JP2010053280A - Green-emitting phosphor and inorganic el element - Google Patents

Green-emitting phosphor and inorganic el element Download PDF

Info

Publication number
JP2010053280A
JP2010053280A JP2008221184A JP2008221184A JP2010053280A JP 2010053280 A JP2010053280 A JP 2010053280A JP 2008221184 A JP2008221184 A JP 2008221184A JP 2008221184 A JP2008221184 A JP 2008221184A JP 2010053280 A JP2010053280 A JP 2010053280A
Authority
JP
Japan
Prior art keywords
green
phosphor
green phosphor
light
bismuth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008221184A
Other languages
Japanese (ja)
Other versions
JP5113675B2 (en
Inventor
Shinji Okamoto
信治 岡本
Katsu Tanaka
克 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2008221184A priority Critical patent/JP5113675B2/en
Publication of JP2010053280A publication Critical patent/JP2010053280A/en
Application granted granted Critical
Publication of JP5113675B2 publication Critical patent/JP5113675B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a green phosphor which does not use rare earth elements and can be stably supplied. <P>SOLUTION: The green-emitting phosphor includes a parent material of a compound represented by general formula: M<SP>1</SP>M<SP>2</SP><SB>2</SB>S<SB>4</SB>(wherein, M<SP>1</SP>is Ca<SB>X</SB>Sr<SB>1-X</SB>(0≤X≤1), and M<SP>2</SP>is Ga<SB>Y</SB>Al<SB>1-Y</SB>(0≤Y≤1)) and bismuth contained in the parent material. The parent material preferably further contains manganese. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、緑色発光蛍光体及び無機EL(エレクトロルミネッセンス)素子に関する。   The present invention relates to a green light emitting phosphor and an inorganic EL (electroluminescence) element.

ディスプレイや光源に利用されている蛍光材料には、多くのタイプが知られているが、チオガレート系化合物を母体材料とし、蛍光発光のための金属イオンを添加したた蛍光材料が知られている。例えば、特許文献1には、チオガレート系化合物(CaGa)の母体材料に錫又は錫とセリウムを添加した蛍光材料が開示されている。この蛍光材料は、500nmから850nm付近までのほぼ全可視光領域にわたって蛍光を発光し(半値幅350nm)、励起光は350nm近辺の紫外線が効果的であるが、400nm以上の励起光では発光しない。 Many types of fluorescent materials used for displays and light sources are known, and fluorescent materials using a thiogallate compound as a base material and added with metal ions for fluorescent emission are known. For example, Patent Document 1 discloses a fluorescent material obtained by adding tin or tin and cerium to a base material of a thiogallate compound (CaGa 2 S 4 ). This fluorescent material emits fluorescence over almost the entire visible light region from 500 nm to near 850 nm (half-value width 350 nm), and as the excitation light, ultraviolet light around 350 nm is effective, but excitation light of 400 nm or more does not emit light.

特許文献2には、緑色発光の蛍光体として、チオガレート母体材料化合物である硫化ストロンチウムガリウム(SrGa)に、発光中心を形成するユーロピウム(Eu)を添加すると緑色蛍光体を作ることができると報告されている。この蛍光体は放射線、電子線、紫外光および電界によって励起して発光させることができるとされている。この緑色発光のピーク波長は535nmであり、色度図における色点の座標はx=0.300、y=0.686である。そして、近紫外又は青色LEDを励起光源として、黄色乃至赤色のセリウム活性化炭化物系窒化珪素と、この緑色蛍光体とを組み合わせることにより、白色光源として応用できることが報告されている。同様に、3つの発光体、黄色乃至赤色のセリウム活性化炭化物系窒化珪素と、赤色の蛍光体Ca1−XSrS:Eu(0≦X≦1)などと、この緑色蛍光体とを組み合わせることにより、より演色性の高い白色光源が得られると報告されている。
特開2005−272624号公報 特表2007−526635号公報
In Patent Document 2, a green phosphor can be produced by adding europium (Eu) that forms a light emission center to strontium gallium sulfide (SrGa 2 S 4 ), which is a thiogallate base material compound, as a green light-emitting phosphor. It is reported. This phosphor is supposed to be able to emit light when excited by radiation, electron beam, ultraviolet light and electric field. The peak wavelength of this green light emission is 535 nm, and the coordinates of the color point in the chromaticity diagram are x = 0.300 and y = 0.686. Then, it has been reported that a near-ultraviolet or blue LED can be used as a white light source by combining yellow to red cerium-activated carbide silicon nitride and this green phosphor with an excitation light source. Similarly, three phosphors, yellow to red cerium activated carbide silicon nitride, red phosphor Ca 1-X Sr X S: Eu (0 ≦ X ≦ 1) and the like, and this green phosphor It has been reported that a white light source with higher color rendering can be obtained by combining them.
JP 2005-272624 A Special table 2007-526635

