JP2010052955A - Method for operating sulfur recovery apparatus - Google Patents

Method for operating sulfur recovery apparatus Download PDF

Info

Publication number
JP2010052955A
JP2010052955A JP2008216751A JP2008216751A JP2010052955A JP 2010052955 A JP2010052955 A JP 2010052955A JP 2008216751 A JP2008216751 A JP 2008216751A JP 2008216751 A JP2008216751 A JP 2008216751A JP 2010052955 A JP2010052955 A JP 2010052955A
Authority
JP
Japan
Prior art keywords
gas
sulfur
reactor
sulfur recovery
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008216751A
Other languages
Japanese (ja)
Other versions
JP4950148B2 (en
Inventor
Masao Arita
正雄 有田
Hideo Yamamoto
英雄 山本
Yasuhiro Yoshioka
泰裕 吉岡
Masahiro Moriya
正宏 守屋
Shigekazu Matsumoto
茂和 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Oil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Oil Corp filed Critical Nippon Oil Corp
Priority to JP2008216751A priority Critical patent/JP4950148B2/en
Publication of JP2010052955A publication Critical patent/JP2010052955A/en
Application granted granted Critical
Publication of JP4950148B2 publication Critical patent/JP4950148B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treating Waste Gases (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an operating method of a sulfur recovery apparatus by which the quantity of atmospheric pollutant to be discharged to the air is sufficiently reduced while sufficiently reducing the remaining quantity of iron sulfide in a sulfur recovery apparatus when the operation of the sulfur recovery apparatus is stopped. <P>SOLUTION: The sulfur recovery apparatus 1 is provided with a reaction furnace 12 for combusting H<SB>2</SB>S to produce SO<SB>2</SB>, a sulfur recovery part 10 provided with a first reactor 14 for producing sulfur by the reaction of SO<SB>2</SB>with H<SB>2</SB>S, a second reactor 34 for hydrogenating SO<SB>2</SB>produced in the sulfur recovery part 10 and a gas absorption part 20 provided with an absorption column 38 for absorbing H<SB>2</SB>S produced by the hydrogenation in an absorption liquid. The operation method in the stoppage of the operation of the apparatus, comprises a step of combusting iron sulfide stuck on the inner part of the sulfur recovery part 10 while O<SB>2</SB>in the first reactor 14 is kept to 0-1 vol.% by supplying air and H<SB>2</SB>in an air/fuel ratio exceeding theoretical air/fuel ratio; and a step of reducing SO<SB>2</SB>produced in the preceding step in the second reactor 34 and absorbing H<SB>2</SB>S with the absorption liquid. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、硫黄回収装置の運転方法に関する。   The present invention relates to a method for operating a sulfur recovery apparatus.

各種石油製品や石油化学製品の精製においては、製品安定性や臭気、腐食性等を改善するために、間接脱硫装置や直接脱硫装置などによって、硫黄成分を除去する工程を有する。通常、脱硫装置では、水素ガスの存在下で、触媒を用いて、重油、重質軽油、軽質軽油、灯油、ナフサ等に含まれる硫黄成分を硫化水素に変換して除去する。生成した硫化水素ガスは、通常、硫黄回収装置において、一部が二酸化硫黄に変換された後、クラウス反応により硫黄として回収される。   In the refining of various petroleum products and petrochemical products, in order to improve product stability, odor, corrosiveness, etc., there is a step of removing sulfur components using an indirect desulfurization apparatus or a direct desulfurization apparatus. Usually, in a desulfurization apparatus, a sulfur component contained in heavy oil, heavy light oil, light light oil, kerosene, naphtha or the like is converted to hydrogen sulfide and removed using a catalyst in the presence of hydrogen gas. The produced hydrogen sulfide gas is usually converted into sulfur by a Claus reaction after being partially converted to sulfur dioxide in a sulfur recovery device.

硫黄回収装置における硫化水素ガスの具体的な処理方法としては、硫化水素ガスの一部を燃焼させて二酸化硫黄を生成させ、この二酸化硫黄と未燃焼の硫化水素とを触媒存在下、クラウス反応させて、硫黄と水を生成する方法が採用されている。このように硫化水素ガスの処理を行う硫黄回収装置は、通常、硫化水素を燃焼させて、クラウス反応を行い、硫黄を回収する硫黄回収部(クラウス系)と、硫黄回収部で発生した余剰の二酸化硫黄を加熱し、触媒存在下で水素により還元して硫化水素とし、当該硫化水素を吸収液で吸収させるガス吸収部と、硫化水素が除去されたオフガスを燃焼させる燃焼部とを有する。   As a specific treatment method of hydrogen sulfide gas in the sulfur recovery device, a part of the hydrogen sulfide gas is burned to produce sulfur dioxide, and this sulfur dioxide and unburned hydrogen sulfide are subjected to a Claus reaction in the presence of a catalyst. The method of producing sulfur and water is adopted. In this way, the sulfur recovery device that performs the treatment of hydrogen sulfide gas normally combusts hydrogen sulfide, performs a Claus reaction, and recovers sulfur, and a surplus generated in the sulfur recovery unit. Sulfur dioxide is heated and reduced with hydrogen in the presence of a catalyst to form hydrogen sulfide. The gas absorption part absorbs the hydrogen sulfide with an absorption liquid and the combustion part burns off-gas from which hydrogen sulfide has been removed.

図2は、硫黄回収装置の従来の運転方法を説明するための概略構成図である。硫黄回収装置3は、硫黄回収部100とガス吸収部200と燃焼部300とを備える。通常の運転状態では、反応炉112に、硫化水素ガス(アシッドガス)と空気とが所定の比率で供給され、硫化水素ガスの一部が燃焼して酸化硫黄(二酸化硫黄)を生成する。生成した二酸化硫黄と未燃焼の硫化水素ガスは、配管L102を通ってクラウス触媒を有する第1反応器114に導入される。第1反応器114では、クラウス反応が進行して硫化水素と二酸化硫黄とから硫黄が生成される。生成した硫黄は、二酸化硫黄及び硫化水素を含む未反応ガスとともに配管L104を通って、凝縮器116に導入され、凝縮器116より液状で回収される。   FIG. 2 is a schematic configuration diagram for explaining a conventional operation method of the sulfur recovery apparatus. The sulfur recovery device 3 includes a sulfur recovery unit 100, a gas absorption unit 200, and a combustion unit 300. In a normal operation state, hydrogen sulfide gas (acid gas) and air are supplied to the reaction furnace 112 at a predetermined ratio, and part of the hydrogen sulfide gas burns to generate sulfur oxide (sulfur dioxide). The produced sulfur dioxide and unburned hydrogen sulfide gas are introduced into the first reactor 114 having a Claus catalyst through the pipe L102. In the first reactor 114, the Claus reaction proceeds to generate sulfur from hydrogen sulfide and sulfur dioxide. The generated sulfur is introduced into the condenser 116 through the pipe L104 together with the unreacted gas containing sulfur dioxide and hydrogen sulfide, and is recovered in a liquid state from the condenser 116.

