JP2010051089A - Non-contacting power transmission system - Google Patents

Non-contacting power transmission system Download PDF

Info

Publication number
JP2010051089A
JP2010051089A JP2008212942A JP2008212942A JP2010051089A JP 2010051089 A JP2010051089 A JP 2010051089A JP 2008212942 A JP2008212942 A JP 2008212942A JP 2008212942 A JP2008212942 A JP 2008212942A JP 2010051089 A JP2010051089 A JP 2010051089A
Authority
JP
Japan
Prior art keywords
power
coil
communication
electric power
receiver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008212942A
Other languages
Japanese (ja)
Inventor
Katsushi Sakai
克司 境
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008212942A priority Critical patent/JP2010051089A/en
Publication of JP2010051089A publication Critical patent/JP2010051089A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Manipulator (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact power transmission system which enlarges the positional tolerance of an electric power receiver. <P>SOLUTION: The non-contact power transmission system includes an electric power transmitter 1 which transmits electric power, and a movable electric power receiver 2 which receives electric power transmitted from the electric power transmitter 1 without contact, wherein the electric power transmitter 1 is equipped with a transmission coil 11 which transmits a high electric power between itself and the electric power receiver 2, and a communication coil 12 which communicates with feeble power, the electric power receiver 2 is equipped with a receiving coil 21 which receives electric power from the transmission coil 11 of the electric power transmitter 1, a plurality of coil groups 22 and 23 which communicate with the communication coil 12, and a control circuit which detects a coil in active state with the communication coil 12 among the plurality of coil groups. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、非接触送電システムに関し、特に、電力を送電する送電器と非接触で電力を受電する機能を有する受電器とを備え、電力が受電器に確実に供給されるように送電器と通信する自律移動機能を有する受電器の通信コイルを配置した非接触送電システムに関する。   The present invention relates to a contactless power transmission system, and in particular, includes a power transmitter that transmits power and a power receiver that has a function of receiving power in a contactless manner, and the power transmitter so that power is reliably supplied to the power receiver. The present invention relates to a non-contact power transmission system in which a communication coil of a power receiver having an autonomous movement function for communication is arranged.

サービスロボットはこれまでの専用のロボットとは異なり、一台で案内・誘導、搬送、巡回・見回りなどのサービスを提供するロボットである。サービスロボットはバッテリ運用による自律移動機能を有する。   Unlike conventional robots, service robots provide services such as guidance / guidance, transport, patrol / tour, etc. with a single robot. The service robot has an autonomous movement function by battery operation.

このようなサービスロボットには、送電された電力を無人運転により非接触で充電する自動充電機能が必須である。非接触で自動充電による電力送電を行う場合、安全な出力でかつ適切な送電対象物に電力を送電する必要がある。このため、従来は、送電側のマイコンが動作可能なレベルの微弱電力を常時送電し、受電側のマイコンの応答により送電側により受電側が適切な送電相手であることが確認できた場合にのみ、送電側から大電力送電を開始する、といった手順を取っている。   Such a service robot must have an automatic charging function for charging the transmitted power in a contactless manner by unattended operation. When performing power transmission by non-contact automatic charging, it is necessary to transmit power to an appropriate transmission target with a safe output. For this reason, conventionally, only when weak power at a level at which the microcomputer on the power transmission side can operate is constantly transmitted, and only when the power receiving side confirms that the power receiving side is an appropriate power transmission partner by the response of the power receiving side microcomputer, The procedure of starting high power transmission from the power transmission side is taken.

この微弱電波は安全のため非常に弱いものであるため、送電できる範囲が限られている。しかるに、送電器への自動接続の際はある程度の精度が要求されるが、環境により精度が悪化する可能性がある。従来の移動型ロボットにおける充電機構において、大容量の電流を必要とする駆動部とロジック部があるにもかかわらず、明確に分離されておらず、移動ロボットの電源が受電する際の該移動ロボットの移動の制御としては必ずしも最適であるとはいえなかった。   Since this weak radio wave is very weak for safety, the range in which power can be transmitted is limited. However, a certain degree of accuracy is required for automatic connection to the power transmitter, but the accuracy may deteriorate depending on the environment. In a charging mechanism in a conventional mobile robot, although there is a drive unit and a logic unit that require a large amount of current, the mobile robot is not clearly separated and the power supply of the mobile robot receives power It was not necessarily optimal for the control of movement.

