JP2010050316A - Multilayer electronic component and method of manufacturing the same - Google Patents

Multilayer electronic component and method of manufacturing the same Download PDF

Info

Publication number
JP2010050316A
JP2010050316A JP2008213798A JP2008213798A JP2010050316A JP 2010050316 A JP2010050316 A JP 2010050316A JP 2008213798 A JP2008213798 A JP 2008213798A JP 2008213798 A JP2008213798 A JP 2008213798A JP 2010050316 A JP2010050316 A JP 2010050316A
Authority
JP
Japan
Prior art keywords
conductor
insulator layer
photosensitive
laminate
external terminals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008213798A
Other languages
Japanese (ja)
Inventor
Nobuaki Muramatsu
宣明 村松
Seiichi Kobayashi
小林  清一
Hideo Oi
秀朗 大井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toko Inc
Original Assignee
Toko Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toko Inc filed Critical Toko Inc
Priority to JP2008213798A priority Critical patent/JP2010050316A/en
Publication of JP2010050316A publication Critical patent/JP2010050316A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem that a tombstone phenomenon occurs and, in the case of a small one, migration tends to occur on the top surface of an element because the dimension of an external terminal on an end surface of a laminate is different from the dimension of an external terminal on a side surface of the laminate. <P>SOLUTION: In a laminate, which is formed by alternately laminating insulator layers and conductor patterns, a circuit element is formed by the conductor patterns, and the circuit element is connected to between multiple external terminals formed in outside surfaces of the laminate. The multiple external terminals are formed by forming conductors from the bottom surface to side surfaces of the laminate and from the bottom surface to end surfaces of the laminate through a photolithographic technique so that the width of the external terminal formed in each side surface of the laminate is the same as the width of the external terminal formed in each end surface of the laminate and that the length of each external terminal is smaller than the thickness of the laminate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、絶縁体層と導体パターンを積層して、積層体内に導体パターンによって回路素子が形成され、回路素子が積層体の外表面に形成された複数の外部端子間に接続された積層型電子部品及びその製造方法に関するものである。   The present invention is a laminated type in which an insulator layer and a conductor pattern are laminated, a circuit element is formed by the conductor pattern in the laminate, and the circuit element is connected between a plurality of external terminals formed on the outer surface of the laminate. The present invention relates to an electronic component and a manufacturing method thereof.

従来の積層型電子部品に、図10に示す様に、絶縁体層101と導体パターン102を積層し、これらの積層体内にコイルとコンデンサが形成され、このコイルとコンデンサが積層体の外表面に形成された外部端子間に接続されたものがある。図11(A)はこの様な従来の積層型電子部品の外観を示しており、外部端子111、112は、導体ペーストを積層体110の端面と側面に、浸漬、転写、印刷等により塗布し、これらを一体に焼成し、これにメッキを施すことにより形成される。   As shown in FIG. 10, an insulating layer 101 and a conductor pattern 102 are laminated on a conventional multilayer electronic component, and a coil and a capacitor are formed in the laminate, and the coil and the capacitor are formed on the outer surface of the laminate. Some are connected between the formed external terminals. FIG. 11A shows the appearance of such a conventional multilayer electronic component. The external terminals 111 and 112 are formed by applying a conductive paste to the end face and side face of the laminate 110 by dipping, transferring, printing, or the like. These are formed by firing them together and plating them.

この様な従来の積層型電子部品は、積層体の端面に形成された外部端子111と積層体の側面に形成された外部端子112の大きさが異なるため、外部端子によってメッキの厚さが異なり、この積層型電子部品を実装基板に実装し、はんだで接続する際に、チップ立ち(ツームストーン現象)が発生するという問題があった。また、この様な従来の積層型電子部品は、形状の小型化により、素子に分割した後に治具等で保持することが難しい上、導体ペーストのダレや滲みにより外部端子の寸法がバラツキ易かった。   In such a conventional multilayer electronic component, since the size of the external terminal 111 formed on the end face of the multilayer body and the external terminal 112 formed on the side surface of the multilayer body are different, the plating thickness differs depending on the external terminal. When this multilayer electronic component is mounted on a mounting substrate and connected with solder, there is a problem that chip standing (tombstone phenomenon) occurs. In addition, such a conventional multilayer electronic component is difficult to hold with a jig or the like after being divided into elements due to the downsizing of the shape, and the dimensions of the external terminals are likely to vary due to sagging or bleeding of the conductive paste. .

このチップ立ち(ツームストーン現象)を防止するために、図11(B)に示す様に、積層体110の端面に形成される外部端子111と積層体110の側面に形成される外部端子112の大きさが同じになる様に、積層体の端面と側面に導体ペーストを塗布し、これにメッキを施すことが行われている。
しかし、この様な従来の積層型電子部品は、上面にも外部端子が形成されているため、形状が小型化したものでは上面における外部端子間の間隔が狭くなり、湿度等の影響を受けて上面の外部端子間でマイグレーションが発生し易かった。また、この様な従来の積層型電子部品は、形状の小型化により、素子に分割した後に治具等で保持することが難しいという課題が解決できなかった。
In order to prevent this chip standing (tombstone phenomenon), as shown in FIG. 11B, an external terminal 111 formed on the end surface of the multilayer body 110 and an external terminal 112 formed on the side surface of the multilayer body 110 are formed. In order to have the same size, a conductive paste is applied to the end face and the side face of the laminated body, and plating is performed on this.
However, since such conventional multilayer electronic components also have external terminals formed on the top surface, those with a reduced size have a narrow spacing between the external terminals on the top surface and are affected by humidity and other factors. Migration was likely to occur between external terminals on the top surface. Moreover, such a conventional multilayer electronic component cannot solve the problem that it is difficult to hold it with a jig or the like after being divided into elements due to the downsizing of the shape.

素子を治具等で保持することの困難性を改善するために、図11(C)に示す様に、積層体を形成した後、積層体の外部端子を形成する部分に貫通孔を設け、貫通孔内に導体ペーストを充填し、各素子110に分割して貫通孔内の導体ペーストによって外部端子111、112を形成したり、図11(D)に示す様に、積層体を形成した後、積層体の外部端子を形成する部分に貫通孔を設け、貫通孔の内面に導体を形成し、各素子110に分割して貫通孔の内面に形成された導体によって外部端子111、112を形成したりすることが行われている(例えば、特許文献1を参照。)。
しかし、この様な従来の積層型電子部品は、各素子に分割する前に、加工機で積層体に1〜数箇所ずつ貫通孔を外部端子分形成する必要があり、加工機での加工時間が長く、その分コストが増大するという問題があった。また、貫通孔の形成にドリルやパンチを用いた場合、現在の加工機では直径200〜100μmが限界であり、それよりも小さな貫通孔を形成できず、0603サイズ(0.6mm×0.3mm×0.3mm)や0402サイズ(0.4mm×0.2mm×0.2mm)といったように小型化が進んでいる積層型電子部品では外部端子間の距離を十分に確保することができなかった。さらに、貫通孔の形成にレーザを用いた場合、素子の厚み分を貫通するためには複数回照射する必要があり、その分コストが増大すると共に、焦点深度の差異から貫通孔の上径と下径に差が生じ、高精度の外部端子を形成できなかった。
In order to improve the difficulty of holding the element with a jig or the like, as shown in FIG. 11 (C), after forming the laminated body, a through hole is provided in a portion where the external terminal of the laminated body is formed, After filling the through-hole with a conductive paste and dividing it into each element 110 to form the external terminals 111 and 112 with the conductive paste in the through-hole, or after forming the laminate as shown in FIG. A through hole is formed in a portion of the laminate that forms the external terminal, a conductor is formed on the inner surface of the through hole, and the external terminals 111 and 112 are formed by the conductor formed on the inner surface of the through hole by being divided into each element 110. (For example, refer to Patent Document 1).
However, in such a conventional multilayer electronic component, it is necessary to form one or several through-holes in the multilayer body with a processing machine before each element is divided, and the processing time in the processing machine However, there is a problem that the cost increases correspondingly. In addition, when a drill or punch is used to form a through hole, the current processing machine has a diameter of 200 to 100 μm, and a through hole smaller than that cannot be formed, and the 0603 size (0.6 mm × 0.3 mm) × 0.3 mm) and 0402 size (0.4 mm × 0.2 mm × 0.2 mm) and other multilayer electronic components that have been reduced in size have not been able to secure a sufficient distance between external terminals. . Furthermore, when a laser is used to form a through hole, it is necessary to irradiate multiple times in order to penetrate the thickness of the element, which increases the cost and increases the diameter of the through hole from the difference in depth of focus. A difference in the lower diameter occurred, and a high-precision external terminal could not be formed.

この様な問題を解決するために、セラミックシートに貫通孔を形成し、この貫通孔内に端子電極を形成し、この端子電極が形成されたセラミックシートを複数枚積層して積層体を形成し、この積層体を各素子に分割して素子に外部端子を形成したり、セラミック層に貫通孔を形成し、この貫通孔内に導体ペーストを印刷して端子電極を形成し、これらを積み重ねて積層体を形成し、この積層体を各素子に分割して素子に外部端子を形成したりすることが行われている(例えば、特許文献2、特許文献3を参照。)。   In order to solve such a problem, a through hole is formed in the ceramic sheet, a terminal electrode is formed in the through hole, and a laminate is formed by laminating a plurality of ceramic sheets on which the terminal electrode is formed. The laminated body is divided into each element to form an external terminal on the element, or a through hole is formed in the ceramic layer, a conductor paste is printed in the through hole to form a terminal electrode, and these are stacked. A laminated body is formed, and this laminated body is divided into elements to form external terminals on the elements (see, for example, Patent Document 2 and Patent Document 3).

特開平7-297080号公報Japanese Unexamined Patent Publication No. 7-297080 特開平6-181141号公報JP-A-6-181141 特開平11-214235号公報Japanese Patent Laid-Open No. 11-214235

しかし、この様な従来の積層型電子部品は、ドリル、パンチ、レーザ等の加工機を用いて、1層毎にセラミックシートに貫通孔を形成するため、製造時間が長くなり、その分コストが増大するという問題があった。また、貫通孔の形成にレーザを用いた場合、焦点深度の差異から各セラミックシートの貫通孔の上径と下径に差が生じ、さらに、セラミックシートを積層する際のズレによって、外部端子に層数分の凹凸が生じて鋸歯状となり、高精度の外部端子を形成できなかった。さらに、特許文献3の様に外部端子が形成された積層型電子部品は、セラミック層を印刷する際に貫通孔を形成しているため、セラミックペーストのダレや滲みにより、貫通孔の形状がバラツキ易く、また、0603サイズや0402サイズといった小型のものにおいては貫通孔を形成することができなかった。   However, such a conventional multilayer electronic component forms a through hole in the ceramic sheet for each layer using a processing machine such as a drill, a punch, or a laser. There was a problem of increasing. In addition, when a laser is used to form a through hole, a difference occurs in the upper and lower diameters of the through holes of each ceramic sheet due to the difference in depth of focus. Concavities and convexities corresponding to the number of layers were generated, resulting in a sawtooth shape, and a highly accurate external terminal could not be formed. Furthermore, since the multilayer electronic component in which external terminals are formed as in Patent Document 3 has a through hole when the ceramic layer is printed, the shape of the through hole varies due to sagging or bleeding of the ceramic paste. In addition, in a small type such as 0603 size or 0402 size, a through hole could not be formed.

本発明は、チップ立ち(ツームストーン現象)を防止できると共に、形状が小型化した積層型電子部品においても上面での外部端子間のマイグレーションを低減することができる積層型電子部品及びその製造方法を提供することを目的とする。   The present invention relates to a multilayer electronic component capable of preventing chip standing (tombstone phenomenon) and reducing migration between external terminals on the top surface even in a multilayer electronic component having a reduced shape, and a method for manufacturing the same. The purpose is to provide.

