JP2010053301A - Corrosion-proof paint composition and its manufacturing method - Google Patents
Corrosion-proof paint composition and its manufacturing method Download PDFInfo
- Publication number
- JP2010053301A JP2010053301A JP2008222200A JP2008222200A JP2010053301A JP 2010053301 A JP2010053301 A JP 2010053301A JP 2008222200 A JP2008222200 A JP 2008222200A JP 2008222200 A JP2008222200 A JP 2008222200A JP 2010053301 A JP2010053301 A JP 2010053301A
- Authority
- JP
- Japan
- Prior art keywords
- nitrite
- cement
- mass
- coating
- acrylic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/08—Slag cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
- C04B28/04—Portland cements
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00482—Coating or impregnation materials
- C04B2111/00525—Coating or impregnation materials for metallic surfaces
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/26—Corrosion of reinforcement resistance
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Paints Or Removers (AREA)
- Preventing Corrosion Or Incrustation Of Metals (AREA)
Abstract
Description
本発明は、鋼材表面の下塗り塗料として使用される防食塗料組成物及びその製造方法に関する。 The present invention relates to an anticorrosion paint composition used as an undercoat paint on the surface of a steel material and a method for producing the same.
従来より、鉄骨建築物や鉄骨橋梁等の鋼構造物は、長期間の使用を前提とするため、防食と美観の確保を目的として表面塗装が施されている。通常、塗装は、錆止めを目的とする下塗り塗装と、耐候性と美観の確保を目的とする上塗り塗装と、下塗り塗装と上塗り塗装との付着性を向上させるための中塗り塗装の三層から構成されている。
塗装寿命は、塗装材料や使用環境に大きく影響されるが、比較的厳しい環境下では、変性エポキシ系塗料で6年、エポキシウレタン系塗料で10年という例もあり、鋼構造物の供用期間中において複数回の塗り替え塗装が必要となる。
Conventionally, steel structures such as steel buildings and steel bridges have been subjected to surface coating for the purpose of corrosion protection and ensuring aesthetics because they are premised on long-term use. Usually, the coating consists of three layers: a base coat for the purpose of preventing rust, a top coat for the purpose of ensuring weather resistance and aesthetics, and an intermediate coat for improving the adhesion between the base coat and the top coat. Has been.
The coating life is greatly affected by the coating material and the usage environment, but in relatively severe environments, there are examples of modified epoxy paints for 6 years and epoxy urethane paints for 10 years. During the service period of steel structures In this case, multiple repaints are required.
ここで、錆発生のメカニズムについて説明しておく。鉄が雨水などに晒されると、鉄表面に吸着した水分は、鉄元素から電子を取り込み、空気中の酸素と化学反応を起こしてOH−を生成する。一方、電子が取られたFe2+は水分中に溶け込み、生成されたOH−と結合してFe(OH)2となり、酸化されてFeOOH、Fe2O3・nH2O、Fe3O4・nH2Oなどの錆に変化する。 Here, the mechanism of rust generation will be described. When iron is exposed to rainwater or the like, the moisture adsorbed on the iron surface takes in electrons from the iron element and causes a chemical reaction with oxygen in the air to generate OH − . On the other hand, Fe 2+ from which electrons have been taken dissolves in moisture and combines with the generated OH − to become Fe (OH) 2 , which is oxidized to FeOOH, Fe 2 O 3 .nH 2 O, Fe 3 O 4. It changes to rust such as nH 2 O.
鉄の防錆方法の一つとして、鉄の表面をアルカリ性に保ち、不動態化する方法が知られている。一般に、鉄は、pH9〜12.5の範囲においてFe2O3の不動態層が形成され、安定な状態になるといわれている。鉄表面をアルカリ性に保つことで発錆を防ぐ技術として、例えば特許文献1では、白色セメントと超微粒子シリカとの混合物でなる主材にカーボンファイバーを添加配合したコンパウンドと、カチオン性スチレンブタジエン共重合体とメタクリル酸シクロヘキシル共重合体との混合物でなる水溶性硬化剤とからなる表面塗装剤の発明が開示されている。
As one of iron rust prevention methods, a method is known in which the surface of iron is kept alkaline and passivated. In general, iron, passivation layer of Fe 2 O 3 is formed in a range of PH9~12.5, are said to become a stable state. As a technique for preventing rust by keeping the iron surface alkaline, for example, in
また、特許文献2では、樹脂固形分に対し、精練過程で生成されたアルカリ基を含有したスラグ、マイカ、リンモリブデン酸アルミニュウムを配合してなる無公害防錆被覆組成物の発明が開示されている。
他方、上記アルカリ防食塗装と異なる防食塗装技術として、特許文献3では、ポリマーセメントと骨材と水と亜硝酸リチウム溶液とを混合してなるモルタルをモルタル吹付ノズルを介してコンクリート構造体の所定個所に吹き付けることを特徴とするモルタル吹付工法の発明が開示されている。この発明では、モルタル中に存在する亜硝酸リチウム(LiNO2)の亜硝酸イオン(NO2 −)の作用により下記の反応が起こることで不動態被膜(Fe2O3)が形成され、錆の発生が防止される。
Fe2++2OH−+2NO2 −→2NO+Fe2O3+H2O
On the other hand, as an anticorrosion coating technique different from the alkali anticorrosion coating, in
Fe 2+ + 2OH − + 2NO 2 − → 2NO + Fe 2 O 3 + H 2 O
また、特許文献4では、下地調整材に陰イオン吸着剤を含有させることで、さび層と鋼材の界面に生成するネスト(鋼の腐食で鋼表面に形成された腐食セルにより、陰イオンがアノード部に電気化学的に補足され濃縮したもの)中の陰イオンを積極的に除去する鋼材の下地調整材の発明が開示されている。
In
しかしながら、特許文献1に記載された表面塗装剤は、高コスト材料であるカーボンファイバーを使用することに加えて、塗膜厚みを厚く(700〜800μm)することによって、塗膜の亀裂防止並びに水分と酸素の拡散抑制効果を高め、長寿命化を図っているため、従来のエポキシ塗料の3倍程度の高コストとなっている。
また、特許文献2に記載された無公害防錆被覆組成物は長期防錆性に優れるとされているが、アルカリ基を含有したスラグ等の成分により形成された鋼材表面の不動態被膜は、塗膜劣化あるいは外的損傷により発生するキズ部分より進入する腐食因子により破壊され、錆が短期間に進行し、寿命が十年程度と短い。
However, the surface coating agent described in
Moreover, although the pollution-free rust-proof coating composition described in
一方、特許文献3に記載された発明では、不動態被膜が何らかの外的要因により損傷した場合には、亜硝酸イオンの働きにより不動態被膜が再構築されるが、鋼材の腐食防止塗料として塗装した場合、亜硝酸塩が可溶性のため防錆剤が溶出する。このため、長期防食性については問題がある。
また、特許文献4に記載された発明では、水性エポキシ樹脂を混和剤としたセメント系下地調整剤に、セメントとの反応によって消費されないカルシウム・アルミニウム複合水酸化物等の陰イオン吸着剤を含有させ、鋼材の腐食の発生を抑制しているが、長期防食性については明らかにされていない。
On the other hand, in the invention described in
Further, in the invention described in
本発明はかかる事情に鑑みてなされたもので、従来に比べて下地処理の低減を図り、防錆剤として使用する亜硝酸塩を適正に封じ込めて亜硝酸塩の拡散スピードを低下させ、鋼材の防錆効果を長期に亘って維持することができる防食塗料組成物及びその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and is intended to reduce the surface treatment compared to the prior art, properly contain nitrite used as a rust inhibitor, reduce the diffusion speed of nitrite, and prevent rust prevention of steel materials. It aims at providing the anti-corrosion coating composition which can maintain an effect over a long period of time, and its manufacturing method.
