JP2010049856A - Spark plug with thermal sensor - Google Patents

Spark plug with thermal sensor Download PDF

Info

Publication number
JP2010049856A
JP2010049856A JP2008211426A JP2008211426A JP2010049856A JP 2010049856 A JP2010049856 A JP 2010049856A JP 2008211426 A JP2008211426 A JP 2008211426A JP 2008211426 A JP2008211426 A JP 2008211426A JP 2010049856 A JP2010049856 A JP 2010049856A
Authority
JP
Japan
Prior art keywords
center electrode
electrode
tip
temperature
electrode member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008211426A
Other languages
Japanese (ja)
Inventor
Yasuhide Shimanoue
泰英 島ノ上
Hisakazu Hiraoka
久和 平岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2008211426A priority Critical patent/JP2010049856A/en
Publication of JP2010049856A publication Critical patent/JP2010049856A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spark plug with a thermal sensor capable of more precisely carrying out temperature measurement, through restraint of spark exhaustion at the tip part of a center electrode. <P>SOLUTION: The center electrode 20 has a contact point 71 of a thermocouple 70 formed inside a tip part 22. At the tip part, a ring-shaped electrode member 80 made of a precious metal alloy is fitted in such a form as to surround an outer periphery of the tip part 22 in a peripheral direction including an outer periphery edge 23 of a tip face 21 of a base material of the center electrode 20. An outer periphery edge 83 of a tip face 81 of the electrode member 80 forms an angle part at the tip part 22 of the center electrode 20. Spark discharge against a grounding electrode takes place with the angle part as a starting point, so that exhaustion of the center electrode 20 itself is restrained. Therefore, a state of thermal draw around the contact point 71 is hard to vary, so that a temperature indicating value measured by the thermocouple 70 is hard to vary even during a long period of use of the temperature-measuring plug. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、中心電極の先端部内に温度センサを収容し、中心電極の温度を測定することができる温度センサ付きスパークプラグに関するものである。   The present invention relates to a spark plug with a temperature sensor that can accommodate a temperature sensor in a tip portion of a center electrode and can measure the temperature of the center electrode.

近年、内燃機関の小型化や高性能化が進み、燃焼室内の温度は上昇傾向にある。内燃機関の点火にはスパークプラグが用いられるが、こうしたスパークプラグを開発する上で、内燃機関から受ける熱負荷の影響を考慮する必要がある。そこで、スパークプラグの受ける熱負荷を確認できるように、中心電極の内部に温度センサを収容した、温度センサ付きスパークプラグ(内燃機関用温測プラグ)が開発されている(例えば、特許文献1参照。)。特許文献1に記載の温度センサ付きスパークプラグは、軸方向に延びる挿入孔を設けた中心電極内に熱電対を挿入し、熱電対ごと中心電極の先端部を溶融して熱電対の接点を形成することで温度センサとして機能させるとともに、両者を固定したものである。
特開平9−35849号公報
In recent years, the internal combustion engine has been reduced in size and performance, and the temperature in the combustion chamber tends to rise. Spark plugs are used for ignition of internal combustion engines, but in developing such spark plugs, it is necessary to consider the influence of the thermal load received from the internal combustion engine. Therefore, a spark plug with a temperature sensor (a temperature measurement plug for an internal combustion engine) in which a temperature sensor is accommodated in the center electrode has been developed so that the thermal load received by the spark plug can be confirmed (see, for example, Patent Document 1). .) In the spark plug with a temperature sensor described in Patent Document 1, a thermocouple is inserted into a center electrode provided with an insertion hole extending in the axial direction, and the tip of the center electrode is melted together with the thermocouple to form a thermocouple contact. By doing so, it functions as a temperature sensor and both are fixed.
JP 9-35849 A