一方、第1反応器114で反応しなかった未反応ガス(硫化水素及び酸化硫黄を含む)は、配管L106及びバルブV104を通ってガス吸収部200の加熱器132に導入される。硫黄回収装置3の定常運転では、バルブV102は閉止されており、未反応ガスが燃焼器139で燃焼されて大気汚染物質が放出されることを防止している。未反応ガスは、加熱器132で導入される水素ガスとともに所定の温度に加熱され、配管L110を通って水素化触媒を有する第2反応器134に導入される。第2反応器134では、水素化触媒の作用により、未反応ガスに含まれる酸化硫黄が水素化されて硫化水素及び水を生成する。これらの硫化水素及び水は、他の副生ガスとともに配管L112を通ってクエンチャ136に導入され、硫化水素を含むガス留分と水とに分離される。クエンチャ136で分離されたガス留分は、配管L114及び配管L116を通ってガス吸収塔138に導入され、ガス留分に含まれる硫化水素が配管L124によって供給される吸収液で吸収される。硫化水素を吸収した吸収液は配管L126を通って排出され、他の装置でこの吸収液から分離される。分離された硫化水素は場合によって再び硫黄回収装置3の反応炉112に供給される。一方、ガス留分に含まれるオフガス(燃料ガス)は、配管L122を通って燃焼器139に導入され燃焼される。   On the other hand, unreacted gas (including hydrogen sulfide and sulfur oxide) that has not reacted in the first reactor 114 is introduced into the heater 132 of the gas absorption unit 200 through the pipe L106 and the valve V104. In the steady operation of the sulfur recovery device 3, the valve V102 is closed to prevent the unreacted gas from being combusted in the combustor 139 and releasing air pollutants. The unreacted gas is heated to a predetermined temperature together with the hydrogen gas introduced by the heater 132, and is introduced into the second reactor 134 having the hydrogenation catalyst through the pipe L110. In the second reactor 134, sulfur oxide contained in the unreacted gas is hydrogenated by the action of the hydrogenation catalyst to generate hydrogen sulfide and water. These hydrogen sulfide and water are introduced into the quencher 136 through the pipe L112 together with other by-product gases, and separated into a gas fraction containing hydrogen sulfide and water. The gas fraction separated by the quencher 136 is introduced into the gas absorption tower 138 through the pipe L114 and the pipe L116, and hydrogen sulfide contained in the gas fraction is absorbed by the absorbing liquid supplied through the pipe L124. The absorbing solution that has absorbed hydrogen sulfide is discharged through the pipe L126, and is separated from this absorbing solution by another device. The separated hydrogen sulfide is supplied again to the reaction furnace 112 of the sulfur recovery device 3 in some cases. On the other hand, off-gas (fuel gas) contained in the gas fraction is introduced into the combustor 139 through the pipe L122 and burned.

ところで、二酸化硫黄などの酸化硫黄ガス(SO)は、大気汚染物質として知られており、毒性も高いことから、大気中への放出量を極力低減することが求められている。このため、硫黄回収装置で発生する酸化硫黄ガスの大気中への放出量を極力低減することが求められる。 By the way, sulfur oxide gas (SO x ) such as sulfur dioxide is known as an air pollutant and has high toxicity. Therefore, it is required to reduce the amount released to the atmosphere as much as possible. For this reason, it is required to reduce as much as possible the amount of sulfur oxide gas generated in the sulfur recovery device to the atmosphere.

しかしながら、原料である硫化水素ガスの量が変動して過剰または過少となった場合、硫黄回収装置の運転を停止する場合、あるいはその後運転を開始する場合には、硫黄回収装置にかかる負荷が変動して、運転を調整することが難しくなり、ガス吸収部で処理できない硫化水素ガスを、配管L108を介して燃焼器139で燃焼せざるを得なくなってしまう。この場合、一時的に大気中に二酸化硫黄などの酸化硫黄ガスが燃焼器から排出されてしまうこととなる。このような負荷変動時において大気汚染物質の排出を抑制する運転方法として、燃焼性ガスを装置内に注入することが提案されている(例えば、特許文献1参照)。
特開平10−265204号公報
However, when the amount of raw material hydrogen sulfide gas fluctuates and becomes excessive or insufficient, when the operation of the sulfur recovery device is stopped, or when the operation is started thereafter, the load on the sulfur recovery device fluctuates As a result, it becomes difficult to adjust the operation, and hydrogen sulfide gas that cannot be processed by the gas absorption unit must be burned in the combustor 139 via the pipe L108. In this case, sulfur oxide gas such as sulfur dioxide is temporarily discharged from the combustor into the atmosphere. As an operation method for suppressing the discharge of air pollutants during such load fluctuations, it has been proposed to inject a combustible gas into the apparatus (see, for example, Patent Document 1).
JP 10-265204 A

硫黄回収装置は、定期的に熱交換器や加熱炉などの各機器を開放してメンテナンスや修理を行う必要があり、その度に運転の停止操作及び開始操作が必要となる。硫黄回収装置を構成する各機器は鉄を含有しているため、運転によって装置内部に硫化鉄が析出する。このため、運転の停止操作時には、各機器の解放前に硫化鉄による発火を未然に防止するべく、硫黄回収装置の硫黄回収部の内部に付着する硫化鉄を燃焼除去する所謂サルファーバーニングを行う必要がある。   The sulfur recovery device needs to periodically perform maintenance and repair by opening devices such as a heat exchanger and a heating furnace, and each time a stop operation and a start operation are required. Since each apparatus which comprises a sulfur collection | recovery apparatus contains iron, iron sulfide precipitates inside an apparatus by driving | operation. For this reason, when stopping the operation, it is necessary to perform so-called sulfur burning that burns and removes iron sulfide adhering to the inside of the sulfur recovery part of the sulfur recovery device in order to prevent ignition by iron sulfide before releasing each device. There is.

ところが、このサルファーバーニング時において、酸化硫黄などの大気汚染物質の排出量が多くなるという問題があった。この原因は、硫黄回収部100の硫化鉄を燃焼させた際に発生する燃焼ガスが酸素を含んでいるために、水素化反応用の第2触媒を保護する観点からガス吸収部200では処理できず、当該燃焼ガスをそのまま燃焼部300の燃焼器139で燃焼させていることによる。   However, during sulfur burning, there is a problem in that the amount of air pollutants such as sulfur oxide is increased. This is because the combustion gas generated when the iron sulfide of the sulfur recovery unit 100 is burned contains oxygen, so that the gas absorption unit 200 can handle the second catalyst for the hydrogenation reaction. This is because the combustion gas is directly burned in the combustor 139 of the combustion unit 300.

このため、硫黄回収装置の運転停止操作時において、大気汚染物質の大気への排出量を増やさずにサルファーバーニングをすることができる硫黄回収装置の運転方法が求められている。   For this reason, there is a need for a method of operating a sulfur recovery apparatus that can perform sulfur burning without increasing the amount of air pollutants discharged into the atmosphere during a shutdown operation of the sulfur recovery apparatus.

本発明は、かかる事情に鑑みてなされたものであり、硫黄回収装置の運転停止操作時において、硫黄回収装置内の硫化鉄の残留量を十分に低減しつつ大気汚染物質の大気への排出量が十分低減可能な硫黄回収装置の運転方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and at the time of shutdown operation of the sulfur recovery device, the amount of air pollutants discharged to the atmosphere while sufficiently reducing the residual amount of iron sulfide in the sulfur recovery device An object of the present invention is to provide a method for operating a sulfur recovery apparatus that can sufficiently reduce the amount of sulfur.