特許文献3などに記載されている従来のポリマーセメントモルタルにおける亜硝酸塩(固形分)の使用量は、全組成物に対する配合比を大きくするとセメントの異常凝結が起きるため、亜硝酸リチウムの場合、5質量%、亜硝酸カルシウムの場合、1.25質量%が上限とされていた。しかし、塗料化に伴い、長期の防錆効果を維持するには、亜硝酸塩量を2.5質量%以上とする必要がある。このため、本発明では、エマルジョン量を11質量%以上とすることで、亜硝酸塩の増量を図った。また、セメント量を26質量%以上とすることで、塗膜にpH11.5〜12.5のアルカリ雰囲気をもたせ、下地処理の低減及び長期間の防食を可能とした。また併せて、塗料としての抗張力、伸び追従性、及び付着強さを確保するため、コンパウンドに無機系粉材と膨張材を含有させることとした。具体的には以下の通りである。
The amount of nitrite (solid content) used in the conventional polymer cement mortar described in
本発明に係る防食塗料組成物は、セメントと無機系粉材と膨張材とを含有するコンパウンドと、アクリル/スチレン共重合体エマルジョンと、亜硝酸塩とを含んでいる。
上記構成とすることにより、塗料としての施工性や耐久性が確保される。また、鋼材表面にアルカリ性塗膜が形成されるため、鋼材表面が不動態化され、腐食が進行しない。不動態被膜(Fe2O3)が何らかの外的要因により損傷した場合には、亜硝酸イオン(NO2 −)がFe2+及びOH−と化学反応を起こして不動態被膜(Fe2O3)を再構築する。このため、従来に比べて大幅に鋼構造物の長寿命化を図ることができる。加えて、無機系粉材に対するセメントの質量比が1.0〜1.4となるようにすることで、密実な組織を構築することができる。これにより、亜硝酸塩の拡散スピードが低下し、亜硝酸塩の防錆効果を長期に亘って維持することができる。その結果、鋼構造物の供用期間中における塗り替え回数が減少し、塗り替えに掛かる費用を大幅に低減することができる。一方、無機系粉材に対するセメントの質量比が1.0未満もしくは1.4を超えた場合は、亜硝酸塩の拡散スピードを適正に低下させることはできない。
The anticorrosion coating composition according to the present invention includes a compound containing cement, an inorganic powder material, and an expansion material, an acrylic / styrene copolymer emulsion, and nitrite.
By setting it as the said structure, the workability and durability as a coating material are ensured. Moreover, since an alkaline coating film is formed on the steel material surface, the steel material surface is passivated and corrosion does not proceed. When the passive film (Fe 2 O 3 ) is damaged by some external factor, nitrite ions (NO 2 − ) cause a chemical reaction with Fe 2+ and OH − and passivated film (Fe 2 O 3 ). To rebuild. For this reason, the lifetime of a steel structure can be significantly extended compared with the past. In addition, a solid structure can be constructed by adjusting the mass ratio of the cement to the inorganic powder material to be 1.0 to 1.4. Thereby, the spreading | diffusion speed of nitrite falls and it can maintain the rust prevention effect of nitrite over a long period of time. As a result, the number of repaints during the service period of the steel structure is reduced, and the cost for repainting can be greatly reduced. On the other hand, when the mass ratio of the cement to the inorganic powder material is less than 1.0 or exceeds 1.4, the diffusion speed of nitrite cannot be reduced appropriately.
さらに、本発明では、亜硝酸塩イオン(NO2−)が陽極に向かう流れを助長するため、アニオン系のエマルジョンとしてアクリル/スチレン共重合体エマルジョンを採用した。アクリル/スチレン共重合体エマルジョンは、下地への付着性が良好で、しかも温度による依存性が少なく、低温や比較的温度の高い領域でも優れた弾性を有している。このため、耐透水性、耐候性に優れた塗膜を得ることができる。
なお、特許文献1に記載されているカチオン性スチレンブタジエン共重合体系の合成樹脂は、防錆効果は期待できるが、塗膜の変形能力(伸び)が0.4%であり、鋼材に曲げ軸力が作用した際の伸びが0.5%以上であることからすると、塗膜の亀裂等の問題がある。また、特許文献4に記載されているエポキシ系の合成樹脂は、カチオン性スチレンブタジエン共重合体系の合成樹脂より伸びが小さいと一般的に言われている。
Furthermore, in the present invention, an acryl / styrene copolymer emulsion is employed as an anionic emulsion in order to promote the flow of nitrite ions (NO 2 −) toward the anode. The acrylic / styrene copolymer emulsion has good adhesion to the base, has little dependence on temperature, and has excellent elasticity even at low temperatures and relatively high temperatures. For this reason, the coating film excellent in water permeability and a weather resistance can be obtained.
In addition, although the synthetic resin of the cationic styrene butadiene copolymer system described in
また、本発明に係る防食塗料組成物では、前記亜硝酸塩が2.5〜9.0質量%であることを好適とする。
亜硝酸塩が2.5質量%未満であると、防錆効果がエポキシ樹脂塗料並みとなり、塩水噴霧試験3000時間においてクロスカット部に錆が発生する。因みに、本発明における亜硝酸塩量を3質量%とした場合、亜硝酸塩量は従来塗料の約2.5倍となる。一方、亜硝酸塩が9.0質量%を超えると、エマルジョンと混和する際の水量が増加し、セメント水和物中の空隙が増加する。これに伴い、空隙に水分が浸入しやすくなり、セメント水和物中の亜硝酸塩の拡散が早くなる。その結果、長期的な防錆効果が期待できなくなる。
Moreover, in the anticorrosion coating composition which concerns on this invention, it is suitable that the said nitrite is 2.5-9.0 mass%.
When the nitrite is less than 2.5% by mass, the rust prevention effect is the same as that of an epoxy resin paint, and rust is generated at the crosscut portion in the salt spray test 3000 hours. Incidentally, when the amount of nitrite in the present invention is 3% by mass, the amount of nitrite is about 2.5 times that of the conventional paint. On the other hand, when nitrite exceeds 9.0 mass%, the water amount at the time of mixing with an emulsion will increase and the space | gap in cement hydrate will increase. Along with this, moisture easily enters the voids, and the diffusion of nitrite in the cement hydrate is accelerated. As a result, a long-term rust prevention effect cannot be expected.
また、本発明では、前記アクリル/スチレン共重合体エマルジョンは11〜44質量%であることを好適とする。
アクリル/スチレン共重合体エマルジョンが11質量%未満であると、セメント100質量部に対してアクリル/スチレン共重合体エマルジョンが20質量部未満となり、塗膜の伸度及び破断強度が向上せず、鋼材の変形に対する追従性が低下する。このため、塗膜亀裂が発生しやすく、亀裂部からの錆が進行する。一方、アクリル/スチレン共重合体エマルジョンが44質量%を超えると、塗膜として必要以上の変形能力を有する反面、塗膜付着強度が不足して塗膜剥離が起きる。
In the present invention, the acrylic / styrene copolymer emulsion is preferably 11 to 44% by mass.