特許文献1に記載の移動作業用ロボットは、位置ずれ検出コイルにより位置ずれがおきていることを検知し、充電電圧を切り換えて調整することにより、充電用のコイルに安定した充電電圧を安全に供給し効率よく充電するように構成したものである。   The robot for mobile work described in Patent Document 1 detects that a positional deviation has occurred by the positional deviation detection coil, and by switching and adjusting the charging voltage, a stable charging voltage can be safely applied to the charging coil. It is configured to supply and charge efficiently.

特許番号2658366号公報Japanese Patent No. 2658366

しかしながら、特許文献1に記載の移動作業用ロボットには、送電器に対する受電器の位置の通信許容度が限られており、万一、通信可能範囲に到達できなかった場合は、位置修正のための情報がなんら得られることがなかった。
それゆえ、本発明は、上記問題を解決し、ドッキングの際の受電器との位置誤差の許容度を、その位置関係を知る手段を安価な回路の追加のみで、大きくする非接触送電システムを提供することを目的とする。
However, the mobile work robot described in Patent Document 1 has limited communication tolerance of the position of the power receiver with respect to the power transmitter, and in the unlikely event that it cannot reach the communicable range, No information was available.
Therefore, the present invention provides a non-contact power transmission system that solves the above problems and increases the tolerance of the positional error with the power receiver during docking only by adding an inexpensive circuit. The purpose is to provide.

実施形態に係る非接触送電装置は、電力を送電する送電器と該送電器から送電された電力を非接触で受電する移動可能な受電器とを備えた非接触送電システムであって、前記送電器は、前記受電器との間で、大電力を送電する送電コイルと、微弱電力で通信する通信コイルとを備え、前記受電器は、前記送電器との間で、前記送電コイルから電力を受電する受電コイルと、前記通信コイルとの間で通信する複数のコイル群と、該複数のコイル群のうち何れのコイルが前記通信コイルとアクティブ状態にあるか否かを検出する制御回路とを備える。   A contactless power transmission device according to an embodiment is a contactless power transmission system including a power transmitter that transmits power and a movable power receiver that receives power transmitted from the power transmitter in a contactless manner. The electric device includes a power transmission coil that transmits high power to and from the power receiver, and a communication coil that communicates with weak power, and the power receiver receives power from the power transmission coil to and from the power transmitter. A power receiving coil for receiving power; a plurality of coil groups communicating with the communication coil; and a control circuit for detecting whether any of the plurality of coil groups is in an active state with the communication coil. Prepare.

上記非接触送電装置において、前記受電器は、前記複数のコイル群のうちの2つのコイルが同時にアクティブ状態になり得るように該2つのコイルを配置する。   In the non-contact power transmission apparatus, the power receiver arranges the two coils so that two coils of the plurality of coil groups can be simultaneously activated.

上記非接触送電装置において、前記制御回路は、前記複数のコイル群のうちの2つのコイルの同時アクティブ状態に応じて前記受電器を移動させる。   In the non-contact power transmission apparatus, the control circuit moves the power receiver according to a simultaneous active state of two coils of the plurality of coil groups.

実施形態に係る非接触送電装置によれば、受電器は、送電器の送電コイルから電力を受電する受電コイルと送電器の通信コイルと通信する複数のコイル群とを有し、受電器の何れのコイルが送電器の通信コイルとアクティブ状態にあるかに応じて次回のドッキングの位置精度を上げる。受電器は、通信範囲の限られた通信コイルを共通回路にて複数設置し、送電器と受電器との間の位置ずれ量を定量的に知り、次回のドッキングを適正な位置で行うための情報を受電器に提供し、安全な位置での充電制御を行うことを補助する構成としたので、例えば通信コイルの従来の許容範囲の約2倍の範囲で、ドッキングが可能となる。   According to the contactless power transmission device according to the embodiment, the power receiver includes a power receiving coil that receives power from the power transmitting coil of the power transmitter and a plurality of coil groups that communicate with the communication coil of the power transmitter. The position accuracy of the next docking is increased depending on whether the coil is in an active state with the communication coil of the power transmitter. For the power receiver, install a plurality of communication coils with limited communication range in a common circuit, quantitatively know the amount of positional deviation between the power transmitter and the power receiver, and perform the next docking at an appropriate position Since it is configured to provide information to the power receiver and assist in performing charge control at a safe position, for example, docking is possible in a range that is approximately twice the conventional allowable range of the communication coil.