一般に、波長の短い蛍光を発する物質は多くない。特に近紫外線や青色光のような放射線を励起光とする場合は、緑色蛍光体が得られ難い。その点、特許文献2に開示されている緑色蛍光体は、青色発光ダイオードを励起光としている点から有用な蛍光材料と考えられる。一方、希土類元素は、その用途拡大や、需要の増大にともなって、資源確保の問題が重要になっている。希土類元素は資源が少なく、産地も偏っているので、入手の困難性は将来にわたって続くものと考えられる。今後、ますます需要が拡大するディスプレイや光源に利用される高品質の蛍光材料には、使用量はわずかではあっても入手困難性や価格変動の影響を受けやすい希土類元素は使用しなくてよいことが好ましい。多くの電気製品や光関連製品の基礎材料となる蛍光材料は、できるだけ供給安定性があり、安価な材料から製造できることが望ましい。また、各種の代替材料が提供できる状態にあることが望ましい。しかし、蛍光材料は、希土類元素を発光中心に含む場合が多く、特許文献1及び2においてもセリウムやユウロピウムを必要とする場合が多い。特に、緑色発光する蛍光材料は、高価な希土類元素を必要としている。   In general, there are not many substances that emit fluorescence with a short wavelength. In particular, when a radiation such as near ultraviolet light or blue light is used as excitation light, it is difficult to obtain a green phosphor. In that respect, the green phosphor disclosed in Patent Document 2 is considered to be a useful fluorescent material because a blue light emitting diode is used as excitation light. On the other hand, the problem of securing resources has become important as the use of rare earth elements increases and the demand increases. Since rare earth elements are scarce and the production areas are biased, the difficulty of obtaining them will continue in the future. In the future, high-quality fluorescent materials used in displays and light sources, which will be increasingly demanded, do not need to use rare earth elements that are difficult to obtain and susceptible to price fluctuations even if the amount used is small. It is preferable. It is desirable that the fluorescent material that is the basic material of many electrical products and optical-related products is as stable as possible and can be manufactured from an inexpensive material. Moreover, it is desirable that various alternative materials can be provided. However, fluorescent materials often contain rare earth elements in the emission center, and in Patent Documents 1 and 2, cerium and europium are often required. In particular, fluorescent materials that emit green light require expensive rare earth elements.

このような現状を踏まえ、本発明の目的は、希土類元素を使用しない安定供給可能な緑色蛍光体、及びこれを用いた無機EL(エレクトロルミネッセンス)素子を提供することにある。   In view of such a current situation, an object of the present invention is to provide a green phosphor that can be stably supplied without using a rare earth element, and an inorganic EL (electroluminescence) element using the green phosphor.

上記課題を解決するため本発明者等は、チオガレート系化合物を母体材料として、発光中心を形成する元素として、セリウム、ユーロピウム等の希土類元素に代わる蛍光体を探索した。その結果、母体材料M2 24(但し、M=CaSr1−X(0≦X≦1)、M=GaAl1−Y(0≦Y≦1))に希土類元素の代わりに、これよりも安価で供給安定性が確保しやすいビスマスを添加した緑色発光をする蛍光体(緑色蛍光体)を得た。この緑色蛍光体の発光のピーク波長はおよそ533nmであり、その発光スペクトルの半値幅は55nmであった。本発明者等の測定によると、この緑色蛍光体の発光強度は、特許文献2に記載されているユーロピウムを添加した緑色蛍光体より少し低い程度であったが、発光のピーク波長や発光スペクトルの半値幅はほとんど同じであった。このビスマスを添加した緑色蛍光体の場合、励起帯は300nm程度の近紫外線が好ましく、400nm程度の近紫外線領域でも十分励起できる特性を持っていた。 In order to solve the above-mentioned problems, the present inventors searched for a phosphor that can replace a rare earth element such as cerium or europium as an element that forms a light emission center using a thiogallate compound as a base material. As a result, the base material M 1 M 2 2 S 4 (where M 1 = Ca X Sr 1-X (0 ≦ X ≦ 1), M 2 = Ga Y Al 1-Y (0 ≦ Y ≦ 1)) Instead of the rare earth element, a phosphor emitting green light (green phosphor) to which bismuth was added, which was cheaper and easier to secure the supply stability, was obtained. The peak wavelength of emission of this green phosphor was about 533 nm, and the half width of the emission spectrum was 55 nm. According to the measurement by the present inventors, the emission intensity of this green phosphor was slightly lower than that of the green phosphor added with europium described in Patent Document 2, but the emission peak wavelength and emission spectrum The full width at half maximum was almost the same. In the case of the green phosphor to which bismuth is added, the excitation band is preferably near ultraviolet rays of about 300 nm, and has a characteristic that can be sufficiently excited even in the near ultraviolet region of about 400 nm.

効率的な励起近紫外線域をさらに長波長とするため、ビスマスとマンガンを同時に添加することで400nm付近の近紫外領域の励起帯を持つ緑色蛍光体が得られた。このように、本発明の緑色蛍光体は、希土類元素を使用しなくても、希土類元素(ユーロピウム等)を添加した緑色蛍光体(SrGa:Eu)に代替できることがわかった。 In order to make the efficient excitation near-ultraviolet region even longer, a green phosphor having an excitation band in the near-ultraviolet region near 400 nm was obtained by simultaneously adding bismuth and manganese. Thus, it has been found that the green phosphor of the present invention can be replaced with a green phosphor (SrGa 2 S 4 : Eu) to which a rare earth element (such as europium) is added without using a rare earth element.