When the acrylic / styrene copolymer emulsion is less than 11% by mass, the acrylic / styrene copolymer emulsion is less than 20 parts by mass with respect to 100 parts by mass of the cement, and the elongation and breaking strength of the coating film are not improved. The followability to the deformation of the steel material is reduced. For this reason, a coating-film crack is easy to generate | occur | produce and the rust from a crack part advances. On the other hand, if the acrylic / styrene copolymer emulsion exceeds 44% by mass, the coating film has an unnecessarily deformable ability, but the coating film adhesion strength is insufficient and the coating film peels off.
さらに、本発明では、前記セメントが26〜38質量%、前記無機系粉材が20〜28質量%、前記膨張材が0.5〜1.5質量%であることを好適とする。
セメントが26質量%未満であると、亜硝酸塩とアクリル/スチレン共重合体エマルジョンを適正に混和した際に、水セメント比が1.0を上回り、所要の塗膜強度が得られない。具体的には、付着強度不足から塗膜剥離が起きると共に、圧縮強度不足から凝集破壊が発生する。一方、38質量%を超えると、所要の塗膜強度は期待できるが、セメント過多となり、収縮量が増大し塗膜面にひび割れが発生する。
Furthermore, in this invention, it is suitable that the said cement is 26-38 mass%, the said inorganic type powder material is 20-28 mass%, and the said expansion | swelling material is 0.5-1.5 mass%.
When the cement is less than 26% by mass, when the nitrite and the acrylic / styrene copolymer emulsion are properly mixed, the water cement ratio exceeds 1.0 and the required coating strength cannot be obtained. Specifically, coating film peeling occurs due to insufficient adhesion strength, and cohesive failure occurs due to insufficient compression strength. On the other hand, if it exceeds 38% by mass, the required coating strength can be expected, but the amount of cement becomes excessive, the amount of shrinkage increases, and cracks occur on the coating surface.
無機系粉材が20質量%未満であると、塗膜がセメントリッチになって乾燥中におけるひび割れの発生確率が高くなるだけでなく、水量が増加し塗膜強度が確保できなくなる。一方、無機系粉材が28質量%を超えると、骨材粉が多くなり過ぎ、セメント水和物の粘度が低下し、下地面の接着力が低下する。
膨張材は、適正なセメント使用量の時に、その効果が期待できる。膨張材が0.5質量%未満であると、アクリル/スチレン共重合体エマルジョンが少ない場合、塗膜が脆くなり、セメントに起因する収縮に対応できない。逆に、アクリル/スチレン共重合体エマルジョンが多い場合、必然的に水量も多くなり、塗膜が軟らかくなり過ぎ、膨張材の効果が期待できない。一方、1.5質量%を超えると、コンパウンド中のSO3(三酸化硫黄)量が増加して使用限界値(対セメント質量比で8%)に近づき、膨張ひび割れの原因となる。
If the inorganic powder material is less than 20% by mass, the coating film becomes cement-rich and not only the probability of cracking during drying increases, but also the amount of water increases and the coating film strength cannot be secured. On the other hand, when the amount of the inorganic powder exceeds 28% by mass, the amount of aggregate powder is excessively increased, the viscosity of the cement hydrate is decreased, and the adhesive strength of the ground surface is decreased.
The effect of the expansion material can be expected when the amount of cement used is appropriate. When the expansion material is less than 0.5% by mass, when the acrylic / styrene copolymer emulsion is small, the coating film becomes brittle and cannot cope with the shrinkage caused by the cement. On the contrary, when there are many acrylic / styrene copolymer emulsions, the amount of water inevitably increases, the coating film becomes too soft, and the effect of the expanding material cannot be expected. On the other hand, if it exceeds 1.5 mass%, the amount of SO 3 (sulfur trioxide) in the compound increases and approaches the use limit value (8% in terms of cement mass ratio), which causes expansion cracks.
水分は、7〜23質量%であることを好適とする。ここでの水分は、亜硝酸塩水溶液中の水分である。水分が7質量%未満であると、亜硝酸塩2.5質量%が確保できず、23質量%を超えると、亜硝酸塩が9.0質量%を超え過剰スペックとなる。 The moisture is preferably 7 to 23% by mass. The water here is water in the aqueous nitrite solution. If the water content is less than 7% by mass, 2.5% by mass of nitrite cannot be ensured, and if it exceeds 23% by mass, the nitrite exceeds 9.0% by mass, resulting in excessive specifications.
また、塗膜面の白斑やピンホールの低減を図るため、前記無機系粉材は、硅砂粉、炭酸カルシウム、スラグ粉末、及びクレー粉から選ばれる1種又は2種以上であることが好ましい。
夏季施工で薄塗り施工の際は、ドライアウト(下地に水分をとられて水和反応が阻害され、硬化不良や接着不良を起こすこと。)を防止するうえでメチルセルローズ系の増粘剤に更にクレー粉を使用することで保水性を確保させることができ、効果が一層向上する。
In order to reduce white spots and pinholes on the coating surface, the inorganic powder material is preferably one or more selected from cinnabar powder, calcium carbonate, slag powder, and clay powder.
In the case of thin coating during summer construction, it is used as a methyl cellulose thickener to prevent dry-out (water is removed from the base and the hydration reaction is inhibited, resulting in poor curing and poor adhesion). Further, the use of clay powder makes it possible to ensure water retention, and the effect is further improved.
また、本発明に係る防食塗料組成物では、前記セメントが普通ポルトランドセメントの場合、前記亜硝酸塩は亜硝酸リチウムであることが好ましい。また、前記亜硝酸塩が亜硝酸カルシウムの場合、前記セメントは高炉セメントであることが好ましい。
セメント製造過程で生成されるクリンカーは、エーライト、ビーライト、アルミネート相、及びフェライト相を主な構成要素とする。本発明者等は、クリンカー中のアルミネート相が亜硝酸カルシウムと反応し、セメントの異常凝結を引き起こすことを発見した。そこで、セメントの異常凝結を防止するため、セメントが普通ポルトランドセメントの場合、亜硝酸塩には亜硝酸リチウムを使用することとした。また、亜硝酸塩として亜硝酸カルシウムを使用する場合は、高炉セメントを使用してアルミネート相の減量を図り、セメントの異常凝結を防止した。
なお、高炉セメントと亜硝酸リチウムを組み合わせた場合、凝結時間が延びるため、施工時に塗料が垂れ、塗膜厚を確保することが難しくなる。
In the anticorrosive coating composition according to the present invention, when the cement is ordinary Portland cement, the nitrite is preferably lithium nitrite. When the nitrite is calcium nitrite, the cement is preferably blast furnace cement.
The clinker produced in the cement manufacturing process is mainly composed of alite, belite, aluminate phase, and ferrite phase. The inventors have discovered that the aluminate phase in the clinker reacts with calcium nitrite, causing abnormal setting of the cement. Therefore, in order to prevent abnormal setting of the cement, when the cement is ordinary Portland cement, lithium nitrite is used as the nitrite. When calcium nitrite was used as the nitrite, blast furnace cement was used to reduce the aluminate phase and prevent abnormal cementation.