上記目的を達成するため、本発明では、硫化水素を燃焼させて二酸化硫黄を生成する反応炉と、二酸化硫黄及び硫化水素をクラウス反応させて硫黄を生成する第1触媒を有する第1反応器と、を備える硫黄回収部、並びに、硫黄回収部で生成した二酸化硫黄を水素化反応させて硫化水素を生成する第2触媒を有する第2反応器と、第2反応器で生成した硫化水素を吸収液に吸収させる吸収塔とを備えるガス吸収部、を具備する硫黄回収装置の運転方法であって、該硫黄回収装置の運転停止の際に、反応炉に水素を主成分とする燃料ガスとともに該燃料ガスを燃焼させる空気を理論空燃比を超える空燃比で供給することにより、第1反応器における酸素濃度を0〜1体積%に維持しながら、硫黄回収部の内部に付着する硫化鉄を燃焼する燃焼工程と、硫化鉄の燃焼によって生成した二酸化硫黄をガス吸収部の第2反応器で水素化反応させて硫化水素を生成し、硫化水素を吸収液で吸収する吸収工程とを有する硫黄回収装置の運転方法を提供する。   In order to achieve the above object, in the present invention, a reactor for combusting hydrogen sulfide to produce sulfur dioxide, and a first reactor having a first catalyst for producing sulfur by claus reaction of sulfur dioxide and hydrogen sulfide, And a second reactor having a second catalyst for producing hydrogen sulfide by hydrogenating sulfur dioxide produced in the sulfur collecting portion, and absorbing hydrogen sulfide produced in the second reactor An operation method of a sulfur recovery device comprising a gas absorption part comprising an absorption tower to be absorbed in a liquid, and when the operation of the sulfur recovery device is stopped, the reactor is combined with a fuel gas mainly containing hydrogen. By supplying air for burning fuel gas at an air-fuel ratio exceeding the stoichiometric air-fuel ratio, the iron sulfide adhering to the inside of the sulfur recovery unit is burned while maintaining the oxygen concentration in the first reactor at 0 to 1% by volume. Combustor A sulfur recovery device comprising: a hydrogenation reaction of sulfur dioxide generated by the combustion of iron sulfide in a second reactor of the gas absorption unit to generate hydrogen sulfide and absorb the hydrogen sulfide with an absorbing liquid Provide a method.

本発明の硫黄回収装置の運転方法では、硫黄回収装置の運転停止の際に、反応炉に供給する空気を、反応炉に供給する燃料ガスに対して理論空燃比を超える比率で供給することによって、第1反応器における酸素濃度を0〜1体積%の範囲に調整している。これによって、ガス吸収部における酸素濃度が十分に低く維持されるため、酸素による第2触媒の損傷を十分に抑制しつつ硫黄回収部の内部の壁面等に付着する硫化鉄を徐々に酸素と反応させて十分に排除することができる。硫化鉄と酸素との反応によって生じた硫化水素は、ガス吸収部の吸収塔で吸収液に吸収させているため、酸化硫黄などの大気汚染物質の排出量を十分に低減することができる。   In the operation method of the sulfur recovery apparatus of the present invention, when the operation of the sulfur recovery apparatus is stopped, the air supplied to the reaction furnace is supplied at a ratio exceeding the theoretical air-fuel ratio with respect to the fuel gas supplied to the reaction furnace. The oxygen concentration in the first reactor is adjusted to a range of 0 to 1% by volume. As a result, the oxygen concentration in the gas absorption part is kept sufficiently low, so that iron sulfide adhering to the inner wall surface of the sulfur recovery part gradually reacts with oxygen while sufficiently suppressing damage to the second catalyst due to oxygen. Can be eliminated sufficiently. Since hydrogen sulfide generated by the reaction between iron sulfide and oxygen is absorbed by the absorption liquid in the absorption tower of the gas absorption section, the amount of emission of air pollutants such as sulfur oxide can be sufficiently reduced.

本発明ではまた、燃焼工程の前に、反応炉に水素を主成分とする燃料ガスとともに該燃料ガスを燃焼させる空気を理論空燃比以下の空燃比で供給し、第1反応器を230℃以下に降温するガスパージ工程を有することが好ましい。このガスパージ工程では、上記燃料ガスを燃焼させて得られる燃焼ガス(ホットイナートガス)で、硫黄回収部系内の硫化水素、酸化硫黄、硫黄を完全にパージすることができる。   Further, in the present invention, before the combustion step, air for combusting the fuel gas together with the fuel gas containing hydrogen as a main component is supplied to the reaction furnace at an air-fuel ratio equal to or lower than the theoretical air-fuel ratio, and the first reactor is set to 230 ° C. or lower. It is preferable to have a gas purge step for lowering the temperature. In this gas purge step, hydrogen sulfide, sulfur oxide, and sulfur in the sulfur recovery unit system can be completely purged with combustion gas (hot inert gas) obtained by burning the fuel gas.

上述の硫黄回収装置の運転方法では、従来のサルファーバーニング方法と比較し、燃焼工程の前に第一反応器の温度を低下させること及び空燃比を低下させることによって、硫黄回収装置内に残留する硫黄が燃焼することを防止している。これによって、燃焼工程において、硫黄回収部の硫化鉄のみを選択的に燃焼させることが可能となり、硫黄回収装置の停止操作を容易に行うことが可能となる。   In the above-described operation method of the sulfur recovery apparatus, compared with the conventional sulfur burning method, the temperature of the first reactor is decreased before the combustion process and the air-fuel ratio is decreased, thereby remaining in the sulfur recovery apparatus. It prevents sulfur from burning. This makes it possible to selectively burn only the iron sulfide in the sulfur recovery section in the combustion process, and to easily stop the sulfur recovery device.

本発明の硫黄回収装置の運転方法によれば、硫黄回収装置の運転停止の際に、硫黄回収装置内の硫化鉄の残留量を十分に低減しつつ大気汚染物質の大気への排出量を十分に低減することができる。   According to the operation method of the sulfur recovery apparatus of the present invention, when the sulfur recovery apparatus is stopped, the amount of atmospheric pollutants released to the atmosphere is sufficiently reduced while sufficiently reducing the residual amount of iron sulfide in the sulfur recovery apparatus. Can be reduced.

以下、場合により図面を参照して、本発明の好適な実施形態について説明する。   In the following, preferred embodiments of the present invention will be described with reference to the drawings as the case may be.

図1は、本発明の運転方法の好適な実施形態を説明するための硫黄回収装置の概略構成図である。硫黄回収装置1は、硫黄回収部10とガス吸収部20と燃焼部30とを備える。   FIG. 1 is a schematic configuration diagram of a sulfur recovery apparatus for explaining a preferred embodiment of the operation method of the present invention. The sulfur recovery device 1 includes a sulfur recovery unit 10, a gas absorption unit 20, and a combustion unit 30.

硫黄回収装置1の定常運転では、硫黄回収部10の反応炉12に、硫化水素ガスと空気とが所定の比率で供給され、硫化水素ガスの一部が燃焼して二酸化硫黄を生成する(下記式(1))。反応炉12に供給される硫化水素ガスと空気との比率は、硫化水素ガスの供給量全体の1/3が下記式(1)で燃焼する比率とする。この比率に調整することによって、下記式(2)で表わされるクラウス反応を効率的に進行させ、未反応の硫化水素及び二酸化硫黄の発生を十分に抑制することができる。また、硫黄回収装置1における硫黄の回収量を増加することができる。このような処理を行う硫黄回収装置1の硫黄回収部10内部には硫化鉄が生成する。   In the steady operation of the sulfur recovery apparatus 1, hydrogen sulfide gas and air are supplied to the reaction furnace 12 of the sulfur recovery unit 10 at a predetermined ratio, and a part of the hydrogen sulfide gas burns to generate sulfur dioxide (described below). Formula (1)). The ratio of hydrogen sulfide gas and air supplied to the reaction furnace 12 is a ratio at which 1/3 of the total supply amount of hydrogen sulfide gas burns according to the following formula (1). By adjusting to this ratio, the Claus reaction represented by the following formula (2) can be efficiently advanced, and generation of unreacted hydrogen sulfide and sulfur dioxide can be sufficiently suppressed. Further, the amount of sulfur recovered in the sulfur recovery device 1 can be increased. Iron sulfide is generated inside the sulfur recovery unit 10 of the sulfur recovery apparatus 1 that performs such processing.