本発明は、絶縁体層と導体パターンを積層して、積層体内に導体パターンによって回路素子が形成され、回路素子が積層体の外表面に形成された複数の外部端子間に接続された積層型電子部品において、複数の外部端子は、積層体の側面に形成された外部端子の幅と積層体の端面に形成された外部端子の幅が同じで、かつ、全ての外部端子の長さが積層体の厚みよりも薄くなる様に、積層体の底面から側面及び底面から端面に跨ってフォトリソ技術を用いて導体を形成することにより形成される。この外部端子は、その幅が100μm以下に形成される。
また、本発明は、絶縁体層と導体パターンを積層して、積層体内に導体パターンによって回路素子が形成され、回路素子が積層体の外表面に形成された複数の外部端子間に接続された積層型電子部品の製造方法において、感光性絶縁体ペーストを用いて感光性絶縁体膜を形成し、感光性絶縁体膜を乾燥、露光、現像して外部端子となる部分に絶縁体層を貫通する貫通孔を形成する工程と、絶縁体層の貫通孔内に感光性導体ペーストを用いて感光性導体を形成し、乾燥、露光、現像して外部端子を構成する導体を形成する工程を繰り返すか又は、感光性導体ペーストを用いて感光性導体膜を形成し、感光性導体膜を乾燥、露光、現像して外部端子を構成する導体を形成する工程と、導体の周囲に感光性絶縁体ペーストを用いて感光性絶縁体膜を形成し、感光性絶縁体膜を乾燥、露光、現像して外部端子となる部分に導体を有する絶縁体層を形成する工程を繰り返すことにより、積層体の側面に形成された外部端子の幅と積層体の端面に形成された外部端子の幅が同じで、かつ、全ての外部端子の長さが積層体の厚みよりも薄くなる様に、積層体の底面から側面及び底面から端面に跨って外部端子が形成される。
The present invention is a laminated type in which an insulator layer and a conductor pattern are laminated, a circuit element is formed by the conductor pattern in the laminate, and the circuit element is connected between a plurality of external terminals formed on the outer surface of the laminate. In electronic components, the width of the external terminals formed on the side surface of the multilayer body is the same as the width of the external terminals formed on the end surface of the multilayer body, and the lengths of all the external terminals are stacked. It is formed by forming a conductor using a photolithographic technique from the bottom surface to the side surface and from the bottom surface to the end surface so as to be thinner than the thickness of the body. The external terminal is formed with a width of 100 μm or less.
In the present invention, an insulator layer and a conductor pattern are laminated, a circuit element is formed by the conductor pattern in the laminate, and the circuit element is connected between a plurality of external terminals formed on the outer surface of the laminate. In a multilayer electronic component manufacturing method, a photosensitive insulating film is formed using a photosensitive insulating paste, and the photosensitive insulating film is dried, exposed and developed to penetrate an insulating layer into a portion that becomes an external terminal. A step of forming a through hole and a step of forming a photosensitive conductor using a photosensitive conductor paste in the through hole of the insulator layer and drying, exposing and developing to form a conductor constituting an external terminal. Or forming a photosensitive conductor film using a photosensitive conductor paste, drying, exposing and developing the photosensitive conductor film to form a conductor constituting an external terminal; and a photosensitive insulator around the conductor Use a paste to remove the photosensitive insulator film Forming, drying, exposing, and developing the photosensitive insulator film to form an insulator layer having a conductor in a portion to be an external terminal, thereby repeating the width of the external terminal formed on the side surface of the laminate. The width of the external terminals formed on the end face of the laminate is the same, and the length of all the external terminals is thinner than the thickness of the laminate, spanning the bottom face to the side face and the bottom face to the end face of the laminate. External terminals are formed.

本発明の積層型電子部品は、複数の外部端子が、積層体の側面に形成された外部端子の幅と積層体の端面に形成された外部端子の幅が同じで、かつ、全ての外部端子の長さが積層体の厚みよりも薄くなる様に、積層体の底面から側面及び底面から端面に跨ってフォトリソ技術を用いて導体を形成することにより形成されるので、チップ立ち(ツームストーン現象)を防止できると共に、形状が小型化した積層型電子部品においても上面での外部端子間のマイグレーションを低減することができる。
また、本発明の積層型電子部品の製造方法は、感光性絶縁体ペーストを用いて感光性絶縁体膜を形成し、感光性絶縁体膜を乾燥、露光、現像して外部端子となる部分に絶縁体層を貫通する貫通孔を形成する工程と、絶縁体層の貫通孔内に感光性導体ペーストを用いて感光性導体を形成し、乾燥、露光、現像して外部端子を構成する導体を形成する工程を繰り返すか又は、感光性導体ペーストを用いて感光性導体膜を形成し、感光性導体膜を乾燥、露光、現像して外部端子を構成する導体を形成する工程と、導体の周囲に感光性絶縁体ペーストを用いて感光性絶縁体膜を形成し、感光性絶縁体膜を乾燥、露光、現像して外部端子となる部分に導体を有する絶縁体層を形成する工程を繰り返すことにより、積層体の側面に形成された外部端子の幅と積層体の端面に形成された外部端子の幅が同じで、かつ、全ての外部端子の長さが積層体の厚みよりも薄くなる様に、積層体の底面から側面及び底面から端面に跨って外部端子が形成されるので、チップ立ち(ツームストーン現象)を防止できると共に、形状が小型化した積層型電子部品においても上面での外部端子間のマイグレーションを低減することができる。
In the multilayer electronic component of the present invention, the plurality of external terminals have the same width of the external terminals formed on the side surface of the multilayer body and the width of the external terminals formed on the end surface of the multilayer body, and all the external terminals As the length of the chip becomes thinner than the thickness of the laminate, it is formed by forming a conductor using photolithography technology from the bottom surface to the side surface and from the bottom surface to the end surface. ) And the migration between external terminals on the upper surface can be reduced even in a multilayer electronic component having a reduced size.
In the method for manufacturing a multilayer electronic component according to the present invention, a photosensitive insulator film is formed using a photosensitive insulator paste, and the photosensitive insulator film is dried, exposed, and developed to form a portion serving as an external terminal. Forming a through-hole penetrating the insulator layer, forming a photosensitive conductor using a photosensitive conductor paste in the through-hole of the insulator layer, drying, exposing and developing a conductor constituting the external terminal; Repeating the forming step or forming a photosensitive conductor film using a photosensitive conductor paste, drying, exposing and developing the photosensitive conductor film to form a conductor constituting an external terminal, and the periphery of the conductor Forming a photosensitive insulator film using a photosensitive insulator paste, and drying, exposing and developing the photosensitive insulator film to form an insulator layer having a conductor in a portion serving as an external terminal. The width of the external terminals formed on the side surface of the laminate The width of the external terminals formed on the end face of the laminate is the same, and the length of all the external terminals is thinner than the thickness of the laminate, spanning the bottom face to the side face and the bottom face to the end face of the laminate. Since external terminals are formed, chip standing (tombstone phenomenon) can be prevented, and migration between external terminals on the top surface can be reduced even in a multilayer electronic component having a reduced shape.

本発明の積層型電子部品は、絶縁体層と導体パターンを積層して、積層体内に導体パターンによって回路素子が形成され、回路素子が積層体の外表面に形成された複数の外部端子間に接続される。この複数の外部端子は、積層体の側面に形成された外部端子の幅と積層体の端面に形成された外部端子の幅が同じで、かつ、全ての外部端子の長さが積層体の厚みよりも薄くなる様に、積層体の底面から側面及び底面から端面に跨ってフォトリソ技術を用いて導体を形成することにより形成される。この時、外部端子の幅は、100μm以下に形成される。
この様な本発明の積層型電子部品は、積層体の側面に形成された外部端子のめっきの厚さと積層体の端面に形成された外部端子のめっきの厚さが等しくなるので、実装時の素子の安定性が良くなる。また、本発明の積層型電子部品は、積層体の上面に外部端子が存在しないので、積層体の上面における外部端子間の距離を考慮する必要がなくなると共に、上面を平坦にできる。さらに、本発明の積層型電子部品は、形状が小型のものや、外部端子の数が多いものでも、外部端子の形状のバラツキを少なくできるので、高精度の外部端子を形成することができる。
In the multilayer electronic component of the present invention, an insulator layer and a conductor pattern are laminated, a circuit element is formed by the conductor pattern in the laminate, and the circuit element is formed between a plurality of external terminals formed on the outer surface of the laminate. Connected. In the plurality of external terminals, the width of the external terminals formed on the side surface of the laminate is the same as the width of the external terminals formed on the end surface of the laminate, and the length of all the external terminals is the thickness of the laminate. It is formed by forming a conductor using a photolithographic technique from the bottom surface to the side surface and from the bottom surface to the end surface so as to be thinner. At this time, the width of the external terminal is formed to be 100 μm or less.
In such a multilayer electronic component of the present invention, the thickness of the external terminal plating formed on the side surface of the multilayer body is equal to the thickness of the external terminal plating formed on the end surface of the multilayer body. The stability of the device is improved. In the multilayer electronic component of the present invention, since no external terminal exists on the upper surface of the multilayer body, it is not necessary to consider the distance between the external terminals on the upper surface of the multilayer body, and the upper surface can be flattened. Furthermore, even if the multilayer electronic component of the present invention has a small shape or a large number of external terminals, variations in the shape of the external terminals can be reduced, so that highly accurate external terminals can be formed.

以下、本発明の積層型電子部品及びその製造方法を図1乃至図9を参照して説明する。
図1は本発明の積層型電子部品の第1の実施例を示す分解斜視図、図2は本発明の積層型電子部品の実施例の説明図である。
図1において、11A〜11Hは絶縁体層、12A、12B、12C、13A、13Bは導体パターンである。
絶縁体層11A〜11Hは、磁性体、非磁性体、誘電体等絶縁性を有する材料を用いて形成される。
絶縁体層11Aは、対向する端面の外部端子を形成すべき位置と対向する側面の外部端子を形成すべき位置にそれぞれ貫通孔(図1では4つ)が形成される。貫通孔内には、絶縁体層11Aと同じ厚みの導体14A1、14A2、14A3、14A4が形成される。導体14A1と導体14A3は、その端面が絶縁体層11Aの端面にそれぞれ露出する様に形成される。また、導体14A2と導体14A4は、その端面が絶縁体層11Aの側面にそれぞれ露出する様に形成される。導体14A1、導体14A2、導体14A3、導体14A4は、絶縁体層11Aの端面又は側面に露出している幅が同じになる様に形成される。
絶縁体層11Bは、絶縁体層11Aの貫通孔と対応する位置(すなわち、対向する端面の外部端子を形成すべき位置と対向する側面の外部端子を形成すべき位置)にそれぞれ貫通孔が形成される。これらの貫通孔は、絶縁体層11Bの端面又は側面から先端までの距離が絶縁体層11Aに形成された貫通孔よりも短くなる様に形成される。貫通孔内には、絶縁体層11Bと同じ厚みの導体14B1、14B2、14B3、14B4が形成される。導体14B1と導体14B3は、その端面が絶縁体層11Bの端面に露出する様に形成される。また、導体14B2と導体14B4は、その端面が絶縁体層11Bの側面に露出する様に形成される。導体14B1乃至導体14B4は、絶縁体層11Bの端面又は側面に露出している幅が同じに形成される。この時、導体14B1〜14B4の幅は、導体14A1〜14A4の幅と同じに形成される。
絶縁体層11Cは、絶縁体層11Bの貫通孔と対応する位置にそれぞれ貫通孔が形成される。これらの貫通孔は、絶縁体層11Cの端面又は側面から先端までの距離が絶縁体層11Bに形成された貫通孔と等しくなる様に形成される。貫通孔内には、導体14C1、14C2、14C3、14C4が形成される。導体14C1と導体14C3は、その端面が絶縁体層11Cの端面に露出する様に形成される。導体14C2と導体14C4は、その端面が絶縁体層11Cの側面に露出する様に形成される。導体14C1乃至導体14C4は、絶縁体層11Cの端面又は側面に露出している幅が同じに形成される。この時、導体14C1〜14C4の幅は、導体14B1〜14B4の幅と同じに形成される。この様に導体14C1〜14C4が形成された絶縁体層11Cの表面には、コンデンサ用導体パターン12Aが形成される。このコンデンサ用導体パターン12Aは、導体14C2と導体14C4に連なって形成される。
絶縁体層11Dは、絶縁体層11Cの貫通孔と対応する位置にそれぞれ貫通孔が形成される。貫通孔内には、導体14D1、14D2、14D3、14D4が形成される。導体14D1と導体14D3は、その端面が絶縁体層11Dの端面に露出する様に形成される。導体14D2と導体14D4は、その端面が絶縁体層11Dの側面に露出する様に形成される。導体14D1乃至導体14D4は、絶縁体層11Dの端面又は側面に露出している幅が同じに形成される。この時、導体14D1〜14D4の幅は、導体14C1〜14C4の幅と同じに形成される。この様に導体14D1〜14D4が形成された絶縁体層11Dの表面には、コンデンサ用導体パターン12Bとコンデンサ用導体パターン12Cが形成される。コンデンサ用導体パターン12Bとコンデンサ用導体パターン12Cは、コンデンサ用導体パターン12Aと対向する位置に形成される。コンデンサ用導体パターン12Bは導体14D1に連なって形成される。また、コンデンサ用導体パターン12Cは導体14D3に連なって形成される。
絶縁体層11Eは、絶縁体層11Dの貫通孔と対応する位置にそれぞれ貫通孔が形成される。貫通孔内には、導体14E1、14E2、14E3、14E4が形成される。導体14E1と導体14E3は、その端面が絶縁体層11Eの端面に露出する様に形成される。導体14E2と導体14E4は、その端面が絶縁体層11Eの側面に露出する様に形成される。導体14E1乃至導体14E4は、絶縁体層11Eの端面又は側面に露出している幅が同じに形成される。この時、導体14E1〜14E4の幅は、導体14D1〜14D4の幅と同じに形成される。
絶縁体層11Fは、絶縁体層11Eの端面に形成された貫通孔と対応する位置(すなわち、対向する端面の外部端子を形成すべき位置)にそれぞれ貫通孔が形成される。貫通孔内には、導体14F1、14F2が形成される。導体14F1と導体14F2は、その端面が絶縁体層11Fの端面に露出する様に形成される。導体14F1、導体14F2は、絶縁体層11Fの端面に露出している幅が同じに形成される。この時、導体14F1、14F2の幅は、導体14E1、14E3の幅と同じに形成される。この様に導体14F1、14F2が形成された絶縁体層11Fの表面には、コイル用導体パターン13Aが形成される。コイル用導体パターン13Aは、一端が導体14F1に連なって形成される。
絶縁体層11Gは、絶縁体層11Fの貫通孔と対応する位置にそれぞれ貫通孔が形成される。貫通孔内には、導体14G1、14G2が形成される。導体14G1と導体14G2は、その端面が絶縁体層11Gの端面に露出する様に形成される。導体14G1、導体14G2は、絶縁体層11Gの端面に露出している幅が同じに形成される。この時、導体14G1、14G2の幅は、導体14F1、14F2の幅と同じに形成される。この様に導体14G1、14G2が形成された絶縁体層11Gの表面には、コイル用導体パターン13Bが形成される。コイル用導体パターン13Bは、一端がコイル用導体パターン13Aの他端に接続され、他端が導体14G2に連なって形成される。このコイル用導体パターン13Aとコイル用導体パターン13Bが接続されることによりコイルが形成される。
絶縁体層11Gの上面には、絶縁体層11Hが積層される。
これらの積層体内に導体パターンによってコイルとコンデンサが形成され、図2(A)に示す様に、積層体20の対向する端面に外部端子21が、積層体20の対向する側面に外部端子22が形成される。外部端子21は、積層体の一方の端面に露出した導体14A1、14B1、14C1、14D1、14E1、14F1、14G1又は、積層体の他方の端面に露出した導体14A3、14B3、14C3、14D3、14E3、14F3、14G3によって形成される。外部端子22は、積層体の一方の側面に露出した導体14A2、14B2、14C2、14D2、14E2又は、積層体の他方の側面に露出した導体14A4、14B4、14C4、14D4、14E4によって形成される。外部端子21と外部端子22は、図2(B)と図2(C)に示す様に、その幅Wが等しく、外部端子21の長さH1と外部端子22の長さH2が積層体の厚みHよりも小さく形成される。また、コンデンサよりも上層に配置されたコイルと接続される外部端子21の長さH1が、コンデンサと接続される外部端子22の長さH2よりも長くなる様に形成される。この積層体20の底面には、図2(D)に示す様に、導体14A1、導体14A2、導体14A3、導体14A4が露出することにより外部端子21と外部端子22が形成される。外部端子21の積層体の端面から先端間の距離と外部端子22の積層体の側面から先端間の距離は、等しくなる様に形成される。
この積層体に形成された外部端子21と外部端子22には、めっきが施される。
この様に形成された積層型電子部品は、積層体の上面に外部端子が形成されることがなくなると共に、積層体の側面に形成された外部端子の幅と積層体の端面に形成された外部端子の幅が同じで、かつ、全ての外部端子の長さが積層体の厚みよりも小さくなる。
Hereinafter, a multilayer electronic component and a manufacturing method thereof according to the present invention will be described with reference to FIGS.
FIG. 1 is an exploded perspective view showing a first embodiment of the multilayer electronic component of the present invention, and FIG. 2 is an explanatory view of the embodiment of the multilayer electronic component of the present invention.
In FIG. 1, 11A to 11H are insulator layers, and 12A, 12B, 12C, 13A, and 13B are conductor patterns.
The insulator layers 11A to 11H are formed using an insulating material such as a magnetic material, a nonmagnetic material, and a dielectric material.
In the insulator layer 11A, through holes (four in FIG. 1) are formed at positions where external terminals on opposite end surfaces are to be formed and positions where external terminals on opposite side surfaces are to be formed. Conductors 14A1, 14A2, 14A3, and 14A4 having the same thickness as the insulator layer 11A are formed in the through holes. The conductors 14A1 and 14A3 are formed so that their end faces are exposed at the end faces of the insulator layer 11A. The conductors 14A2 and 14A4 are formed so that their end faces are exposed on the side surfaces of the insulator layer 11A. The conductor 14A1, the conductor 14A2, the conductor 14A3, and the conductor 14A4 are formed so that the width exposed on the end face or the side surface of the insulator layer 11A is the same.
The insulator layer 11B has through holes formed at positions corresponding to the through holes of the insulator layer 11A (that is, positions where external terminals on opposite side surfaces should be formed and external terminals on opposite side surfaces should be formed). Is done. These through holes are formed such that the distance from the end surface or side surface of the insulator layer 11B to the tip is shorter than the through holes formed in the insulator layer 11A. Conductors 14B1, 14B2, 14B3, and 14B4 having the same thickness as the insulator layer 11B are formed in the through holes. The conductors 14B1 and 14B3 are formed so that their end faces are exposed on the end face of the insulator layer 11B. The conductors 14B2 and 14B4 are formed so that their end faces are exposed on the side surfaces of the insulator layer 11B. The conductors 14B1 to 14B4 are formed to have the same width exposed on the end face or side face of the insulator layer 11B. At this time, the widths of the conductors 14B1 to 14B4 are formed to be the same as the widths of the conductors 14A1 to 14A4.
Insulator layer 11C has through holes formed at positions corresponding to the through holes of insulator layer 11B. These through holes are formed so that the distance from the end surface or side surface of the insulator layer 11C to the tip is equal to the through hole formed in the insulator layer 11B. Conductors 14C1, 14C2, 14C3, and 14C4 are formed in the through holes. The conductors 14C1 and 14C3 are formed so that their end faces are exposed at the end faces of the insulator layer 11C. The conductors 14C2 and 14C4 are formed so that their end faces are exposed on the side surfaces of the insulator layer 11C. The conductors 14C1 to 14C4 are formed to have the same width exposed at the end face or side face of the insulator layer 11C. At this time, the conductors 14C1 to 14C4 are formed to have the same width as the conductors 14B1 to 14B4. A capacitor conductor pattern 12A is formed on the surface of the insulator layer 11C on which the conductors 14C1 to 14C4 are thus formed. The capacitor conductive pattern 12A is formed continuously with the conductor 14C2 and the conductor 14C4.
The insulating layer 11D has through holes formed at positions corresponding to the through holes of the insulating layer 11C. Conductors 14D1, 14D2, 14D3, and 14D4 are formed in the through holes. The conductors 14D1 and 14D3 are formed so that their end faces are exposed on the end face of the insulator layer 11D. The conductors 14D2 and 14D4 are formed so that their end faces are exposed on the side surfaces of the insulator layer 11D. The conductors 14D1 to 14D4 are formed to have the same width exposed at the end face or side face of the insulator layer 11D. At this time, the conductors 14D1 to 14D4 are formed to have the same width as the conductors 14C1 to 14C4. A capacitor conductor pattern 12B and a capacitor conductor pattern 12C are formed on the surface of the insulator layer 11D on which the conductors 14D1 to 14D4 are thus formed. The capacitor conductor pattern 12B and the capacitor conductor pattern 12C are formed at positions facing the capacitor conductor pattern 12A. The capacitor conductor pattern 12B is formed continuously with the conductor 14D1. Further, the capacitor conductor pattern 12C is formed continuously with the conductor 14D3.
The insulator layer 11E has through holes formed at positions corresponding to the through holes of the insulator layer 11D. Conductors 14E1, 14E2, 14E3, and 14E4 are formed in the through holes. The conductors 14E1 and 14E3 are formed so that the end faces thereof are exposed at the end faces of the insulator layer 11E. The conductors 14E2 and 14E4 are formed so that their end faces are exposed on the side surfaces of the insulator layer 11E. The conductors 14E1 to 14E4 are formed to have the same width exposed at the end face or side face of the insulator layer 11E. At this time, the widths of the conductors 14E1 to 14E4 are formed to be the same as the widths of the conductors 14D1 to 14D4.
Insulator layer 11F has through holes formed at positions corresponding to the through holes formed on the end face of insulator layer 11E (that is, positions where external terminals on opposite end faces are to be formed). Conductors 14F1 and 14F2 are formed in the through holes. The conductors 14F1 and 14F2 are formed so that the end faces thereof are exposed on the end faces of the insulator layer 11F. The conductor 14F1 and the conductor 14F2 are formed to have the same width exposed at the end face of the insulator layer 11F. At this time, the widths of the conductors 14F1 and 14F2 are formed to be the same as the widths of the conductors 14E1 and 14E3. A coil conductor pattern 13A is formed on the surface of the insulator layer 11F on which the conductors 14F1 and 14F2 are thus formed. One end of the coil conductor pattern 13A is formed to be continuous with the conductor 14F1.
The insulating layer 11G has through holes formed at positions corresponding to the through holes of the insulating layer 11F. Conductors 14G1 and 14G2 are formed in the through holes. The conductors 14G1 and 14G2 are formed so that the end faces thereof are exposed on the end faces of the insulator layer 11G. The conductors 14G1 and 14G2 are formed to have the same width exposed at the end face of the insulator layer 11G. At this time, the conductors 14G1 and 14G2 are formed to have the same width as the conductors 14F1 and 14F2. A coil conductor pattern 13B is formed on the surface of the insulator layer 11G on which the conductors 14G1 and 14G2 are thus formed. The coil conductor pattern 13B has one end connected to the other end of the coil conductor pattern 13A and the other end connected to the conductor 14G2. A coil is formed by connecting the coil conductor pattern 13A and the coil conductor pattern 13B.
An insulator layer 11H is stacked on the upper surface of the insulator layer 11G.
A coil and a capacitor are formed by a conductor pattern in these laminates, and as shown in FIG. 2A, external terminals 21 are provided on opposite end surfaces of the laminate 20, and external terminals 22 are provided on opposite sides of the laminate 20. It is formed. The external terminal 21 is a conductor 14A1, 14B1, 14C1, 14D1, 14E1, 14F1, 14G1 exposed on one end face of the multilayer body, or a conductor 14A3, 14B3, 14C3, 14D3, 14E3 exposed on the other end face of the multilayer body. 14F3 and 14G3. The external terminal 22 is formed by the conductors 14A2, 14B2, 14C2, 14D2, 14E2 exposed on one side surface of the multilayer body, or the conductors 14A4, 14B4, 14C4, 14D4, 14E4 exposed on the other side surface of the multilayer body. As shown in FIGS. 2B and 2C, the external terminal 21 and the external terminal 22 have the same width W, and the length H1 of the external terminal 21 and the length H2 of the external terminal 22 are the same as those of the laminate. It is formed smaller than the thickness H. Further, the length H1 of the external terminal 21 connected to the coil disposed in the upper layer than the capacitor is formed to be longer than the length H2 of the external terminal 22 connected to the capacitor. As shown in FIG. 2D, the conductor 14A1, the conductor 14A2, the conductor 14A3, and the conductor 14A4 are exposed on the bottom surface of the laminate 20 to form an external terminal 21 and an external terminal 22. The distance between the end face of the laminated body of the external terminals 21 and the tip and the distance between the side face of the laminated body of the external terminals 22 and the tip are formed to be equal.
The external terminal 21 and the external terminal 22 formed in the laminate are plated.
In the multilayer electronic component formed in this way, external terminals are not formed on the top surface of the multilayer body, and the width of the external terminals formed on the side surfaces of the multilayer body and the external terminals formed on the end surfaces of the multilayer body. The terminal width is the same, and the length of all external terminals is smaller than the thickness of the laminate.

この様な積層型電子部品は、次の様にして製造される。まず、図3(A)に示す様に、PETフィルム等の支持体(図示を省略)の表面全体に感光性絶縁体ペーストを塗布し、乾燥させて、支持体上に感光性絶縁体膜31が形成される。感光性絶縁体ペーストは、磁性体や誘電体等の絶縁性セラミックスに感光剤が混入されてペースト状に形成され、スクリーン印刷、スピンコート、ドクターブレード等の方法を用いて厚みが一様になる様に支持体上に塗布される。
次に、この感光性絶縁体膜31に光線を照射して露光した後、現像液で現像し、これを乾燥させることにより、図3(B)に示す様に、各素子の端面と側面の外部端子を形成すべき位置に貫通孔Hを有する絶縁体層11Aが形成される。
続いて、図3(C)に示す様に、この絶縁体層11Aの表面及び貫通孔内に感光性導体ペーストを塗布し、乾燥させて、絶縁体層11Aの貫通孔内に感光性導体34が充填される。感光性導体ペーストは、銀、銀とパラジウムの合金、銅、ニッケル等の導電材料に感光剤が混入されてペースト状に形成され、スクリーン印刷、スピンコート、ドクターブレード等の方法を用いて絶縁体層11Aの表面に塗布することにより、貫通孔H内に充填される。
さらに、この感光性導体34に光線を照射して露光した後、現像液で現像し、これを乾燥させることにより、図3(D)に示す様に、絶縁体層11Aの貫通孔内に導体14A1、14A2、14A3、14A4が形成される。
次に、図3(A)〜図3(D)の工程を所定の回数繰り返して、この導体14A1〜14A4が形成された絶縁体層11A上に、導体14B1、14B2、14B3、14B4を有する絶縁体層11Bが所定の層数形成される(図3では1層)。この時、絶縁体層11Bの貫通孔は下層の導体が露出する様に形成され、この貫通孔内に形成された導体が下層の導体と接続される。
続いて、この導体14B1〜14B4を有する絶縁体層11Bの表面全体に感光性絶縁体ペーストを厚みが一様になる様に塗布し、乾燥させることにより、図4(A)に示す様に、絶縁体層11B上に感光性絶縁体膜31Cが形成される。
さらに、この感光性絶縁体膜31Cに光線を照射して露光した後、現像液で現像し、これを乾燥させることにより、図4(B)に示す様に、絶縁体層11B上に各素子の端面と側面の外部端子を形成すべき位置に貫通孔Hを有する絶縁体層11Cが形成される。この絶縁体層11Cの貫通孔Hの底面には導体14B1〜14B4が露出している。
次に、この絶縁体層11Cの表面全体に感光性導体ペーストを厚みが一様になる様に塗布し、乾燥させることにより、図4(C)に示す様に、絶縁体層11Cの貫通孔内に感光性導体が充填されると共に、絶縁体層11Cの表面に感光性導体膜32が形成される。
続いて、この感光性導体膜32に光線を照射して露光した後、現像液で現像し、これを乾燥させることにより、図4(D)に示す様に、絶縁体層11Cの貫通孔内に導体14C1、14C2、14C3、14C4が形成されると共に、絶縁体層11Cの表面にこの導体14C2、14C4に連なって接続されたコンデンサ用導体パターン12Aが形成される。導体14C1、14C2、14C3、14C4は、絶縁体層11Cの貫通孔の底面にそれぞれ露出していた導体14B1、14B2、14B3、14B4と接続される。
さらに、このコンデンサ用導体パターン12Aが形成された絶縁体層11Cの表面全体に感光性絶縁体ペーストを厚みが一様になる様に塗布し、乾燥させることにより、図4(E)に示す様に、絶縁体層11C上に感光性絶縁体膜31Dが形成される。
さらに続いて、この感光性絶縁体膜31Dに光線を照射して露光した後、現像液で現像し、これを乾燥させることにより、図4(F)に示す様に、絶縁体層11C上に各素子の端面と側面の外部端子を形成すべき位置に貫通孔Hを有する絶縁体層11Dが形成される。この絶縁体層11Dの貫通孔Hの底面には導体14C1〜14C4が露出している。
次に、この絶縁体層11Dの表面全体に感光性導体ペーストを厚みが一様になる様に塗布し、乾燥させることにより、図4(G)に示す様に、絶縁体層11Dの貫通孔内に感光性導体が充填されると共に、絶縁体層11Dの表面に感光性導体膜32が形成される。
続いて、この感光性導体膜32に光線を照射して露光した後、現像液で現像し、これを乾燥させることにより、図4(H)に示す様に、絶縁体層11Dの貫通孔内に導体14D1、14D2、14D3、14D4が形成されると共に、絶縁体層11Dの表面に導体14D1に接続されたコンデンサ用導体パターン12Bと、導体14D3に接続されたコンデンサ用導体パターン12Cが形成される。導体14D1〜14D4は、絶縁体層11Dの貫通孔の底面にそれぞれ露出していた導体14C1〜14C4と接続される。
さらに、このコンデンサ用導体パターン12B、12Cが形成された絶縁体層11Dの表面全体に感光性絶縁体ペーストを塗布し、乾燥させた後、露光、現像し、これを乾燥させることにより、図4(I)に示す様に、絶縁体層11D上に貫通孔Hを有する絶縁体層11Eが形成される。
さらに続いて、図4(J)に示す様に、この絶縁体層11Eの表面及び貫通孔内に感光性導体ペーストを塗布し、乾燥させて、絶縁体層11Eの貫通孔内に感光性導体34Eが充填される。
次に、この感光性導体34Eに光線を照射して露光した後、現像液で現像し、これを乾燥させることにより、図4(K)に示す様に、絶縁体層11Eの貫通孔内に導体14E1、14E2、14E3、14E4が形成される。
さらに、この導体14E1〜14E4が形成された絶縁体層11Eの表面全体に感光性絶縁体ペーストを厚みが一様になる様に塗布し、乾燥させることにより、図5(A)に示す様に、絶縁体層11E上に感光性絶縁体膜31Fが形成される。
続いて、この感光性絶縁体膜31Fに光線を照射して露光した後、現像液で現像し、これを乾燥させることにより、図5(B)に示す様に、絶縁体層11E上に各素子の端面の外部端子を形成すべき位置に貫通孔Hを有する絶縁体層11Fが形成される。この絶縁体層11Fの貫通孔Hの底面には導体14E1、14E3が露出している。
次に、この絶縁体層11Fの表面全体に感光性導体ペーストを厚みが一様になる様に塗布し、乾燥させることにより、図5(C)に示す様に、絶縁体層11Fの貫通孔内に感光性導体が充填されると共に、絶縁体層11Fの表面に感光性導体膜33が形成される。
続いて、この感光性導体膜33に光線を照射して露光した後、現像液で現像し、これを乾燥させることにより、図5(D)に示す様に、絶縁体層11Fの貫通孔内に導体14F1、14F2が形成されると共に、絶縁体層11Fの表面に導体14F1に接続されたコイル用導体パターン13Aが形成される。導体14F1、14F2は、絶縁体層11Fの貫通孔の底面にそれぞれ露出していた導体14E1、14E3と接続される。
さらに続いて、このコイル用導体パターン13Aが形成された絶縁体層11Fの表面全体に感光性絶縁体ペーストを厚みが一様になる様に塗布し、乾燥させて、図5(E)に示す様に、絶縁体層11F上に感光性絶縁体膜31Gが形成される。
次に、この感光性絶縁体膜31Gに光線を照射して露光した後、現像液で現像し、これを乾燥させることにより、図5(F)に示す様に、絶縁体層11F上に各素子の端面の外部端子を形成すべき位置に貫通孔Hを、コイル用導体パターン13Aの一端と対向する位置にスルーホールSを有する絶縁体層11Gが形成される。この貫通孔Hの底面には導体14F1、14F2が、スルーホールSの底面にはコイル用導体パターン13Aがそれぞれ露出している。
続いて、この絶縁体層11Gの表面全体に感光性導体ペーストを厚みが一様になる様に塗布し、乾燥させることにより、図5(G)に示す様に、絶縁体層11Gの貫通孔内とスルーホール内に感光性導体が充填されると共に、絶縁体層11Gの表面に感光性導体膜33が形成される。
さらに続いて、この感光性導体膜33に光線を照射して露光した後、現像液で現像し、これを乾燥させることにより、図5(H)に示す様に、絶縁体層11Gの貫通孔内に導体14G1、14G2が形成されると共に、絶縁体層11Gの表面に導体14G2に接続されたコイル用導体パターン13Bが形成される。導体14G1、14G2は、絶縁体層11Gの貫通孔の底面にそれぞれ露出していた導体14F1、14F2と接続される。
このコイル用導体パターン13Bが形成された絶縁体層11Gの表面には、絶縁体層11Hが形成される。この様に積層された積層体は、図5(I)に示す様に、一点鎖線で示す部分で切断し各素子に分割される。分割された各素子は、図1、図2に示す様に積層体の対向する端面に外部端子21が、積層体の対向する側面に外部端子22がそれぞれ形成される。この外部端子21、22には、めっきが施される。
この様に形成された本発明の積層型電子部品は、貫通孔の上下で径の大きさを等しくできるので、外部端子に層数分の凹凸が生じて鋸歯状となることもなく、かつ、外部端子を構成する下層の導体へのダメージもなく、高精度の外部端子を形成できる。
Such a multilayer electronic component is manufactured as follows. First, as shown in FIG. 3 (A), a photosensitive insulator paste is applied to the entire surface of a support (not shown) such as a PET film and dried, and then a photosensitive insulator film 31 is formed on the support. Is formed. The photosensitive insulator paste is formed into a paste form by mixing a photosensitive agent with insulating ceramics such as a magnetic substance and a dielectric, and the thickness is uniform using a method such as screen printing, spin coating, doctor blade, etc. In this manner, it is coated on a support.
Next, the photosensitive insulator film 31 is exposed to light and exposed to light, and then developed with a developing solution and dried. As a result, as shown in FIG. An insulator layer 11A having a through hole H is formed at a position where an external terminal is to be formed.
Subsequently, as shown in FIG. 3C, a photosensitive conductor paste is applied on the surface of the insulator layer 11A and in the through holes, dried, and the photosensitive conductor 34 is put in the through holes of the insulator layer 11A. Is filled. The photosensitive conductor paste is formed into a paste by mixing a photosensitive material into a conductive material such as silver, silver-palladium alloy, copper, nickel, etc., and is an insulator using methods such as screen printing, spin coating, doctor blade, etc. By coating the surface of the layer 11A, the through hole H is filled.
Further, the photosensitive conductor 34 is exposed to light and exposed to light, and then developed with a developing solution and dried. As a result, as shown in FIG. 3D, the conductor is placed in the through hole of the insulator layer 11A. 14A1, 14A2, 14A3, 14A4 are formed.
Next, by repeating the steps of FIGS. 3A to 3D a predetermined number of times, insulation having conductors 14B1, 14B2, 14B3, and 14B4 on the insulator layer 11A on which the conductors 14A1 to 14A4 are formed. A predetermined number of body layers 11B are formed (one layer in FIG. 3). At this time, the through hole of the insulator layer 11B is formed so that the lower layer conductor is exposed, and the conductor formed in the through hole is connected to the lower layer conductor.
Subsequently, a photosensitive insulator paste is applied to the entire surface of the insulator layer 11B having the conductors 14B1 to 14B4 so as to have a uniform thickness, and dried, as shown in FIG. A photosensitive insulator film 31C is formed on the insulator layer 11B.
Further, after exposing the photosensitive insulator film 31C to light by irradiating with light, developing with a developer and drying it, each element is formed on the insulator layer 11B as shown in FIG. 4B. An insulating layer 11C having a through hole H is formed at a position where external terminals on the end face and side face are to be formed. The conductors 14B1 to 14B4 are exposed on the bottom surface of the through hole H of the insulator layer 11C.
Next, a photosensitive conductor paste is applied to the entire surface of the insulator layer 11C so as to have a uniform thickness, and is dried, so that the through-holes of the insulator layer 11C are formed as shown in FIG. A photosensitive conductor is filled therein, and a photosensitive conductor film 32 is formed on the surface of the insulator layer 11C.
Subsequently, the photosensitive conductor film 32 is exposed to light and exposed to light, and then developed with a developing solution and dried. As a result, as shown in FIG. The conductors 14C1, 14C2, 14C3, and 14C4 are formed, and the capacitor conductor pattern 12A connected to the conductors 14C2 and 14C4 is formed on the surface of the insulator layer 11C. The conductors 14C1, 14C2, 14C3, and 14C4 are connected to the conductors 14B1, 14B2, 14B3, and 14B4 exposed on the bottom surfaces of the through holes of the insulator layer 11C, respectively.
Further, a photosensitive insulator paste is applied to the entire surface of the insulator layer 11C on which the capacitor conductor pattern 12A is formed so as to have a uniform thickness, and is dried, as shown in FIG. In addition, a photosensitive insulator film 31D is formed on the insulator layer 11C.
Subsequently, the photosensitive insulator film 31D is exposed to light and exposed to light, and then developed with a developing solution, and then dried, as shown in FIG. 4F, on the insulator layer 11C. An insulator layer 11D having a through-hole H is formed at a position where an external terminal on the end face and side face of each element is to be formed. Conductors 14C1 to 14C4 are exposed on the bottom surface of the through hole H of the insulator layer 11D.
Next, a photosensitive conductor paste is applied over the entire surface of the insulator layer 11D so as to have a uniform thickness, and is dried to obtain through-holes in the insulator layer 11D as shown in FIG. A photosensitive conductor is filled therein, and a photosensitive conductor film 32 is formed on the surface of the insulator layer 11D.
Subsequently, the photosensitive conductor film 32 is exposed to light and exposed to light, and then developed with a developing solution and dried. As a result, as shown in FIG. The conductors 14D1, 14D2, 14D3, and 14D4 are formed on the insulating layer 11D, and the capacitor conductor pattern 12B connected to the conductor 14D1 and the capacitor conductor pattern 12C connected to the conductor 14D3 are formed on the surface of the insulator layer 11D. . The conductors 14D1 to 14D4 are connected to the conductors 14C1 to 14C4 exposed on the bottom surfaces of the through holes of the insulator layer 11D, respectively.
Further, a photosensitive insulator paste is applied to the entire surface of the insulator layer 11D on which the capacitor conductor patterns 12B and 12C are formed, dried, exposed, developed, and dried, thereby obtaining the structure shown in FIG. As shown in (I), an insulator layer 11E having a through hole H is formed on the insulator layer 11D.
Subsequently, as shown in FIG. 4 (J), a photosensitive conductor paste is applied to the surface of the insulator layer 11E and the through holes, and dried to dry the photosensitive conductor in the through holes of the insulator layer 11E. 34E is filled.
Next, the photosensitive conductor 34E is exposed to light and exposed to light, and then developed with a developing solution, and then dried. As shown in FIG. 4 (K), the photosensitive conductor 34E enters the through hole of the insulator layer 11E. Conductors 14E1, 14E2, 14E3, and 14E4 are formed.
Further, a photosensitive insulator paste is applied to the entire surface of the insulator layer 11E on which the conductors 14E1 to 14E4 are formed so as to have a uniform thickness, and is dried, as shown in FIG. A photosensitive insulator film 31F is formed on the insulator layer 11E.
Subsequently, the photosensitive insulator film 31F is exposed to light and exposed to light, and then developed with a developing solution, and then dried, as shown in FIG. An insulator layer 11F having a through hole H is formed at a position where an external terminal on the end face of the element is to be formed. The conductors 14E1 and 14E3 are exposed on the bottom surface of the through hole H of the insulator layer 11F.
Next, a photosensitive conductor paste is applied to the entire surface of the insulator layer 11F so as to have a uniform thickness, and is dried, so that the through holes of the insulator layer 11F are formed as shown in FIG. A photosensitive conductor is filled therein, and a photosensitive conductor film 33 is formed on the surface of the insulator layer 11F.
Subsequently, the photosensitive conductor film 33 is exposed to light and exposed to light, and then developed with a developing solution, and then dried. As a result, as shown in FIG. The conductors 14F1 and 14F2 are formed on the insulating layer 11F, and the coil conductor pattern 13A connected to the conductor 14F1 is formed on the surface of the insulator layer 11F. The conductors 14F1 and 14F2 are connected to the conductors 14E1 and 14E3 exposed on the bottom surfaces of the through holes of the insulator layer 11F, respectively.
Subsequently, a photosensitive insulator paste is applied to the entire surface of the insulator layer 11F on which the coil conductor pattern 13A is formed so as to have a uniform thickness, and dried, as shown in FIG. Similarly, the photosensitive insulator film 31G is formed on the insulator layer 11F.
Next, the photosensitive insulator film 31G is exposed to light and exposed to light, and then developed with a developing solution, and then dried, as shown in FIG. An insulator layer 11G having a through hole H at a position where an external terminal of the element is to be formed and a through hole S at a position facing one end of the coil conductor pattern 13A is formed. The conductors 14F1 and 14F2 are exposed on the bottom surface of the through hole H, and the coil conductor pattern 13A is exposed on the bottom surface of the through hole S.
Subsequently, a photosensitive conductor paste is applied to the entire surface of the insulator layer 11G so as to have a uniform thickness, and is dried, whereby the through-holes of the insulator layer 11G are formed as shown in FIG. A photosensitive conductor is filled in the inside and the through hole, and a photosensitive conductor film 33 is formed on the surface of the insulator layer 11G.
Subsequently, the photosensitive conductor film 33 is exposed to light and exposed to light, and then developed with a developing solution and dried to obtain a through-hole in the insulator layer 11G as shown in FIG. 5 (H). Conductors 14G1 and 14G2 are formed therein, and a coil conductor pattern 13B connected to the conductor 14G2 is formed on the surface of the insulator layer 11G. The conductors 14G1 and 14G2 are connected to the conductors 14F1 and 14F2 exposed on the bottom surfaces of the through holes of the insulator layer 11G, respectively.
An insulator layer 11H is formed on the surface of the insulator layer 11G on which the coil conductor pattern 13B is formed. As shown in FIG. 5I, the stacked body thus stacked is cut at a portion indicated by a one-dot chain line and divided into each element. As shown in FIGS. 1 and 2, each of the divided elements is formed with an external terminal 21 on the opposite end face of the laminate and an external terminal 22 on the opposite side face of the laminate. The external terminals 21 and 22 are plated.
In the multilayer electronic component of the present invention formed in this way, the size of the diameter can be made equal above and below the through-hole, so that the external terminals do not have irregularities for the number of layers and become serrated, and A highly accurate external terminal can be formed without damaging the underlying conductor constituting the external terminal.

図6は本発明の積層型電子部品の第2の実施例を示す分解斜視図である。
絶縁体層61Aには、外部端子を形成すべき位置に4つの貫通孔が形成され、各貫通孔内に絶縁体層61Aと同じ厚みの導体64Aが形成される。4つの導体64Aは、絶縁体層61Aの端面又は側面に露出している幅が同じになる様に形成される。
絶縁体層11Bには、外部端子を形成すべき位置に4つの貫通孔が形成され、各貫通孔内に絶縁体層61Bと同じ厚みの導体64Bが形成される。4つの導体64Bは、絶縁体層61Bの端面又は側面に露出している幅が導体64Aと同じになる様に形成されると共に、端面から先端までの距離が導体64Aよりも短く形成される。
絶縁体層61Cには、外部端子を形成すべき位置に4つの貫通孔が形成されると共に、中央部分にコンデンサ用導体パターンと同じ大きさの貫通孔Hが形成される。4つの貫通孔内には、その端面が絶縁体層61Cの端面又は側面に露出する導体64Cが形成される。また、貫通孔H内には、絶縁体層61Cの側面に露出する2つの導体64Cに接続されたコンデンサ用導体パターン62Aが形成される。導体64Cとコンデンサ用導体パターン62Aは、絶縁体層61Cの厚みと同じ厚みになる様に形成される。
絶縁体層61Dには、外部端子を形成すべき位置に4つの貫通孔が形成され、各貫通孔内に絶縁体層61Dと同じ厚みの導体64Dが形成される。導体64Dは、端面が絶縁体層61Dの端面又は側面に露出する様に形成される。
絶縁体層61Eには、外部端子を形成すべき位置に4つの貫通孔が形成されると共に、中央部にコンデンサ用導体パターンと同じ大きさの2つの貫通孔Hが形成される。4つの貫通孔内には、その端面が絶縁体層61Eの端面又は側面に露出する導体64Eが形成される。また、2つの貫通孔H内には、絶縁体層61Eの端面にそれぞれ露出する導体64Eにそれぞれ接続されたコンデンサ用導体パターン62B、62Cが形成される。導体64Eとコンデンサ用導体パターン62B、62Cは、絶縁体層61Eの厚みと同じ厚みになる様に形成される。
絶縁体層61Fには、外部端子を形成すべき位置に4つの貫通孔が形成され、各貫通孔内に絶縁体層61Fと同じ厚みの導体64Fが形成される。導体64Fは、端面が絶縁体層61Fの端面又は側面に露出する様に形成される。
絶縁体層61Gには、外部端子を形成すべき位置に2つの貫通孔が形成され、各貫通孔内に絶縁体層61Gと同じ厚みの導体64Gが形成される。導体64Gは、端面が絶縁体層61Gの端面に露出する様に形成される。
絶縁体層61Hには、外部端子を形成すべき位置に2つの貫通孔が形成されると共に、中央部にコイル用導体パターンと同じ大きさの貫通孔Hが形成される。2つの貫通孔内には、その端面が絶縁体層61Hの端面に露出する導体64Hが形成される。また、貫通孔H内には、絶縁体層61Hの一方の端面に露出する導体64Hにその一端が接続されたコイル用導体パターン63Aが形成される。導体64Hとコイル用導体パターン63Aは、絶縁体層61Hの厚みと同じ厚みになる様に形成する。
絶縁体層61Iには、外部端子を形成すべき位置に2つの貫通孔が形成されると共に、コイル用導体パターンの他端と対応する位置にスルーホールが形成される。2つの貫通孔内には、その端面が絶縁体層61Iの端面に露出する、絶縁体層61Iと同じ厚みの導体64Iが形成される。また、スルーホール内には、導体Sが形成される。
絶縁体層61Jには、外部端子を形成すべき位置に2つの貫通孔が形成されると共に、中央部にコイル用導体パターンと同じ大きさの貫通孔Hが形成される。2つの貫通孔内には、その端面が絶縁体層61Jの端面に露出する導体64Jが形成される。また、貫通孔H内には、絶縁体層61Jの他方の端面に露出する導体64Jにその一端が接続されたコイル用導体パターン63Bが形成される。導体64Jとコイル用導体パターン63Bは、絶縁体層61Jの厚みと同じ厚みになる様に形成する。コイル用導体パターン63Bの他端は導体Sを介してコイル用導体パターン63Aの他端と接続される。このコイル用導体パターン63Aとコイル用導体パターン63Bが接続されることによりコイルが形成される。
この絶縁体層61Jの上面には、絶縁体層61Kが積層される。
これらの積層体内に導体パターンによってコイルとコンデンサが形成され、図2(A)に示す様に、積層体20の対向する端面に外部端子21が、積層体20の対向する側面に外部端子22が形成される。外部端子21と外部端子22は、図2(B)と図2(C)に示す様に、その幅Wが等しく、外部端子21の長さH1と外部端子22の長さH2が積層体の厚みHよりも小さく形成される。また、コンデンサよりも上層に配置されたコイルと接続される外部端子21の長さH1が、コンデンサと接続される外部端子22の長さH2よりも長くなる様に形成される。
FIG. 6 is an exploded perspective view showing a second embodiment of the multilayer electronic component of the present invention.
In the insulator layer 61A, four through holes are formed at positions where external terminals are to be formed, and a conductor 64A having the same thickness as the insulator layer 61A is formed in each through hole. The four conductors 64A are formed so as to have the same width exposed at the end face or side face of the insulating layer 61A.
In the insulator layer 11B, four through holes are formed at positions where external terminals are to be formed, and a conductor 64B having the same thickness as the insulator layer 61B is formed in each through hole. The four conductors 64B are formed so that the width exposed at the end face or side face of the insulating layer 61B is the same as that of the conductor 64A, and the distance from the end face to the tip is shorter than the conductor 64A.
In the insulating layer 61C, four through holes are formed at positions where external terminals are to be formed, and a through hole H having the same size as the capacitor conductor pattern is formed in the central portion. In the four through-holes, a conductor 64C whose end face is exposed on the end face or side face of the insulating layer 61C is formed. In the through hole H, a capacitor conductor pattern 62A connected to the two conductors 64C exposed on the side surface of the insulator layer 61C is formed. The conductor 64C and the capacitor conductor pattern 62A are formed to have the same thickness as the insulator layer 61C.
In the insulator layer 61D, four through holes are formed at positions where external terminals are to be formed, and a conductor 64D having the same thickness as the insulator layer 61D is formed in each through hole. The conductor 64D is formed so that the end surface is exposed on the end surface or the side surface of the insulator layer 61D.
In the insulating layer 61E, four through holes are formed at positions where external terminals are to be formed, and two through holes H having the same size as the capacitor conductor pattern are formed at the center. In the four through-holes, a conductor 64E whose end face is exposed on the end face or side face of the insulator layer 61E is formed. In the two through holes H, capacitor conductor patterns 62B and 62C connected to the conductors 64E exposed at the end faces of the insulator layer 61E are formed. The conductor 64E and the capacitor conductor patterns 62B and 62C are formed to have the same thickness as the insulator layer 61E.
In the insulator layer 61F, four through holes are formed at positions where external terminals are to be formed, and a conductor 64F having the same thickness as the insulator layer 61F is formed in each through hole. The conductor 64F is formed so that the end face is exposed on the end face or side face of the insulator layer 61F.
In the insulator layer 61G, two through holes are formed at positions where external terminals are to be formed, and a conductor 64G having the same thickness as the insulator layer 61G is formed in each through hole. The conductor 64G is formed so that the end face is exposed at the end face of the insulator layer 61G.
In the insulating layer 61H, two through holes are formed at positions where external terminals are to be formed, and a through hole H having the same size as the coil conductor pattern is formed at the center. A conductor 64H whose end face is exposed at the end face of the insulator layer 61H is formed in the two through holes. In the through hole H, a coil conductor pattern 63A having one end connected to the conductor 64H exposed on one end face of the insulator layer 61H is formed. The conductor 64H and the coil conductor pattern 63A are formed to have the same thickness as the insulator layer 61H.
In the insulating layer 61I, two through holes are formed at positions where external terminals are to be formed, and through holes are formed at positions corresponding to the other ends of the coil conductor patterns. A conductor 64I having the same thickness as that of the insulator layer 61I is formed in the two through holes. The end face of the two through holes is exposed at the end face of the insulator layer 61I. A conductor S is formed in the through hole.
In the insulator layer 61J, two through holes are formed at positions where external terminals are to be formed, and a through hole H having the same size as the coil conductor pattern is formed at the center. In the two through holes, a conductor 64J is formed whose end face is exposed at the end face of the insulating layer 61J. In the through hole H, a coil conductor pattern 63B is formed in which one end is connected to the conductor 64J exposed on the other end face of the insulator layer 61J. The conductor 64J and the coil conductor pattern 63B are formed to have the same thickness as the insulator layer 61J. The other end of the coil conductor pattern 63B is connected to the other end of the coil conductor pattern 63A via the conductor S. A coil is formed by connecting the coil conductor pattern 63A and the coil conductor pattern 63B.
An insulator layer 61K is laminated on the upper surface of the insulator layer 61J.
A coil and a capacitor are formed by a conductor pattern in these laminates, and as shown in FIG. 2A, external terminals 21 are provided on opposite end surfaces of the laminate 20, and external terminals 22 are provided on opposite sides of the laminate 20. It is formed. As shown in FIGS. 2B and 2C, the external terminal 21 and the external terminal 22 have the same width W, and the length H1 of the external terminal 21 and the length H2 of the external terminal 22 are the same as those of the laminate. It is formed smaller than the thickness H. Further, the length H1 of the external terminal 21 connected to the coil disposed in the upper layer than the capacitor is formed to be longer than the length H2 of the external terminal 22 connected to the capacitor.

この様な積層型電子部品は、次の様にして製造される。まず、図7(A)に示す様に、PETフィルム等の支持体(図示を省略)上に、感光性絶縁体ペーストを塗布し、露光、現像することにより形成された各素子の端面と側面の外部端子を形成すべき位置に貫通孔を有する絶縁体層61A、61Bと、感光性導体ペーストを塗布し、露光、現像することにより絶縁体層61A、61Bの貫通孔内に形成された導体とを積層した後、絶縁体層61Bの表面全体に感光性絶縁体ペーストを塗布し、乾燥させることにより、絶縁体層61B上に感光性絶縁体膜71Cが形成される。
次に、この感光性絶縁体膜71Cに光線を照射して露光した後、現像液で現像し、これを乾燥させることにより、図7(B)に示す様に、各素子の端面と側面の外部端子を形成すべき位置の4つの貫通孔と、各素子の中央部のコンデンサ用導体パターンと同じ形状の貫通孔Hを有する絶縁体層61Cが形成される。貫通孔Hは、各素子の対向する側面の外部端子を形成すべき位置に形成された2つの貫通孔と連なる様に形成される。4つの貫通孔の底面には絶縁体層61Bに形成された導体が露出している。
続いて、この絶縁体層61Cの表面、各素子の端面と側面の外部端子を形成すべき位置の4つの貫通孔内及び、各素子の中央部の貫通孔H内に感光性導体ペーストを塗布し、乾燥させて、図7(C)に示す様に、絶縁体層61Cの各素子の端面と側面の外部端子を形成すべき位置の4つの貫通孔内と、各素子の中央部の貫通孔H内に感光性導体72が充填された後、感光性導体72を露光、現像し、これを乾燥させて、図7(D)に示す様に、各素子の端面と側面の外部端子を形成すべき位置の4つの貫通孔内に導体64Cが、各素子の中央部の貫通孔内にコンデンサ用導体パターン62Aがそれぞれ形成される。コンデンサ用導体パターン62Aは、各素子の対向する側面に露出する導体64Cに連なって形成される。また、導体64Cは、絶縁体層61Cの4つの貫通孔の底面にそれぞれ露出していた導体と接続される。
さらに、このコンデンサ用導体パターン62Aと導体64Cを備えた絶縁体層61Cの表面全体に感光性絶縁体ペーストを厚みが一様になる様に塗布し、乾燥させて、図7(E)に示す様に、絶縁体層61C上に感光性絶縁体膜71Dを形成した後、感光性絶縁体膜71Dを露光、現像し、これを乾燥させて、図7(F)に示す様に、各素子の端面と側面の外部端子を形成すべき位置に4つの貫通孔が形成された絶縁体層61Dが形成される。4つの貫通孔の底面には導体64Cが露出している。
次に、この絶縁体層61Dの表面及び、各素子の端面と側面の外部端子を形成すべき位置の4つの貫通孔内に感光性導体ペーストを塗布し、乾燥させて、図7(G)に示す様に、絶縁体層61Dの各素子の端面と側面の外部端子を形成すべき位置の4つの貫通孔内に感光性導体74を充填した後、感光性導体74を露光、現像し、これを乾燥させて、図7(H)に示す様に、各素子の端面と側面の外部端子を形成すべき位置の4つの貫通孔内に導体64Dが形成される。導体64Dは、絶縁体層61Dの4つの貫通孔の底面に露出していた導体64Cと接続される。
続いて、この導体64Dを備えた絶縁体層61Dの表面全体に感光性絶縁体ペーストを厚みが一様になる様に塗布し、乾燥させて、図7(I)に示す様に、絶縁体層61D上に感光性絶縁体膜71Eを形成した後、感光性絶縁体膜71Eを露光、現像し、これを乾燥させて、図7(J)に示す様に、各素子の端面と側面の外部端子を形成すべき位置の4つの貫通孔と、各素子の中央部のコンデンサ用導体パターンと同じ形状の貫通孔H1、H2を有する絶縁体層61Eが形成される。貫通孔H1、H2は、各素子の対向する端面の外部端子を形成すべき位置に形成された2つの貫通孔と連なる様に形成される。4つの貫通孔の底面には導体64Dが露出している。
さらに、この絶縁体層61Eの表面、各素子の端面と側面の外部端子を形成すべき位置の4つの貫通孔内及び、各素子の中央部の貫通孔H1、H2内に感光性導体ペーストを塗布し、乾燥させて、図7(K)に示す様に、絶縁体層61Eの各素子の端面と側面の外部端子を形成すべき位置の4つの貫通孔内と、各素子の中央部の貫通孔H1、H2内に感光性導体72を充填した後、感光性導体72を露光、現像し、これを乾燥させて、図7(L)に示す様に、各素子の端面と側面の外部端子を形成すべき位置の4つの貫通孔内に導体64Eが、各素子の中央部の貫通孔内にコンデンサ用導体パターン62B、62Cがそれぞれ形成される。コンデンサ用導体パターン62B、62Cは、各素子の対向する端面に露出する導体64Eにそれぞれ連なって形成される。また、導体64Eは、絶縁体層61Eの4つの貫通孔の底面に露出していた導体64Dと接続される。
次に、導体64Eとコンデンサ用導体パターン62B、62Cを備えた絶縁体層61Eの表面全体に感光性絶縁体ペーストを厚みが一様になる様に塗布し、乾燥させることにより、図7(M)に示す様に、絶縁体層61E上に感光性絶縁体膜71Fが形成される。
続いて、この感光性絶縁体膜71Fを露光、現像し、これを乾燥させて各素子の端面と側面の外部端子を形成すべき位置に4つの貫通孔を備えた絶縁体層を形成した後、この絶縁体層の表面及び、各素子の端面と側面の外部端子を形成すべき位置の4つの貫通孔内に感光性導体ペーストを塗布し、露光、現像し、乾燥させることにより、図7(N)に示す様に、絶縁体層61Fの各素子の端面と側面の外部端子を形成すべき位置の4つの貫通孔内に導体64Fが形成される。導体64Fは、絶縁体層61Fの4つの貫通孔の底面に露出していた導体64Eと接続される。
さらに、導体64Fを備えた絶縁体層61Fの表面全体に感光性絶縁体ペーストを厚みが一様になる様に塗布し、乾燥させて、図8(A)に示す様に、絶縁体層61F上に感光性絶縁体膜71Gを形成した後、この感光性絶縁体膜71Gを露光、現像し、これを乾燥させて、図8(B)に示す様に、各素子の端面の外部端子を形成すべき位置の2つの貫通孔を有する絶縁体層61Gが形成される。2つの貫通孔の底面には、それぞれ導体64Fが露出している。
さらに続いて、絶縁体層61Gの表面及び、各素子の端面の外部端子を形成すべき位置の2つの貫通孔内に感光性導体ペーストを塗布し、乾燥させて、図8(C)に示す様に、絶縁体層61Gの貫通孔内に感光性導体74を充填した後、感光性導体74を露光、現像し、これを乾燥させて、図8(D)に示す様に、各素子の端面の外部端子を形成すべき位置の2つの貫通孔内に導体64Gが形成される。導体64Gは、絶縁体層61Gの貫通孔の底面に露出していた導体64Fと接続される。
次に、導体64Gを備えた絶縁体層61Gの表面全体に感光性絶縁体ペーストを厚みが一様になる様に塗布し、乾燥させて、図8(E)に示す様に、絶縁体層61G上に感光性絶縁体膜71Hを形成した後、感光性絶縁体膜71Hを露光、現像し、これを乾燥させて、図8(F)に示す様に、各素子の端面と側面の外部端子を形成すべき位置に2つの貫通孔と、各素子の中央部のコイル用導体パターンと同じ形状の貫通孔Hを有する絶縁体層61Hが形成される。2つの貫通孔の底面には、それぞれ導体64Gが露出している。
続いて、絶縁体層61Hの表面、各素子の端面の外部端子を形成すべき位置の2つの貫通孔及び、各素子の中央部の貫通孔H内に感光性導体ペーストを塗布し、乾燥させて、図8(G)に示す様に、絶縁体層61Gの各素子の端面の外部端子を形成すべき位置の2つの貫通孔と各素子の中央部の貫通孔H内に感光性導体73を充填した後、感光性導体73を露光、現像し、これを乾燥させて、図8(H)に示す様に、絶縁体層61Hの各素子の端面の外部端子を形成すべき位置の2つの貫通孔内に導体64Hが、絶縁体層61Hの各素子の中央部の貫通孔内にコイル用導体パターン63Aが形成される。コイル用導体パターン63Aは、その一端が各素子の一方の端面に露出する導体64Hに連なって形成される。
さらに、導体64Hとコイル用導体パターン63Aを備えた絶縁体層61Hの表面全体に感光性絶縁体ペーストを厚みが一様になる様に塗布し、乾燥させて、図8(I)に示す様に、絶縁体層61H上に感光性絶縁体膜71Iを形成した後、感光性絶縁体膜71Iを露光、現像し、これを乾燥させて、図8(J)に示す様に、各素子の端面と側面の外部端子を形成すべき位置の2つの貫通孔と、コイル用導体パターンの他端と対応する位置のスルーホールを有する絶縁体層61Iが形成される。
さらに続いて、この絶縁体層61Iの表面、各素子の端面の外部端子を形成すべき位置の2つの貫通孔及び、コイル用導体パターンの他端と対応する位置のスルーホール内に感光性導体ペーストを塗布し、乾燥させて、図8(K)に示す様に、各素子の端面の外部端子を形成すべき位置の2つの貫通孔とコイル用導体パターンの他端と対応する位置のスルーホール内に感光性導体74を充填した後、感光性導体74を露光、現像し、これを乾燥させて、図8(L)に示す様に、絶縁体層61Iの各素子の端面の外部端子を形成すべき位置の2つの貫通孔内に導体64Iが、絶縁体層61Iのスルーホール内に導体Sが形成される。
次に、この導体64Iと導体Sを備えた絶縁体層61Iの表面全体に感光性絶縁体ペーストを厚みが一様になる様に塗布し、乾燥させて、図8(M)に示す様に、感光性絶縁体膜71Jを形成した後、この絶縁体膜71Jを露光、現像し、これを乾燥させて図8(N)に示す様に、各素子の端面と側面の外部端子を形成すべき位置に2つの貫通孔と、各素子の中央部のコイル用導体パターンと同じ形状の貫通孔Hを有する絶縁体層61Jが形成される。
続いて、この絶縁体層61Jの表面、各素子の端面の外部端子を形成すべき位置の2つの貫通孔及び、各素子の中央部の貫通孔H内に感光性導体ペーストを塗布し、露光、現像することにより、図8(O)に示す様に、絶縁体層61Jの各素子の端面の外部端子を形成すべき位置の2つの貫通孔内に導体64Jが、絶縁体層61Jの各素子の中央部の貫通孔H内にコイル用導体パターン63Bが形成される。
この導体64Jとコイル用導体パターン63Bを備えた絶縁体層61Jの上面に絶縁体層61Kが形成された後、図5(I)と同様に、積層体が一点鎖線で示す部分で切断し各素子に分割される。分割された各素子は、図1、図2に示す様に積層体の対向する端面に外部端子21が、積層体の対向する側面に外部端子22がそれぞれ形成される。この外部端子21、22には、めっきが施される。
Such a multilayer electronic component is manufactured as follows. First, as shown in FIG. 7A, an end face and a side face of each element formed by applying a photosensitive insulator paste on a support (not shown) such as a PET film, exposing, and developing. Insulator layers 61A and 61B having through holes at positions where external terminals are to be formed, and a conductor formed in the through holes of the insulator layers 61A and 61B by applying a photosensitive conductive paste, exposing and developing. Then, a photosensitive insulator paste is applied to the entire surface of the insulator layer 61B and dried to form a photosensitive insulator film 71C on the insulator layer 61B.
Next, the photosensitive insulator film 71C is irradiated with light and exposed to light, and then developed with a developing solution and dried. As a result, as shown in FIG. An insulator layer 61C having four through holes at positions where external terminals are to be formed and through holes H having the same shape as the capacitor conductor pattern at the center of each element is formed. The through-hole H is formed so as to be connected to two through-holes formed at positions where the external terminals on the side surfaces facing each element are to be formed. The conductor formed on the insulator layer 61B is exposed at the bottom surface of the four through holes.
Subsequently, a photosensitive conductor paste is applied to the surface of the insulator layer 61C, in the four through holes at positions where the external terminals on the end face and side face of each element are to be formed, and in the through hole H in the center of each element. Then, as shown in FIG. 7C, the insulating layer 61C has through-holes in four through holes at positions where the end terminals and side external terminals of the elements are to be formed, and through the center of each element. After the photosensitive conductor 72 is filled in the hole H, the photosensitive conductor 72 is exposed and developed, and then dried, as shown in FIG. A conductor 64C is formed in the four through holes at positions to be formed, and a capacitor conductor pattern 62A is formed in the through hole at the center of each element. The capacitor conductive pattern 62A is formed continuously to the conductor 64C exposed on the opposing side surfaces of each element. The conductor 64C is connected to the conductor exposed on the bottom surface of each of the four through holes of the insulator layer 61C.
Further, a photosensitive insulator paste is applied over the entire surface of the insulator layer 61C having the capacitor conductor pattern 62A and the conductor 64C so as to have a uniform thickness, and is dried, as shown in FIG. In the same manner, after forming the photosensitive insulator film 71D on the insulator layer 61C, the photosensitive insulator film 71D is exposed and developed, and dried, as shown in FIG. An insulating layer 61D having four through holes is formed at positions where external terminals on the end face and side face are to be formed. The conductor 64C is exposed on the bottom surfaces of the four through holes.
Next, a photosensitive conductive paste is applied to the surface of the insulator layer 61D and the four through holes at positions where the external terminals on the end face and side face of each element are to be formed, and dried to obtain FIG. 7 (G). As shown in FIG. 4, after the photosensitive conductor 74 is filled into the four through holes at positions where the external terminals on the end face and side face of each element of the insulator layer 61D are to be formed, the photosensitive conductor 74 is exposed and developed. By drying this, as shown in FIG. 7H, conductors 64D are formed in the four through holes at positions where the external terminals on the end face and side face of each element are to be formed. The conductor 64D is connected to the conductor 64C exposed on the bottom surface of the four through holes of the insulator layer 61D.
Subsequently, a photosensitive insulator paste is applied to the entire surface of the insulator layer 61D provided with the conductor 64D so as to have a uniform thickness, and dried, as shown in FIG. 7 (I). After the photosensitive insulator film 71E is formed on the layer 61D, the photosensitive insulator film 71E is exposed and developed, and then dried, as shown in FIG. An insulating layer 61E having four through holes at positions where external terminals are to be formed and through holes H1 and H2 having the same shape as the capacitor conductor pattern at the center of each element is formed. The through holes H1 and H2 are formed so as to be continuous with two through holes formed at positions where external terminals on the opposing end surfaces of the respective elements are to be formed. The conductor 64D is exposed on the bottom surface of the four through holes.
Further, photosensitive conductor paste is applied to the surface of the insulator layer 61E, the four through holes at positions where the external terminals on the end face and side face of each element are to be formed, and the through holes H1 and H2 in the center of each element. After applying and drying, as shown in FIG. 7 (K), in the four through holes at positions where the end terminals and side external terminals of each element of the insulator layer 61E are to be formed, and in the central part of each element After the photosensitive conductor 72 is filled in the through holes H1 and H2, the photosensitive conductor 72 is exposed and developed, and dried, as shown in FIG. Conductors 64E are formed in the four through holes at positions where the terminals are to be formed, and capacitor conductor patterns 62B and 62C are formed in the through holes in the center of each element. Capacitor conductor patterns 62B and 62C are formed to be continuous with conductors 64E exposed at the opposing end faces of the respective elements. The conductor 64E is connected to the conductor 64D exposed on the bottom surfaces of the four through holes of the insulator layer 61E.
Next, the photosensitive insulator paste is applied to the entire surface of the insulator layer 61E having the conductor 64E and the capacitor conductor patterns 62B and 62C so as to have a uniform thickness, and is dried, whereby FIG. ), A photosensitive insulator film 71F is formed on the insulator layer 61E.
Subsequently, after exposing and developing the photosensitive insulator film 71F and drying it, an insulator layer having four through holes is formed at positions where the end terminals and side external terminals of each element are to be formed. The photosensitive conductor paste is applied to the surface of the insulator layer and the four through-holes at positions where the external terminals on the end face and side face of each element are to be formed, exposed, developed, and dried. As shown in (N), conductors 64F are formed in four through holes at positions where the external terminals on the end face and side face of each element of the insulator layer 61F are to be formed. The conductor 64F is connected to the conductor 64E exposed on the bottom surfaces of the four through holes of the insulator layer 61F.
Further, a photosensitive insulator paste is applied to the entire surface of the insulator layer 61F provided with the conductor 64F so as to have a uniform thickness, and dried, as shown in FIG. 8A, the insulator layer 61F. After the photosensitive insulator film 71G is formed on the photosensitive insulator film 71G, the photosensitive insulator film 71G is exposed to light, developed, and dried. As shown in FIG. An insulator layer 61G having two through holes at positions to be formed is formed. The conductors 64F are exposed at the bottom surfaces of the two through holes.
Subsequently, a photosensitive conductor paste is applied to the surface of the insulating layer 61G and the two through holes at positions where the external terminals of the end faces of the respective elements are to be formed, and dried, as shown in FIG. Similarly, after the photosensitive conductor 74 is filled in the through hole of the insulator layer 61G, the photosensitive conductor 74 is exposed and developed, and dried, as shown in FIG. A conductor 64G is formed in the two through holes at positions where the external terminals on the end face are to be formed. The conductor 64G is connected to the conductor 64F exposed on the bottom surface of the through hole of the insulator layer 61G.
Next, a photosensitive insulator paste is applied to the entire surface of the insulator layer 61G including the conductor 64G so as to have a uniform thickness, and dried, as shown in FIG. 8E. After the photosensitive insulator film 71H is formed on 61G, the photosensitive insulator film 71H is exposed and developed, and then dried, as shown in FIG. An insulator layer 61H having two through holes and a through hole H having the same shape as the coil conductor pattern at the center of each element is formed at a position where a terminal is to be formed. The conductors 64G are exposed at the bottom surfaces of the two through holes.
Subsequently, a photosensitive conductive paste is applied to the surface of the insulator layer 61H, the two through holes at positions where the external terminals on the end faces of the elements are to be formed, and the through hole H in the center of each element, and dried. As shown in FIG. 8G, the photosensitive conductor 73 is placed in the two through holes at positions where the external terminals of the end faces of the respective elements of the insulator layer 61G are to be formed and the through hole H at the center of each element. Then, the photosensitive conductor 73 is exposed to light, developed, and dried. As shown in FIG. 8 (H), the external terminal 2 on the end face of each element of the insulator layer 61H is to be formed. A conductor 64H is formed in one through hole, and a coil conductor pattern 63A is formed in a through hole in the center of each element of the insulator layer 61H. The coil conductor pattern 63A is formed so as to be continuous with the conductor 64H having one end exposed at one end face of each element.
Further, a photosensitive insulator paste is applied to the entire surface of the insulator layer 61H provided with the conductor 64H and the coil conductor pattern 63A so as to have a uniform thickness, and dried, as shown in FIG. Further, after forming the photosensitive insulator film 71I on the insulator layer 61H, the photosensitive insulator film 71I is exposed and developed, and dried, as shown in FIG. An insulator layer 61I is formed having two through holes at positions where the external terminals on the end face and side face are to be formed, and a through hole at a position corresponding to the other end of the coil conductor pattern.
Subsequently, the surface of the insulator layer 61I, the two through holes at positions where the external terminals of the end faces of the respective elements are to be formed, and the photosensitive conductors in the through holes at positions corresponding to the other ends of the coil conductor patterns. After applying the paste and drying, as shown in FIG. 8 (K), through holes at positions corresponding to the two through holes at positions where the external terminals of the end faces of the respective elements are to be formed and the other end of the coil conductor pattern are formed. After filling the hole with the photosensitive conductor 74, the photosensitive conductor 74 is exposed and developed, and then dried, as shown in FIG. 8 (L), the external terminals on the end faces of the respective elements of the insulator layer 61I. The conductor 64I is formed in the two through holes at the positions to be formed, and the conductor S is formed in the through hole of the insulator layer 61I.
Next, a photosensitive insulator paste is applied to the entire surface of the insulator layer 61I including the conductor 64I and the conductor S so as to have a uniform thickness, and dried, as shown in FIG. After forming the photosensitive insulator film 71J, the insulator film 71J is exposed and developed, and dried to form external terminals on the end faces and side faces of each element as shown in FIG. An insulating layer 61J having two through holes and through holes H having the same shape as the coil conductor pattern at the center of each element is formed at the power position.
Subsequently, a photosensitive conductor paste is applied to the surface of the insulator layer 61J, the two through holes at positions where the external terminals on the end faces of the elements are to be formed, and the through hole H at the center of each element, and exposure is performed. By developing, as shown in FIG. 8 (O), the conductor 64J is placed in the two through holes at positions where the external terminals of the end faces of the elements of the insulator layer 61J are to be formed, and the insulator layer 61J A coil conductor pattern 63B is formed in the through hole H at the center of the element.
After the insulator layer 61K is formed on the upper surface of the insulator layer 61J provided with the conductor 64J and the coil conductor pattern 63B, the laminate is cut at the portion indicated by the alternate long and short dash line as in FIG. Divided into elements. As shown in FIGS. 1 and 2, each of the divided elements is formed with an external terminal 21 on the opposite end face of the laminate and an external terminal 22 on the opposite side face of the laminate. The external terminals 21 and 22 are plated.

以上、本発明の積層型電子部品及びその製造方法の実施例を述べたが、本発明はこの実施例に限られるものではない。例えば、導体、導体パターン及び、絶縁体層は、図9(A)に示す様に支持体上に感光性導体ペーストを塗布して感光性導体膜を形成し、この感光性導体膜を露光、現像して、図9(B)に示す様に支持体導体上に導体14を形成し、この導体14の周囲に感光性絶縁体ペーストを塗布し、露光、現像して図9(C)に示す様に導体14を備えた絶縁体層11を形成し、図9(D)に示す様にこの絶縁体層11表面全体に感光性導体ペーストを塗布し、この感光性導体ペーストを露光、現像して、図9(E)に示す様に絶縁体層11上に導体14を形成し、この絶縁体層11上の導体14の周囲に感光性絶縁体ペーストを塗布し、露光、現像して図9(F)に示す様に導体14を備えた絶縁体層11を形成し、これらの工程を所定回数繰り返すことにより、積み重ねられてもよい。   As mentioned above, although the Example of the multilayer electronic component of this invention and its manufacturing method was described, this invention is not limited to this Example. For example, the conductor, the conductor pattern, and the insulator layer are formed by applying a photosensitive conductor paste on a support as shown in FIG. 9A to form a photosensitive conductor film, and exposing the photosensitive conductor film. 9B, a conductor 14 is formed on a support conductor as shown in FIG. 9B, a photosensitive insulator paste is applied around the conductor 14, exposed to light, and developed. As shown in FIG. 9D, an insulator layer 11 having a conductor 14 is formed, a photosensitive conductor paste is applied to the entire surface of the insulator layer 11 as shown in FIG. 9D, and the photosensitive conductor paste is exposed and developed. Then, as shown in FIG. 9E, a conductor 14 is formed on the insulator layer 11, and a photosensitive insulator paste is applied around the conductor 14 on the insulator layer 11, and exposed and developed. As shown in FIG. 9F, the insulator layer 11 having the conductor 14 is formed, and these steps are repeated a predetermined number of times. By, it may be stacked.

本発明の積層型電子部品の第1の実施例を示す分解斜視図である。1 is an exploded perspective view showing a first embodiment of a multilayer electronic component of the present invention. 図2は本発明の積層型電子部品の実施例の説明図である。FIG. 2 is an explanatory view of an embodiment of the multilayer electronic component of the present invention. 本発明の積層型電子部品の第1の実施例の製造方法を説明する図である。It is a figure explaining the manufacturing method of the 1st Example of the multilayer electronic component of this invention. 本発明の積層型電子部品の第1の実施例の製造方法を説明する図である。It is a figure explaining the manufacturing method of the 1st Example of the multilayer electronic component of this invention. 本発明の積層型電子部品の第1の実施例の製造方法を説明する図である。It is a figure explaining the manufacturing method of the 1st Example of the multilayer electronic component of this invention. 本発明の積層型電子部品の第2の実施例を示す分解斜視図である。It is a disassembled perspective view which shows the 2nd Example of the multilayer electronic component of this invention. 本発明の積層型電子部品の第2の実施例の製造方法を説明する図である。It is a figure explaining the manufacturing method of the 2nd Example of the multilayer electronic component of this invention. 本発明の積層型電子部品の第2の実施例の製造方法を説明する図である。It is a figure explaining the manufacturing method of the 2nd Example of the multilayer electronic component of this invention. 本発明の積層型電子部品の別の製造方法を説明する図である。It is a figure explaining another manufacturing method of the multilayer type electronic component of the present invention. 従来の積層型電子部品の分解斜視図である。It is a disassembled perspective view of the conventional multilayer electronic component. 従来の積層型電子部品の製造方法を説明する図である。It is a figure explaining the manufacturing method of the conventional multilayer electronic component.

符号の説明Explanation of symbols

11A〜11H 絶縁体層
12A〜12C コンデンサ用導体パターン
13A、13B コイル用導体パターン
11A to 11H Insulator layers 12A to 12C Capacitor conductor patterns 13A and 13B Coil conductor patterns

Claims (4)

絶縁体層と導体パターンを積層して、積層体内に導体パターンによって回路素子が形成され、該回路素子が該積層体の外表面に形成された複数の外部端子間に接続された積層型電子部品において、
該複数の外部端子は、該積層体の側面に形成された外部端子の幅と該積層体の端面に形成された外部端子の幅が同じで、かつ、全ての外部端子の長さが積層体の厚みよりも薄くなる様に、該積層体の底面から側面及び底面から端面に跨ってフォトリソ技術を用いて導体を形成することにより形成されることを特徴とする積層型電子部品。
A laminated electronic component in which an insulator layer and a conductor pattern are laminated, a circuit element is formed by the conductor pattern in the laminate, and the circuit element is connected between a plurality of external terminals formed on the outer surface of the laminate. In
In the plurality of external terminals, the width of the external terminals formed on the side surface of the laminate and the width of the external terminals formed on the end surface of the laminate are the same, and the length of all the external terminals is the laminate. A multilayer electronic component formed by forming a conductor using a photolithographic technique from the bottom surface to the side surface and from the bottom surface to the end surface so as to be thinner than the thickness of the multilayer body.
前記外部端子の幅が100μm以下である請求項1に記載の積層型電子部品。   The multilayer electronic component according to claim 1, wherein a width of the external terminal is 100 μm or less. 絶縁体層と導体パターンを積層して、積層体内に導体パターンによって回路素子が形成され、該回路素子が該積層体の外表面に形成された複数の外部端子間に接続された積層型電子部品の製造方法において、
感光性絶縁体ペーストを用いて感光性絶縁体膜を形成し、該感光性絶縁体膜を乾燥、露光、現像して外部端子となる部分に絶縁体層を貫通する貫通孔を形成する工程と、該絶縁体層の貫通孔内に感光性導体ペーストを用いて感光性導体を形成し、乾燥、露光、現像して外部端子を構成する導体を形成する工程を繰り返して、該積層体の側面に形成された外部端子の幅と該積層体の端面に形成された外部端子の幅が同じで、かつ、全ての外部端子の長さが積層体の厚みよりも薄くなる様に、該積層体の底面から側面及び底面から端面に跨って外部端子が形成されることを特徴とする積層型電子部品の製造方法。
A laminated electronic component in which an insulator layer and a conductor pattern are laminated, a circuit element is formed by the conductor pattern in the laminate, and the circuit element is connected between a plurality of external terminals formed on the outer surface of the laminate. In the manufacturing method of
Forming a photosensitive insulator film using a photosensitive insulator paste, drying, exposing and developing the photosensitive insulator film to form a through-hole penetrating the insulator layer in a portion to be an external terminal; The step of forming a photosensitive conductor using a photosensitive conductor paste in the through-hole of the insulator layer, drying, exposing and developing to form a conductor constituting an external terminal is repeated, and the side surface of the laminated body The laminated body has the same width as the external terminals formed on the end face of the laminate, and the length of all the external terminals is smaller than the thickness of the laminate. An external terminal is formed from the bottom surface to the side surface and from the bottom surface to the end surface.
絶縁体層と導体パターンを積層して、積層体内に導体パターンによって回路素子が形成され、該回路素子が該積層体の外表面に形成された複数の外部端子間に接続された積層型電子部品の製造方法において、
感光性導体ペーストを用いて感光性導体膜を形成し、該感光性導体膜を乾燥、露光、現像して外部端子を構成する導体を形成する工程と、該導体の周囲に感光性絶縁体ペーストを用いて感光性絶縁体膜を形成し、該感光性絶縁体膜を乾燥、露光、現像して外部端子となる部分に該導体を有する絶縁体層を形成する工程を繰り返して、該積層体の側面に形成された外部端子の幅と該積層体の端面に形成された外部端子の幅が同じで、かつ、全ての外部端子の長さが積層体の厚みよりも薄くなる様に、該積層体の底面から側面及び底面から端面に跨って外部端子が形成されることを特徴とする積層型電子部品の製造方法。
A laminated electronic component in which an insulator layer and a conductor pattern are laminated, a circuit element is formed by the conductor pattern in the laminate, and the circuit element is connected between a plurality of external terminals formed on the outer surface of the laminate. In the manufacturing method of
Forming a photosensitive conductor film using the photosensitive conductor paste, drying, exposing and developing the photosensitive conductor film to form a conductor constituting an external terminal; and a photosensitive insulator paste around the conductor The step of forming a photosensitive insulator film using the substrate, drying, exposing, and developing the photosensitive insulator film to form an insulator layer having the conductor in a portion that becomes an external terminal is repeated to form the laminate. The width of the external terminal formed on the side surface of the external body is the same as the width of the external terminal formed on the end surface of the laminate, and the length of all the external terminals is thinner than the thickness of the laminate. An external terminal is formed from the bottom surface to the side surface and from the bottom surface to the end surface of the multilayer body.
JP2008213798A 2008-08-22 2008-08-22 Multilayer electronic component and method of manufacturing the same Pending JP2010050316A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008213798A JP2010050316A (en) 2008-08-22 2008-08-22 Multilayer electronic component and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008213798A JP2010050316A (en) 2008-08-22 2008-08-22 Multilayer electronic component and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010050316A true JP2010050316A (en) 2010-03-04

Family

ID=42067162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008213798A Pending JP2010050316A (en) 2008-08-22 2008-08-22 Multilayer electronic component and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010050316A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141945A (en) * 2014-01-27 2015-08-03 太陽誘電株式会社 coil component
CN106158244A (en) * 2014-10-02 2016-11-23 三星电机株式会社 chip assembly and manufacture method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722276A (en) * 1993-06-22 1995-01-24 Nec Corp Chip device
JPH11145754A (en) * 1997-11-13 1999-05-28 Murata Mfg Co Ltd Stacked lc filter
JP2002260925A (en) * 2001-03-01 2002-09-13 Fdk Corp Laminated chip inductor
WO2007080680A1 (en) * 2006-01-16 2007-07-19 Murata Manufacturing Co., Ltd. Method for manufacturing inductor
JP2007194387A (en) * 2006-01-19 2007-08-02 Murata Mfg Co Ltd Electronic component and method of manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0722276A (en) * 1993-06-22 1995-01-24 Nec Corp Chip device
JPH11145754A (en) * 1997-11-13 1999-05-28 Murata Mfg Co Ltd Stacked lc filter
JP2002260925A (en) * 2001-03-01 2002-09-13 Fdk Corp Laminated chip inductor
WO2007080680A1 (en) * 2006-01-16 2007-07-19 Murata Manufacturing Co., Ltd. Method for manufacturing inductor
JP2007194387A (en) * 2006-01-19 2007-08-02 Murata Mfg Co Ltd Electronic component and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015141945A (en) * 2014-01-27 2015-08-03 太陽誘電株式会社 coil component
CN106158244A (en) * 2014-10-02 2016-11-23 三星电机株式会社 chip assembly and manufacture method thereof

Similar Documents

Publication Publication Date Title
JP3500567B2 (en) Via formation for multi-layer inductive devices and other devices
US5949030A (en) Vias and method for making the same in organic board and chip carriers
JP3765627B2 (en) Multilayer circuit board and manufacturing method thereof
JP2005142523A (en) Method of manufacturing printed circuit board including buried resistor
JPS6129195A (en) Method of producing multilayer circuit board
WO1998027795A1 (en) Circuit board having electric component and its manufacturing method
KR100832650B1 (en) Multi layer printed circuit board and fabricating method of the same
JP3592129B2 (en) Manufacturing method of multilayer wiring board
US4914260A (en) Ceramic multi-layer printed circuit boards
JP2010050316A (en) Multilayer electronic component and method of manufacturing the same
JP2013106034A (en) Manufacturing method of printed circuit board
JPH0653350A (en) Multilayer circuit board and its manufacturing method, and electronic circuit module and electronic circuit device using the method
JP2001111195A (en) Method of manufacturing circuit board
JP2003324026A (en) Method of manufacturing laminated electronic component
KR0151065B1 (en) Circuit board
JP2008177254A (en) Inductor and manufacturing method therefor
JP2000232019A (en) Inductor and its manufacture
JP3816223B2 (en) Circuit board with electrical components and method for manufacturing the same
JP2003304060A (en) Method of manufacturing double-sided circuit board
US20140138132A1 (en) Printed circuit board and manufacturing method thereof
JP2003324027A (en) Method of manufacturing laminated electronic component
KR100338668B1 (en) method for manufacturing multi-layer PCB
KR100323512B1 (en) A manufacturing method for board of multiple layers
KR100601477B1 (en) Manufacturing process of a capacitor embedded in PCB
JP2023006212A (en) Method for manufacturing printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20110623

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20120426

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20120515

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120925