In addition, when a blast furnace cement and lithium nitrite are combined, since the setting time is extended, the paint drips during construction, and it becomes difficult to ensure the coating thickness.
また、本発明に係る防食塗料組成物の製造方法は、上記防食塗料組成物を製造する際、前記亜硝酸塩の水溶液に前記アクリル/スチレン共重合体エマルジョンを加えた混和液を恒温前処理する第一の工程と、恒温前処理した前記混和液に、前記セメントと前記無機系粉材と前記膨張材とを含有する前記コンパウンドを加える第二の工程とを有することを特徴としている。
ここで、「恒温前処理」とは、亜硝酸塩水溶液にアクリル/スチレン共重合体エマルジョンを加えた混和液を所定温度を維持した状態で所定時間、低速撹拌することをいう。所定温度としては40℃前後、また所定時間としては5分間程度が好適である。なお、恒温前処理した混和液を7日間程度静置した後、該混和液にコンパウンドを加えるとなお良い。
Further, the method for producing an anticorrosive coating composition according to the present invention comprises the step of isothermally pretreating a mixed solution obtained by adding the acrylic / styrene copolymer emulsion to the aqueous nitrite solution when producing the anticorrosive coating composition. And a second step of adding the compound containing the cement, the inorganic powder material, and the expansion material to the admixture subjected to constant temperature pretreatment.
Here, the “constant temperature pretreatment” refers to stirring at low speed for a predetermined time while maintaining a predetermined temperature in a mixed solution obtained by adding an acrylic / styrene copolymer emulsion to a nitrite aqueous solution. The predetermined temperature is preferably around 40 ° C., and the predetermined time is preferably about 5 minutes. In addition, it is more preferable to leave the mixed solution subjected to the constant temperature pretreatment for about 7 days and then add a compound to the mixed solution.
本発明では、亜硝酸塩水溶液にアクリル/スチレン共重合体エマルジョンを加えた混和液を恒温前処理することにより、混和液の粘度をアクリル/スチレン共重合体エマルジョン単独の粘度の1/40程度に低減することが可能となる。その結果、コンパウンドとの混練効果に関して大幅な改善が期待できる。しかも、長期的に安定した混和液となり、長期保存も可能となる。 In the present invention, the viscosity of the mixed solution is reduced to about 1/40 of the viscosity of the acrylic / styrene copolymer emulsion alone by pretreating the mixed solution obtained by adding the acrylic / styrene copolymer emulsion to the aqueous nitrite solution at constant temperature. It becomes possible to do. As a result, significant improvement can be expected with respect to the kneading effect with the compound. In addition, it becomes a long-term stable admixture and can be stored for a long time.
本発明は、セメントと無機系粉材と膨張材とを含有するコンパウンドと、アクリル/スチレン共重合体エマルジョンと、亜硝酸塩とを含有する防食塗料組成物であり、亜硝酸塩量を2.5質量%以上とするため、エマルジョン量を11質量%以上とする。併せて、組成物全体のセメント量を26質量%以上としている。これにより、塗膜にpH11.5〜12.5のアルカリ雰囲気をもたせ、下地処理の低減及び長期間の防食を可能とした。加えて、硬化後のセメントペーストが、防錆剤として使用する亜硝酸塩を適正に封じ込めるので、亜硝酸塩の拡散スピードが低下し、亜硝酸塩の効果を長期に亘って維持することができる。 The present invention is an anticorrosion coating composition containing a compound containing cement, an inorganic powder material and an expansion material, an acrylic / styrene copolymer emulsion, and nitrite, and the amount of nitrite is 2.5 mass. %, The emulsion amount is 11% by mass or more. In addition, the cement amount of the entire composition is set to 26% by mass or more. As a result, the coating film was given an alkaline atmosphere with a pH of 11.5 to 12.5, thereby enabling reduction of the base treatment and long-term corrosion protection. In addition, since the cement paste after curing appropriately contains nitrite used as a rust inhibitor, the diffusion speed of nitrite is reduced, and the effect of nitrite can be maintained over a long period of time.
また、本発明では、防食塗料組成物を製造する際に、予め亜硝酸塩水溶液にアクリル/スチレン共重合体エマルジョンを加えた混和液を恒温前処理するので、混和液の粘度をアクリル/スチレン共重合体エマルジョン単独の粘度の1/40程度に減少させることが可能となる。その結果、コンパウンドとの混練効果に関して大幅な改善が期待できる。 Further, in the present invention, when the anticorrosion coating composition is produced, since the mixed solution obtained by adding the acrylic / styrene copolymer emulsion to the aqueous nitrite solution in advance is subjected to the constant temperature pretreatment, the viscosity of the mixed solution is adjusted to the acrylic / styrene copolymer weight. It becomes possible to reduce to about 1/40 of the viscosity of the combined emulsion alone. As a result, significant improvement can be expected with respect to the kneading effect with the compound.
続いて、本発明を具体化した実施の形態について説明するが、本発明は何ら下記実施の形態に限定されるものではなく、特許請求の範囲に記載されている事項の範囲内で考えられるその他の実施の形態や変形例も含むものである。 Subsequently, embodiments embodying the present invention will be described. However, the present invention is not limited to the following embodiments at all, and may be considered within the scope of matters described in the claims. These embodiments and modifications are also included.
本発明の一実施の形態に係る防食塗料組成物は、鋼材表面の下塗り塗料として使用される防食塗料組成物であり、亜硝酸塩水溶液にアクリル/スチレン共重合体エマルジョンを加えて恒温前処理した混和液に、セメントと無機系粉材と膨張材とを含有するコンパウンドを加えることにより作製される。この際、アクリル/スチレン共重合体エマルジョンを11〜44質量%、亜硝酸塩を2.5〜9.0質量%とすることが好ましいが、防錆品質を低下させない耐久性を確保し、且つ所定の下地塗装厚(200〜550μm)を確保するには、アクリル/スチレン共重合体エマルジョンを27〜40質量%、亜硝酸塩を4〜6.5質量%とすることがより好ましい。
なお、亜硝酸塩水溶液にアクリル/スチレン共重合体エマルジョンを加えた混和液を恒温前処理しておくと、亜硝酸塩を容易に増量化することができる。
An anticorrosion paint composition according to an embodiment of the present invention is an anticorrosion paint composition used as an undercoating paint on a steel material surface, and an admixture obtained by adding an acrylic / styrene copolymer emulsion to an aqueous nitrite solution and performing a constant temperature pretreatment. It is produced by adding a compound containing cement, an inorganic powder material, and an expansion material to the liquid. At this time, it is preferable to set the acrylic / styrene copolymer emulsion to 11 to 44% by mass and the nitrite to 2.5 to 9.0% by mass. In order to ensure the undercoat thickness (200 to 550 μm), it is more preferable that the acrylic / styrene copolymer emulsion is 27 to 40% by mass and the nitrite is 4 to 6.5% by mass.
Note that the amount of nitrite can be easily increased by pre-treating a mixed solution obtained by adding an acrylic / styrene copolymer emulsion to an aqueous nitrite solution at a constant temperature.