また、小さなコイルの追加と小規模な回路の追加のみでよいため、その他のセンサを追加するより安価に製作でき、また、同時にその対象物が適切な送電対象であることも確認もできるため、ひいては安全で確実な充電動作が可能となる。   In addition, since it is only necessary to add a small coil and a small circuit, it can be manufactured at a lower cost than adding other sensors, and at the same time, it can be confirmed that the target object is an appropriate power transmission target. As a result, a safe and reliable charging operation is possible.

図1は第1実施形態に係る非接触で電力を送受電する送電器および受電器におけるコイルの配置を示す図であり、(A)は送電器のコイルの配置を示す図であり、(B)は受電器のコイルの配置を示す図である。   FIG. 1 is a diagram illustrating a power transmitter that transmits and receives power in a contactless manner according to the first embodiment and a coil arrangement in the power receiver. FIG. 1A is a diagram illustrating a coil arrangement of the power transmitter. ) Is a diagram showing the arrangement of the coil of the power receiver.

図1の(A)に示す送電器1は、電力の送電コイル11が設けられ、送電コイル11とは別に、送電コイル11の直下に通信コイル12が設けられている。図1の(B)に示す受電器2は、電力の受電コイル21と、受電コイル21の下方水平位置に通信コイル22および23とが設けられている。   A power transmission device 1 shown in FIG. 1A is provided with a power transmission coil 11, and separately from the power transmission coil 11, a communication coil 12 is provided immediately below the power transmission coil 11. The power receiver 2 shown in FIG. 1B is provided with a power receiving coil 21 and communication coils 22 and 23 at a horizontal position below the power receiving coil 21.

図2は図1に示す送電器および受電器がサービスロボットの場合の外観を示す図である。送電器1はフロアに設置されたサービスロボット10に塔載され、受電器2は送電器1の周辺を移動可能なサービスロボット20に塔載されている。送電器1の送電コイル11と受電器2の受電コイル21は電力を送電するためフロアから同一の高さに配置される。   FIG. 2 is a diagram showing an external appearance when the power transmitter and the power receiver shown in FIG. 1 are service robots. The power transmitter 1 is mounted on a service robot 10 installed on the floor, and the power receiver 2 is mounted on a service robot 20 that can move around the power transmitter 1. The power transmission coil 11 of the power transmitter 1 and the power reception coil 21 of the power receiver 2 are arranged at the same height from the floor in order to transmit power.

送電器1と受電器2とがドッキングする際、送電器1の通信コイル12と受電器2の通信コイル22または23が通信した場合、受電器2の左右方向の位置をどれだけ修正すればよいか、すなわち受電器2をどれだけ左右方向に移動させればよいかが分かるように、かつ通信感度を上げるため通信コイル12と通信コイル22および23はフロアから同一の高さに配置される。また、送電器1に通信コイル12を受電器2に2つの通信コイル22および23を搭載するが、送電器1および受電器2の外形寸法は変えない。   When the power transmitter 1 and the power receiver 2 are docked, if the communication coil 12 of the power transmitter 1 and the communication coil 22 or 23 of the power receiver 2 communicate with each other, how much the position of the power receiver 2 in the left-right direction should be corrected. In other words, the communication coil 12 and the communication coils 22 and 23 are arranged at the same height from the floor so that it can be understood how much the power receiver 2 should be moved in the left-right direction and to increase communication sensitivity. Moreover, although the communication coil 12 is mounted on the power transmitter 1 and the two communication coils 22 and 23 are mounted on the power receiver 2, the external dimensions of the power transmitter 1 and the power receiver 2 are not changed.

通信コイルを単数のみ設けた場合、ドッキング時に送電器1と受電器2との間で受電器2の移動方向のズレがどれ位あるのか不明であったが、上述したように、受電器2に2つの通信コイル22および23を設けることで、受電器2の通信コイルの数が単数の場合の約2倍の範囲でドッキング精度の確認が可能となる。   When only one communication coil is provided, it is unclear how much the moving direction of the power receiver 2 is shifted between the power transmitter 1 and the power receiver 2 during docking. However, as described above, By providing the two communication coils 22 and 23, it is possible to check the docking accuracy in a range that is approximately twice that in the case where the number of communication coils of the power receiver 2 is single.

図1の(B)に示すようにドッキング時の受電器2の移動方向のズレが±38mm=±(20+9+9)mmの範囲で再調整可能な範囲の指標となるように受電器2内に通信コイル22および23を設置する。   As shown in FIG. 1B, communication within the power receiver 2 is performed so that the shift in the moving direction of the power receiver 2 during docking becomes an index of a range that can be readjusted within a range of ± 38 mm = ± (20 + 9 + 9) mm. Coils 22 and 23 are installed.