すなわち、本発明は、一般式M (但し、MはCaSr1−X(0≦X≦1)、MはGaAl1−Y(0≦Y≦1))で表される化合物に、ビスマスを含むことを特徴とする緑色発光する蛍光体である。また、好ましい本発明は、前記蛍光体にマンガンをさらに含むことを特徴とする緑色発光する蛍光体である。 That is, the present invention has a general formula M 1 M 2 2 S 4 (where M 1 is Ca X Sr 1-X (0 ≦ X ≦ 1) and M 2 is Ga Y Al 1-Y (0 ≦ Y ≦ 1). )) Is a phosphor emitting green light, characterized in that it contains bismuth in the compound represented by Moreover, a preferable present invention is a phosphor emitting green light, wherein the phosphor further contains manganese.

また、もう一つの本発明は、緑色発光する前記蛍光体からなる薄膜を一対の電極で両側から挟持することを特徴とする無機EL(エレクトロルミネッセンス)素子である。   Another aspect of the present invention is an inorganic EL (electroluminescence) element characterized in that a thin film made of the phosphor emitting green light is sandwiched from both sides by a pair of electrodes.

本発明によれば、希土類元素を使用しない安定供給可能な緑色発光をする蛍光体、及びこれを用いた無機EL素子を提供することができる。   According to the present invention, it is possible to provide a phosphor that emits green light that can be stably supplied without using a rare earth element, and an inorganic EL element using the phosphor.

本発明の緑色発光する蛍光体(緑色蛍光体と略称することがある。)は、一般式M (但し、MはCaSr1−X(0≦X≦1)、MはGaAl1−Y(0≦Y≦1))で表される母体材料の化合物に、発光中心イオンとなるビスマスイオンを含有している。ビスマスイオン源としては、金属ビスマスを用いればよく、場合によっては、酸化物、硫化物や水酸化物、ビスマス塩を用いてもよい。また、ビスマス塩としては、どのような塩でもよいが、ハロゲン化物、硫酸塩、硝酸塩などの無機塩が挙げられる。ハロゲン化物としては、フッ化ビスマス、塩化ビスマス、臭化ビスマス、ヨウ化ビスマスなどが挙げられる。 The phosphor emitting green light of the present invention (sometimes abbreviated as green phosphor) has a general formula M 1 M 2 2 S 4 (where M 1 is Ca X Sr 1-X (0 ≦ X ≦ 1)). , M 2 contains a bismuth ion serving as a luminescent center ion in a base material compound represented by Ga Y Al 1-Y (0 ≦ Y ≦ 1). As the bismuth ion source, metal bismuth may be used, and in some cases, an oxide, sulfide, hydroxide, or bismuth salt may be used. The bismuth salt may be any salt, but includes inorganic salts such as halides, sulfates and nitrates. Examples of the halide include bismuth fluoride, bismuth chloride, bismuth bromide, bismuth iodide, and the like.

ビスマスの含有量は、母体材料に対し、0.1〜10モル%程度、好ましくは、0.5〜5モル%程度含まれることが望ましい。ビスマスの含有量は、10モル%以上としても差し支えないが、蛍光の発光強度が増加しなくなるので、これ以上添加する必要がない。ビスマスの含有量が、0.1モル%よりも少ないと、発光強度が低下したり、母体材料との混合を十分にしないと蛍光の発光にむらが生じたりすることがある。   The content of bismuth is preferably about 0.1 to 10 mol%, preferably about 0.5 to 5 mol%, based on the base material. The bismuth content may be 10 mol% or more, but the fluorescence emission intensity does not increase, so there is no need to add more. If the bismuth content is less than 0.1 mol%, the emission intensity may decrease, or if the mixing with the base material is not sufficient, uneven emission of fluorescence may occur.

図1には、この緑色蛍光体の発光特性を示した。スペクトル(1)は、300nmの励起光による蛍光発光のチャートで、発光のピーク波長はおよそ534nmであり、その発光スペクトルの半値幅は55nmであった。また、スペクトル(2)は、400nmの青色発光ダイオードの発光領域の励起光による蛍光発光のチャートで、発光のピーク波長は同じ534nmの緑色単色光であるが、その発光スペクトル強度は300nmの励起光による蛍光発光の6〜7割程度であった。スペクトル(3)は、この緑色蛍光体の励起光の波長に対する蛍光の発光強度を表している。このスペクトルチャートからわかるように、この緑色蛍光体は、波長320nm付近の励起光による励起により発光のピークを示し、波長450nm付近までの励起光はかなりの発光をうながす。そして、この緑色蛍光体は、波長500nmまでの励起光による励起により発光することができる。なお、この緑色蛍光体は、母体材料とビスマス以外に他の物質が含まれていることを否定するものではない。   FIG. 1 shows the emission characteristics of this green phosphor. Spectrum (1) is a chart of fluorescence emission by excitation light of 300 nm, the peak wavelength of emission was about 534 nm, and the half width of the emission spectrum was 55 nm. The spectrum (2) is a chart of fluorescence emission by excitation light in the emission region of a blue light emitting diode of 400 nm. The emission peak wavelength is the same 534 nm green monochromatic light, but the emission spectrum intensity is 300 nm excitation light. It was about 60 to 70% of the fluorescence emission due to. The spectrum (3) represents the emission intensity of the fluorescence with respect to the wavelength of the excitation light of the green phosphor. As can be seen from this spectrum chart, this green phosphor exhibits a light emission peak due to excitation by excitation light having a wavelength of about 320 nm, and excitation light up to a wavelength of about 450 nm emits considerable light. And this green fluorescent substance can be light-emitted by the excitation by the excitation light to wavelength 500nm. This green phosphor does not deny that other substances are included in addition to the base material and bismuth.