また、コンパウンドの配合としては、全組成物の50〜60質量%とすることがより好ましい。また、塗膜のひび割れを防止するため、無機系粉材を21〜24質量%とすると共に、塗膜のSO3(三酸化硫黄)量抑制のため、膨張材を0.5〜1質量%とすることがより好ましい。
Moreover, as a compounding | blending of a compound, it is more preferable to set it as 50-60 mass% of all the compositions. In order to prevent cracking of the coating, the inorganic powder material with a 21-24 wt%, for
亜硝酸塩は、防錆効果を付与する物質である。亜硝酸リチウム、亜硝酸ナトリウム、亜硝酸カリウム、亜硝酸カルシウム、亜硝酸マグネシウム、亜硝酸バリウムなどが使用できるが、亜硝酸リチウムと亜硝酸カルシウムがセメントとの相性が良い。 Nitrite is a substance that imparts a rust prevention effect. Lithium nitrite, sodium nitrite, potassium nitrite, calcium nitrite, magnesium nitrite, barium nitrite and the like can be used, but lithium nitrite and calcium nitrite have good compatibility with cement.
セメントは、塗膜をアルカリ性に保つと共に結合材としての機能を有している。セメントは特に限定されず、各種ポルトランドセメントや各種混合セメント、並びに高炉セメントやフライアッシュセメント等が利用できるが、亜硝酸塩に亜硝酸カルシウムを用いる場合は、流動性を高めるため、高炉セメントを用いることが好ましい。 Cement keeps the coating film alkaline and has a function as a binder. Cement is not particularly limited, and various portland cements, various mixed cements, blast furnace cement, fly ash cement, etc. can be used. When calcium nitrite is used as nitrite, blast furnace cement should be used to increase fluidity. Is preferred.
無機系粉材は、コンパウンドの分散性と付着性を強化する。無機系粉材としては、天然硅砂や再生硅砂などの硅砂粉、クレー粉あるいは炭酸カルシウムやスラグ粉末などが利用できるが、なかでも炭酸カルシウム、スラグ粉末、及びクレー粉から選ばれる1種又は2種以上とすることが好ましい。
コンパウンドがセメントと膨張材のみの場合、塗膜厚が確保できず、またセメント硬化に伴って収縮する等の理由により、防食塗料組成物には無機系粉材を加える必要がある。この際、無機系粉材の粒度を最小塗膜厚の1/3程度にしないと安定した塗膜にならないため、無機系粉材の粒度分布は、最小塗膜厚を200μmとして、74μm以下の無機系粉材の比率が80%以上とする。
The inorganic powder material enhances the dispersibility and adhesion of the compound. As the inorganic powder material, cinnabar powder such as natural cinnabar and regenerated cinnabar, clay powder or calcium carbonate or slag powder can be used, among which one or two kinds selected from calcium carbonate, slag powder and clay powder The above is preferable.
When the compound is only cement and an expansion material, it is necessary to add an inorganic powder material to the anticorrosion coating composition because the coating thickness cannot be ensured and shrinks as the cement hardens. At this time, the particle size distribution of the inorganic powder material is 74 μm or less, assuming that the minimum coating thickness is 200 μm, since the particle size distribution of the inorganic powder material is 200 μm unless the particle size of the inorganic powder material is about 1/3 of the minimum coating thickness. The ratio of the inorganic powder material is 80% or more.
膨張材は、コンパウンドの乾燥収縮を防止するために使用する。膨張材としては、石灰系膨張材など市販のものを使用することができる。 Inflatables are used to prevent dry shrinkage of the compound. A commercially available material such as a lime-based expansion material can be used as the expansion material.
さらに、上記材料に加えて、水分を減らして流動性を高めるための減水剤や、粘性を増すための増粘剤などを混和剤として添加してもよい。混和剤の量は、0.3〜0.6質量%が好ましく、さらには、0.4質量%がより好ましい。 Further, in addition to the above materials, a water reducing agent for reducing moisture and increasing fluidity, a thickening agent for increasing viscosity, and the like may be added as an admixture. The amount of the admixture is preferably 0.3 to 0.6% by mass, and more preferably 0.4% by mass.
本発明に係る防食塗料組成物を用いた塗装と、エポキシ樹脂塗装、アルカリ塗装、及び重防食塗装について、各塗装の期待寿命を30年、7年、8年、10年として、材料費や仮設費などの総コストを算出したところ、本発明に係る防食塗料組成物を用いた場合の総コストを1とすると、エポキシ樹脂塗装で5.0、アルカリ塗装で4.1、重防食塗装で5.0となった。このことからも、本発明に係る防食塗料組成物を用いることにより、鋼構造物のライフサイクルコストを大幅に低減できることがわかる。 For coating using the anticorrosion coating composition according to the present invention, epoxy resin coating, alkali coating, and heavy anticorrosion coating, the expected life of each coating is 30 years, 7 years, 8 years, 10 years, and material costs and provisional When the total cost such as the cost is calculated, when the total cost when the anticorrosive coating composition according to the present invention is used is 1, the epoxy resin coating is 5.0, the alkali coating is 4.1, and the heavy anticorrosion coating is 5 0.0. This also shows that the life cycle cost of a steel structure can be significantly reduced by using the anticorrosion coating composition according to the present invention.
[複合サイクル試験]
表面下地処理を施した帯板状の鋼板に下塗り材と上塗り材を塗布した試験片について、複合サイクル試験を行った。複合サイクル試験を行った実施例と比較例の一覧を表1に示す。なお、実施例、比較例とも試験片は各2枚とし、各試験片とも上塗り材を塗布した後、試験片表面に定規を当ててカッターナイフでクロスカットを入れた。
[Composite cycle test]
A composite cycle test was performed on a test piece in which an undercoat material and an overcoat material were applied to a strip-shaped steel plate that had been subjected to a surface base treatment. Table 1 shows a list of examples and comparative examples in which the combined cycle test was performed. In each of the examples and comparative examples, two test pieces were used, and after applying a top coat material to each test piece, a ruler was applied to the surface of the test piece and a cross cut was made with a cutter knife.
実施例1〜3は、下塗り材に含まれる亜硝酸塩に亜硝酸リチウムを使用し、セメントは普通ポルトランドセメントとした。無機系粉材については、実施例1は炭酸カルシウム、実施例2はスラグ粉とクレー粉を組み合わせたもの、実施例3は炭酸カルシウムとクレー粉を組み合わせたものをそれぞれ使用した。
一方、上塗り材については、実施例1、2はエポキシ樹脂塗料、実施例3は弱溶剤シリコンエポキシ樹脂を使用した。その際、弱溶剤シリコンエポキシ樹脂は、主剤7質量部に対して硬化剤1質量部の割合で配合したものである。
In Examples 1 to 3, lithium nitrite was used as the nitrite contained in the primer, and the cement was ordinary Portland cement. As for the inorganic powder material, Example 1 used calcium carbonate, Example 2 used a combination of slag powder and clay powder, and Example 3 used a combination of calcium carbonate and clay powder.
On the other hand, as for the top coat material, Examples 1 and 2 used an epoxy resin paint, and Example 3 used a weak solvent silicone epoxy resin. In that case, weak solvent silicone epoxy resin mix | blends in the ratio of 1 mass part of hardening | curing agents with respect to 7 mass parts of main agents.