図1の(B)に示すように通信コイル22および23が設置された場合、通信コイル12と通信コイル22または23との通信が成立した場合は、例えば通信コイル12と通信コイル22との通信が成立し通信コイル12と通信コイル23との通信が不成立した場合、次回のドッキング時に受電器2は無条件に右方向に20mm移動し、通信コイル12と通信コイル22との通信が不成立し通信コイル12と通信コイル23との通信が成立した場合、次回のドッキング時に受電器2は左方向に無条件に20mm移動するように設計されている。   When the communication coils 22 and 23 are installed as shown in FIG. 1B and communication between the communication coil 12 and the communication coil 22 or 23 is established, for example, communication between the communication coil 12 and the communication coil 22 is performed. Is established and communication between the communication coil 12 and the communication coil 23 is not established, the power receiver 2 unconditionally moves 20 mm to the right at the next docking, and communication between the communication coil 12 and the communication coil 22 is established and communication is not established. When communication between the coil 12 and the communication coil 23 is established, the power receiver 2 is designed to unconditionally move 20 mm in the left direction at the next docking.

つまり、通信コイル22および23は水平方向±20mmの範囲内で通信可能であり、電力の送電コイル11および受電コイル21は、±20mmの範囲内で最大限の送受電が保障される。換言すれば、通信可能であれば受電コイル21には最大の電力が送電可能であるという設計になっている。したがって、通信コイル12と通信コイル22および23との間の通信可能範囲はフル電力送電可能な範囲(±20mm)となる。   That is, the communication coils 22 and 23 can communicate within a range of ± 20 mm in the horizontal direction, and the power transmission coil 11 and the power reception coil 21 are guaranteed maximum power transmission and reception within a range of ± 20 mm. In other words, the power receiving coil 21 is designed so that the maximum power can be transmitted if communication is possible. Therefore, the communicable range between the communication coil 12 and the communication coils 22 and 23 is a range (± 20 mm) in which full power can be transmitted.

上述したように、通信コイル22および23とを設けることで、通信コイル12と複数の通信コイル22および23のうちの何れの通信コイルとの間の通信が最適であるかを検知することで、次回のドッキング(再接続)の際の受電器2の移動方向に対する位置の補正方向および補正量を知ることができる。   As described above, by providing the communication coils 22 and 23, by detecting which of the communication coils 12 and the communication coil of the plurality of communication coils 22 and 23 is optimal, It is possible to know the correction direction and the correction amount of the position with respect to the movement direction of the power receiver 2 at the next docking (reconnection).

図3は図1の(B)に示す受電器における通信コイルの配置において2つの通信コイル間の距離を短くした第2実施形態を示す図である。図3は2つの通信コイル22および23が同時にアクティブ状態になり得るように2つの通信コイル22および23を配置した例を示す。   FIG. 3 is a diagram showing a second embodiment in which the distance between two communication coils is shortened in the arrangement of the communication coils in the power receiver shown in FIG. FIG. 3 shows an example in which two communication coils 22 and 23 are arranged so that the two communication coils 22 and 23 can be in an active state at the same time.

2つの通信コイル22および23の各通信範囲に共通する部分があるように、すなわちオーバラップする部分(図3のOVR1、OVR2)があるように、2つの通信コイル22および23を配置する。第2実施形態によれば、2つの通信コイルが同時にアクティブとなることを確認することで、正確なずれ量を知ることができる。   The two communication coils 22 and 23 are arranged so that there is a portion common to each communication range of the two communication coils 22 and 23, that is, there are overlapping portions (OVR1 and OVR2 in FIG. 3). According to the second embodiment, it is possible to know an accurate shift amount by confirming that two communication coils are simultaneously active.

図4は第1および第2実施形態に係る受電器内の回路構成の概要を示すブロック図である。図4に示す制御回路40は、受電器402の複数個の、この例では3つの通信コイル422、423および424の何れがアクティブ状態にあるか否かを検出し、充電装置45に充電する回路である。また、制御回路40は、複数のコイル422〜424のうちの2つのコイルの同時アクティブ状態をロボットへ知らせ受電器402を移動させる。   FIG. 4 is a block diagram showing an outline of a circuit configuration in the power receiver according to the first and second embodiments. The control circuit 40 shown in FIG. 4 detects whether any of the plurality of power receiving devices 402, in this example, the three communication coils 422, 423, and 424 is in an active state, and charges the charging device 45. It is. In addition, the control circuit 40 notifies the robot of the simultaneous active state of two of the plurality of coils 422 to 424 and moves the power receiver 402.