本発明の蛍光体において、ビスマスに加えて、さらにマンガンを含有する場合は、マンガン源としては、金属マンガンを用いればよく、場合によっては、酸化物、硫化物や水酸化物、マンガン塩を用いてもよい。また、マンガン塩としては、どのような塩でもよいが、ハロゲン化物、硫酸塩、硝酸塩などの無機塩が挙げられる。ハロゲン化物としては、フッ化マンガン、塩化マンガン、臭化マンガン、ヨウ化マンガンなどが挙げられる。   In the phosphor of the present invention, when manganese is further contained in addition to bismuth, manganese may be used as the manganese source, and in some cases, oxide, sulfide, hydroxide, or manganese salt is used. May be. Further, the manganese salt may be any salt, but includes inorganic salts such as halides, sulfates and nitrates. Examples of the halide include manganese fluoride, manganese chloride, manganese bromide, and manganese iodide.

マンガンの含有量は、母体材料に対しビスマスとマンガンの合計で0.1〜15モル%程度、特に0.5〜5モル%程度とすることが好ましい。なお、マンガンを含有する場合は、ビスマス含有量は、0.1モル%よりも少なくてもよい。ビスマスとマンガンの合計含有量は、15モル%以上としても差し支えないが、蛍光の発光強度が増加しなくなるので、これ以上含有する必要がない。ビスマスとマンガンの合計含有量が、0.1モル%よりも少ないと、発光強度が低下したり、母体材料との混合を十分にしないと蛍光の発光にむらが生じたりすることがある。   The manganese content is preferably about 0.1 to 15 mol%, particularly about 0.5 to 5 mol% in total of bismuth and manganese with respect to the base material. In addition, when it contains manganese, bismuth content may be less than 0.1 mol%. The total content of bismuth and manganese can be 15 mol% or more, but the fluorescence emission intensity does not increase, so it is not necessary to contain more. If the total content of bismuth and manganese is less than 0.1 mol%, the emission intensity may decrease, or if the mixing with the host material is not sufficient, uneven emission of fluorescence may occur.

本発明の緑色蛍光体は、母体材料に対しビスマスとマンガンを同時に含有することで、420nm付近の青色光又は近紫外領域に励起帯のピークを持つことができる。この為、希土類元素(ユーロピウム等)を添加した緑色蛍光体(SrGa:Eu)を使用しなくても、420nm付近に発光ピークを持つ青色発光ダイオードにより励起することができる。 The green phosphor of the present invention can have an excitation band peak in the blue light or near-ultraviolet region near 420 nm by containing bismuth and manganese simultaneously with the base material. Therefore, the green phosphor doped with a rare earth element (europium, etc.) without the use of (SrGa 2 S 4 Eu), can be excited by the blue light emitting diode having an emission peak around 420 nm.

図2には、ビスマスとマンガンを同時に含有する本発明の緑色蛍光体の発光特性を示した。スペクトル(4)は、400nmの励起光による蛍光発光のチャートで、発光のピーク波長はおよそ533nmであり、その発光スペクトルの半値幅は60nmであった。スペクトル(5)は、この緑色蛍光体の励起光の励起波長に対する波長533nmの蛍光の発光強度を表している。スペクトルチャートからわかるように、この緑色蛍光体は、波長420nm付近の励起光による励起により発光のピークを示し、波長450nm付近までの励起光はかなりの発光をうながす。なお、マンガンを含有しない前記の緑色蛍光体に比べ、波長320nm付近の励起光による蛍光は非常に弱くなっている。   FIG. 2 shows the light emission characteristics of the green phosphor of the present invention containing bismuth and manganese at the same time. Spectrum (4) is a chart of fluorescence emission by excitation light of 400 nm, the peak wavelength of emission was about 533 nm, and the half width of the emission spectrum was 60 nm. Spectrum (5) represents the emission intensity of fluorescence having a wavelength of 533 nm with respect to the excitation wavelength of the excitation light of this green phosphor. As can be seen from the spectrum chart, the green phosphor exhibits a light emission peak due to excitation by excitation light having a wavelength of around 420 nm, and excitation light up to a wavelength of around 450 nm prompts considerable emission. In addition, the fluorescence by excitation light with a wavelength of around 320 nm is much weaker than that of the green phosphor not containing manganese.

本発明のいずれの緑色蛍光体も、近紫外放射線励起、緑色発光であり、且つ比較的狭い波長域の蛍光を示すことを特徴とする固体蛍光材料である。そして、これらの緑色蛍光体は、単色性が優れており、比較的容易に得られる赤色蛍光体や、黄色蛍光体と組み合わせることにより、演色性の優れた白色光源とすることができる。特に、励起光源として青色発光ダイオードを用いれば、4色の発光源の組合せで演色することができ、所望の白色光源の発生に好適である。   Any of the green phosphors of the present invention is a solid fluorescent material characterized by near ultraviolet radiation excitation, green emission, and fluorescence in a relatively narrow wavelength range. These green phosphors are excellent in monochromaticity, and can be combined with a red phosphor or a yellow phosphor that can be obtained relatively easily to provide a white light source with excellent color rendering properties. In particular, when a blue light emitting diode is used as an excitation light source, color rendering can be performed by a combination of four light emitting sources, which is suitable for generating a desired white light source.