塗布量については、下塗り材の場合、1.0kg/m2とし、上塗り材の場合、0.4〜0.5kg/m2とした。なお、表1の各塗膜厚は膜厚計による計測値である。 For coating amount, when the undercoat material, and 1.0 kg / m 2, when the top coat material and a 0.4~0.5kg / m 2. In addition, each coating-film thickness of Table 1 is a measured value with a film thickness meter.
比較例1〜3の下塗り材には、白色セメントと超微粒子シリカを主成分とする、マイティ化学株式会社製のマイティCFを使用し、比較例4、5の下塗り材には、シリコン樹脂と亜鉛粉末を主成分とする、プライメットテクノロジー株式会社製のトモリック(登録商標)を使用した。また、比較例6、7の下塗り材はアルカリ塗料、比較例8の下塗り材はジンクリッチ塗料、比較例9の下塗り材はエポキシ塗料とした。なお、比較例10〜12は、本発明と同じ成分からなるが、配合比率が本発明の範囲外となる塗料である。
一方、上塗り材については、比較例7のみ塩素化オレフィン系塗料を使用し、それ以外の比較例はエポキシ樹脂塗料を使用した。
For the undercoat materials of Comparative Examples 1 to 3, Mighty CF manufactured by Mighty Chemical Co., Ltd., mainly composed of white cement and ultrafine silica, was used. For the undercoat materials of Comparative Examples 4 and 5, silicon resin and zinc were used. Tomic (registered trademark) manufactured by Primet Technology Co., Ltd., mainly composed of powder, was used. Further, the undercoat material of Comparative Examples 6 and 7 was an alkali paint, the undercoat material of Comparative Example 8 was a zinc rich paint, and the undercoat material of Comparative Example 9 was an epoxy paint. In addition, although Comparative Examples 10-12 consist of the same component as this invention, it is a coating material from which a mixture ratio becomes out of the range of this invention.
On the other hand, as for the top coat material, only Comparative Example 7 used a chlorinated olefin-based paint, and other Comparative Examples used an epoxy resin paint.
複合サイクル試験は、キャス噴霧試験を35℃下で4時間実施した後、60℃、湿度50%の温湿度下で2時間乾燥させ、さらに50℃、湿度95%の温湿度下にて耐湿試験を2時間実施する合計8時間に及ぶ試験を1サイクルとし、複数サイクル実施するものである。 In the combined cycle test, a cast spray test was conducted at 35 ° C. for 4 hours, followed by drying for 2 hours at 60 ° C. and a humidity of 50%. The test for a total of 8 hours that is performed for 2 hours is defined as one cycle, and a plurality of cycles are performed.
上記キャス噴霧試験は、JIS Z 2371による塩水噴霧試験方法において、試験液を塩水からキャス溶液に変更した試験である。キャス溶液は、塩化ナトリウム40g/Lと塩化第二銅0.205g/Lを含み、酢酸でpH3.0に調製した水溶液である。
また、耐湿試験は、JIS K 5600−7−3耐湿性(不連続結露法)に則って実施した。
The cast spray test is a test in which the test solution is changed from salt water to a cast solution in the salt spray test method according to JIS Z 2371. The cast solution is an aqueous solution containing 40 g / L of sodium chloride and 0.205 g / L of cupric chloride and adjusted to pH 3.0 with acetic acid.
Moreover, the moisture resistance test was implemented in accordance with JISK5600-7-3 moisture resistance (discontinuous condensation method).
複合サイクル試験は200回実施した。そして、実施例、比較例とも2枚の試験片表面の錆の発生状態について、表2に示した基準に基づいて10点満点で評価し、2枚の試験片の評価点の平均を求めた。その結果を棒グラフにして図1に示す。同図より、実施例1〜3のほうが比較例1〜3に比べて評価点が高く、8点以上である。特に、実施例3では、クロスカット部からの発錆が全く見られなかった。また、亜硝酸塩は、亜硝酸カルシウムより亜硝酸リチウムのほうが防食効果が大きく、防食効果は上塗り塗料の影響も受けることがわかる。一方、比較例では、比較例1〜3、11、12が5点以上であり、比較例4〜10は3点以下である。
なお、表1における総合評価は、防錆効果の評価点が9.5以上の場合を◎、8.0以上の場合を○、8.0未満を×とした。
The combined cycle test was performed 200 times. Then, in both Examples and Comparative Examples, the occurrence of rust on the surface of two test pieces was evaluated based on the criteria shown in Table 2 with a maximum of 10 points, and the average of the evaluation points of the two test pieces was obtained. . The result is shown as a bar graph in FIG. From the same figure, Examples 1-3 are higher in evaluation score than Comparative Examples 1-3, and are 8 points or more. In particular, in Example 3, no rusting from the crosscut portion was observed. In addition, as for nitrite, it can be seen that lithium nitrite has a greater anticorrosive effect than calcium nitrite, and the anticorrosive effect is also affected by the top coating. On the other hand, in Comparative Examples, Comparative Examples 1 to 3, 11, and 12 are 5 points or more, and Comparative Examples 4 to 10 are 3 points or less.
In addition, the comprehensive evaluation in Table 1 was evaluated as ◎ when the evaluation point of the rust prevention effect was 9.5 or more, ◯ when the evaluation score was 8.0 or more, and x when less than 8.0.
[塩水噴霧試験]
表面下地処理を施した帯板状の鋼板に下塗り材と上塗り材を塗布した試験片について、塩水噴霧試験を行った。塩水噴霧試験を行った実施例の一覧を表3、比較例の一覧を表4にそれぞれ示す。先の複合サイクル試験と同様、試験片は各2枚とし、各試験片とも上塗り材を塗布した後、試験片表面に定規を当ててカッターナイフでクロスカットを入れた。
[Salt spray test]
A salt spray test was performed on a test piece in which an undercoat material and an overcoat material were applied to a strip-shaped steel plate that had been subjected to a surface base treatment. Table 3 shows a list of examples subjected to the salt spray test, and Table 4 shows a list of comparative examples. As in the previous combined cycle test, two test pieces were used, and each test piece was coated with a top coat material, and then a ruler was applied to the surface of the test piece and a cross cut was made with a cutter knife.
実施例4〜10及び比較例13、14、17〜21、23、24、29、30は、下塗り材に含まれる亜硝酸塩に亜硝酸リチウムを使用し、実施例11〜16及び比較例15、16、22、25〜28、31〜34では亜硝酸カルシウムを使用した。また、実施例4〜10及び比較例13、14、17〜24、29、30は、セメントを普通ポルトランドセメントとし、実施例11〜16及び比較例15、16、25〜28、31〜34では高炉セメントを使用した。この際、無機系粉材として、実施例4、6〜8及び比較例13、14、16、25、26では炭酸カルシウムとクレー粉を組み合わせたもの、実施例12及び比較例27では硅砂粉とクレー粉を組み合わせたもの、実施例16及び比較例30、31ではスラグ粉とクレー粉を組み合わせたもの、実施例9、10、13、14及び比較例15、19、20、32〜34では炭酸カルシウム、実施例11及び比較例17、18、28では硅砂粉、実施例5及び比較例21、22、29ではスラグ粉、実施例15及び比較例23、24ではクレー粉をそれぞれ使用した。
一方、上塗り材は、弱溶剤シリコンエポキシ樹脂とし、厚さは全て180μmとした。
Examples 4 to 10 and Comparative Examples 13, 14, 17 to 21, 23, 24, 29, and 30 use lithium nitrite as the nitrite contained in the primer, and Examples 11 to 16 and Comparative Example 15, In 16, 22, 25-28, 31-34, calcium nitrite was used. Examples 4 to 10 and Comparative Examples 13, 14, 17 to 24, 29, and 30 use ordinary Portland cement as the cement. In Examples 11 to 16 and Comparative Examples 15, 16, 25 to 28, and 31 to 34, Blast furnace cement was used. At this time, as an inorganic powder material, in Examples 4, 6 to 8 and Comparative Examples 13, 14, 16, 25, and 26, a combination of calcium carbonate and clay powder, and in Example 12 and Comparative Example 27, cinnabar sand powder and What combined clay powder, Example 16 and Comparative Examples 30 and 31, combined slag powder and clay powder, Examples 9, 10, 13, 14 and Comparative Examples 15, 19, 20, 32 to 34 carbonic acid For calcium, Example 11 and Comparative Examples 17, 18, and 28 used cinnabar powder, Example 5 and Comparative Examples 21, 22, and 29 used slag powder, and Example 15 and Comparative Examples 23 and 24 used clay powder, respectively.