制御回路40において、3つの通信コイル422〜424からの信号を受信する最適位相・電圧認識回路41は受信する信号に共通で使用できるため、通信コイル422が1つの場合と比して制御回路40は小さなコイルの追加と小規模な回路の追加のみで構成できる。それゆえ、受電器402に送電器401を検出するためのセンサを新たに追加するよりも安価に製作できる。   In the control circuit 40, the optimum phase / voltage recognition circuit 41 that receives signals from the three communication coils 422 to 424 can be used in common for the received signals. Can be configured with only a small coil and a small circuit. Therefore, it is possible to manufacture the power receiver 402 at a lower cost than adding a sensor for detecting the power transmitter 401 to the power receiver 402.

受電器402の3つの通信コイル422〜424は送電器401の通信コイル412のフロアからの高さと同一高さに等間隔で設けられる。図3に示す通信コイルを2つ設けた受電器2と比して図4に示す通信コイルを3つ設けた受電器402は、送電器401と受電器402とのドッキング時における受電器402の移動方向への位置精度を上げる。   The three communication coils 422 to 424 of the power receiver 402 are provided at equal intervals at the same height as the height of the communication coil 412 of the power transmitter 401 from the floor. Compared with the power receiver 2 provided with two communication coils shown in FIG. 3, the power receiver 402 provided with three communication coils shown in FIG. 4 is the power receiver 402 when the power transmitter 401 and the power receiver 402 are docked. Increase position accuracy in the moving direction.

図4に示すように複数の通信コイル422〜424を受電器402に設けたので、ドッキング精度が向上し、受電器402が適切な送電対象物であるか否かも確認もでき、受電器402の充電装置45への安全で確実な充電が可能となる。   Since the plurality of communication coils 422 to 424 are provided in the power receiver 402 as shown in FIG. 4, the docking accuracy is improved, and it can be confirmed whether the power receiver 402 is an appropriate power transmission target. Safe and reliable charging to the charging device 45 is possible.

図5は図4に示す最適位相認識回路の出力電圧波形を示すタイムチャートである。図5において横軸は時間を示し、縦軸は2つの通信コイルから信号を受けている時の最適位相認識回路41の出力信号であってコイル発信回路42への入力信号を示す。   FIG. 5 is a time chart showing an output voltage waveform of the optimum phase recognition circuit shown in FIG. In FIG. 5, the horizontal axis represents time, and the vertical axis represents the output signal of the optimum phase recognition circuit 41 when receiving signals from two communication coils and the input signal to the coil transmission circuit 42.

図5において、電圧波形51は通信コイル422が受信した信号の電圧波形を示し、電圧波形52は通信コイル423が受信した信号の電圧波形を示す。図5において電圧波形51の方が電圧波形52より振幅がAS(Amp Shift:振幅ずれ)だけ大きいことが判る。これは通信コイル422の方が通信コイル423より受電器401の通信コイル412に近くに位置していることを示す。   In FIG. 5, the voltage waveform 51 indicates the voltage waveform of the signal received by the communication coil 422, and the voltage waveform 52 indicates the voltage waveform of the signal received by the communication coil 423. In FIG. 5, it can be seen that the voltage waveform 51 is larger in amplitude than the voltage waveform 52 by AS (Amp Shift). This indicates that the communication coil 422 is located closer to the communication coil 412 of the power receiver 401 than the communication coil 423.

図5から電圧波形51と電圧波形52には位相ずれPS(Phase Shift)があることが判る。PSが一致したとき、互いの距離が同距離であり、同時アクティブであることがわかるよう、調節される。   5 that the voltage waveform 51 and the voltage waveform 52 have a phase shift PS (Phase Shift). When the PSs match, the distances are adjusted so that they are known to be the same distance and active simultaneously.

図4において、マイクロコンピュータ43は最適位相・電圧認識回路41およびコイル発信回路42からの出力を受け、受電器402を搭載する不図示のロボットを移動するよう制御する。   In FIG. 4, the microcomputer 43 receives outputs from the optimum phase / voltage recognition circuit 41 and the coil transmission circuit 42 and controls to move a robot (not shown) on which the power receiver 402 is mounted.

スイッチ44はマイクロコンピュータ43からの制御により送電器401から供給される電力をロボットへ供給する。   The switch 44 supplies electric power supplied from the power transmitter 401 to the robot under the control of the microcomputer 43.

