling solution increases. When such pickling solution adheres to the surface of the steel plate, problems such as dry dirt occur. For the above reasons, in the present invention, alternating electrolysis is used.
The pickling solution used for electrolytic pickling is not particularly limited, but nitric acid and hydrofluoric acid are not preferable because they are highly corrosive to equipment and require careful handling. Hydrochloric acid is not preferred because it may generate chlorine gas from the cathode. For this reason, use of sulfuric acid is preferable in consideration of corrosivity and environment. The sulfuric acid concentration is preferably 5 mass% or more and 20 mass% or less, and more preferably 10 mass% or more and 15 mass% or less. When the sulfuric acid concentration is less than 5 mass%, the electrical conductivity is lowered, so that the bath voltage during electrolysis is increased and the load on the power source is increased. On the other hand, if the sulfuric acid concentration exceeds 20 mass%, the loss due to dragout is large, which causes a problem in cost.
The temperature of the pickling solution is preferably 40 ° C. or higher and 70 ° C. or lower, more preferably 50 ° C. or higher and 60 ° C. or lower. Since the bath temperature rises due to heat generated by continuous electrolysis, it is difficult to maintain the temperature below 40 ° C. Moreover, it is a problem that temperature exceeds 70 degreeC from the viewpoint of durability of the lining of an electrolytic cell.
Other quenching and tempering conditions are not particularly limited. Tempering is preferably performed at a temperature of 150 to 400 ° C. This is because the elongation deteriorates below 150 ° C., whereas the hardness decreases below 400 ° C.
By producing as described above, a high-strength cold-rolled steel sheet having excellent chemical conversion properties and corrosion resistance after electrodeposition coating can be obtained. The reason why the high-strength cold-rolled steel sheet produced in this way has excellent chemical conversion treatment properties and excellent electrodeposition coating properties is that the Si-containing oxide in the plate thickness cross-sectional area from the steel plate surface to the plate thickness direction 1 μm This is probably because the ratio is as low as about 5% or less.
The existing ratio of the Si-containing oxide in the plate thickness cross-sectional region from the steel plate surface to the plate thickness direction of 1 μm can be confirmed by the following method.
The cross section in the direction perpendicular to the steel sheet surface is confirmed by a mapping process with an electron microscope at a magnification of 50,000 times or more and the area occupied by the Si-containing oxide in the area of the steel sheet surface length 10 μm and the surface and the surface thickness direction 1 μm. To do. Since the Si-containing oxide is formed in a layer on the surface layer or exists in the form of precipitates, the component of the part different from such a normal steel plate component is measured, and the area of the Si-containing oxide part is measured. do it.

次に、本発明を実施例により更に詳細に説明する。なお、本発明は下記実施例によって制限を受けるものではない。
C:0.12mass%、Si:1.4 mass%、Mn:1.9 mass%を含有するスラブを板厚2.5mmまで熱間圧延し、巻き取り温度600℃で巻き取った。次いで、スケールを除去し、板厚1.2mmまで冷間圧延を行った。
上記により得られた冷延鋼板に対し、表1に示す条件で連続焼鈍を行い、水焼入れ後に300℃×140秒間の焼き戻しを行った。引き続き、40℃、5%の硫酸水溶液中、表1に示す条件にて電解酸洗を行い、供試材を得た。得られた供試材のTSは700〜1000Mpaであった。なお、TSはJIS Z 2241 金属材料引張試験方法に従い、測定した。
Next, the present invention will be described in more detail with reference to examples. In addition, this invention is not restrict | limited by the following Example.
A slab containing C: 0.12 mass%, Si: 1.4 mass%, Mn: 1.9 mass% was hot-rolled to a sheet thickness of 2.5 mm and wound at a winding temperature of 600 ° C. Subsequently, the scale was removed and cold rolling was performed to a plate thickness of 1.2 mm.
The cold-rolled steel sheet obtained above was subjected to continuous annealing under the conditions shown in Table 1, and tempering at 300 ° C. for 140 seconds after water quenching. Subsequently, electrolytic pickling was performed at 40 ° C. in a 5% sulfuric acid aqueous solution under the conditions shown in Table 1 to obtain a test material. The TS of the obtained test material was 700 to 1000 MPa. TS was measured according to a JIS Z 2241 metal material tensile test method.