S+3/2O → SO+HO ・・・(1)
2HS+SO → 2HO+3S ・・・(2)
H 2 S + 3 / 2O 2 → SO 2 + H 2 O (1)
2H 2 S + SO 2 → 2H 2 O + 3S (2)

本実施形態の運転方法では、定常運転状態にある硫黄回収装置1を運転停止する際に、反応炉12に水素を主成分とする燃料ガスとともに該燃料ガスを燃焼させる空気を供給して得られた燃焼ガス(ホットイナートガス)で、硫黄回収部系内の硫化水素、酸化硫黄、硫黄をパージするガスパージ工程と、反応炉12に水素を主成分とする燃料ガスとともに、該燃料ガスを燃焼させる空気を理論空燃比を超える空燃比で供給することにより、第1反応器14における酸素濃度を0〜1体積%の範囲で維持しながら、硫黄回収部10及びガス吸収部20に存在する硫化鉄を燃焼する燃焼工程と、燃焼工程で発生した酸化硫黄を第2反応器34で還元して硫化水素とし、硫化水素を吸収液で吸収する吸収工程とを有する。以下、各工程について詳細に説明する。   In the operation method of this embodiment, when the sulfur recovery apparatus 1 in a steady operation state is shut down, it is obtained by supplying air that burns the fuel gas together with the fuel gas mainly containing hydrogen to the reaction furnace 12. A gas purging process for purging hydrogen sulfide, sulfur oxide, and sulfur in the sulfur recovery unit system with a combustion gas (hot inert gas), and air for burning the fuel gas in the reaction furnace 12 together with a fuel gas mainly composed of hydrogen Is supplied at an air / fuel ratio exceeding the stoichiometric air / fuel ratio, while maintaining the oxygen concentration in the first reactor 14 in the range of 0 to 1% by volume, the iron sulfide present in the sulfur recovery unit 10 and the gas absorption unit 20 is reduced. It has a combustion process for burning, and an absorption process for reducing sulfur oxide generated in the combustion process to hydrogen sulfide by reducing it in the second reactor 34, and absorbing hydrogen sulfide with an absorbing liquid. Hereinafter, each step will be described in detail.

(ガスパージ工程)
ガスパージ工程では、反応炉12への硫化水素ガス(アシッドガス)の供給を停止するとともに、反応炉12への水素を主成分とする燃料ガスの供給を開始する。なお、硫化水素ガスの供給の停止操作と燃料ガスの供給の開始操作は、硫黄回収装置1の運転変動を抑制する観点から、徐々に行うことが好ましい。例えば、硫化水素ガスの供給量の減少に見合うように、燃料ガスの供給量を増やすことによって、反応炉12の急激な温度変動を防止することが好ましい。
(Gas purge process)
In the gas purge step, the supply of hydrogen sulfide gas (acid gas) to the reaction furnace 12 is stopped, and the supply of fuel gas containing hydrogen as a main component to the reaction furnace 12 is started. In addition, it is preferable to perform gradually the operation for stopping the supply of hydrogen sulfide gas and the operation for starting the supply of fuel gas from the viewpoint of suppressing fluctuations in operation of the sulfur recovery apparatus 1. For example, it is preferable to prevent a rapid temperature fluctuation of the reaction furnace 12 by increasing the supply amount of the fuel gas so as to meet the decrease in the supply amount of the hydrogen sulfide gas.

反応炉12に供給する水素を主成分とする燃料ガスは、例えば通常の水素製造装置から生成する水素ガスを用いてもよいし、通常の水素製造装置から生成する改質ガス(水素ガス含有量:約80質量%)を用いてもよい。なお、改質ガスは、主成分である水素ガスの他に、副成分としてメタンガスやエタンガスなどの低級炭化水素ガスを含有する。燃料ガスにおける水素ガスの含有量は、70質量%以上であることが好ましく、80質量%以上であることがより好ましい。   As the fuel gas containing hydrogen as a main component supplied to the reactor 12, for example, hydrogen gas generated from an ordinary hydrogen production apparatus may be used, or a reformed gas (hydrogen gas content produced from an ordinary hydrogen production apparatus) may be used. : About 80% by mass). The reformed gas contains a lower hydrocarbon gas such as methane gas or ethane gas as a subsidiary component in addition to the main component hydrogen gas. The content of hydrogen gas in the fuel gas is preferably 70% by mass or more, and more preferably 80% by mass or more.

反応炉12には、燃料ガスとともに、該燃料ガスを燃焼させる空気を、理論空燃比以下の空燃比で供給することが好ましく、理論空燃比で供給することがより好ましい。これによって、硫黄回収装置1内の酸素濃度が上昇することによる第2触媒の損傷を防止しつつ燃料ガスを十分に燃焼させて装置内の燃焼ガス置換を円滑に行うことが可能となる。なお、本明細書における「理論空燃比」とは、燃料ガスに対する、該燃料ガスを完全燃焼させるために必要な空気の質量比率をいい、「空燃比」とは、燃料ガスに対する空気の質量比率をいう。ガスパージ工程における燃料ガスに対する空気の比率は、理論空燃比を基準(100質量%)として、80〜110質量%であることが好ましく、95〜105質量%であることが好ましい。   The reactor 12 is preferably supplied with fuel gas and air for burning the fuel gas at an air-fuel ratio equal to or lower than the stoichiometric air-fuel ratio, and more preferably at a stoichiometric air-fuel ratio. This makes it possible to smoothly burn the fuel gas and smoothly replace the combustion gas in the apparatus while preventing damage to the second catalyst due to an increase in the oxygen concentration in the sulfur recovery apparatus 1. In the present specification, “theoretical air / fuel ratio” refers to the mass ratio of air necessary for complete combustion of the fuel gas with respect to the fuel gas, and “the air / fuel ratio” refers to the mass ratio of air to the fuel gas. Say. The ratio of air to fuel gas in the gas purge step is preferably 80 to 110% by mass, and preferably 95 to 105% by mass based on the theoretical air-fuel ratio (100% by mass).

反応炉12に供給された燃料ガスは、該燃料ガスに対して理論空燃比の比率で供給される空気により燃焼して燃焼ガスを生成する。反応炉12で生成した燃焼ガスは、配管L2を通って、クラウス反応用触媒が充填された第1反応器14に導入される。   The fuel gas supplied to the reaction furnace 12 is combusted by air supplied at a ratio of the stoichiometric air-fuel ratio to the fuel gas to generate combustion gas. The combustion gas generated in the reaction furnace 12 is introduced into the first reactor 14 filled with the Claus reaction catalyst through the pipe L2.

第1反応器14を通過した燃焼ガスは、配管L4を通って、凝縮器16に導入される。凝縮器16としては通常の熱交換器を用いることができる。凝縮器16には、冷媒(例えば水)が供給されており、燃焼ガスを所定の温度に冷却することができる。   The combustion gas that has passed through the first reactor 14 is introduced into the condenser 16 through the pipe L4. A normal heat exchanger can be used as the condenser 16. A refrigerant (for example, water) is supplied to the condenser 16, and the combustion gas can be cooled to a predetermined temperature.

凝縮器16を通過した燃焼ガスは、配管L6を通って、ガス吸収部20の上流側に設けられる加熱器32に導入される。ガスパージ工程においては、バルブV4が開放されており、バルブV2が閉止されている。加熱器32としては、通常のラインヒーターを用いることができる。   The combustion gas that has passed through the condenser 16 is introduced into the heater 32 provided on the upstream side of the gas absorption unit 20 through the pipe L6. In the gas purge process, the valve V4 is opened and the valve V2 is closed. A normal line heater can be used as the heater 32.