On the other hand, the top coating material was a weak solvent silicone epoxy resin, and the thickness was all 180 μm.
塩水噴霧試験は、JIS Z 2371による塩水噴霧試験方法に則って3000時間実施した。その結果を棒グラフにして図2及び図3に示す。これらの図より、全ての実施例において評価点が9点以上であり、比較例は8点未満であることがわかる。 The salt spray test was conducted for 3000 hours in accordance with the salt spray test method according to JIS Z 2371. The results are shown as bar graphs in FIG. 2 and FIG. From these figures, it can be seen that in all examples, the evaluation score is 9 points or more, and the comparative example is less than 8 points.
[混和安定性]
亜硝酸リチウム水溶液にアクリル/スチレン共重合体エマルジョンを加えた混和液と、亜硝酸カルシウム水溶液にアクリル/スチレン共重合体エマルジョンを加えた混和液それぞれについて、恒温前処理直後と恒温前処理後7日間静置した後の性状を表5に対比して示す。ここで、亜硝酸水溶液とアクリル/スチレン共重合体エマルジョンとの質量比は3:4である。また、粘度は、BH型粘度計を用いて回転数20rpmで計測したものである。同表より、恒温前処理直後と7日間静置後における濃度、粘度、及びpHに関して大きな変化が見られず、性状が安定していることがわかる。
なお、両混和液の粘度は40〜50mPa・sであり、アクリル/スチレン共重合体エマルジョン単独の粘度1500〜1600mPa・sに比べて大幅に流動性が向上していることがわかる。
[Mixing stability]
Immediately after the isothermal pretreatment and 7 days after the isothermal pretreatment for each of the admixture obtained by adding an acrylic / styrene copolymer emulsion to an aqueous lithium nitrite solution and the admixture obtained by adding an acrylic / styrene copolymer emulsion to an aqueous calcium nitrite solution The properties after standing still are shown in Table 5. Here, the mass ratio between the aqueous nitrous acid solution and the acrylic / styrene copolymer emulsion is 3: 4. The viscosity is measured using a BH viscometer at a rotation speed of 20 rpm. From the same table, it can be seen that the properties are stable with no significant changes in the concentration, viscosity, and pH immediately after the constant temperature pretreatment and after standing for 7 days.
In addition, the viscosity of both liquid mixture is 40-50 mPa * s, and it turns out that fluidity | liquidity is improving significantly compared with the viscosity 1500-1600 mPa * s of acrylic / styrene copolymer emulsion single.
[抗張力試験]
本試験は、塗膜の抗張力を判断するものである。実施例17の配合を表6に示す。塗膜の場合、0.5〜1.0N/mm2以上の抗張力が必要であるが、実施例17の抗張力は1.5N/mm2であり、塗膜として十分な抗張力を保有している。
[Tensile strength test]
This test determines the tensile strength of a coating film. The formulation of Example 17 is shown in Table 6. For coating, 0.5~1.0N / mm 2 or more but tensile strength is required, tensile strength of Example 17 is 1.5 N / mm 2, possesses sufficient tensile strength as a coating .
[破断伸度試験]
本試験は、塗膜の破断伸度を判断するものがある。実施例の配合は抗張力試験時と同じである。母材の変形に追従するには、鋼材の場合、1.0%の伸度が必要であるが、実施例の破断伸度は20%であり、塗膜として十分に母材の変形に追従することができる。因みに、従来品の場合、破断伸度は1.4%レベルである。
[Break elongation test]
This test involves determining the elongation at break of a coating film. The formulation in the examples is the same as in the tensile test. In order to follow the deformation of the base material, 1.0% elongation is required in the case of steel, but the breaking elongation of the example is 20%, and sufficiently follows the deformation of the base material as a coating film. can do. Incidentally, in the case of the conventional product, the breaking elongation is at a level of 1.4%.
[付着強さ試験]
本試験は、母材と塗膜間の接着度合を判断するものである。今回は、JIS A 6203「セメント混和用ポリマーディスパージョン及び再乳化形粉末樹脂」の規定に準じて実施した。実施例18の配合を表7に示す。実施例18の付着強さは1.1N/mm2であり、JIS A 6916に規定された薄塗り塗材の付着強さ0.5N/mm2及び厚塗り塗材の付着強さ1.0N/mm2を満足している。
[Adhesion strength test]
This test determines the degree of adhesion between the base material and the coating film. This time, it was carried out according to the provisions of JIS A 6203 “Polymer dispersion for cement admixture and re-emulsified powder resin”. The formulation of Example 18 is shown in Table 7. Implementation adhesion strength of Example 18 is 1.1 N / mm 2, bond strength of 1.0N JIS A bond strength of 6916 to a defined thin intermediate coating material 0.5 N / mm 2 and a thickness intermediate coating material / Mm 2 is satisfied.
Claims (4)
前記セメントが26〜38質量%、前記無機系粉材が20〜28質量%、前記膨張材が0.5〜1.5質量%、前記アクリル/スチレン共重合体エマルジョンが11〜44質量%、前記亜硝酸塩が2.5〜9.0質量%であり、
さらに7〜23質量%の水分を含み、前記無機系粉材は、硅砂粉、炭酸カルシウム、スラグ粉末、及びクレー粉から選ばれる1種又は2種以上であることを特徴とする防食塗料組成物。 An anticorrosive coating composition comprising a compound containing cement, an inorganic powder material and an expansion material, an acrylic / styrene copolymer emulsion, and nitrite,
The cement is 26 to 38% by mass, the inorganic powder material is 20 to 28% by mass, the expansion material is 0.5 to 1.5% by mass, the acrylic / styrene copolymer emulsion is 11 to 44% by mass, The nitrite is 2.5-9.0 mass%,
Furthermore, it contains 7 to 23% by mass of water, and the inorganic powder material is one or more selected from cinnabar powder, calcium carbonate, slag powder, and clay powder. .