以上により得られた供試材に対して、以下に示す方法にて鋼板表面から板厚方向1μmまでの板厚断面領域におけるSi含有酸化物を測定すると共に、化成処理性および電着塗装後の耐食性を評価した。
<Si含有酸化物>
鋼板表面と直行する方向の断面を電子顕微鏡にて50000倍以上の倍率で、鋼板表面長さ10μm、表面及び表面から板厚方向1μmの領域において、Si含有酸化物の占める面積をマッピング処理により確認する。Si含有酸化物は、表層に層状に形成されているか、析出物の形態で存在するため、そのような通常の鋼板成分と異なる部分の成分を測定し、Si含有酸化物の部分の面積を測定すればよい。Si含有酸化物の量を下記に分類した。
◎:検出限界(1%)未満
○:1%以上5%以下
△:5%超、10%未満
×:10%超
<化成処理性評価>
供試材から150×70mmの試験片を切り出し、日本パーカライジング社製のPB-L3080で化成処理を行なった。次いで、10×10mmの試験片を切り出し、走査型電子顕微鏡を用いて加速電圧15kV、倍率1000倍のSE像観察を行い、各検体につき任意の5視野で観察し、リン酸塩処理皮膜のスケの有無で化成処理性を判定した。5視野の中に一箇所でもスケのあるものは×とし、5視野の中に全くスケの無いものを○とした。
<電着塗装後の耐食性>
(試験片作成手順)
上記の方法で得られた冷延鋼板サンプルから、150×70mmの試験片を切り出し、日本パーカライジング製のPB-L3080で化成処理を行った後に、日本ペイント製のPN-150Gでカチオン電着塗装(焼付条件:170℃×20分、膜厚25μm)を行った。その後、端部と評価しない側の面を、Alテープでシールし、カッターナイフにて地鉄に達するクロスカット(クロス角度60°)を入れ、供試材とした。
5%NaCl水溶液(55℃)中に、240時間浸漬後に取り出し、水洗、乾燥後にクロスカット部をテープ剥離し、剥離幅を測定し、片側2.5mm未満であれば○、2.5mm以上であれば×と判定した。
For the specimens obtained as described above, the Si-containing oxide in the plate thickness cross-sectional area from the steel plate surface to the plate thickness direction of 1 μm was measured by the method shown below, and after chemical conversion treatment and electrodeposition coating Corrosion resistance was evaluated.
<Si-containing oxide>
The cross section in the direction perpendicular to the steel sheet surface is confirmed by a mapping process with an electron microscope at a magnification of 50,000 times or more and the area occupied by the Si-containing oxide in the area of the steel sheet surface length 10 μm and the surface and the surface thickness direction 1 μm. To do. Since the Si-containing oxide is formed in a layer on the surface layer or exists in the form of precipitates, the component of the part different from such a normal steel plate component is measured, and the area of the Si-containing oxide part is measured. do it. The amount of Si-containing oxide was classified as follows.
◎: Less than detection limit (1%) ○: 1% or more and 5% or less △: More than 5%, less than 10% ×: More than 10% <Chemical conversion treatment evaluation>
A 150 × 70 mm test piece was cut out from the test material and subjected to chemical conversion treatment with PB-L3080 manufactured by Nihon Parkerizing. Next, a 10 × 10 mm test piece was cut out, and an SE image was observed at an acceleration voltage of 15 kV and a magnification of 1000 times using a scanning electron microscope. The chemical conversion processability was judged by the presence or absence of. The case where there was a skein even in one of the 5 fields of view was marked as x, and the case where there was no skein in the field of view was marked as ◯.
<Corrosion resistance after electrodeposition coating>
(Specimen creation procedure)
From a cold-rolled steel plate sample obtained by the above method, a test piece of 150 x 70 mm was cut out and subjected to chemical conversion treatment with PB-L3080 made by Nihon Parkerizing, followed by cationic electrodeposition coating with PN-150G made by Nihon Paint ( Baking conditions: 170 ° C. × 20 minutes, film thickness 25 μm). Thereafter, the end surface and the side not evaluated were sealed with Al tape, and a cross cut (cross angle 60 °) reaching the ground iron with a cutter knife was used as a test material.
Take out after immersion for 240 hours in 5% NaCl aqueous solution (55 ° C), wash with water, dry and then peel off the crosscut part, measure the peel width, ○ if less than 2.5mm on one side, if more than 2.5mm X was determined.

以上により得られた結果を表1に示すと共に、図5に良好材とNG材の観察例を示す。   The results obtained above are shown in Table 1, and FIG. 5 shows an observation example of good materials and NG materials.

表1より、本発明例では、化成処理性、電着塗装後の耐食性のいずれも優れている。一方、比較例では、化成処理性、電着塗装後の耐食性のいずれも劣っている。   From Table 1, in the example of this invention, both chemical conversion property and the corrosion resistance after electrodeposition coating are excellent. On the other hand, in the comparative example, both chemical conversion property and corrosion resistance after electrodeposition coating are inferior.

化成処理性および電着塗装後耐食性に優れることから、自動車を中心に広範な分野で適用できる。特にSi含有量が比較的多い高強度鋼板に対しても本発明は好適に用いられることができる。   Since it is excellent in chemical conversion treatment and corrosion resistance after electrodeposition coating, it can be applied in a wide range of fields, especially automobiles. In particular, the present invention can be suitably used for a high-strength steel sheet having a relatively high Si content.

サンプルの断面透過電子顕微鏡写真(明視野像)である。It is a cross-sectional transmission electron micrograph (bright field image) of a sample. サンプルの断面透過電子顕微鏡写真(明視野像)である。It is a cross-sectional transmission electron micrograph (bright field image) of a sample. 焼鈍時の界面反応を模式的に示す図である。It is a figure which shows typically the interface reaction at the time of annealing. 焼鈍時のPH2O/PH2が界面反応に及ぼす影響を模式的に示す図である。PH 2 O / PH 2 in annealing is a diagram schematically showing the effect on the interfacial reaction. 化成処理性の判定結果を示す図である。(実施例1)It is a figure which shows the determination result of chemical conversion property. (Example 1)

Claims (1)

Si:0.8〜2.0mass%、Mn:1.0〜3.0mass%を含有する冷延鋼板を焼鈍し、次いで、焼き入れ、焼き戻しを行い、その後電解酸洗処理することでTS≧590Mpaの強度を有する高強度冷延鋼板を製造するにあたり、前記焼鈍は、炉内雰囲気をN2-H2とし、H2Oの分圧(PH2O)とH2分圧(PH2)の比であるPH2O/PH2を1.0×10-3以下に保持し、前記電解酸洗は、電流密度が1A/dm2以上の交番電解とすることを特徴とする高強度冷延鋼板の製造方法。 A cold rolled steel sheet containing Si: 0.8 to 2.0 mass% and Mn: 1.0 to 3.0 mass% is annealed, then quenched and tempered, and then subjected to electrolytic pickling to have a strength of TS ≧ 590 MPa. in producing a high-strength cold-rolled steel sheet, the annealing is the ratio of the furnace atmosphere and N 2 -H 2, partial pressure (PH 2 O) and H 2 partial pressure of H 2 O (PH 2) PH A method for producing a high-strength cold-rolled steel sheet, characterized in that 2 O / PH 2 is maintained at 1.0 × 10 −3 or less, and the electrolytic pickling is alternating electrolysis with a current density of 1 A / dm 2 or more.
JP2008216252A 2008-08-26 2008-08-26 Manufacturing method of high strength cold-rolled steel sheet Active JP5256936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008216252A JP5256936B2 (en) 2008-08-26 2008-08-26 Manufacturing method of high strength cold-rolled steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216252A JP5256936B2 (en) 2008-08-26 2008-08-26 Manufacturing method of high strength cold-rolled steel sheet

Publications (3)

Publication Number Publication Date
JP2010053371A true JP2010053371A (en) 2010-03-11
JP2010053371A5 JP2010053371A5 (en) 2011-07-28
JP5256936B2 JP5256936B2 (en) 2013-08-07

Family

ID=42069596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216252A Active JP5256936B2 (en) 2008-08-26 2008-08-26 Manufacturing method of high strength cold-rolled steel sheet

Country Status (1)

Country Link
JP (1) JP5256936B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012042676A1 (en) * 2010-09-30 2012-04-05 Jfeスチール株式会社 High-strength steel sheet and method for producing same
WO2012042677A1 (en) * 2010-09-30 2012-04-05 Jfeスチール株式会社 High-strength steel sheet and method for producing same
JP2012072452A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
JP2012072453A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
JP2012172183A (en) * 2011-02-21 2012-09-10 Jfe Steel Corp Si-CONTAINING COLD ROLLED STEEL SHEET, PRODUCTION METHOD THEREFOR AND AUTOMOBILE MEMBER
JP2013124383A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
JP2013124382A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp High-strength steel sheet excellent in chemical treating properties and manufacturing method therefor
JP2013173979A (en) * 2012-02-24 2013-09-05 Jfe Steel Corp Method for manufacturing surface treated steel sheet
WO2013187030A1 (en) * 2012-06-15 2013-12-19 Jfeスチール株式会社 High-strength steel sheet, high-strength hot-dip zinc-coated steel sheet, and methods for producing said steel sheets
JP2016089213A (en) * 2014-11-04 2016-05-23 日本冶金工業株式会社 SURFACE TREATMENT METHOD OF Fe-Cr-Ni-BASED ALLOY MATERIAL EXCELLENT IN PROCESSABILITY AND CORROSION RESISTANCE
US9598743B2 (en) 2010-09-29 2017-03-21 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
TWI609086B (en) * 2010-09-30 2017-12-21 杰富意鋼鐵股份有限公司 High strength steel sheet and method for manufacturing the same
US11180835B2 (en) 2015-09-25 2021-11-23 Nippon Steel Corporation Steel sheet

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316764A (en) * 1994-05-31 1995-12-05 Sumitomo Metal Ind Ltd Production of galvannealed steel sheet
JP2003286592A (en) * 2002-03-29 2003-10-10 Sumitomo Metal Ind Ltd Pickling process for stainless steel strip
JP2007211279A (en) * 2006-02-08 2007-08-23 Nippon Steel Corp Ultrahigh strength steel sheet having excellent hydrogen brittleness resistance, method for producing the same, method for producing ultrahigh strength hot dip galvanized steel sheet and method for producing ultrahigh strength hot dip alloyed galvanized steel sheet

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07316764A (en) * 1994-05-31 1995-12-05 Sumitomo Metal Ind Ltd Production of galvannealed steel sheet
JP2003286592A (en) * 2002-03-29 2003-10-10 Sumitomo Metal Ind Ltd Pickling process for stainless steel strip
JP2007211279A (en) * 2006-02-08 2007-08-23 Nippon Steel Corp Ultrahigh strength steel sheet having excellent hydrogen brittleness resistance, method for producing the same, method for producing ultrahigh strength hot dip galvanized steel sheet and method for producing ultrahigh strength hot dip alloyed galvanized steel sheet

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012072452A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
JP2012072453A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
US9598743B2 (en) 2010-09-29 2017-03-21 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
KR20150124456A (en) * 2010-09-30 2015-11-05 제이에프이 스틸 가부시키가이샤 High strength steel sheet and method for manufacturing the same
WO2012042677A1 (en) * 2010-09-30 2012-04-05 Jfeスチール株式会社 High-strength steel sheet and method for producing same
WO2012042676A1 (en) * 2010-09-30 2012-04-05 Jfeスチール株式会社 High-strength steel sheet and method for producing same
CN103140597A (en) * 2010-09-30 2013-06-05 杰富意钢铁株式会社 High-strength steel sheet and method for producing same
TWI609086B (en) * 2010-09-30 2017-12-21 杰富意鋼鐵股份有限公司 High strength steel sheet and method for manufacturing the same
US9534270B2 (en) 2010-09-30 2017-01-03 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
US20130327452A1 (en) * 2010-09-30 2013-12-12 Jfe Steel Corporation High strength steel sheet and method for manufacturing the same
KR101692179B1 (en) * 2010-09-30 2017-01-02 제이에프이 스틸 가부시키가이샤 High strength steel sheet and method for manufacturing the same
JP2012172183A (en) * 2011-02-21 2012-09-10 Jfe Steel Corp Si-CONTAINING COLD ROLLED STEEL SHEET, PRODUCTION METHOD THEREFOR AND AUTOMOBILE MEMBER
JP2013124382A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp High-strength steel sheet excellent in chemical treating properties and manufacturing method therefor
JP2013124383A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp High-strength steel sheet and manufacturing method therefor
JP2013173979A (en) * 2012-02-24 2013-09-05 Jfe Steel Corp Method for manufacturing surface treated steel sheet
CN104364410A (en) * 2012-06-15 2015-02-18 杰富意钢铁株式会社 High-strength steel sheet, high-strength hot-dip zinc-coated steel sheet, and methods for producing said steel sheets
WO2013187030A1 (en) * 2012-06-15 2013-12-19 Jfeスチール株式会社 High-strength steel sheet, high-strength hot-dip zinc-coated steel sheet, and methods for producing said steel sheets
JP2016089213A (en) * 2014-11-04 2016-05-23 日本冶金工業株式会社 SURFACE TREATMENT METHOD OF Fe-Cr-Ni-BASED ALLOY MATERIAL EXCELLENT IN PROCESSABILITY AND CORROSION RESISTANCE
US11180835B2 (en) 2015-09-25 2021-11-23 Nippon Steel Corporation Steel sheet

Also Published As

Publication number Publication date
JP5256936B2 (en) 2013-08-07

Similar Documents

Publication Publication Date Title
JP5256936B2 (en) Manufacturing method of high strength cold-rolled steel sheet
KR101704308B1 (en) High-strength steel plate and method for producing same
KR101716728B1 (en) High-strength steel sheet and production method therefor and high-strength galvanized steel sheet and production method therefor
JP5326425B2 (en) High-strength cold-rolled steel sheet and manufacturing method thereof
KR101692179B1 (en) High strength steel sheet and method for manufacturing the same
KR20130049820A (en) High-strength steel sheet and method for producing same
KR101538240B1 (en) High strength steel sheet and method for manufacturing the same
KR20160122813A (en) High-strength steel plate and method for producing high-strength steel plate
JP5835547B2 (en) Method for producing Si-containing cold-rolled steel sheet
JP5794284B2 (en) Manufacturing method of high-strength steel sheet
JP2014040652A (en) High-strength steel plate and manufacturing method thereof
JP2012072465A (en) High-strength steel sheet and manufacturing method therefor
KR20160122834A (en) High-strength steel sheet and method for producing same
JP6699633B2 (en) High-strength cold-rolled steel sheet excellent in corrosion resistance after painting and delayed fracture resistance and method for producing the same
JP5682366B2 (en) Method for producing Si-containing cold-rolled steel sheet
EP3115482B1 (en) Cold-rolled steel sheet, manufacturing method therefor, and car part
JP5835548B2 (en) Method for producing Si-containing cold-rolled steel sheet
JP5907106B2 (en) Galvanized cold rolled steel sheet
JP5962542B2 (en) Manufacturing method of high-strength steel sheet
JP5810499B2 (en) Manufacturing method of high-strength steel sheet
JP5962543B2 (en) Manufacturing method of high-strength steel sheet
JP2006144106A (en) High-strength steel sheet excellent in adhesiveness of coating film
JP2014169477A (en) High strength steel sheet and its manufacturing method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110615

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5256936

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250