第2反応器34を通過した燃焼ガスは、配管L12を通ってクエンチャ36に導入される。クエンチャ36としては、通常の塔(タワー)や槽(ベッセル)を用いることができる。クエンチャ36では、燃焼ガスが冷却されることにより生成した水を分離して排出することができる。   The combustion gas that has passed through the second reactor 34 is introduced into the quencher 36 through the pipe L12. As the quencher 36, a normal tower or a vessel can be used. In the quencher 36, water generated by cooling the combustion gas can be separated and discharged.

クエンチャ36を通過した燃焼ガスの一部は、配管L14及びL16を経由してガス吸収塔38に導入される。また、クエンチャ36を通過した燃焼ガスの一部は、配管L18、ブロア37、及び配管L20を通過して加熱器32にリサイクルされる。ガス吸収塔38に導入された燃焼ガスは、配管L22を通って燃焼器39に導入されて処理される。   Part of the combustion gas that has passed through the quencher 36 is introduced into the gas absorption tower 38 via the pipes L14 and L16. Further, part of the combustion gas that has passed through the quencher 36 passes through the pipe L18, the blower 37, and the pipe L20 and is recycled to the heater 32. The combustion gas introduced into the gas absorption tower 38 is introduced into the combustor 39 through the pipe L22 and processed.

以上のガスパージ工程によって、燃焼ガスによる硫黄回収装置1全体のガスパージが行われ、装置内の硫化水素、二酸化硫黄及び硫黄が排除される。これによって、硫黄回収装置1の運転停止操作を円滑に行うことができる。燃焼工程開始前に、第一反応器14を230℃以下に冷却することが好ましく、180〜230℃に冷却することがより好ましい。反応器14を230℃以下に冷却することによって、後述する燃焼工程において、硫黄の燃焼が抑制されて一層選択的に硫化鉄を燃焼させることが可能となる。なお、硫黄回収部10を過剰に冷却すると、露点以下の温度となって、硫黄回収装置1を構成する各機器が破損してしまう恐れがある。   Through the above gas purge process, the entire sulfur recovery device 1 is purged with combustion gas, and hydrogen sulfide, sulfur dioxide, and sulfur in the device are eliminated. Thereby, the operation of stopping the operation of the sulfur recovery apparatus 1 can be performed smoothly. Prior to the start of the combustion process, the first reactor 14 is preferably cooled to 230 ° C. or lower, more preferably 180 to 230 ° C. By cooling the reactor 14 to 230 ° C. or lower, sulfur combustion is suppressed in the combustion process described later, and iron sulfide can be burned more selectively. In addition, when the sulfur collection | recovery part 10 is cooled too much, it may become the temperature below a dew point and there exists a possibility that each apparatus which comprises the sulfur collection | recovery apparatus 1 may be damaged.

ガスパージ工程により、硫黄回収装置1内の温度が230℃以下に冷却されたら、燃焼工程を行う。   When the temperature in the sulfur recovery apparatus 1 is cooled to 230 ° C. or lower by the gas purge process, the combustion process is performed.

(燃焼工程)
燃焼工程では、反応炉12に燃料ガスとともに該燃料ガスを燃焼させる空気を、理論空燃比を超える空燃比で供給して該燃料ガスを燃焼させる。これによって、反応炉12の下流側に配置される第1反応器14における酸素濃度を0〜1体積%の範囲に維持して下記式(3)の反応を進行させ、主に第1反応器14や凝縮器16の内壁に付着している硫化鉄を燃焼させる。燃焼工程では、第1反応器14の酸素濃度を0〜1体積%以下に維持することによって、水素化反応用の第2触媒の損傷を十分に抑制しつつ硫化鉄を円滑に燃焼させることができる。
(Combustion process)
In the combustion process, air for burning the fuel gas together with the fuel gas is supplied to the reaction furnace 12 at an air-fuel ratio exceeding the theoretical air-fuel ratio, and the fuel gas is combusted. Thereby, the oxygen concentration in the first reactor 14 arranged on the downstream side of the reaction furnace 12 is maintained in the range of 0 to 1% by volume, and the reaction of the following formula (3) proceeds, mainly the first reactor. 14 and the iron sulfide adhering to the inner wall of the condenser 16 are burned. In the combustion process, by maintaining the oxygen concentration in the first reactor 14 at 0 to 1% by volume or less, iron sulfide can be smoothly burned while sufficiently suppressing damage to the second catalyst for the hydrogenation reaction. it can.

2FeS+7/2O→Fe+2SO (3) 2FeS + 7 / 2O 2 → Fe 2 O 3 + 2SO 2 (3)

燃焼工程における燃料ガスに対する空気の比率は、理論空燃比を基準(100質量%)として、101〜110質量%であることが好ましく、104〜110質量%であることが好ましい。該空気の比率が101質量%未満の場合、硫化鉄の燃焼が完了するまでに長時間を所要する傾向があり、110質量%を超える場合、水素化反応用の第2触媒の損傷を十分に抑制し難くなる傾向がある。   The ratio of air to fuel gas in the combustion process is preferably 101 to 110% by mass, more preferably 104 to 110% by mass, based on the theoretical air / fuel ratio (100% by mass). When the air ratio is less than 101% by mass, it tends to take a long time to complete the combustion of iron sulfide, and when it exceeds 110% by mass, the second catalyst for the hydrogenation reaction is sufficiently damaged. It tends to be difficult to suppress.

燃焼ガス及び酸素の流路は、ガスパージ工程における燃焼ガスの流路と同様とする。これによって、硫黄回収装置1の内壁全体を酸素と接触させることが可能となり、硫黄回収装置1全体において、内壁に付着した硫化鉄を燃焼させて除去することができる。   The flow path of the combustion gas and oxygen is the same as the flow path of the combustion gas in the gas purge process. As a result, the entire inner wall of the sulfur recovery device 1 can be brought into contact with oxygen, and the iron sulfide adhering to the inner wall can be burned and removed in the entire sulfur recovery device 1.

第1反応器14における酸素濃度は、0.01〜1.0体積%であることが好ましく、0.5〜1.0体積%であることがより好ましい。該酸素濃度が0.01体積%未満の場合、硫化鉄の燃焼除去に長時間を所要する傾向及び硫化鉄の燃焼が不十分となる傾向があり、該酸素濃度が1.0体積%を超える場合、第2反応器34に備えられる水素化用触媒が損傷する傾向がある。   The oxygen concentration in the first reactor 14 is preferably 0.01 to 1.0% by volume, and more preferably 0.5 to 1.0% by volume. When the oxygen concentration is less than 0.01% by volume, the iron sulfide tends to require a long time for combustion removal and the iron sulfide tends to be insufficiently burned, and the oxygen concentration exceeds 1.0% by volume. In this case, the hydrogenation catalyst provided in the second reactor 34 tends to be damaged.

燃焼工程では、第一反応器14を、露点を超え且つ230℃以下の温度範囲とすることが好ましく、180〜220℃であることがより好ましい。硫黄回数部10の温度が露点以下となった場合、硫黄回収装置1を構成する各機器が破損しやすくなる傾向がある。一方、第一反応器14の温度が230℃を超えると、硫黄が燃焼して多量の二酸化硫黄を生成してしまう傾向がある。   In the combustion process, the first reactor 14 is preferably in a temperature range that exceeds the dew point and is 230 ° C. or less, and more preferably 180 to 220 ° C. When the temperature of the sulfur frequency unit 10 is equal to or lower than the dew point, each device constituting the sulfur recovery device 1 tends to be easily damaged. On the other hand, when the temperature of the first reactor 14 exceeds 230 ° C., sulfur tends to burn and generate a large amount of sulfur dioxide.