(付記1)
電力を送電する送電器と該送電器から送電された電力を非接触で受電する移動可能な受電器とを備えた非接触送電システムであって、
前記送電器は、前記受電器との間で、大電力を送電する送電コイルと、微弱電力で通信する通信コイルとを備え、
前記受電器は、前記送電器との間で、前記送電コイルから電力を受電する受電コイルと、前記通信コイルとの間で通信する複数のコイル群と、該複数のコイル群のうち何れのコイルが前記通信コイルとアクティブ状態にあるか否かを検出する制御回路とを備える、
非接触送電システム。
(Appendix 1)
A contactless power transmission system comprising a power transmitter for transmitting power and a movable power receiver for receiving the power transmitted from the power transmitter in a contactless manner,
The power transmitter includes a power transmission coil that transmits high power and a communication coil that communicates with weak power with the power receiver,
The power receiver includes a power receiving coil that receives power from the power transmitting coil with the power transmitter, a plurality of coil groups that communicate with the communication coil, and any coil of the plurality of coil groups Comprising a control circuit for detecting whether or not the communication coil is in an active state,
Contactless power transmission system.

(付記2)
前記受電器は、前記複数のコイル群のうちの2つのコイルが同時にアクティブ状態になり得るように該2つのコイルを配置した、
付記1に記載の非接触送電システム。
(Appendix 2)
The power receiver has the two coils arranged so that two coils of the plurality of coil groups can be simultaneously active.
The contactless power transmission system according to appendix 1.

(付記3)
前記制御回路は、前記複数のコイル群のうちの2つのコイルの同時アクティブ状態に応じて前記受電器を移動させる、
付記1または2に記載の非接触送電システム。
(Appendix 3)
The control circuit moves the power receiver according to a simultaneous active state of two coils of the plurality of coil groups.
The contactless power transmission system according to appendix 1 or 2.

第1実施形態に係る非接触で電力を送受電する送電器および受電器におけるコイルの配置を示す図であり、(A)は送電器のコイルの配置を示す図であり、(B)は受電器のコイルの配置を示す図である。It is a figure which shows arrangement | positioning of the coil in the power transmitter and power receiver which transmit / receive electric power based on 1st Embodiment, and (A) is a figure which shows arrangement | positioning of the coil of a power transmitter, (B) is receiving. It is a figure which shows arrangement | positioning of the coil of an electric appliance. 図1に示す送電器および受電器がサービスロボットの場合の外観を示す図である。It is a figure which shows the external appearance in case the power transmission device and power receiving device which are shown in FIG. 1 are service robots. 図1の(B)に示す受電器における通信コイルの配置において2つの通信コイル間の距離を短くした第2実施形態を示す図である。It is a figure which shows 2nd Embodiment which shortened the distance between two communication coils in arrangement | positioning of the communication coil in the power receiving device shown to (B) of FIG. 第1および第2実施形態に係る受電器内の回路構成の概要を示すブロック図である。It is a block diagram which shows the outline | summary of the circuit structure in the power receiving device which concerns on 1st and 2nd embodiment. 図4に示す最適位相認識回路の出力電圧波形を示すタイムチャートである。5 is a time chart showing an output voltage waveform of the optimum phase recognition circuit shown in FIG. 4.

符号の説明Explanation of symbols

1 送電器
2 受電器
11 送電コイル
12、22、23 通信コイル
21 受電コイル
40 制御回路
DESCRIPTION OF SYMBOLS 1 Power transmitter 2 Power receiver 11 Power transmission coil 12, 22, 23 Communication coil 21 Power reception coil 40 Control circuit

Claims (3)