一般式M (但し、MはCaSr1−X(0≦X≦1)、MはGaAl1−Y(0≦Y≦1))で表される化合物を母体材料とするとは、本発明の緑色蛍光体そのもの若しくはこの緑色蛍光体を粉砕して得た粉末のX線回折測定から、一般式M (但し、MはCaSr1−X(0≦X≦1)、MはGaAl1−Y(0≦Y≦1))で表される化合物であると同定される回折線が観測され、上記の一般式M で表される化合物の結晶性固体が形成されていると判断できるものを言う。なお、上記の一般式M は、極端な例として、CaGa、CaAl、SrGa、SrAlであってもよいことは言うまでもない。 It is represented by the general formula M 1 M 2 2 S 4 (where M 1 is Ca X Sr 1-X (0 ≦ X ≦ 1) and M 2 is Ga Y Al 1-Y (0 ≦ Y ≦ 1)). When the compound is used as a base material, the general formula M 1 M 2 2 S 4 (provided that M 1 is Ca is based on the X-ray diffraction measurement of the green phosphor of the present invention itself or a powder obtained by pulverizing the green phosphor) A diffraction line identified as a compound represented by X Sr 1-X (0 ≦ X ≦ 1) and M 2 is Ga Y Al 1-Y (0 ≦ Y ≦ 1)) is observed, It means that it can be judged that a crystalline solid of a compound represented by the formula M 1 M 2 2 S 4 is formed. In general formula M 1 M 2 2 S 4 described above, as an extreme example, CaGa 2 S 4, CaAl 2 S 4, SrGa 2 S 4, SrAl 2 that S may be a four course.

結晶性の固体とは、単結晶体、多結晶性焼結体、多結晶性または単結晶性の膜や薄層体、バルク体を意味する。また、多結晶性焼結体の微粒子、多結晶性または単結晶性の膜の薄片、多結晶性または単結晶性の微結晶を液体中や有機ポリマー中などに分散させたものは、外見は液体状や非結晶体状であっても、蛍光を示す基本要素は結晶性固体であるから、ここで言う結晶性の固体に該当する。   The crystalline solid means a single crystal body, a polycrystalline sintered body, a polycrystalline or single crystal film, a thin layer body, or a bulk body. In addition, fine particles of a polycrystalline sintered body, a thin piece of a polycrystalline or single crystalline film, a polycrystalline or single crystalline microcrystal dispersed in a liquid or an organic polymer, etc. Even if it is in a liquid form or an amorphous form, the basic element exhibiting fluorescence is a crystalline solid, and thus corresponds to the crystalline solid mentioned here.

本発明の緑色蛍光体は、一般式M (但し、MはCaSr1−X(0≦X≦1)、MはGaAl1−Y(0≦Y≦1))で表される化合物を母体材料に添加元素として、ビスマス又はビスマスとマンガンを組み合わせることに新規性があることから、その製造方法はどのような方法でもよい。例えば、従来の蛍光体の製造方法と同様、それぞれの原料粉末を混合して焼結する乾式法や、それぞれの原料となる元素を含む化合物を水溶液中などで反応させ、反応生成物を析出、乾燥、場合によっては焼結する湿式法などを利用すればよい。本発明の緑色蛍光体の膜や積層体等の特殊な形態の多結晶体、単結晶体の製造方法についても、どのような方法を使用してもよく、従来から知られている各種の成膜方法等が活用できる。 The green phosphor of the present invention has a general formula M 1 M 2 2 S 4 (where M 1 is Ca X Sr 1-X (0 ≦ X ≦ 1) and M 2 is Ga Y Al 1-Y (0 ≦ Y). Since there is novelity in combining bismuth or bismuth and manganese with the compound represented by ≦ 1)) as an additive element in the base material, any production method may be used. For example, like the conventional phosphor manufacturing method, a dry method in which each raw material powder is mixed and sintered, or a compound containing an element serving as each raw material is reacted in an aqueous solution, and the reaction product is precipitated. What is necessary is just to utilize the wet method etc. which dry and sinter depending on the case. Any method may be used for producing a polycrystalline or single crystal having a special form such as a green phosphor film or a laminate of the present invention. Membrane methods can be used.