燃焼工程は、硫黄回収装置1の硫黄回収部10を構成する各機器の内壁に付着している硫化鉄の燃焼除去が完了したら終了する。   A combustion process is complete | finished if combustion removal of the iron sulfide adhering to the inner wall of each apparatus which comprises the sulfur collection | recovery part 10 of the sulfur collection | recovery apparatus 1 is completed.

(吸収工程)
吸収工程は、燃焼工程において、第1反応器14や凝縮器16などの各機器で、上記式(3)の反応で生成した二酸化硫黄を、水素と反応させて硫化水素としたのち、当該硫化水素をガス吸収塔38で吸収液に吸収させる工程である。
(Absorption process)
In the combustion process, the sulfur dioxide produced by the reaction of the above formula (3) is reacted with hydrogen in each apparatus such as the first reactor 14 and the condenser 16 in the combustion process to form hydrogen sulfide. In this step, hydrogen is absorbed by the absorption liquid in the gas absorption tower 38.

上記式(3)で生成した二酸化硫黄は、硫黄回収部10から配管L6及びバルブV4を通って加熱器32に導入されて270〜300℃に加熱される。その後、加熱器32に注入される水素ガスとともに第2触媒を有する第2反応器34に導入され、下記式(4)によって硫化水素及び水となる。生成した硫化水素及び水は、配管L12を通って、クエンチャ36に導入され、水とガス留分(硫化水素)とに分離される。水はクエンチャ36の底部より硫黄回収装置1外に排出される。一方、硫化水素は配管L14及びL16を通ってガス吸収塔38に導入され、配管L24を通ってガス吸収塔38に導入される吸収液に吸収される。硫化水素を吸収した吸収液は、ガス吸収塔38から配管L26を通って硫黄回収装置1外に排出される。   Sulfur dioxide generated by the above formula (3) is introduced from the sulfur recovery unit 10 through the pipe L6 and the valve V4 to the heater 32 and heated to 270 to 300 ° C. Then, it introduce | transduces into the 2nd reactor 34 which has a 2nd catalyst with the hydrogen gas inject | poured into the heater 32, and turns into hydrogen sulfide and water by following formula (4). The produced hydrogen sulfide and water are introduced into the quencher 36 through the pipe L12 and separated into water and a gas fraction (hydrogen sulfide). Water is discharged out of the sulfur recovery device 1 from the bottom of the quencher 36. On the other hand, hydrogen sulfide is introduced into the gas absorption tower 38 through the pipes L14 and L16, and is absorbed by the absorption liquid introduced into the gas absorption tower 38 through the pipe L24. The absorbing liquid that has absorbed hydrogen sulfide is discharged out of the sulfur recovery apparatus 1 from the gas absorption tower 38 through the pipe L26.

SO+3H → HS+2HO ・・・(4) SO 2 + 3H 2 → H 2 S + 2H 2 O (4)

吸収工程は、燃焼工程と並行して行うことができる。すなわち、硫黄回収部10及びガス吸収部20で燃焼工程を行いながら、当該燃焼工程で発生した二酸化硫黄を用いてガス吸収部20で吸収工程を行うことができる。   The absorption process can be performed in parallel with the combustion process. That is, while performing the combustion process in the sulfur recovery unit 10 and the gas absorption unit 20, the absorption process can be performed in the gas absorption unit 20 using sulfur dioxide generated in the combustion process.

したがって、燃焼工程において硫化鉄の燃焼除去が完了し、二酸化硫黄の発生がなくなったら、吸収工程も終了する。   Therefore, when the combustion removal of iron sulfide is completed in the combustion process and sulfur dioxide is no longer generated, the absorption process is also ended.

燃焼工程及び吸収工程の終了後、例えば、硫黄回収装置1を常温付近まで降温し、硫黄回収装置1の各機器を開放することができる。硫黄回収部も大気中で開放することができる。   After completion of the combustion process and the absorption process, for example, the temperature of the sulfur recovery device 1 can be lowered to near room temperature, and each device of the sulfur recovery device 1 can be opened. The sulfur recovery unit can also be opened in the atmosphere.

本実施形態の硫黄回収装置の運転方法によれば、硫黄回収装置1の運転停止後、凝縮器16、第1反応器14、及び熱交換器(図示しない)などの各機器を開放した際、硫化鉄が十分に除去されているため、機器開放時の硫化鉄の燃焼を十分に防止することができる。この運転方法では、バルブV4を開放し、バルブV2を閉止したまま硫化鉄を燃焼させる燃焼工程を実施することができる。したがって、SOなどの大気汚染物質の大気への放出量を十分に低減することができる。 According to the operation method of the sulfur recovery device of the present embodiment, after the operation of the sulfur recovery device 1 is stopped, when each device such as the condenser 16, the first reactor 14, and the heat exchanger (not shown) is opened, Since iron sulfide is sufficiently removed, combustion of iron sulfide when the device is opened can be sufficiently prevented. In this operation method, it is possible to perform a combustion process in which iron sulfide is burned while the valve V4 is opened and the valve V2 is closed. Therefore, it is possible to sufficiently reduce the emissions into the atmosphere of air pollutants such as SO x.

以上、本発明の好適な実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。   The preferred embodiment of the present invention has been described above, but the present invention is not limited to the above embodiment.

以下、実施例及び比較例に基づき本発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated more concretely based on an Example and a comparative example, this invention is not limited to a following example at all.

(実施例1)
図1に示す硫黄回収装置1の運転停止操作を以下の通り行った。
Example 1
The operation of stopping the operation of the sulfur recovery apparatus 1 shown in FIG. 1 was performed as follows.

[ガスパージ工程]
所定の期間、定常運転を行っていた硫黄回収装置1の反応炉12に、水素ガスの供給を開始した。水素ガスの供給開始に伴い、硫化水素ガス(アシッドガス)の供給量を徐々に減らすとともに、反応炉12への水素ガスの供給量を徐々に増やした。水素ガスの供給量を十分に増やした後、硫化水素ガスの供給を停止した。反応炉12に供給される水素ガスと、該水素ガスに対して理論空燃比となる量の空気とを供給した。水素ガスと空気との供給を暫く継続して行うことによって、硫黄回収装置1内の雰囲気を燃焼ガス(ホットイナートガス)で置換した。
[Gas purge process]
Supply of hydrogen gas was started to the reaction furnace 12 of the sulfur recovery apparatus 1 that had been in steady operation for a predetermined period. With the start of supply of hydrogen gas, the supply amount of hydrogen sulfide gas (acid gas) was gradually reduced and the supply amount of hydrogen gas to the reaction furnace 12 was gradually increased. After sufficiently increasing the supply amount of hydrogen gas, the supply of hydrogen sulfide gas was stopped. Hydrogen gas supplied to the reaction furnace 12 and an amount of air that gives a stoichiometric air-fuel ratio to the hydrogen gas were supplied. By continuously supplying hydrogen gas and air for a while, the atmosphere in the sulfur recovery apparatus 1 was replaced with combustion gas (hot inert gas).

第一反応器14を徐々に冷却し、硫黄回収部10の温度を180〜230℃にした。   The 1st reactor 14 was cooled gradually and the temperature of the sulfur collection | recovery part 10 was 180-230 degreeC.