電力を送電する送電器と該送電器から送電された電力を非接触で受電する移動可能な受電器とを備えた非接触送電システムであって、
前記送電器は、前記受電器との間で、大電力を送電する送電コイルと、微弱電力で通信する通信コイルとを備え、
前記受電器は、前記送電器との間で、前記送電コイルから電力を受電する受電コイルと、前記通信コイルとの間で通信する複数のコイル群と、該複数のコイル群のうち何れのコイルが前記通信コイルとアクティブ状態にあるか否かを検出する制御回路とを備える、
非接触送電システム。
A contactless power transmission system comprising a power transmitter for transmitting power and a movable power receiver for receiving the power transmitted from the power transmitter in a contactless manner,
The power transmitter includes a power transmission coil that transmits high power and a communication coil that communicates with weak power with the power receiver,
The power receiver includes a power receiving coil that receives power from the power transmitting coil with the power transmitter, a plurality of coil groups that communicate with the communication coil, and any coil of the plurality of coil groups Comprising a control circuit for detecting whether or not the communication coil is in an active state,
Contactless power transmission system.
前記受電器は、前記複数のコイル群のうちの2つのコイルが同時にアクティブ状態になり得るように該2つのコイルを配置した、
請求項1に記載の非接触送電システム。
The power receiver has the two coils arranged so that two coils of the plurality of coil groups can be simultaneously active.
The contactless power transmission system according to claim 1.
前記制御回路は、前記複数のコイル群のうちの2つのコイルの同時アクティブ状態に応じて前記受電器を移動させる、
請求項1または2に記載の非接触送電システム。
The control circuit moves the power receiver according to a simultaneous active state of two coils of the plurality of coil groups.
The non-contact power transmission system according to claim 1 or 2.
JP2008212942A 2008-08-21 2008-08-21 Non-contacting power transmission system Pending JP2010051089A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008212942A JP2010051089A (en) 2008-08-21 2008-08-21 Non-contacting power transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008212942A JP2010051089A (en) 2008-08-21 2008-08-21 Non-contacting power transmission system

Publications (1)

Publication Number Publication Date
JP2010051089A true JP2010051089A (en) 2010-03-04

Family

ID=42067699

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008212942A Pending JP2010051089A (en) 2008-08-21 2008-08-21 Non-contacting power transmission system

Country Status (1)

Country Link
JP (1) JP2010051089A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012095896A1 (en) * 2011-01-11 2012-07-19 パナソニック株式会社 Wireless power transmission system and mispositioning detection device
WO2012096169A1 (en) * 2011-01-11 2012-07-19 パナソニック株式会社 Wireless power transmission system and mispositioning detection device
WO2012165243A1 (en) * 2011-05-27 2012-12-06 日産自動車株式会社 Non-contact power supply device, vehicle, and non-contact power supply system
WO2014091758A1 (en) * 2012-12-13 2014-06-19 パナソニック株式会社 Wireless module and wireless communication device
WO2015043797A1 (en) * 2013-09-25 2015-04-02 Robert Bosch Gmbh Method, device, and system for determining a position of a vehicle
US9656559B2 (en) 2011-05-27 2017-05-23 Nissan Motor Co., Ltd. Non-contact power supply device
KR102080476B1 (en) * 2018-10-17 2020-02-24 주식회사 켐트로닉스 Medium power, high power wireless power transmission alignment status monitoring device
EP2550174B1 (en) 2010-03-22 2021-05-12 Sew-Eurodrive GmbH & Co. KG System for contactless transmission of energy to a vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993009018A1 (en) * 1991-11-05 1993-05-13 Seiko Epson Corporation Micro-robot
JPH0764637A (en) * 1993-08-24 1995-03-10 Matsushita Electric Ind Co Ltd Mobile robot
JPH08323657A (en) * 1995-05-25 1996-12-10 Seiko Epson Corp Micro robot with charging and communicating functions by electromagnetic connection
JP2003348774A (en) * 2002-05-23 2003-12-05 Tm:Kk Non-invasive charging system for artificial organ, power storage apparatus using the system, and power feeding apparatus
JP2006203997A (en) * 2005-01-19 2006-08-03 Fuji Photo Film Co Ltd Charging system
JP2009089464A (en) * 2007-09-27 2009-04-23 Panasonic Corp Electronic equipment and charging system
JP2009089465A (en) * 2007-09-27 2009-04-23 Panasonic Corp Charger and charging system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993009018A1 (en) * 1991-11-05 1993-05-13 Seiko Epson Corporation Micro-robot
JPH0764637A (en) * 1993-08-24 1995-03-10 Matsushita Electric Ind Co Ltd Mobile robot
JPH08323657A (en) * 1995-05-25 1996-12-10 Seiko Epson Corp Micro robot with charging and communicating functions by electromagnetic connection
JP2003348774A (en) * 2002-05-23 2003-12-05 Tm:Kk Non-invasive charging system for artificial organ, power storage apparatus using the system, and power feeding apparatus
JP2006203997A (en) * 2005-01-19 2006-08-03 Fuji Photo Film Co Ltd Charging system
JP2009089464A (en) * 2007-09-27 2009-04-23 Panasonic Corp Electronic equipment and charging system
JP2009089465A (en) * 2007-09-27 2009-04-23 Panasonic Corp Charger and charging system