例えば、本発明の緑色蛍光体を乾式法による製造方法の例を説明すると、母体材料の原料として、硫化カルシウム粉末(CaS)、硫化ストロンチウム粉末(SrS)、硫化ガリウム粉末(Ga)、硫化アルミニウム粉末(Al)を所望の比率で混合する。但し、硫化カルシウム粉末と硫化ストロンチウム粉末の合計量と、硫化ガリウム粉末と硫化アルミニウム粉末の合計量とは、モル比で1:1となるようにする。この母体材料の混合原料にビスマス粉末、及び必要に応じてマンガン粉末を添加し均一に混合する。これらの混合粉末を加圧成形して得たペレットを真空アンプル中に封入し、800〜1300℃程度の温度で、1〜10時間程度焼結すればよい。なお、ビスマス粉末の代わりにビスマスの硫化物粉末や酸化物粉末、水酸化物粉末、マンガン粉末の代わりにマンガンの硫化物粉末や酸化物粉末、水酸化物粉末を用いてもよい。また、この焼結体は、そのままでも、粉砕して薄層化しても、MBE装置(分子ビームエピタキシ装置)等を用いて薄膜化して利用することもできる。 For example, an example of a method for producing the green phosphor of the present invention by a dry method will be described. As raw materials for the base material, calcium sulfide powder (CaS), strontium sulfide powder (SrS), gallium sulfide powder (Ga 2 S 3 ), aluminum sulfide powder (Al 2 S 3) are mixed in a desired ratio. However, the total amount of the calcium sulfide powder and the strontium sulfide powder and the total amount of the gallium sulfide powder and the aluminum sulfide powder are set to 1: 1 as a molar ratio. Bismuth powder and, if necessary, manganese powder are added to the mixed raw material of the base material and mixed uniformly. What is necessary is just to enclose the pellet obtained by press-molding these mixed powders in a vacuum ampule, and to sinter at the temperature of about 800-1300 degreeC for about 1 to 10 hours. Instead of bismuth powder, bismuth sulfide powder, oxide powder, hydroxide powder, or manganese powder may be used instead of manganese sulfide powder, oxide powder, or hydroxide powder. Further, this sintered body can be used as it is, even if it is pulverized and thinned, or it can be thinned using an MBE apparatus (molecular beam epitaxy apparatus) or the like.

(実施例1)
硫化カルシウム粉末(CaS)0.1モル、硫化ストロンチウム粉末(SrS)0.1モル、硫化ガリウム粉末(Ga)0.1モル、硫化アルミニウム粉末(Al)0.1モルを混合する。この混合原料に、硫化硫化ビスマス粉末(Bi)0.005モルを加え、均一に混合した後、ペレット状に加圧成形して真空加熱炉中で1000℃、3時間焼結した。この焼結体を冷却した後に粉砕して緑色蛍光体Aを作製した。この緑色蛍光体Aの蛍光発光特性を図1に示す。図1については、すでに説明しているが、この緑色蛍光体Aは、好適な緑色蛍光体であることがわかる。なお、母体材料の原料やビスマスの混合比を変化させて緑色蛍光体を作製して蛍光発光特性を測定したが、図1とほとんど変化はなかった。
Example 1
Calcium sulfide powder (CaS) 0.1 mol, strontium sulfide powder (SrS) 0.1 mol, gallium sulfide powder (Ga 2 S 3) 0.1 mol of aluminum sulfide powder (Al 2 S 3) 0.1 moles Mix. To this mixed material, 0.005 mol of bismuth sulfide sulfide powder (Bi 2 S 3 ) was added and mixed uniformly, then pressed into a pellet and sintered in a vacuum heating furnace at 1000 ° C. for 3 hours. The sintered body was cooled and then pulverized to produce a green phosphor A. The fluorescence emission characteristics of this green phosphor A are shown in FIG. Although FIG. 1 has already been described, it can be seen that the green phosphor A is a suitable green phosphor. Although the green phosphor was produced by changing the mixing ratio of the raw material of the base material and bismuth and the fluorescence emission characteristics were measured, there was almost no change from FIG.

(実施例2)
硫化カルシウム粉末(CaS)0.1モル、硫化ストロンチウム粉末(SrS)0.1モル、硫化ガリウム粉末(Ga)0.1モル、硫化アルミニウム粉末(Al)0.1モルを混合する。この混合原料に、硫化ビスマス粉末(Bi)0.003モル、及び硫化マンガン粉末(MnS)0.002モル加え、均一に混合した後、ペレット状に加圧成形して真空加熱炉中で1000℃、3時間焼結した。この焼結体を冷却した後に粉砕して緑色蛍光体Bを作製した。この緑色蛍光体Bの蛍光発光特性を図2に示す。図2については、すでに説明しているが、この緑色蛍光体Bは、特に青色波長領域の励起光に対する好適な緑色蛍光体であることがわかる。なお、母体材料の原料やビスマスとマンガンの混合比を変化させて緑色蛍光体を作製して蛍光発光特性を測定たが、図2とあまり大きな変化はなかった。
(Example 2)
Calcium sulfide powder (CaS) 0.1 mol, strontium sulfide powder (SrS) 0.1 mol, gallium sulfide powder (Ga 2 S 3 ) 0.1 mol, aluminum sulfide powder (Al 2 S 3 ) 0.1 mol Mix. To this mixed raw material, 0.003 mol of bismuth sulfide powder (Bi 2 S 3 ) and 0.002 mol of manganese sulfide powder (MnS 2 ) are added and mixed uniformly, and then pressure-formed into a pellet and vacuum-heated Sintered at 1000 ° C. for 3 hours. The sintered body was cooled and pulverized to produce a green phosphor B. The fluorescence emission characteristics of this green phosphor B are shown in FIG. Although FIG. 2 has already been described, it can be seen that this green phosphor B is a suitable green phosphor particularly for excitation light in the blue wavelength region. The green phosphor was produced by changing the raw material of the base material and the mixing ratio of bismuth and manganese, and the fluorescence emission characteristics were measured. However, there was no significant change from FIG.