[燃焼工程及び吸収工程]
反応炉12に供給する水素ガスに対する空気の比率を、理論空燃比を基準(100質量%)として、101〜110質量%とした。これによって、第1反応器14における酸素濃度を0〜1体積%の範囲に維持し、硫黄回収装置1の硫黄回収部10を構成する各機器の内部に付着した硫化鉄を燃焼除去した。なお、酸素濃度測定は、反応炉12の出口及び凝縮器16の出口で、市販のガスセンサーを用いて行った。
[Combustion process and absorption process]
The ratio of air to hydrogen gas supplied to the reaction furnace 12 was 101 to 110% by mass based on the theoretical air-fuel ratio (100% by mass). Thereby, the oxygen concentration in the 1st reactor 14 was maintained in the range of 0-1 volume%, and the iron sulfide adhering to the inside of each apparatus which comprises the sulfur collection | recovery part 10 of the sulfur collection | recovery apparatus 1 was burned and removed. The oxygen concentration was measured using a commercially available gas sensor at the outlet of the reaction furnace 12 and the outlet of the condenser 16.

硫化鉄の燃焼に伴って生成する二酸化硫黄は、加熱器32で注入される水素ガスとともに水素化反応用の第2触媒を有する第2反応器34に導入され、硫化水素及び水に変換された。この硫化水素は、ガス吸収塔38に導入されて、吸収液(ジイソプロパノールアミン)に吸収された。硫化水素を吸収した吸収液は、ガス吸収塔38から配管L26を通って硫黄回収装置1外に排出された。一方、硫化水素が除去された燃焼ガス(オフガス)は、配管L22を通って燃焼器39に導入された。燃焼器39から排出される排出ガス中の二酸化硫黄濃度を市販のガス濃度計測器を用いて測定した。運転停止操作時における排出ガス中の二酸化硫黄の濃度は、数10〜数100ppmで推移した。   Sulfur dioxide generated by the combustion of iron sulfide was introduced into a second reactor 34 having a second catalyst for hydrogenation reaction together with hydrogen gas injected by the heater 32 and converted into hydrogen sulfide and water. . This hydrogen sulfide was introduced into the gas absorption tower 38 and absorbed by the absorption liquid (diisopropanolamine). The absorbing solution that absorbed the hydrogen sulfide was discharged out of the sulfur recovery apparatus 1 from the gas absorption tower 38 through the pipe L26. On the other hand, the combustion gas (off-gas) from which hydrogen sulfide was removed was introduced into the combustor 39 through the pipe L22. The sulfur dioxide concentration in the exhaust gas discharged from the combustor 39 was measured using a commercially available gas concentration measuring device. The concentration of sulfur dioxide in the exhaust gas at the time of the shutdown operation changed from several tens to several hundred ppm.

硫化鉄の燃焼に伴う発熱が検出されなくなり、二酸化硫黄の発生がなくなった時点で燃焼工程及び吸収工程を終了した。硫黄回収装置1のガスパージ工程開始から燃焼工程及び吸収工程終了までに所要した時間は62時間であった。なお、燃焼工程及び吸収工程実施中は、V2を閉止、V4を開放としたままであった。   The combustion process and the absorption process were completed when no heat generation due to the combustion of iron sulfide was detected and no sulfur dioxide was generated. The time required from the start of the gas purge process of the sulfur recovery apparatus 1 to the end of the combustion process and the absorption process was 62 hours. During the combustion process and the absorption process, V2 was closed and V4 was kept open.

(比較例1)
図2に示す硫黄回収装置3の運転停止操作を以下の通り行った。
(Comparative Example 1)
The operation of stopping the operation of the sulfur recovery device 3 shown in FIG. 2 was performed as follows.

所定の期間、定常運転を行っていた硫黄回収装置3の反応炉112に、水素ガスの供給を開始した。水素ガスの供給開始に伴い、硫化水素ガス(アシッドガス)の供給量を徐々に減らすとともに、反応炉112への水素ガスの供給量を徐々に増やした。水素ガスの供給量を十分に増やした後、硫化水素ガスの供給を停止した。反応炉112に供給される水素ガスの量に対し、理論空燃比で反応炉112に空気を供給した。水素ガスと空気との供給を暫く継続して行うことによって、硫黄回収装置3内の雰囲気を燃焼ガス(ホットイナートガス)で置換した。   Supply of hydrogen gas was started to the reaction furnace 112 of the sulfur recovery apparatus 3 that had been in steady operation for a predetermined period. As the supply of hydrogen gas started, the supply amount of hydrogen sulfide gas (acid gas) was gradually reduced and the supply amount of hydrogen gas to the reaction furnace 112 was gradually increased. After sufficiently increasing the supply amount of hydrogen gas, the supply of hydrogen sulfide gas was stopped. Air was supplied to the reaction furnace 112 at a stoichiometric air-fuel ratio with respect to the amount of hydrogen gas supplied to the reaction furnace 112. By continuously supplying hydrogen gas and air for a while, the atmosphere in the sulfur recovery device 3 was replaced with combustion gas (hot inert gas).

V104を閉止し、V102を開放することによって、硫黄回収部100からガス吸収部200への燃焼ガスの流通を遮断した。   By closing V104 and opening V102, the flow of combustion gas from the sulfur recovery unit 100 to the gas absorption unit 200 was blocked.

反応炉112に供給する水素ガスに対する空気の比率を、理論空燃比を基準(100質量%)として、120〜170体積%とした。これによって、硫黄回収装置3の硫黄回収部100を構成する各機器の内部に付着した硫化鉄を燃焼除去した。   The ratio of air to hydrogen gas supplied to the reaction furnace 112 was 120 to 170% by volume based on the theoretical air-fuel ratio (100% by mass). Thereby, the iron sulfide adhering to the inside of each device constituting the sulfur recovery unit 100 of the sulfur recovery device 3 was removed by combustion.

硫黄回収部100の内部に付着した硫化鉄の燃焼に伴って生成する二酸化硫黄は、バルブV102及び配管L108を通って、燃焼器139に導入された。燃焼器139から排出される排出ガス中の二酸化硫黄濃度を市販のガス濃度計測器を用いて測定した。運転停止操作時における排出ガス中の二酸化硫黄の濃度は、実施例1の数十倍であった。   Sulfur dioxide generated with the combustion of iron sulfide adhering to the inside of the sulfur recovery unit 100 was introduced into the combustor 139 through the valve V102 and the pipe L108. The sulfur dioxide concentration in the exhaust gas discharged from the combustor 139 was measured using a commercially available gas concentration meter. The concentration of sulfur dioxide in the exhaust gas during the shutdown operation was several tens of times that of Example 1.

硫化鉄の燃焼に伴う発熱が検出されなくなり、二酸化硫黄の発生がなくなった時点で運転終了とした。水素ガスの供給開始から硫化鉄の燃焼が終了するまでに所要した時間は42時間であった。   The operation was terminated when no heat generation due to the combustion of iron sulfide was detected and no sulfur dioxide was generated. The time required from the start of the supply of hydrogen gas to the end of the combustion of iron sulfide was 42 hours.

本発明の運転方法の好適な実施形態を説明するための硫黄回収装置の概略構成図である。It is a schematic block diagram of the sulfur collection | recovery apparatus for describing suitable embodiment of the operating method of this invention. 従来の運転方法を説明するための硫黄回収装置の概略構成図である。It is a schematic block diagram of the sulfur collection | recovery apparatus for demonstrating the conventional operating method.

符号の説明Explanation of symbols

1,3…硫黄回収装置、10,100…硫黄回収部、12,112…反応炉、14,114…第1反応器、16,116…凝縮器、20,200…ガス吸収部、30,300…燃焼部、32,132…加熱器、34,134…第2反応器、36,136…クエンチャ、37,137…ブロア、38,138…ガス吸収塔、39,139…燃焼器。
DESCRIPTION OF SYMBOLS 1,3 ... Sulfur recovery apparatus, 10,100 ... Sulfur recovery part, 12,112 ... Reactor, 14,114 ... 1st reactor, 16,116 ... Condenser, 20,200 ... Gas absorption part, 30,300 ... Combustion section, 32, 132 ... Heater, 34, 134 ... Second reactor, 36, 136 ... Quencher, 37, 137 ... Blower, 38, 138 ... Gas absorption tower, 39, 139 ... Combustor.