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2550174B1 (en) 2010-03-22 2021-05-12 Sew-Eurodrive GmbH & Co. KG System for contactless transmission of energy to a vehicle
WO2012096169A1 (en) * 2011-01-11 2012-07-19 パナソニック株式会社 Wireless power transmission system and mispositioning detection device
WO2012095896A1 (en) * 2011-01-11 2012-07-19 パナソニック株式会社 Wireless power transmission system and mispositioning detection device
KR101668910B1 (en) * 2011-05-27 2016-10-24 닛산 지도우샤 가부시키가이샤 Non-contact power supply device, vehicle, and non-contact power supply system
WO2012165243A1 (en) * 2011-05-27 2012-12-06 日産自動車株式会社 Non-contact power supply device, vehicle, and non-contact power supply system
JP2012249405A (en) * 2011-05-27 2012-12-13 Nissan Motor Co Ltd Non-contact power supply device, vehicle and non-contact power supply system
CN103563217A (en) * 2011-05-27 2014-02-05 日产自动车株式会社 Non-contact power supply device, vehicle, and non-contact power supply system
KR20140025528A (en) * 2011-05-27 2014-03-04 닛산 지도우샤 가부시키가이샤 Non-contact power supply device, vehicle, and non-contact power supply system
US9656559B2 (en) 2011-05-27 2017-05-23 Nissan Motor Co., Ltd. Non-contact power supply device
US9566871B2 (en) 2011-05-27 2017-02-14 Nissan Motor Co., Ltd. Non-contact power supply device, vehicle, and non-contact power supply system
RU2563313C2 (en) * 2011-05-27 2015-09-20 Ниссан Мотор Ко., Лтд. Non-contact device supplying electric power to vehicle, vehicle and non-contact power supply system
CN104094530A (en) * 2012-12-13 2014-10-08 松下电器产业株式会社 Wireless module and wireless communication device
US9319494B2 (en) 2012-12-13 2016-04-19 Panasonic Corporation Wireless module and wireless communication apparatus
JP2014120816A (en) * 2012-12-13 2014-06-30 Panasonic Corp Radio module, and radio communication device
WO2014091758A1 (en) * 2012-12-13 2014-06-19 パナソニック株式会社 Wireless module and wireless communication device
CN105579276A (en) * 2013-09-25 2016-05-11 罗伯特·博世有限公司 Method, device, and system for determining position of vehicle
WO2015043797A1 (en) * 2013-09-25 2015-04-02 Robert Bosch Gmbh Method, device, and system for determining a position of a vehicle
US9821674B2 (en) 2013-09-25 2017-11-21 Robert Bosch Gmbh Method, device and system for determining a position of a vehicle
KR102080476B1 (en) * 2018-10-17 2020-02-24 주식회사 켐트로닉스 Medium power, high power wireless power transmission alignment status monitoring device

Similar Documents

Publication Publication Date Title
JP2010051089A (en) Non-contacting power transmission system
EP1457151B1 (en) Automatic battery charging system and method of robot cleaner
EP3360775B1 (en) Underwater docking system for autonomous unmanned submarine
RU2598491C1 (en) System of non-contact power supply and electric power supply device
US10688875B2 (en) Non-contact charging system and pairing method for non-contact charging system
RU2594175C1 (en) Contactless electric power supply system
US20160085322A1 (en) Wireless mouse, mouse pad and wireless mouse apparatus
EP1446857A1 (en) Wireless power transmission
KR102521979B1 (en) An automatic docking system of mobile robot charging station and the docking method thereof
WO2012095896A1 (en) Wireless power transmission system and mispositioning detection device
US20150133056A1 (en) Non-contact type power supply apparatus and non-contact type power supply method
US10688965B2 (en) Apparatus for determining the position of a mobile access device on the vehicle
US20140113591A1 (en) Authentication method between communication devices
KR20190033001A (en) Non-contact power supply system and power reception device
KR20130014105A (en) User following robot
JP2008181177A (en) Charging device for traveling object loaded with battery
JP2013009545A (en) Radio power transmission system, and power supply device
JP6501838B2 (en) Wireless power supply method
JP2019182405A (en) Wireless sensor interface for steering wheel
KR20110061797A (en) Charging system and method for mobile robot
JP6123081B2 (en) Automatic power supply system, automatic power supply device and autonomous mobile system
US20210291681A1 (en) Parking aid system
CN111152670B (en) Dynamic charging method
JP4858466B2 (en) Power supply station and power supply control method thereof
US20220348098A1 (en) Method and system for charging a robotic work tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110513

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140408