この緑色蛍光体A、及びBは、1kV〜10kVの電子線を照射してもフォトルミネッセンススペクトルと同じ緑色発光が得られた。また、電界によって励起することによりフォトルミネッセンススペクトルと同じ緑色発光が得られた。   The green phosphors A and B emitted the same green light as the photoluminescence spectrum even when irradiated with an electron beam of 1 kV to 10 kV. Moreover, the same green light emission as a photoluminescence spectrum was obtained by exciting by an electric field.

(実施例3)
本発明の緑色蛍光体を発光源とする無機薄膜EL素子の発光層を作製した。MBE装置(分子ビームエピタキシ装置)を用いて、上述の実施例2緑色蛍光体Bを構成する原料を加熱・蒸発させて、500〜800℃の基板上に薄膜を形成した。蛍光体を構成する金属原料等は基板上で化学反応しながら、膜厚0.5ミクロン程度の緑色蛍光体薄膜となった。この薄膜は、スパッタ法で作製した厚み0.5ミクロンほどの五酸化タンタルの薄膜で両側から挟んで、さらに透明電極とアルミ電極でその外側から挟み、無機薄膜EL素子の発光層とした。この無機薄膜EL素子は、図3に示すような構造であり、発光層の電極間に、300Vの交流電圧を印加したところ緑色の発光をした。
(Example 3)
A light emitting layer of an inorganic thin film EL element using the green phosphor of the present invention as a light source was produced. Using a MBE apparatus (molecular beam epitaxy apparatus), the raw material constituting the above-described Example 2 green phosphor B was heated and evaporated to form a thin film on a substrate at 500 to 800 ° C. The metal raw material constituting the phosphor became a green phosphor thin film having a thickness of about 0.5 microns while chemically reacting on the substrate. This thin film was sandwiched from both sides by a tantalum pentoxide thin film having a thickness of about 0.5 microns produced by sputtering, and further sandwiched from the outside by a transparent electrode and an aluminum electrode to form a light emitting layer of an inorganic thin film EL element. This inorganic thin film EL element has a structure as shown in FIG. 3, and emitted green light when an AC voltage of 300 V was applied between the electrodes of the light emitting layer.

本発明に係る緑色蛍光体は、従来の高価なユーロピウムやセリウムのような希土類元素の代替としてそれよりも安価なビスマスおよびマンガンを用いることによって、同等の波長域である緑色に発光特性のある半値幅の狭い蛍光を発する。このような緑色蛍光体は、照明およびディスプレイ用の蛍光体として、また、演色性の優れた白色光の光源の一つとして好適に適用できる。   The green phosphor according to the present invention uses bismuth and manganese, which are cheaper than the conventional rare earth elements such as europium and cerium, and thereby has a green emission characteristic in the same wavelength region. It emits fluorescence with a narrow value range. Such a green phosphor can be suitably applied as a phosphor for illumination and display and as one of white light sources having excellent color rendering properties.

本発明の緑色蛍光体(Bi系)のフォトルミネッセンス(PL)スペクトルとPL励起スペクトルPhotoluminescence (PL) spectrum and PL excitation spectrum of the green phosphor of the present invention (Bi system) 本発明の緑色蛍光体(Bi、Mn系)のフォトルミネッセンス(PL)スペクトルとPL励起スペクトルPhotoluminescence (PL) spectrum and PL excitation spectrum of the green phosphor (Bi, Mn system) of the present invention 本発明の緑色蛍光体(Bi、Mn系)の無機薄膜EL素子の構造を示す断面図Sectional drawing which shows the structure of the inorganic thin film EL element of the green fluorescent substance (Bi, Mn type) of this invention

符号の説明Explanation of symbols

(1):緑色蛍光体(Bi系)の励起波長300nmに対するフォトルミネッセンス(PL)
(2):緑色蛍光体(Bi系)の励起波長400nmに対するフォトルミネッセンス(PL)
(3):緑色蛍光体(Bi系)の蛍光波長534nmに対する励起スペクトル
(4):緑色蛍光体(Bi、Mn系)の励起波長400nmに対するフォトルミネッセンス(PL)
(5):緑色蛍光体(Bi、Mn系)の蛍光波長533nmに対する励起スペクトル
1:無機薄膜EL素子
2:ガラス基板
3:透明電極
4:緑色蛍光体層
5:絶縁層
6:金属電極
7:電源
(1): Photoluminescence (PL) for excitation wavelength of 300 nm of green phosphor (Bi system)
(2): Photoluminescence (PL) for green phosphor (Bi system) with an excitation wavelength of 400 nm
(3): Excitation spectrum of green phosphor (Bi system) with respect to fluorescence wavelength of 534 nm (4): Photoluminescence (PL) with respect to excitation wavelength of 400 nm of green phosphor (Bi, Mn system)
(5): Excitation spectrum of green phosphor (Bi, Mn-based) with respect to fluorescence wavelength of 533 nm 1: Inorganic thin film EL element 2: Glass substrate 3: Transparent electrode 4: Green phosphor layer 5: Insulating layer 6: Metal electrode 7: Power supply

Claims (3)