Claims (2)

硫化水素を燃焼させて二酸化硫黄を生成する反応炉と、前記二酸化硫黄及び硫化水素をクラウス反応させて硫黄を生成する第1触媒を有する第1反応器と、を備える硫黄回収部、並びに、前記硫黄回収部で生成した前記二酸化硫黄を水素化反応させて硫化水素を生成する第2触媒を有する第2反応器と、前記第2反応器で生成した前記硫化水素を吸収液に吸収させる吸収塔と、を備えるガス吸収部、を具備する硫黄回収装置の運転方法であって、
該硫黄回収装置の運転停止の際に、
前記反応炉に水素を主成分とする燃料ガスとともに該燃料ガスを燃焼させる空気を理論空燃比を超える空燃比で供給することにより、前記第1反応器における酸素濃度を0〜1体積%に維持しながら、前記硫黄回収部の内部に付着する硫化鉄を燃焼する燃焼工程と、
前記硫化鉄の燃焼によって生成した二酸化硫黄を前記ガス吸収部の前記第2反応器で水素化反応させて硫化水素を生成し、前記硫化水素を前記吸収液で吸収する吸収工程と、を有する硫黄回収装置の運転方法。
A sulfur recovery unit comprising: a reaction furnace that burns hydrogen sulfide to generate sulfur dioxide; and a first reactor that has a first catalyst that generates sulfur by causing a Claus reaction between the sulfur dioxide and hydrogen sulfide; and A second reactor having a second catalyst for hydrogenating the sulfur dioxide produced in the sulfur recovery section to produce hydrogen sulfide; and an absorption tower for absorbing the hydrogen sulfide produced in the second reactor into an absorbent. And a method for operating a sulfur recovery device comprising a gas absorption part comprising:
When the sulfur recovery device is shut down,
The oxygen concentration in the first reactor is maintained at 0 to 1% by volume by supplying air for burning the fuel gas together with the fuel gas containing hydrogen as a main component to the reactor at an air / fuel ratio exceeding the stoichiometric air / fuel ratio. While burning the iron sulfide adhering to the inside of the sulfur recovery unit,
An absorption step of hydrogenating sulfur dioxide generated by the combustion of the iron sulfide in the second reactor of the gas absorption unit to generate hydrogen sulfide and absorbing the hydrogen sulfide with the absorbing liquid. Operation method of recovery device.
前記燃焼工程の前に、前記反応炉に水素を主成分とする前記燃料ガスとともに該燃料ガスを燃焼させる空気を理論空燃比以下の空燃比で供給し、前記第1反応器を230℃以下に降温するガスパージ工程を有する請求項1記載の硫黄回収装置の運転方法。   Before the combustion step, air for burning the fuel gas together with the fuel gas containing hydrogen as a main component is supplied to the reactor at an air-fuel ratio below the stoichiometric air-fuel ratio, and the first reactor is kept at 230 ° C. or below. The operation method of the sulfur recovery apparatus according to claim 1, further comprising a gas purge step for lowering the temperature.
JP2008216751A 2008-08-26 2008-08-26 Operation method of sulfur recovery equipment Active JP4950148B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008216751A JP4950148B2 (en) 2008-08-26 2008-08-26 Operation method of sulfur recovery equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008216751A JP4950148B2 (en) 2008-08-26 2008-08-26 Operation method of sulfur recovery equipment

Publications (2)

Publication Number Publication Date
JP2010052955A true JP2010052955A (en) 2010-03-11
JP4950148B2 JP4950148B2 (en) 2012-06-13

Family

ID=42069271

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008216751A Active JP4950148B2 (en) 2008-08-26 2008-08-26 Operation method of sulfur recovery equipment

Country Status (1)

Country Link
JP (1) JP4950148B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114592A (en) * 1973-03-06 1974-11-01
JPS5187194A (en) * 1974-12-27 1976-07-30 Inst Francais Du Petrole
JPS6086009A (en) * 1983-10-17 1985-05-15 Res Assoc Residual Oil Process<Rarop> Reduction of sulfur oxide
JPH09271625A (en) * 1996-04-02 1997-10-21 Mitsubishi Heavy Ind Ltd Gas refining apparatus and gas refining method
JPH10265204A (en) * 1997-03-25 1998-10-06 Nippon Sekiyu Seisei Kk Operation of sulfur recovering device
JPH10273681A (en) * 1997-03-31 1998-10-13 Toshiba Corp Dry desulfurization system
JP2004345904A (en) * 2003-05-22 2004-12-09 Jgc Corp Method and apparatus for recovering sulfur

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49114592A (en) * 1973-03-06 1974-11-01
JPS5187194A (en) * 1974-12-27 1976-07-30 Inst Francais Du Petrole
JPS6086009A (en) * 1983-10-17 1985-05-15 Res Assoc Residual Oil Process<Rarop> Reduction of sulfur oxide
JPH09271625A (en) * 1996-04-02 1997-10-21 Mitsubishi Heavy Ind Ltd Gas refining apparatus and gas refining method
JPH10265204A (en) * 1997-03-25 1998-10-06 Nippon Sekiyu Seisei Kk Operation of sulfur recovering device
JPH10273681A (en) * 1997-03-31 1998-10-13 Toshiba Corp Dry desulfurization system
JP2004345904A (en) * 2003-05-22 2004-12-09 Jgc Corp Method and apparatus for recovering sulfur

Also Published As

Publication number Publication date
JP4950148B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP5469766B2 (en) Reduction of CO and NOx in regenerator flue gas
JP4731293B2 (en) Combustion control method and apparatus for oxyfuel boiler
AU2008352209B2 (en) Method and apparatus of controlling exhaust gas in oxyfuel combustion boiler
CN105593600B (en) Steam generator system and the generating equipment for possessing the steam generator system
Reddy et al. Fluor’s econamine FG plus SM technology
JP2823618B2 (en) Method for condensing sulfuric acid vapor to produce sulfuric acid
JPH06239618A (en) Method for operating crossfire regenerative glass furnace, method for reducing releasing amount of co and method for reducing amount of nox contained in crossfire regenerative glass furnace and in waste gas
AU2008352211B2 (en) Method and apparatus of controlling combustion in oxyfuel combustion boiler
JP2013545001A (en) System and method for controlling fuel combustion
EA022922B1 (en) Method for sequestering carbon dioxide from a top gas fuel
WO2017134829A1 (en) Method for supplying hydrogen-containing reducing gas to shaft part of blast furnace
CN102428025A (en) Method for producing process gas for the claus process
JP2006312143A (en) Method for decomposing low-concentration methane
CN102124082A (en) Minimal sour gas emission for an integrated gasification combined cycle complex
CN105241262A (en) Pure oxygen combustion and carbon dioxide capturing system and process of heating furnace
JP2014528052A (en) Method of incinerating NH3 and NH3 incinerator
CN101193690A (en) Treatment of fuel gas
JP4950148B2 (en) Operation method of sulfur recovery equipment
JP5022401B2 (en) Operation method of sulfur recovery equipment
US9321643B2 (en) Process for producing synthesis gas with preservation of the energy transfer by means of the fumes
CN103566730B (en) The sulphur removal produced in process sulfur recovery facility shut-down process purges the method for tail gas
RU2569105C2 (en) Method of treatment of flue gas containing carbon dioxide
US8236276B2 (en) System and method for sulfur recovery
EP3944890A1 (en) Method and system for pretreatment of gaseous effluent for capturing post-combustion co2
JP5979672B2 (en) Thermal power plant operation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101102

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111213

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4950148

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250