前記亜硝酸塩の水溶液に前記アクリル/スチレン共重合体エマルジョンを加えた混和液を恒温前処理する第一の工程と、恒温前処理した前記混和液に、前記セメントと前記無機系粉材と前記膨張材とを含有する前記コンパウンドを加える第二の工程とを有する防食塗料組成物の製造方法。 It is a manufacturing method of the anti-corrosion coating composition of any one of Claims 1-3,
A first step of isothermal pretreatment of a mixed solution obtained by adding the acrylic / styrene copolymer emulsion to the aqueous solution of nitrite; and the cement, the inorganic powder material, and the expansion in the premixed premixed liquid. And a second step of adding the compound containing the material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008222200A JP2010053301A (en) | 2008-08-29 | 2008-08-29 | Corrosion-proof paint composition and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008222200A JP2010053301A (en) | 2008-08-29 | 2008-08-29 | Corrosion-proof paint composition and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2010053301A true JP2010053301A (en) | 2010-03-11 |
Family
ID=42069541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008222200A Withdrawn JP2010053301A (en) | 2008-08-29 | 2008-08-29 | Corrosion-proof paint composition and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2010053301A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011105529A1 (en) * | 2010-02-26 | 2011-09-01 | 新日本製鐵株式会社 | Corrosion-proofing coating composition and process for production thereof, and method for prevention of corrosion in steel material |
CN103897505A (en) * | 2013-10-28 | 2014-07-02 | 东南大学 | Rust-containing antirusting paint |
CN105152603A (en) * | 2015-10-20 | 2015-12-16 | 青岛蓝海万拓防水防腐材料有限公司 | Polymer cement water-resistant paint suitable for different molding surfaces |
CN105505022A (en) * | 2015-12-30 | 2016-04-20 | 辛范范 | Durable environment-friendly latex paint and preparation method thereof |
JP2017101404A (en) * | 2015-11-30 | 2017-06-08 | 三井造船株式会社 | Anticorrosive coating method of bridge |
WO2019051415A1 (en) | 2017-09-11 | 2019-03-14 | Honeywell International Inc. | Paint compositions including copolymer formulations for improving adhesion to metallic substrates |
JP2020158371A (en) * | 2019-03-27 | 2020-10-01 | 太平洋マテリアル株式会社 | Polymer cement mortar and repair method of reinforced concrete |
CN112194411A (en) * | 2020-08-24 | 2021-01-08 | 沪宝新材料科技(上海)股份有限公司 | Exterior wall texture heat-insulating coating and preparation method thereof |
CN113930103A (en) * | 2021-10-12 | 2022-01-14 | 湘江涂料科技有限公司 | Water-based sand-containing heat-insulating coating for steel-structured portable house and preparation method thereof |
-
2008
- 2008-08-29 JP JP2008222200A patent/JP2010053301A/en not_active Withdrawn
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011105529A1 (en) * | 2010-02-26 | 2011-09-01 | 新日本製鐵株式会社 | Corrosion-proofing coating composition and process for production thereof, and method for prevention of corrosion in steel material |
JPWO2011105529A1 (en) * | 2010-02-26 | 2013-06-20 | 新日鐵住金株式会社 | Anticorrosion coating composition, method for producing the same, and method for preventing corrosion of steel |
JP5759898B2 (en) * | 2010-02-26 | 2015-08-05 | 新日鐵住金株式会社 | Anticorrosion paint composition, method for producing anticorrosion paint composition, corrosion prevention method for steel, anticorrosion coating film, coating layer |
CN103897505A (en) * | 2013-10-28 | 2014-07-02 | 东南大学 | Rust-containing antirusting paint |
CN105152603A (en) * | 2015-10-20 | 2015-12-16 | 青岛蓝海万拓防水防腐材料有限公司 | Polymer cement water-resistant paint suitable for different molding surfaces |
JP2017101404A (en) * | 2015-11-30 | 2017-06-08 | 三井造船株式会社 | Anticorrosive coating method of bridge |
CN105505022A (en) * | 2015-12-30 | 2016-04-20 | 辛范范 | Durable environment-friendly latex paint and preparation method thereof |
WO2019051415A1 (en) | 2017-09-11 | 2019-03-14 | Honeywell International Inc. | Paint compositions including copolymer formulations for improving adhesion to metallic substrates |
EP3681958A4 (en) * | 2017-09-11 | 2021-06-02 | Honeywell International Inc. | Paint compositions including copolymer formulations for improving adhesion to metallic substrates |
JP2020158371A (en) * | 2019-03-27 | 2020-10-01 | 太平洋マテリアル株式会社 | Polymer cement mortar and repair method of reinforced concrete |
JP7234001B2 (en) | 2019-03-27 | 2023-03-07 | 太平洋マテリアル株式会社 | Repair method for polymer cement mortar and reinforced concrete |
CN112194411A (en) * | 2020-08-24 | 2021-01-08 | 沪宝新材料科技(上海)股份有限公司 | Exterior wall texture heat-insulating coating and preparation method thereof |
CN113930103A (en) * | 2021-10-12 | 2022-01-14 | 湘江涂料科技有限公司 | Water-based sand-containing heat-insulating coating for steel-structured portable house and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5759898B2 (en) | Anticorrosion paint composition, method for producing anticorrosion paint composition, corrosion prevention method for steel, anticorrosion coating film, coating layer | |
JP2010053301A (en) | Corrosion-proof paint composition and its manufacturing method | |
KR101637987B1 (en) | Patching repair material and repairing method of deteriorated reinforced concrete structures | |
KR102196634B1 (en) | Mortar composition for repairing concrete structures with excellent chemical resistance and durability and seismic performance, and the method for repairing and reinforcing concrete structures using the same | |
KR101472485B1 (en) | Geo-polymer mortar cement composition using the same construction methods | |
KR101312085B1 (en) | Method to repair section damaged of reinforced concrete structures | |
JP2007119263A (en) | Spray material and spray constructing method | |
JPH0468272B2 (en) | ||
KR102158536B1 (en) | Repair and reinforcement composition for improving durability of reinforced concrete structure and construction method using same | |
JP2018059104A (en) | Anticorrosive undercoat material for steel material | |
CN115142053B (en) | Surface treatment method for steel bridge deck or steel structural member | |
KR102600824B1 (en) | Eco-friendly polymer mortar composition with high corrosion resistance, excellent workability and prevention of neutralization, and repair method of concrete section using the same | |
JP5514790B2 (en) | Acid-resistant dry-type mortar material and method for producing the spray material | |
JP3903670B2 (en) | Ground conditioner | |
KR101914904B1 (en) | Concrete repairing method using geopolymer reaction and zinc | |
JP4916648B2 (en) | Rust prevention treatment method | |
JP5740909B2 (en) | Adhesive holding material for cement material and method for repairing concrete structure using the holding material | |
JP4827585B2 (en) | Hydrated hardened body with reinforcing bars with excellent neutralization resistance and salt damage resistance | |
JP2007327000A (en) | Inorganic coating composition | |
JP4882258B2 (en) | Hydrated hardened body with rebar having excellent salt resistance | |
CN115746590B (en) | Sulphoaluminate cement modified magnesium ammonium phosphate based steel anticorrosive coating material and preparation method thereof | |
KR102522062B1 (en) | Expansion joints concrete composition of enhanced durability for crack reduction and repair method using the same | |
JP4882257B2 (en) | Hydrated hardened body with rebar having excellent salt resistance | |
JP3190277B2 (en) | Cement composition | |
JP4791231B2 (en) | Hydrated cured body having reinforcing bars excellent in neutralization resistance and salt damage resistance and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20111101 |