一般式M (但し、MはCaSr1−X(0≦X≦1)、MはGaAl1−Y(0≦Y≦1))で表される化合物に、ビスマスを含むことを特徴とする緑色発光する蛍光体。 It is represented by the general formula M 1 M 2 2 S 4 (where M 1 is Ca X Sr 1-X (0 ≦ X ≦ 1) and M 2 is Ga Y Al 1-Y (0 ≦ Y ≦ 1)). A phosphor emitting green light, wherein the compound contains bismuth. マンガンをさらに含むことを特徴とする請求項1に記載の緑色発光する蛍光体。   The phosphor according to claim 1, further comprising manganese. 請求項1又は2に記載の蛍光体からなる薄膜を一対の電極で両側から挟持することを特徴とする無機EL素子。   An inorganic EL element, wherein the thin film made of the phosphor according to claim 1 or 2 is sandwiched from both sides by a pair of electrodes.
JP2008221184A 2008-08-29 2008-08-29 Green light emitting phosphor and inorganic EL element Expired - Fee Related JP5113675B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008221184A JP5113675B2 (en) 2008-08-29 2008-08-29 Green light emitting phosphor and inorganic EL element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008221184A JP5113675B2 (en) 2008-08-29 2008-08-29 Green light emitting phosphor and inorganic EL element

Publications (2)

Publication Number Publication Date
JP2010053280A true JP2010053280A (en) 2010-03-11
JP5113675B2 JP5113675B2 (en) 2013-01-09

Family

ID=42069521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008221184A Expired - Fee Related JP5113675B2 (en) 2008-08-29 2008-08-29 Green light emitting phosphor and inorganic EL element

Country Status (1)

Country Link
JP (1) JP5113675B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001549A1 (en) * 1994-07-04 1996-01-18 Nippon Hoso Kyokai Ternary compound film and manufacturing method therefor
JP2002080844A (en) * 2000-09-04 2002-03-22 Nippon Hoso Kyokai <Nhk> Electroluminiscent material and electroluminiscent device using the same
WO2007064416A1 (en) * 2005-12-01 2007-06-07 Sarnoff Corporaton Phosphors protected against moisture and led lighting devices

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996001549A1 (en) * 1994-07-04 1996-01-18 Nippon Hoso Kyokai Ternary compound film and manufacturing method therefor
JP2002080844A (en) * 2000-09-04 2002-03-22 Nippon Hoso Kyokai <Nhk> Electroluminiscent material and electroluminiscent device using the same
WO2007064416A1 (en) * 2005-12-01 2007-06-07 Sarnoff Corporaton Phosphors protected against moisture and led lighting devices

Also Published As

Publication number Publication date
JP5113675B2 (en) 2013-01-09

Similar Documents

Publication Publication Date Title
Zhang et al. An efficient, broad-band red-emitting Li2MgTi3O8: Mn4+ phosphor for blue-converted white LEDs
KR101955643B1 (en) Green-emitting, garnet-based phosphors in general and backlighting applications
Chen et al. Rare-earth free self-activated and rare-earth activated Ca2NaZn2V3O12 vanadate phosphors and their color-tunable luminescence properties
JP4733535B2 (en) Oxynitride phosphor, method for manufacturing oxynitride phosphor, semiconductor light emitting device, light emitting device, light source, illumination device, and image display device
KR101789856B1 (en) Blue-light-emitting phosphor and light-emitting device equipped with the blue-light-emitting phosphor
Yim et al. A novel blue-emitting NaSrPO4: Eu2+ phosphor for near UV based white light-emitting-diodes
Chen et al. Energy transfer properties and temperature-dependent luminescence of Ca 14 Al 10 Zn 6 O 35: Dy 3+, Mn 4+ phosphors
Wang et al. Multicolor bright Ln 3+(Ln= Eu, Dy, Sm) activated tungstate phosphor for multifunctional applications
Ye et al. Luminescent properties and energy transfer process of Sm3+-Eu3+ co-doped MY2 (MoO4) 4 (M= Ca, Sr and Ba) red-emitting phosphors
Yu et al. Photoluminescence properties of a new Eu2+-activated CaLaGa3S7 yellowish-green phosphor for white LED applications
Song et al. Luminescent properties of phosphor converted LED using an orange-emitting Rb2CaP2O7: Eu2+ phosphor
Bispo-Jr et al. Eu (II)‐Activated Silicates for UV Light‐Emitting Diodes Tuning into Warm White Light
JPWO2016199406A1 (en) Phosphor and method for manufacturing the same, and LED lamp
Kharabe et al. Synthesis of Dy3+ and Ce3+ activated Sr6BP5O20 and Ca6BP5O20 borophosphate phosphors
Yu et al. Photoluminescence properties of a new red-emitting Mn-activated ZnGa2S4 phosphor
KR100716069B1 (en) Preparation method of white phosphor materials
US8747696B2 (en) Phosphors and white light illumination devices utilizing the same
JP4330172B2 (en) Phosphor and light emitting device using the same
Lei et al. Sol–gel synthesis and photoluminescence properties of a novel Dy 3+ activated CaYAl 3 O 7 phosphor
Sun et al. Tunable color of Ce 3+/Tb 3+-codoped Ba 3 Sr 4 (BO 3) 3 F 5 phosphors for near-UV-pumped LEDs
JP2006232948A (en) Red-light-emitting phosphor and light emitting device
JP5113675B2 (en) Green light emitting phosphor and inorganic EL element
JP2008024852A (en) Method for producing phosphor
US10174245B2 (en) Method for producing a luminescent material, luminescent material and optoelectronic component
JP5736272B2 (en) Blue light emitting phosphor and light emitting device using the blue light emitting phosphor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120918

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121012

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees