JP2010050012A - Manufacturing device for electron source - Google Patents

Manufacturing device for electron source Download PDF

Info

Publication number
JP2010050012A
JP2010050012A JP2008214915A JP2008214915A JP2010050012A JP 2010050012 A JP2010050012 A JP 2010050012A JP 2008214915 A JP2008214915 A JP 2008214915A JP 2008214915 A JP2008214915 A JP 2008214915A JP 2010050012 A JP2010050012 A JP 2010050012A
Authority
JP
Japan
Prior art keywords
substrate
container
support
electron
closed space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008214915A
Other languages
Japanese (ja)
Inventor
Kazumasa Takatsu
和正 高津
Shin Matsui
紳 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2008214915A priority Critical patent/JP2010050012A/en
Publication of JP2010050012A publication Critical patent/JP2010050012A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cold Cathode And The Manufacture (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To efficiently manufacture an electron source by carrying out exhaustion in a vacuum container at short times without preparing a large-sized pump in a manufacturing device for an electron source. <P>SOLUTION: In the manufacturing device for an electron source which mounts two electron source substrates 2a, 2b on a substrate support 3 and performs voltage applying treatment in order by covering with the vacuum container 1, invasion of air into the vacuum container 1 is prevented by purging inside the vacuum container 1 with a low dew-point gas until forming a closed space by the vacuum container 1 and the substrate 2a while the substrate support 3 is decreased and the treatment-completed substrate 2b is discharged by horizontally moving and the vacuum container 1 is arranged on a next substrate 2a and the substrate support 3 is again increased. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、画像表示装置等に用いられる電子源の製造装置、特に、真空容器の排気を改良する構成に関するものである。   The present invention relates to an electron source manufacturing apparatus used for an image display device or the like, and more particularly to a configuration for improving exhaust of a vacuum vessel.

従来、電子放出素子としては、大別して熱電子放出素子と冷陰極電子放出素子を用いた2種類のものが知られており、本出願人は、冷陰極電子放出素子として、新規な構成を有する表面伝導型電子放出素子とその応用に関し、多数の発明を行っている。その基本的な構成、製造方法などは、例えば特許文献1及び特許文献2等に開示されている。この表面伝導型電子放出素子の典型的な構成例としては、基板上に設けた一対の素子電極間を連絡する導電性膜に、フォーミングと呼ばれる通電処理と活性化処理によって、電子放出部を形成したものが挙げられる。   2. Description of the Related Art Conventionally, two types of electron-emitting devices using a thermionic electron-emitting device and a cold-cathode electron-emitting device are known, and the present applicant has a novel configuration as a cold-cathode electron-emitting device. A number of inventions have been made regarding surface conduction electron-emitting devices and their applications. The basic configuration, manufacturing method, and the like are disclosed in, for example, Patent Document 1 and Patent Document 2. As a typical configuration example of this surface conduction electron-emitting device, an electron emitting portion is formed on a conductive film connecting between a pair of device electrodes provided on a substrate by energization processing called activation and activation processing. The thing which was done is mentioned.

フォーミング処理とは、前記導電性膜の両端に電圧を印加通電し、該導電性膜を局所的に破壊、変形もしくは変質せしめ、電気的に高抵抗な状態にした亀裂を形成する処理である。また、活性化処理とは、有機化合物を有する真空雰囲気下において前記導電性膜の両端に電圧を印加通電し、前記亀裂近傍に炭素或いは炭素化合物を堆積させる処理である。尚、電子放出は、その亀裂付近から行われる。   The forming process is a process in which a voltage is applied to both ends of the conductive film, and the conductive film is locally broken, deformed, or altered to form a crack that is in an electrically high resistance state. The activation process is a process in which a voltage is applied to both ends of the conductive film in a vacuum atmosphere containing an organic compound to deposit carbon or a carbon compound near the crack. Electron emission is performed near the crack.

従来の表面伝導型電子放出素子の製造は以下のように行われていた。基板上に、導電性膜及び該導電性膜に接続された一対の素子電極からなる素子を複数と、該複数の素子を接続した配線とが形成された電子源基板を作製する。次に、作製した電子源基板の上記素子を形成した領域を真空容器で覆い、真空容器内を真空排気する。真空排気後、外部端子と通じて上記各素子に電圧を印加して各素子の導電性膜に亀裂を形成する。更に、該真空容器内に有機化合物を含む気体を導入して、有機化合物が存在する雰囲気下で前記各素子に再度外部端子を通じて電圧を印加して、該亀裂近傍に炭素或いは炭素化合物を堆積させる。堆積後、真空容器内を大気圧まで戻してから基板を交換する。   A conventional surface conduction electron-emitting device is manufactured as follows. An electron source substrate in which a plurality of elements each including a conductive film and a pair of element electrodes connected to the conductive film and a wiring connecting the plurality of elements is formed over the substrate is manufactured. Next, a region where the above-described element is formed on the manufactured electron source substrate is covered with a vacuum vessel, and the inside of the vacuum vessel is evacuated. After evacuation, a voltage is applied to each element through an external terminal to form a crack in the conductive film of each element. Further, a gas containing an organic compound is introduced into the vacuum vessel, and a voltage is applied to each element again through an external terminal in an atmosphere in which the organic compound exists, so that carbon or a carbon compound is deposited in the vicinity of the crack. . After the deposition, the inside of the vacuum vessel is returned to atmospheric pressure, and then the substrate is replaced.

従来の電子源製造装置は、基板が支持体によって固定され、基板に形成された素子を覆う真空容器を被せ、真空容器の内部を排気してフォーミング及び活性化処理を施していた。そのため、基板の一面は真空側で反対面は大気側にさらされるため、いわば真空フランジと同等の機能を必要とされていた。しかし基板は10mmにも満たない厚さのため真空に絶えられる強度を持っていない。そこで基板を固定する支持体に密着固定させ真空にも絶えられる構造となっている。   In a conventional electron source manufacturing apparatus, a substrate is fixed by a support, a vacuum vessel covering an element formed on the substrate is covered, and the inside of the vacuum vessel is evacuated to perform forming and activation processes. Therefore, since one surface of the substrate is exposed to the vacuum side and the opposite surface is exposed to the atmosphere side, the function equivalent to that of the vacuum flange is required. However, since the thickness of the substrate is less than 10 mm, it does not have a strength that can withstand vacuum. Therefore, the structure is such that the substrate can be fixed in close contact with the support for fixing the substrate and the vacuum can be cut off.

この様な基板保持構造となっているので、ロードロック室を持った真空一貫のマルチチャンバー型の製造装置になっていない。従って基板の交換時には真空容器が大気にさらされることになる。特許文献3には、短時間の真空排気を可能にする手段を講じて生産性の向上可能な電子源の製造装置を提供している。具体的には、電子源基板を支持するための支持体と、前記電子源基板の一部を覆い、前記電子源基板との接触部に開口を有する容器と、更に前記開口を覆うシャッターを有することを特徴としている。このような電子源の製造装置によれば、前記電子源基板を覆っていた真空容器の開口部を、基板の離脱と共にシャッターで覆う手段を用いることによって、電子源基板の交換時における真空容器内への水分子混入を軽減でき、短時間の真空排気を可能にしている。   Since it has such a substrate holding structure, it is not a multi-chamber manufacturing apparatus with a load lock chamber and a vacuum integrated. Therefore, the vacuum vessel is exposed to the atmosphere when replacing the substrate. Patent Document 3 provides an electron source manufacturing apparatus capable of improving productivity by providing means for enabling evacuation in a short time. Specifically, a support for supporting the electron source substrate, a container that covers a part of the electron source substrate, has an opening at a contact portion with the electron source substrate, and further has a shutter that covers the opening. It is characterized by that. According to such an electron source manufacturing apparatus, by using means for covering the opening of the vacuum vessel that has covered the electron source substrate with a shutter together with the removal of the substrate, the inside of the vacuum vessel at the time of replacing the electron source substrate is used. Water molecules can be reduced, and vacuum evacuation is possible for a short time.

特開平7−235255号公報JP 7-235255 A 特開平8−171849号公報JP-A-8-171849 特開2004−184502号公報JP 2004-184502 A

しかしながら、特許文献3に記載された装置において、シャッター挿入時には、真空容器の開口部と接触しながら動作するので、シャッターのたわみ防止のために該シャッターは10mm以上の厚さ(高さ)を持った構造になっている。そのため、容器の開口部と基板との間は、最低でもこの厚さ以上の隙間が必要になる。このため水分子の混入量はシャッターが無い構造よりは軽減されるが、完全に防止できる構造とはなっていない。   However, in the apparatus described in Patent Document 3, when the shutter is inserted, it operates while being in contact with the opening of the vacuum vessel, so that the shutter has a thickness (height) of 10 mm or more in order to prevent the deflection of the shutter. It has a structure. For this reason, a gap of at least this thickness is required between the opening of the container and the substrate. For this reason, although the amount of water molecules mixed in is reduced as compared with a structure without a shutter, the structure cannot be completely prevented.

更には、基板を支持体に載せた後、上記のフォーミング処理、活性化処理を行うため、電圧を印加するための駆動ドライバーと基板上に形成されている導電性膜に接続されている配線とを接続する工程がある。この時、位置合わせをするために基板が載置してある支持体が前後左右方向に駆動して位置合わせをするが、この位置あわせ時にも真空容器は大気にさらされてしまう。   In addition, after the substrate is placed on the support, the drive processing for applying a voltage and the wiring connected to the conductive film formed on the substrate are performed in order to perform the forming process and the activation process described above. There is a step of connecting the two. At this time, in order to align, the support on which the substrate is placed is driven in the front-rear and left-right directions for alignment, but the vacuum vessel is exposed to the atmosphere even during this alignment.

よって、所定の圧力領域まで短時間で排気するために、大排気量の真空ポンプを設けるなどして短時間での排気を可能にしているが、装置の大型化を招き装置コストも高くなってしまうという問題がある。   Therefore, in order to evacuate in a short time to a predetermined pressure range, it is possible to evacuate in a short time by providing a vacuum pump with a large displacement amount. However, this increases the size of the apparatus and increases the apparatus cost. There is a problem of end.

本発明の課題は、上記課題を解決し、電子源の製造装置において、大型のポンプを設けることなく真空容器内の排気を短時間で行い、より効率良く電子源を製造することにある。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and to evacuate a vacuum vessel in a short time without providing a large pump in an electron source manufacturing apparatus, and to manufacture an electron source more efficiently.

本発明は、基板と、該基板の表面に形成された複数の電子放出素子と、該電子放出素子を互いに接続する複数本の配線と、を備えた電子源の製造装置であって、
少なくとも2枚の基板を載置するための支持体と、電子放出素子が形成される領域を上方から覆い、上記基板との間で閉空間を形成する容器と、該閉空間の雰囲気を制御する手段と、上記配線に電圧を印加する手段と、容器或いは支持体の昇降機構と、容器或いは支持体の水平移動手段とを備え、
上記基板の電子放出素子が形成される領域を容器で覆って閉空間を形成し、該閉空間の雰囲気を制御して配線に電圧を印加する処理を施した後、支持体を容器に対して相対的に降下させることで容器を基板から離し、支持体を容器に対して相対的に水平移動させることによって容器を他方の基板上に移動させ、支持体を容器に対して相対的に上昇させることによって他方の基板と容器とで閉空間を形成し、電圧印加処理が終了した基板を新たな基板に交換する操作を繰り返す工程において、電圧印加処理後の閉空間を低露点ガスでパージした後、他方の基板の閉空間を形成するまでの間、容器内のパージを継続することを特徴とする。
The present invention is an electron source manufacturing apparatus comprising a substrate, a plurality of electron-emitting devices formed on the surface of the substrate, and a plurality of wirings connecting the electron-emitting devices to each other,
A support for mounting at least two substrates, a container for covering the region where the electron-emitting devices are formed from above, and forming a closed space with the substrate, and controlling the atmosphere of the closed space Means, a means for applying a voltage to the wiring, an elevating mechanism for the container or the support, and a horizontal moving means for the container or the support,
A region where the electron-emitting device of the substrate is formed is covered with a container to form a closed space, and after applying a voltage to the wiring by controlling the atmosphere of the closed space, the support is attached to the container. The container is moved away from the substrate by lowering, and the support is moved horizontally relative to the container to move the container onto the other substrate and raise the support relative to the container. In this process of forming a closed space between the other substrate and the container and repeating the operation of replacing the substrate after the voltage application process with a new substrate, the closed space after the voltage application process is purged with a low dew point gas. The purging of the container is continued until the closed space of the other substrate is formed.

本発明によれば、基板交換時の真空容器内への大気中の水分子の混入を低減することが可能になり、その結果、排気時間を短縮することができる。従って、真空ポンプ等のコンポーネンツの小型化が可能になり、装置コストの安価な電子源の製造装置を実現できる。また、製造工程のタクトタイムが短くなることにより生産コストを低減でき、安価で均一性の高い電子源を製造することができる。   According to the present invention, it is possible to reduce the mixing of water molecules in the atmosphere into the vacuum vessel during substrate replacement, and as a result, the exhaust time can be shortened. Accordingly, it is possible to reduce the size of components such as a vacuum pump, and it is possible to realize an electron source manufacturing apparatus at a low apparatus cost. Further, the production cost can be reduced by shortening the tact time of the manufacturing process, and an inexpensive and highly uniform electron source can be manufactured.

本発明の製造装置で製造される電子源は、基板と、該基板の表面に形成された複数の電子放出素子と、該電子放出素子を互いに接続する複数本の配線と、を備えている。   An electron source manufactured by the manufacturing apparatus of the present invention includes a substrate, a plurality of electron-emitting devices formed on the surface of the substrate, and a plurality of wirings that connect the electron-emitting devices to each other.

本発明の電子源の製造装置は上記目的を達成させるために、次のような特徴をもった装置となっている。   In order to achieve the above object, the electron source manufacturing apparatus of the present invention has the following characteristics.

本発明の電子源の製造装置は、少なくとも2枚の基板を載置するための支持体と、電子放出素子が形成される領域を上方から覆い、上記基板との間で閉空間を形成する容器とを具備している。そして、該閉空間の雰囲気を制御する手段と、上記配線に電圧を印加する手段と、容器或いは支持体の昇降機構と、容器或いは支持体の水平移動手段とを備えている。よって、支持体上の1枚の基板を容器で覆って閉空間を形成し、該閉空間を形成している基板表面の電子放出素子が形成される領域に対して、所定の雰囲気に保持して電圧を印加できる構成となっている。   The electron source manufacturing apparatus of the present invention covers a support for placing at least two substrates and a region where electron-emitting devices are formed from above, and forms a closed space between the substrate and the substrate. It is equipped with. The apparatus includes means for controlling the atmosphere of the closed space, means for applying a voltage to the wiring, a lifting mechanism for the container or the support, and horizontal moving means for the container or the support. Therefore, one substrate on the support is covered with a container to form a closed space, and the region on the surface of the substrate forming the closed space where the electron-emitting devices are formed is maintained in a predetermined atmosphere. The voltage can be applied.

さらに、電圧印加後の基板と、次に電圧を印加する基板とが支持体上に同時に載置され、支持体を降下或いは容器を上昇させることによって、基板と容器の開口部との間に所定の距離をあけることができる。この状態で、支持体或いは容器を水平移動させることによって、容器を電圧印加後の基板上から次の基板上に移動させることにより、容器内から基板の搬出と搬入を行う。   Furthermore, the substrate after the voltage application and the substrate to which the voltage is applied next are placed on the support at the same time, and the support is lowered or the container is raised, so that a predetermined amount is provided between the substrate and the opening of the container. The distance can be increased. In this state, by moving the support or the container horizontally, the container is moved from the substrate to which the voltage is applied to the next substrate, whereby the substrate is carried out and carried in from the container.

上記したように、本発明の製造装置においては、支持体上に載置した基板を1枚ずつ電圧印加処理すると同時に、処理の終了した基板を新しい基板に交換する操作を繰り返す。   As described above, in the manufacturing apparatus of the present invention, the voltage application process is performed on the substrates placed on the support one by one, and at the same time, the operation of replacing the processed substrate with a new substrate is repeated.

尚、本発明において電圧印加とは、電子放出素子の構成部材である導電性膜に亀裂を形成するためのフォーミング処理、及び、フォーミング処理で形成された亀裂近傍に炭素或いは炭素化合物を堆積させる活性化処理、の少なくとも一方である。   In the present invention, voltage application refers to a forming process for forming a crack in a conductive film that is a constituent member of an electron-emitting device, and an activity for depositing carbon or a carbon compound in the vicinity of the crack formed by the forming process. At least one of the conversion processes.

本発明においては、電圧印加後の閉空間内を低露点ガスでパージするが、該パージは、該閉空間から次の基板の閉空間を形成するまでの間継続して行う。これにより、容器内は基板の搬出、搬入時に常に低露点ガスでパージされ、大気にほとんど接触しない。よって、容器内に水分子が混入することがなく、次の基板の閉空間を真空排気する時間が大幅に短縮される。   In the present invention, the inside of the closed space after voltage application is purged with a low dew point gas, and the purge is continuously performed from the closed space until the next closed space of the substrate is formed. As a result, the inside of the container is always purged with the low dew point gas when the substrate is carried out and carried in, and hardly contacts the atmosphere. Therefore, water molecules are not mixed in the container, and the time for evacuating the next closed space of the substrate is greatly shortened.

本発明の製造装置の実施の形態について図面を参照して詳細に説明する。   An embodiment of a manufacturing apparatus of the present invention will be described in detail with reference to the drawings.

図1は本発明による電子源製造装置の第1の実施形態を示す構成図であり、当該装置においてフォーミング処理と活性化処理とを連続して行うことができる。図1において、1は真空容器、2aは電圧印加前の次の基板、2bは電圧印加後の基板、3は基板支持体である。電圧印加前の次の基板2aと電圧印加後基板2bは基板支持体3に載置されている。また、電圧印加前の次の基板2aと電圧印加後基板2bとの間にスペーサー19が設置されていて、電圧印加前の次の基板2aと電圧印加後基板2bとスペーサー19によって、あたかも1枚の基板が基板支持体3に載置されているような構成となっている。4は昇降機構であり、基板支持体3を昇降させる機構である。昇降機構4によって基板支持体3に載置されている電圧印加前の次の基板2がシール部材6に押し当てられ、シール部材6によって真空容器1を密閉する。   FIG. 1 is a block diagram showing a first embodiment of an electron source manufacturing apparatus according to the present invention, in which a forming process and an activation process can be performed continuously. In FIG. 1, 1 is a vacuum vessel, 2a is a next substrate before voltage application, 2b is a substrate after voltage application, and 3 is a substrate support. The next substrate 2 a before voltage application and the substrate 2 b after voltage application are placed on the substrate support 3. Further, a spacer 19 is installed between the next substrate 2a before voltage application and the substrate 2b after voltage application, and it is as if one sheet is formed by the next substrate 2a before voltage application, the substrate 2b after voltage application and the spacer 19. The substrate is placed on the substrate support 3. Reference numeral 4 denotes a lifting mechanism that lifts and lowers the substrate support 3. The next substrate 2 before voltage application placed on the substrate support 3 by the elevating mechanism 4 is pressed against the seal member 6, and the vacuum container 1 is sealed by the seal member 6.

8は真空ポンプ、5a乃至5hはバルブ、18は排気配管である。真空容器1は排気配管18に接続されている真空ポンプ8によって真空排気され、所定の雰囲気に保持される。15は真空計であり、真空容器1の圧力を計測する。電圧印加前基板2a上に形成された電子放出素子(不図示)は対向する一対の素子電極に接続されていて、その一部に導電性膜が形成されている。これらの電子放出素子は印加前基板2a上、及び印加後基板2b上に複数個配置され、各電子放出素子は配線で接続されている。   8 is a vacuum pump, 5a to 5h are valves, and 18 is an exhaust pipe. The vacuum vessel 1 is evacuated by a vacuum pump 8 connected to an exhaust pipe 18 and maintained in a predetermined atmosphere. A vacuum gauge 15 measures the pressure in the vacuum vessel 1. An electron-emitting device (not shown) formed on the substrate 2a before voltage application is connected to a pair of opposing device electrodes, and a conductive film is formed on a part thereof. A plurality of these electron-emitting devices are arranged on the substrate 2a before application and on the substrate 2b after application, and each electron-emitting device is connected by wiring.

7は電圧印加手段である駆動ドライバー、9は電圧印加前基板2a上に形成された配線と駆動ドライバー7を接続する配線である。また、11は水分除去フィルター、10はガス流量制御装置、22はガス供給配管、12は有機物質ガス、13はキャリアガス、17は真空容器1内の露点を計測できる露点計である。14は基板支持体3と昇降機構4からなる構造物を水平移動させる手段であるスライド機構であり、図1では左右方向に基板支持体3を水平移動させることができる。スライド機構14の機能や動作等については詳しく後述する。基板支持体3は印加前基板2a及び印加後基板2bを保持して固定するもので、真空チャッキング機構、静電チャッキング機構若しくは固定冶具等により機械的に印加前基板2aと印加後基板2bを固定する機構を有する。基板支持体3の内部には、図示されていないヒーターが設けられ、必要に応じて印加前基板2aと印加後基板2bを加熱することができる。また真空容器1を加熱することができるヒーター(不図示)も設けられている。   Reference numeral 7 denotes a drive driver as voltage application means, and reference numeral 9 denotes a wiring for connecting the drive driver 7 and a wiring formed on the substrate 2a before voltage application. Further, 11 is a moisture removal filter, 10 is a gas flow rate control device, 22 is a gas supply pipe, 12 is an organic substance gas, 13 is a carrier gas, and 17 is a dew point meter that can measure the dew point in the vacuum vessel 1. Reference numeral 14 denotes a slide mechanism which is a means for horizontally moving a structure composed of the substrate support 3 and the lifting mechanism 4. In FIG. 1, the substrate support 3 can be horizontally moved in the left-right direction. The function and operation of the slide mechanism 14 will be described later in detail. The substrate support 3 holds and fixes the pre-application substrate 2a and the post-application substrate 2b. The pre-application substrate 2a and the post-application substrate 2b are mechanically moved by a vacuum chucking mechanism, an electrostatic chucking mechanism, or a fixing jig. It has a mechanism to fix. A heater (not shown) is provided inside the substrate support 3, and the pre-application substrate 2 a and the post-application substrate 2 b can be heated as necessary. A heater (not shown) that can heat the vacuum vessel 1 is also provided.

真空容器1は、ガラスやステンレス製の容器であり、容器からの放出ガスの少ない材料のものが好ましい。真空容器1は、少なくとも、1.33×10-6Pa乃至大気圧の圧力範囲に耐えられる構造のものである。シール部材6は電子源基板2と真空容器1との気密性を保持するためのものであり、耐熱性やガス透過遮断性の優れたOリングやゴム性シート等が用いられる。 The vacuum container 1 is a glass or stainless steel container, and is preferably made of a material that emits less gas from the container. The vacuum vessel 1 has a structure that can withstand at least a pressure range of 1.33 × 10 −6 Pa to atmospheric pressure. The sealing member 6 is for maintaining the airtightness between the electron source substrate 2 and the vacuum vessel 1, and an O-ring, a rubber sheet, or the like having excellent heat resistance and gas permeation blocking properties is used.

有機物質ガス12には、電子放出素子の活性化に用いられる有機物質又は有機物質を窒素、ヘリウム、アルゴン等で希釈した混合気体が用いられる。また、フォーミングの通電処理を行う際には、導電性膜への亀裂形成を促進するための気体、例えば、還元性を有する水素ガス等を真空容器1内に導入することもある。これらのガスはガス供給配管19により真空容器1に供給される。   As the organic substance gas 12, an organic substance used for activating the electron-emitting device or a mixed gas obtained by diluting an organic substance with nitrogen, helium, argon or the like is used. Further, when performing the energization process of forming, a gas for promoting the formation of cracks in the conductive film, for example, hydrogen gas having a reducing property, may be introduced into the vacuum container 1. These gases are supplied to the vacuum vessel 1 through the gas supply pipe 19.

有機物質ガス12は有機物質が常温で気体である場合には、そのまま使用でき、有機物質が常温で液体又は固体の場合には、容器内で蒸発又は昇華させて用いる、或いは更にこれを希釈ガスと混合する等して用いることができる。キャリアガス13には、窒素又はアルゴン、ヘリウム等の不活性ガスが用いられる。   The organic substance gas 12 can be used as it is when the organic substance is a gas at normal temperature, and when the organic substance is liquid or solid at normal temperature, it is used by evaporating or sublimating it in a container, or it is further used as a dilution gas. It can be used by mixing with. As the carrier gas 13, an inert gas such as nitrogen or argon or helium is used.

有機物質ガス12とキャリアガス13は、一定の割合で混合されて、真空容器1内に導入される。両者の流量及び混合比は、ガス流量制御装置10によって制御される。ガス流量制御装置10は、マスフローコントローラ及び電磁弁等から構成されている。混合ガスの加熱温度は、印加前基板2aの温度と同等にすることが好ましい。   The organic substance gas 12 and the carrier gas 13 are mixed at a constant ratio and introduced into the vacuum vessel 1. The flow rate and mixing ratio of both are controlled by the gas flow rate control device 10. The gas flow rate control device 10 includes a mass flow controller and a solenoid valve. The heating temperature of the mixed gas is preferably equal to the temperature of the substrate 2a before application.

尚、ガス流量制御装置10とガス供給配管19の途中に、水分除去フィルター11を設けて、導入ガス中の水分を除去するとより好ましい。水分除去フィルター11には、シリカゲル、モレキュラーシーブ、水酸化マグネシウム等の吸湿材を用いることができる。   It is more preferable to provide a moisture removal filter 11 in the middle of the gas flow control device 10 and the gas supply pipe 19 to remove moisture in the introduced gas. For the moisture removal filter 11, a moisture absorbing material such as silica gel, molecular sieve, magnesium hydroxide or the like can be used.

真空ポンプ4としては、ドライポンプ、ダイヤフラムポンプ、スクロールポンプ等の低真空用ポンプが挙げられ、オイルフリーポンプが好ましく用いられる。   Examples of the vacuum pump 4 include low vacuum pumps such as a dry pump, a diaphragm pump, and a scroll pump, and an oil-free pump is preferably used.

真空容器1内の雰囲気は電圧印加処理後、バルブ5hより低露点ガス16によって大気圧まで戻される。この低露点ガス16は、本発明にかかる工程中に真空容器1内に水分子を付着させない低湿度のガスであり、具体的には、露点が−80℃以下のガスが好ましく、ドライエアーもしくは窒素が好ましく、必要であれば不活性ガスであっても構わない。尚、フォーミング処理や活性化処理については上記特開平7−235255号公報、特開平8−171849号公報等に記載されている従来の処理方法が好ましく適用される。   The atmosphere in the vacuum vessel 1 is returned to atmospheric pressure by the low dew point gas 16 from the valve 5h after the voltage application process. The low dew point gas 16 is a low-humidity gas that does not cause water molecules to adhere to the vacuum vessel 1 during the process according to the present invention. Specifically, a gas having a dew point of −80 ° C. or lower is preferable, and dry air or Nitrogen is preferred, and an inert gas may be used if necessary. For the forming process and the activation process, conventional processing methods described in JP-A-7-235255 and JP-A-8-171849 are preferably applied.

また、既に電圧印加処理が済んだ印加後基板2bは、次の基板の電圧印加処理中に基板支持体3の固定機構より解除され、基板搬送機構(不図示)によって基板支持体3から排除される。そして、前述の印加前基板2aとは異なる新しい印加前基板が基板搬送機構によって基板支持体3に載置される。   Further, the post-application substrate 2b that has already undergone the voltage application process is released from the fixing mechanism of the substrate support 3 during the voltage application process of the next substrate, and is removed from the substrate support 3 by the substrate transport mechanism (not shown). The Then, a new pre-application substrate different from the above-mentioned pre-application substrate 2a is placed on the substrate support 3 by the substrate transport mechanism.

その際、次に処理される基板を基板支持体3にセットした後、電圧印加処理を行うため、電圧を印加するための駆動ドライバーと基板上に形成されている導電性膜に接続されている配線とを接続する工程がある。この時、位置合わせをするために基板が載置してある基板支持体3の上でアライメント機構(不図示)によって前後左右方向に移動して位置合わせをする。   At that time, after the substrate to be processed next is set on the substrate support 3, it is connected to a driving driver for applying a voltage and a conductive film formed on the substrate in order to perform a voltage application process. There is a step of connecting the wiring. At this time, in order to perform alignment, the alignment is performed by moving the substrate support 3 on which the substrate is placed in the front-rear and left-right directions by an alignment mechanism (not shown).

本例では、駆動ドライバー7と電圧印加後基板2b上の配線とを接続する配線9は電圧印加処理終了後、電圧印加後基板2bより離れる方向に移動し、駆動ドライバー7と電圧印加後基板2上の配線との接続が解除される。これは、真空容器1内の低露点ガス16でのパージ中に行う。   In this example, the wiring 9 connecting the driving driver 7 and the wiring on the substrate 2b after voltage application is moved away from the substrate 2b after voltage application after the voltage application processing is completed. The connection with the upper wiring is released. This is performed during purging with the low dew point gas 16 in the vacuum vessel 1.

真空容器1内の圧力が大気圧になったことと配線9による駆動ドライバー7と基板2b上の配線との接続解除を確認後、印加後基板2bを固定する支持体3は昇降機構4によって図1の下方に降りていく。尚、基板支持体3は昇降機構4を使用して昇降させているが、真空容器1が昇降可能になっていても構わない。本発明においては、基板支持体3が真空容器1に対して相対的に昇降できればよい。この間、真空容器1内は低露点ガスによるパージを継続し、真空容器1内の雰囲気の露点を露点計17で監視できるようになっている。   After confirming that the pressure in the vacuum vessel 1 has become atmospheric pressure and the connection between the driving driver 7 and the wiring on the substrate 2b by the wiring 9, the support 3 for fixing the substrate 2b after application is shown by the lifting mechanism 4 in FIG. Go down below 1. In addition, although the board | substrate support body 3 is raised / lowered using the raising / lowering mechanism 4, the vacuum vessel 1 may be able to raise / lower. In the present invention, it is sufficient that the substrate support 3 can be moved up and down relative to the vacuum vessel 1. During this time, the inside of the vacuum vessel 1 is continuously purged with a low dew point gas, and the dew point of the atmosphere in the vacuum vessel 1 can be monitored by the dew point meter 17.

この昇降機構4の駆動による基板支持体3の降下時に、電圧印加後基板2bとシール部材6とが離れる時の距離をセンサ(不図示)で検出する。このセンサとしては、例えば、機械スイッチ等を用い、基板支持体3が降下する時の距離を検出する。電圧印加後基板2bとシール部材6との距離が、例えば、2mmになると、今まで電圧印加後基板2bによって覆われていた真空容器1の一面を覆うように、次に処理される電圧印加前基板2aがスライド機構14によって電圧印加後基板2bと入れ替わる。図1では紙面左方向へ平行移動する。また電圧印加前基板2aと電圧印加後基板2b及びスペーサー19がシール部材6と接触しないようにスライドする。この間も常に低露点ガス16によって真空容器1内はパージされている。本発明においては、低露点ガス16のパージによって真空容器1内への大気の侵入を阻止するため、基板2bとシール部材6の距離は基板2bの水平移動の際にシール部材6が基板2b上の素子等部材に接しない範囲で最小限にとどめる必要がある。具体的には、通常の電子源を製造する場合で5mm以下である。   A sensor (not shown) detects a distance when the substrate 2b and the seal member 6 are separated after voltage application when the substrate support 3 is lowered by driving the elevating mechanism 4. As this sensor, for example, a mechanical switch or the like is used to detect the distance when the substrate support 3 is lowered. When the distance between the substrate 2b after voltage application and the seal member 6 is 2 mm, for example, before applying the voltage to be processed next so as to cover one surface of the vacuum vessel 1 that has been covered by the substrate 2b after voltage application so far. Substrate 2a is replaced by substrate 2b after voltage application by slide mechanism 14. In FIG. 1, it moves parallel to the left side of the page. Further, the substrate 2a before voltage application, the substrate 2b after voltage application, and the spacer 19 slide so as not to contact the seal member 6. During this time, the inside of the vacuum vessel 1 is always purged with the low dew point gas 16. In the present invention, in order to prevent the atmosphere from entering the vacuum vessel 1 by purging with the low dew point gas 16, the distance between the substrate 2b and the seal member 6 is such that the seal member 6 is placed on the substrate 2b when the substrate 2b is moved horizontally. It is necessary to keep it to the minimum as long as it does not come into contact with other elements. Specifically, it is 5 mm or less when a normal electron source is manufactured.

スライド機構14が所定の位置に移動完了後、基板支持体3及び電圧印加前基板aは昇降機構4によって上方へ上昇し、シール部材6と接触する位置で停止する。昇降機構4の停止確認後ただちに低露点ガス16によるパージ工程は終了する。   After the slide mechanism 14 completes the movement to the predetermined position, the substrate support 3 and the pre-voltage application substrate a are raised upward by the elevating mechanism 4 and stopped at a position where they contact the seal member 6. Immediately after confirming that the elevating mechanism 4 is stopped, the purge process using the low dew point gas 16 is completed.

このように、真空容器1と基板2a、2bとが離れている間は常に真空容器1内には低露点ガス16がパージされるため、真空容器1内への大気混入が防止される。   Thus, since the low dew point gas 16 is always purged into the vacuum container 1 while the vacuum container 1 and the substrates 2a and 2b are separated from each other, air mixing into the vacuum container 1 is prevented.

真空容器1はシール部材6と電圧印加前基板2aによって閉空間が形成されている。この状態で、真空容器1内を排気した後、電圧印加処理を行う。この時、駆動ドライバー7と電子源基板上の配線を配線9によって接続し、電子源基板の電子放出素子に駆動ドライバー7から電圧を印加することで電圧印加処理を行う。電圧印加処理が終了すると、同様に低露点ガス16によって真空容器1をパージして大気圧まで戻し、昇降機構4とスライド機構14によって電子源基板の交換を行う。この時スライド機構4は図1では右方向へ平行移動する。   The vacuum vessel 1 has a closed space formed by the sealing member 6 and the substrate 2a before voltage application. In this state, after the vacuum vessel 1 is evacuated, a voltage application process is performed. At this time, the driving driver 7 and the wiring on the electron source substrate are connected by the wiring 9, and a voltage application process is performed by applying a voltage from the driving driver 7 to the electron-emitting device of the electron source substrate. When the voltage application process is completed, the vacuum vessel 1 is similarly purged to the atmospheric pressure by the low dew point gas 16 and the electron source substrate is exchanged by the elevating mechanism 4 and the slide mechanism 14. At this time, the slide mechanism 4 moves in the right direction in FIG.

尚、本例ではスライド機構4により基板支持体3を水平移動させているが、本発明においては、基板支持体3を真空容器1に対して相対的に水平移動させることができればよく、真空容器1を水平移動させるスライド機構を用いても良い。   In this example, the substrate support 3 is horizontally moved by the slide mechanism 4. However, in the present invention, it is only necessary that the substrate support 3 can be moved horizontally relative to the vacuum vessel 1. A slide mechanism that horizontally moves 1 may be used.

次に、図2及び図3は本発明の第2の実施形態を示す図である。尚、図2は図1と同様に要部の構成のみ示す。その他の構成は図1と同様である。本例では、基板を載置する基板支持体3を水平方向に回転させて基板交換を行う回転スライド機構20を採用した点が第1の実施形態と異なっている。よって、係る構成についてのみ説明する。   Next, FIG.2 and FIG.3 is a figure which shows the 2nd Embodiment of this invention. Note that FIG. 2 shows only the configuration of the main part as in FIG. Other configurations are the same as those in FIG. In this example, the point which employ | adopted the rotation slide mechanism 20 which rotates the board | substrate support body 3 which mounts a board | substrate in a horizontal direction, and performs board | substrate exchange is different from 1st Embodiment. Therefore, only such a configuration will be described.

この回転スライド機構20を上面から見た時の図を図3に示す。本例で採用した基板支持体3及びスペーサー21は図のように円形状になっており、基板固定機構(不図示)によって電圧印加前基板2aと電圧印加後基板2bが載置されている。このスペーサー21は分割構造になっていても構わない。また基板支持体3及びスペーサー21の形状は円形状に限るものではなく、真空容器1によって電子放出素子の形成領域が覆われ、且つ真空容器1とで閉空間が形成される形状であれば構わない。またこの2枚の基板とスペーサー21によって、あたかも1枚の基板が基板支持体3に載置されているような構成となっている。これは2枚の基板とスペーサー21の高さが同じになっていて、一枚の平面の基板が基板支持体3に載置されている状態が好ましい。また電圧印加前基板2aと電圧印加後基板2b及びスペーサー21がシール部材6と接触しないように回転スライド機構20の回転駆動機構(不図示)によって基板支持体3は回転する。この回転駆動機構は電動モーターであっても構わないし、油圧シリンダーエアシリンダーの推力をラックアンドピニオンの伝達要素を使って回転運動に変換する機構であっても構わない。また、回転スライド機構20は図3で言うと右回転、左回転のどちらでも構わない。   A view of the rotary slide mechanism 20 as viewed from above is shown in FIG. The substrate support 3 and the spacer 21 employed in this example are circular as shown in the figure, and the substrate 2a before voltage application and the substrate 2b after voltage application are placed by a substrate fixing mechanism (not shown). The spacer 21 may have a divided structure. Further, the shapes of the substrate support 3 and the spacer 21 are not limited to the circular shape, and may be any shape as long as the formation region of the electron-emitting device is covered by the vacuum vessel 1 and the closed space is formed with the vacuum vessel 1. Absent. Further, the two substrates and the spacer 21 are configured so that one substrate is placed on the substrate support 3. It is preferable that the two substrates and the spacers 21 have the same height, and one planar substrate is placed on the substrate support 3. Further, the substrate support 3 is rotated by a rotation drive mechanism (not shown) of the rotation slide mechanism 20 so that the substrate 2a before voltage application, the substrate 2b after voltage application, and the spacer 21 do not contact the seal member 6. This rotational drive mechanism may be an electric motor or a mechanism that converts the thrust of the hydraulic cylinder air cylinder into a rotational motion using a rack and pinion transmission element. Further, the rotary slide mechanism 20 may be rotated in the right direction or the left direction in FIG.

(実施例1)
第1の実施形態の装置において昇降機構4の降下移動距離を2mmとして基板交換を実施し、排気時間を測定した。尚、図1に示す真空容器1の材料はステンレス鋼製でSUS304Lを使用し、真空容器1の内面は電解複合研磨処理を施した。真空容器1の体積は0.17m3、真空容器1の加熱温度50℃、真空容器1と排気配管18の接続口での実効排気速度を900L/sとして120秒間の基板交換を想定して排気時間の測定を行った。また、この測定を実施する前に真空容器1は10時間150℃の脱ガス処理を施した。
Example 1
In the apparatus of the first embodiment, the lowering movement distance of the elevating mechanism 4 was set to 2 mm, the substrate was replaced, and the exhaust time was measured. The material of the vacuum vessel 1 shown in FIG. 1 is made of stainless steel and SUS304L was used, and the inner surface of the vacuum vessel 1 was subjected to electrolytic composite polishing. The volume of the vacuum vessel 1 is 0.17 m 3 , the heating temperature of the vacuum vessel 1 is 50 ° C., the effective exhaust speed at the connection port between the vacuum vessel 1 and the exhaust pipe 18 is 900 L / s, and the substrate is exhausted assuming 120 seconds of substrate replacement. Time was measured. Further, before carrying out this measurement, the vacuum vessel 1 was degassed at 150 ° C. for 10 hours.

また、比較例として、昇降機構4の降下移動距離を300mmとして低露点ガスのパージが不十分である状態(大気が容器内に接触する状態)として基板交換を実施した。この際の交換時間は120秒として行った。   Further, as a comparative example, the substrate replacement was performed in a state where the lowering movement distance of the elevating mechanism 4 was 300 mm and the purge of the low dew point gas was insufficient (a state where the atmosphere was in contact with the inside of the container). The exchange time at this time was 120 seconds.

測定結果は、1.0×10-4Paまでの排気時間は、実施例は約7.4分、比較例は約8.9分であった。また3.0×10-5Paまでの排気時間は、実施例は28.3分、比較例は39分となった。尚、真空容器1は粗引きポンプ(不図示)で大気圧から排気したが、本例では70Paまで粗引きして、その所要時間はいずれの場合も100秒であり、前述の排気時間に含まれる。 As a result of the measurement, the exhaust time up to 1.0 × 10 −4 Pa was about 7.4 minutes in the example and about 8.9 minutes in the comparative example. The exhaust time up to 3.0 × 10 −5 Pa was 28.3 minutes in the example and 39 minutes in the comparative example. The vacuum vessel 1 was evacuated from the atmospheric pressure by a roughing pump (not shown). In this example, the vacuum vessel 1 was roughly evacuated to 70 Pa, and the required time was 100 seconds in all cases, and included in the evacuation time described above. It is.

従って、この測定結果から、本発明の装置では、真空容器1への大気混入量を軽減して短時間で所定の雰囲気に排気できることを確認した。   Therefore, from this measurement result, it was confirmed that the apparatus of the present invention can reduce the amount of air mixed into the vacuum vessel 1 and exhaust it to a predetermined atmosphere in a short time.

(実施例2)
第2の実施形態の装置を用いる以外は実施例1と同様にして、排気時間を測定した。比較例としては、実施例1と同様に昇降機構4の降下移動距離を300mmとした。
(Example 2)
Exhaust time was measured in the same manner as in Example 1 except that the apparatus of the second embodiment was used. As a comparative example, the lowering movement distance of the lifting mechanism 4 was set to 300 mm as in the first embodiment.

その結果、1.0×-4Paまでの排気時間は、実施例は約7.4分、比較例は約8.9分であった。また3.0×10-5Paまでの排気時間は、実施例は29.9分、比較例は39分となった。尚、真空容器1は粗引きポンプ(不図示)で大気圧から排気したが、本例では70Paまで粗引きして、その所要時間はいずれの場合も100秒であり、前述の排気時間に含まれている。 As a result, the exhaust time to 1.0 × -4 Pa, embodiments about 7.4 minutes, Comparative Example was about 8.9 minutes. The exhaust time up to 3.0 × 10 −5 Pa was 29.9 minutes in the example and 39 minutes in the comparative example. The vacuum vessel 1 was evacuated from the atmospheric pressure by a roughing pump (not shown). In this example, the vacuum vessel 1 was roughly evacuated to 70 Pa, and the required time was 100 seconds in all cases, and included in the evacuation time described above. It is.

従って、この測定結果から、本発明の装置では、真空容器1への大気混入量を軽減して短時間で所定の雰囲気に排気できることを確認した。   Therefore, from this measurement result, it was confirmed that the apparatus of the present invention can reduce the amount of air mixed into the vacuum vessel 1 and exhaust it to a predetermined atmosphere in a short time.

本発明の製造装置の一実施形態の構成を模式的示す図である。It is a figure which shows typically the structure of one Embodiment of the manufacturing apparatus of this invention. 本発明の製造装置の他の実施形態の構成を模式的に示す図である。It is a figure which shows typically the structure of other embodiment of the manufacturing apparatus of this invention. 図2の製造装置の回転スライド機構を上面から見た時の図である。It is a figure when the rotation slide mechanism of the manufacturing apparatus of FIG. 2 is seen from the upper surface.

符号の説明Explanation of symbols

1 真空容器
2a、2b 電子源基板
3 基板支持体
4 昇降機構
5a乃至5h バルブ
6 シール部材
7 駆動ドライバー
DESCRIPTION OF SYMBOLS 1 Vacuum container 2a, 2b Electron source board | substrate 3 Substrate support body 4 Lifting mechanism 5a thru | or 5h Valve | bulb 6 Seal member 7 Drive driver

Claims (1)

基板と、該基板の表面に形成された複数の電子放出素子と、該電子放出素子を互いに接続する複数本の配線と、を備えた電子源の製造装置であって、
少なくとも2枚の基板を載置するための支持体と、電子放出素子が形成される領域を上方から覆い、上記基板との間で閉空間を形成する容器と、該閉空間の雰囲気を制御する手段と、上記配線に電圧を印加する手段と、容器或いは支持体の昇降機構と、容器或いは支持体の水平移動手段とを備え、
上記基板の電子放出素子が形成される領域を容器で覆って閉空間を形成し、該閉空間の雰囲気を制御して配線に電圧を印加する処理を施した後、支持体を容器に対して相対的に降下させることで容器を基板から離し、支持体を容器に対して相対的に水平移動させることによって容器を他方の基板上に移動させ、支持体を容器に対して相対的に上昇させることによって他方の基板と容器とで閉空間を形成し、電圧印加処理が終了した基板を新たな基板に交換する操作を繰り返す工程において、電圧印加処理後の閉空間を低露点ガスでパージした後、他方の基板の閉空間を形成するまでの間、容器内のパージを継続することを特徴とする電子源の製造装置。
An electron source manufacturing apparatus comprising a substrate, a plurality of electron-emitting devices formed on the surface of the substrate, and a plurality of wirings that connect the electron-emitting devices to each other,
A support for mounting at least two substrates, a container for covering the region where the electron-emitting devices are formed from above, and forming a closed space with the substrate, and controlling the atmosphere of the closed space Means, a means for applying a voltage to the wiring, an elevating mechanism for the container or the support, and a horizontal moving means for the container or the support,
A region where the electron-emitting device of the substrate is formed is covered with a container to form a closed space, and after applying a voltage to the wiring by controlling the atmosphere of the closed space, the support is attached to the container. The container is moved away from the substrate by lowering, and the support is moved horizontally relative to the container to move the container onto the other substrate and raise the support relative to the container. In this process of forming a closed space between the other substrate and the container and repeating the operation of replacing the substrate on which the voltage application process has been completed with a new substrate, the closed space after the voltage application process is purged with a low dew point gas. The purging of the container is continued until the closed space of the other substrate is formed.
JP2008214915A 2008-08-25 2008-08-25 Manufacturing device for electron source Withdrawn JP2010050012A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008214915A JP2010050012A (en) 2008-08-25 2008-08-25 Manufacturing device for electron source

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008214915A JP2010050012A (en) 2008-08-25 2008-08-25 Manufacturing device for electron source

Publications (1)

Publication Number Publication Date
JP2010050012A true JP2010050012A (en) 2010-03-04

Family

ID=42066916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008214915A Withdrawn JP2010050012A (en) 2008-08-25 2008-08-25 Manufacturing device for electron source

Country Status (1)

Country Link
JP (1) JP2010050012A (en)

Similar Documents

Publication Publication Date Title
US8945340B2 (en) Plasma processing apparatus, and maintenance method and assembling method of the same
JP5090536B2 (en) Substrate processing method and substrate processing apparatus
JP2010169308A (en) Dryer
JP5898523B2 (en) Vacuum processing apparatus and method for manufacturing article using vacuum processing apparatus
JP3890258B2 (en) Electron source manufacturing method and electron source manufacturing apparatus
JP3667256B2 (en) Electron source manufacturing equipment
JP3754883B2 (en) Manufacturing method of image display device
JP2017147263A (en) Depositing device, depositing method, program, and computer readable storage medium
JP2010050012A (en) Manufacturing device for electron source
KR100727735B1 (en) Method and device for producing gas electric discharge panels
JP2004184502A (en) Electron source manufacturing device
JP4796120B2 (en) Room temperature bonding equipment
WO2011077662A1 (en) Vacuum deposition apparatus and maintenance method therefor
JP2004288982A (en) Treatment apparatus
JP3980573B2 (en) Gas exchange device and lamp manufacturing device
KR19990078280A (en) Vacuum envelope and method for evacuating the same
JP7445408B2 (en) Substrate processing equipment and startup or maintenance methods for substrate processing equipment
JP2000215835A (en) Vacuum treatment device and vacuum treatment method
EP0635875B1 (en) Apparatus for heat treatment
JP2003092061A (en) Voltage impressing device, manufacturing device and method of electron source
JP2005025977A (en) Manufacturing method of electron source and manufacturing device of electron source
JP2009209435A (en) Atomic layer film deposition device
JP4280743B2 (en) Image display device manufacturing device
JP2004165041A (en) Electron source manufacturing device
KR100859645B1 (en) Structure for preventing pollution of wafer for semiconductor fabricating apparatus

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111101