しかしながら、特許文献1の温度センサ付きスパークプラグは、接地電極との間で行われる火花放電により中心電極の先端部が消耗して体積が減少すると、その先端部内に配置された温度センサ(熱電対の接点)付近において中心電極の熱引きの度合いが変化する。このため、中心電極が消耗するにつれて、温度センサによって測定される温度の値(以下、「温度指示値」という。)が新品のもの(中心電極が消耗する前のもの)に対し、大きくずれてしまうという問題があった。そこで、中心電極の先端面に、例えばPt等の貴金属チップを接合し、中心電極の消耗を抑制することが考えられる。しかし、中心電極は主にNiを主体とするものが多く、Ptとは熱伝導率が異なるため、得られる温度指示値が、従来の温度センサ付きスパークプラグによって得られる温度指示値とずれてしまい、過去の資源(温度測定データなど)を有効利用しにくくなるという問題があった。   However, the spark plug with a temperature sensor of Patent Document 1 has a temperature sensor (thermocouple) disposed in the tip when the tip of the center electrode is consumed due to spark discharge between the ground electrode and the volume decreases. The degree of heat extraction of the center electrode changes in the vicinity of the contact). For this reason, as the center electrode is consumed, the temperature value measured by the temperature sensor (hereinafter referred to as “temperature indication value”) greatly deviates from the new one (before the center electrode is consumed). There was a problem that. Thus, it is conceivable to suppress wear of the center electrode by bonding a noble metal tip such as Pt to the tip surface of the center electrode. However, since the center electrode is mainly composed mainly of Ni and has a thermal conductivity different from that of Pt, the obtained temperature indication value is different from the temperature indication value obtained by the conventional spark plug with a temperature sensor. There is a problem that it becomes difficult to effectively use past resources (such as temperature measurement data).

本発明は上記問題点を解決するためになされたものであり、中心電極の先端部の火花消耗を抑制し、より正確に温度測定を行うことができる温度センサ付きスパークプラグを提供することを目的とする。   The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a spark plug with a temperature sensor that can suppress the consumption of sparks at the tip of the center electrode and can perform temperature measurement more accurately. And

本発明に係る温度センサ付きスパークプラグは、軸線方向に沿う挿入孔が形成され、その挿入孔が自身の先端部において閉じられた有底筒状をなす中心電極と、前記挿入孔内に挿入され、温度を測定する測定部が前記中心電極の前記先端部内に配置された状態で、その挿入孔内に固定される温度センサと、軸線方向に沿って延びる軸孔を有し、その軸孔内で前記中心電極を保持する絶縁碍子と、前記絶縁碍子を周方向に取り囲んで保持する主体金具と、一端部が前記主体金具に接合され、他端部が前記中心電極の前記先端部に向けて屈曲された接地電極と、を備えた温度センサ付きスパークプラグにおいて、前記中心電極の前記先端部には、前記中心電極の母材の先端面の外周縁を含む前記中心電極の前記母材の先端部の外周を周方向に取り囲む電極部材が設けられていることを特徴とする。   A spark plug with a temperature sensor according to the present invention has an insertion hole formed along an axial direction, and the insertion hole is inserted into the insertion hole, with a center electrode having a bottomed cylinder shape closed at the tip of the insertion hole. A temperature sensor that is fixed in the insertion hole in a state in which the temperature measurement unit is disposed in the tip of the center electrode, and an axial hole that extends in the axial direction. And an insulator that holds the center electrode, a metal shell that surrounds and holds the insulator in a circumferential direction, one end portion is joined to the metal shell, and the other end portion is directed toward the tip of the center electrode. A spark plug with a temperature sensor, wherein the tip of the center electrode includes an outer peripheral edge of a tip surface of the base material of the center electrode. Take the outer circumference of the section in the circumferential direction Wherein the electrodeless member.

本発明によれば、中心電極の先端部に設けられる電極部材が、中心電極の母材の先端面の外周縁を含んだ上で中心電極の母材の先端部の外周を周方向に取り囲んで設けられるので、電界の集中により火花放電の起点を誘導しやすい稜角部分は、電極部材によって構成されることとなる。その電界の集中により接地電極との間での火花放電が電極部材との間で発生すれば、接地電極と中心電極の母材の先端部との間では発生しにくくなるので、火花放電に伴う中心電極の先端部の消耗を抑制することができる。そして中心電極の先端部の消耗を抑え先端部における体積の変動を抑制できれば、温度センサ付きスパークプラグの長期にわたる使用においても、温度センサによる中心電極の温度の測定値の変動を十分に抑えた正確な温度測定を行うことができる。   According to the present invention, the electrode member provided at the front end portion of the center electrode includes the outer peripheral edge of the front end surface of the center electrode base material and surrounds the outer periphery of the front end portion of the center electrode base material in the circumferential direction. Since it is provided, the ridge angle portion where the starting point of the spark discharge is easily induced by the concentration of the electric field is constituted by the electrode member. If a spark discharge occurs between the ground electrode and the electrode member due to the concentration of the electric field, the spark discharge is less likely to occur between the ground electrode and the tip of the base electrode base material. It is possible to suppress the consumption of the tip of the center electrode. And, if the consumption of the tip of the center electrode can be suppressed and fluctuations in the volume at the tip can be suppressed, even when the spark plug with temperature sensor is used over a long period of time, the accuracy of the temperature sensor's measured temperature fluctuations can be suppressed sufficiently. Temperature measurement can be performed.

ところで、中心電極の先端部に設けた電極部材の熱伝導率が中心電極母材の熱伝導率と異なることにより、従来の電極部材の設けられていない中心電極と比べて先端部における熱引きの状態に違いが生ずる。そこで、本発明に係る温度センサ付きスパークプラグにおいて、前記中心電極の前記先端部の外径をdとしたとき、1.7≦d≦3.0[mm]を満たしてもよい。中心電極の先端部の外径dが1.7mm未満では、中心電極の先端部において、電極部材の占める体積の割合が中心電極の母材に対して大きくなってしまう。すると、中心電極全体としての熱引き性能が変化し、温度センサにより測定される中心電極の温度の値(温度指示値)と実際の中心電極の温度との間の誤差が大きくなる虞がある。   By the way, the heat conductivity of the electrode member provided at the tip of the center electrode is different from the heat conductivity of the center electrode base material. A difference occurs in the state. Therefore, in the spark plug with a temperature sensor according to the present invention, 1.7 ≦ d ≦ 3.0 [mm] may be satisfied, where d is the outer diameter of the tip of the center electrode. If the outer diameter d of the front end portion of the center electrode is less than 1.7 mm, the proportion of the volume occupied by the electrode member at the front end portion of the center electrode is larger than the base material of the center electrode. Then, the heat extraction performance of the center electrode as a whole changes, and there is a possibility that an error between the temperature value (temperature indication value) of the center electrode measured by the temperature sensor and the actual temperature of the center electrode increases.

また、電極部材は、中心電極の母材の先端面の外周縁を含む中心電極の母材の先端部の外周に設けられるため、電界の集中により火花放電の起点となりやすい稜角部分は電極部材により構成される。中心電極の先端部の外径dが3.0mmより大きくなると、中心電極の先端面の中央がその稜角部分から遠ざかってしまうため、稜角部分での電界の集中による火花放電の起点の誘導が中心電極の先端面に対して及びにくくなる。すると、接地電極と中心電極の先端面との間で火花放電が発生して中心電極が消耗し、温度センサの示す温度指示値にずれが生ずる虞がある。   In addition, since the electrode member is provided on the outer periphery of the front end portion of the center electrode base material including the outer peripheral edge of the front end surface of the center electrode base material, an edge portion that is likely to start a spark discharge due to electric field concentration is determined by the electrode member. Composed. When the outer diameter d of the tip of the center electrode is larger than 3.0 mm, the center of the tip surface of the center electrode moves away from the ridge angle portion, so that the induction of the starting point of the spark discharge due to the concentration of the electric field at the ridge angle portion is the center. It becomes difficult to reach the tip surface of the electrode. Then, a spark discharge occurs between the ground electrode and the tip surface of the center electrode, the center electrode is consumed, and there is a possibility that the temperature indication value indicated by the temperature sensor is shifted.

また、本発明に係る温度センサ付きスパークプラグにおいて、前記中心電極の前記先端部に形成され、前記中心電極が有底筒状となるように前記挿入孔を閉じる底壁部は、前記中心電極の軸線方向におけるその厚みをhとしたときに、0.5≦h≦1.5[mm]を満たしてもよい。中心電極の底壁部の厚みhが0.5mmより小さい場合、その底壁部において中心電極は十分な体積を有することができず、中心電極の先端部において、電極部材の占める体積の割合が中心電極の母材に対して大きくなってしまう。すると、中心電極全体としての熱引き性能が変化し、温度センサにより測定される中心電極の温度の値(温度指示値)と実際の中心電極の温度との間の誤差が大きくなる虞がある。   Further, in the spark plug with a temperature sensor according to the present invention, a bottom wall portion formed at the tip portion of the center electrode and closing the insertion hole so that the center electrode has a bottomed cylindrical shape is formed on the center electrode. When the thickness in the axial direction is h, 0.5 ≦ h ≦ 1.5 [mm] may be satisfied. When the thickness h of the bottom wall portion of the center electrode is smaller than 0.5 mm, the center electrode cannot have a sufficient volume in the bottom wall portion, and the ratio of the volume occupied by the electrode member at the tip portion of the center electrode is It becomes large with respect to the base material of the center electrode. Then, the heat extraction performance of the center electrode as a whole changes, and there is a possibility that an error between the temperature value (temperature indication value) of the center electrode measured by the temperature sensor and the actual temperature of the center electrode increases.

一方、中心電極の底壁部の厚みhが1.5mmより大きい場合、中心電極は先端部においてもともと十分な体積を有するため、火花放電によって中心電極が消耗しても、先端部における熱引き性能に与える影響が小さく、温度センサの示す温度指示値への影響も小さい。このため、底壁部の厚みhが1.5mmより大きい中心電極を有する温度センサ付きスパークプラグについては本発明の対象外としている。   On the other hand, when the thickness h of the bottom wall portion of the center electrode is larger than 1.5 mm, the center electrode originally has a sufficient volume at the tip portion, so even if the center electrode is consumed by spark discharge, the heat extraction performance at the tip portion The influence on the temperature indication value indicated by the temperature sensor is also small. For this reason, a spark plug with a temperature sensor having a center electrode having a bottom wall thickness h greater than 1.5 mm is not covered by the present invention.

また、本発明に係る温度センサ付きスパークプラグにおいて、前記中心電極の前記先端面における前記電極部材の径方向の厚みをtとしたとき、0.2≦t≦0.5[mm]を満たしてもよい。電極部材の径方向の厚みtが0.2mmより小さいと、電極部材自身が火花放電により消耗し、中心電極の消耗抑制に対し十分な効果を得られなくなる虞がある。また、一般に、Ni等の合金が用いられる中心電極の母材は他の金属と比べ放電を生じやすい(電子を放出しやすい)ことが知られている。このため、電極部材の径方向の厚みtが小さくなって中心電極の母材の先端面の外周縁が、電極部材を含む中心電極全体としての稜角部分に近づくと、その稜角部分における電界集中によって誘導された火花放電の起点が、より放電しやすい中心電極母材側に移行して、中心電極の消耗を招き、温度センサの示す温度指示値にずれが生ずる虞がある。   Moreover, in the spark plug with a temperature sensor according to the present invention, when t is a radial thickness of the electrode member on the tip surface of the center electrode, 0.2 ≦ t ≦ 0.5 [mm] is satisfied. Also good. If the thickness t in the radial direction of the electrode member is smaller than 0.2 mm, the electrode member itself is consumed by spark discharge, and there is a possibility that a sufficient effect for suppressing consumption of the center electrode cannot be obtained. In general, it is known that a base electrode base material using an alloy such as Ni is more likely to cause discharge (emit electrons) than other metals. For this reason, when the thickness t in the radial direction of the electrode member is reduced and the outer peripheral edge of the front end surface of the base electrode of the center electrode approaches the ridge angle portion as the entire center electrode including the electrode member, electric field concentration at the ridge angle portion The starting point of the induced spark discharge is shifted to the center electrode base material side where discharge is more likely to occur, leading to the consumption of the center electrode, and there is a possibility that the temperature indication value indicated by the temperature sensor is shifted.

一方、電極部材の径方向の厚みtが0.5mmより大きいと、中心電極の先端部において、電極部材の占める体積の割合が中心電極に対して大きくなってしまう。すると、中心電極全体として熱引き性能が変化し、温度センサにより測定される中心電極の温度の値(温度指示値)と実際の中心電極の温度との間の誤差が大きくなる虞がある。   On the other hand, when the thickness t in the radial direction of the electrode member is larger than 0.5 mm, the proportion of the volume occupied by the electrode member at the tip end portion of the center electrode is larger than that of the center electrode. Then, the heat extraction performance of the center electrode as a whole changes, and there is a possibility that an error between the temperature value (temperature indication value) of the center electrode measured by the temperature sensor and the actual temperature of the center electrode becomes large.

また、本発明に係る温度センサ付きスパークプラグにおいて、前記中心電極の軸線方向において、前記先端面から後端側に向かって前記電極部材の延びる長さをwとしたとき、0.6≦w≦1.4[mm]を満たしてもよい。電極部材の軸線方向の長さwが0.6mmより小さいと、中心電極の母材の外周面が、電極部材を含む中心電極全体としての稜角部分に近づき、その稜角部分における電界集中によって誘導された火花放電の起点が、より放電しやすい中心電極の母材側に移行して、中心電極の消耗を招き、温度センサの示す温度指示値にずれが生ずる虞がある。   In the spark plug with a temperature sensor according to the present invention, when the length of the electrode member extending from the front end surface toward the rear end side in the axial direction of the center electrode is w, 0.6 ≦ w ≦ It may satisfy 1.4 [mm]. When the length w of the electrode member in the axial direction is less than 0.6 mm, the outer peripheral surface of the base material of the center electrode approaches the ridge angle portion of the entire center electrode including the electrode member, and is induced by electric field concentration at the ridge angle portion. Further, the starting point of the spark discharge moves to the base material side of the center electrode that is more likely to be discharged, leading to the consumption of the center electrode, which may cause a deviation in the temperature indication value indicated by the temperature sensor.

一方、電極部材の軸線方向の長さwが1.4mmより大きいと、中心電極の先端部において、電極部材の占める体積の割合が中心電極に対して大きくなってしまう。すると、中心電極全体として熱引き性能が変化し、温度センサにより測定される中心電極の温度の値(温度指示値)と実際の中心電極の温度との間の誤差が大きくなる虞がある。   On the other hand, if the length w in the axial direction of the electrode member is larger than 1.4 mm, the proportion of the volume occupied by the electrode member at the tip of the center electrode is larger than that of the center electrode. Then, the heat extraction performance of the center electrode as a whole changes, and there is a possibility that an error between the temperature value (temperature indication value) of the center electrode measured by the temperature sensor and the actual temperature of the center electrode becomes large.

また、本発明に係る温度センサ付きスパークプラグにおいて、前記電極部材は、貴金属または貴金属を主成分とする合金からなり、貴金属として、Pt、Ir、Rhのうち少なくとも1種以上を含有するとよい。電極部材の材料として貴金属または貴金属を主成分とする合金を用いれば、耐火花消耗性が高く、望ましい。そして、貴金属としては、Pt、Ir、Rhなどが利用可能であり、それらのうち少なくとも1種以上を含有することが好ましい。   In the spark plug with a temperature sensor according to the present invention, the electrode member may be made of a noble metal or an alloy containing a noble metal as a main component, and may contain at least one of Pt, Ir, and Rh as the noble metal. Use of a noble metal or an alloy containing a noble metal as a main component as the material of the electrode member is desirable because it has high spark wear resistance. And as a noble metal, Pt, Ir, Rh, etc. can be utilized, and it is preferable to contain at least 1 or more types among them.

また、本発明に係る温度センサ付きスパークプラグにおいて、前記電極部材は、貴金属を、65重量%以上100重量%以下含有するとよい。電極部材の材料としてPtまたはPtからなる合金を用いた場合、そのPtの含有量を65重量%〜100重量%とすれば、電極部材自身の火花放電による消耗を抑制でき、ひいては中心電極の消耗を抑制することができ、望ましい。Ptの含有量を65重量%より少ない合金を電極部材の材料として用いると、電極部材が火花放電により消耗し、中心電極の消耗抑制に対し十分な効果を得られなくなる虞がある。   In the spark plug with a temperature sensor according to the present invention, the electrode member may contain a precious metal of 65 wt% or more and 100 wt% or less. When Pt or an alloy made of Pt is used as the material of the electrode member, if the Pt content is 65% by weight to 100% by weight, the electrode member itself can be prevented from being consumed by spark discharge, and the center electrode is consumed. Can be suppressed, which is desirable. When an alloy having a Pt content of less than 65% by weight is used as a material for the electrode member, the electrode member is consumed by spark discharge, and there is a possibility that a sufficient effect for suppressing the consumption of the center electrode cannot be obtained.

以下、本発明を具体化した温度センサ付きスパークプラグの一実施の形態について、図面を参照して説明する。まず、図1,図2を参照し、温度センサ付きスパークプラグの一例として、中心電極20の内部に、温度センサの一例としての熱電対70を収容した温測プラグ100の構造について説明する。図1は、温測プラグ100の部分断面図である。図2は、中心電極20の先端部22付近の断面を示す斜視図である。なお、図1において、温測プラグ100の軸線O方向を図面における上下方向とし、下側を温測プラグ100の先端側、上側を後端側として説明する。また、図2では、紙面上側が温測プラグ100の先端側となる。   Hereinafter, an embodiment of a spark plug with a temperature sensor embodying the present invention will be described with reference to the drawings. First, with reference to FIGS. 1 and 2, a structure of a temperature measuring plug 100 in which a thermocouple 70 as an example of a temperature sensor is accommodated in the center electrode 20 as an example of a spark plug with a temperature sensor will be described. FIG. 1 is a partial cross-sectional view of the temperature measuring plug 100. FIG. 2 is a perspective view showing a cross section near the tip 22 of the center electrode 20. In FIG. 1, the axis O direction of the temperature measurement plug 100 will be described as the vertical direction in the drawing, the lower side will be described as the front end side of the temperature measurement plug 100, and the upper side will be described as the rear end side. In FIG. 2, the upper side of the drawing is the tip side of the temperature measuring plug 100.

図1に示す、温測プラグ100は、外観的に一般的なスパークプラグと略同等の構成をなし、概略、自身の軸孔12内に中心電極20を保持する絶縁碍子10が、主体金具50の筒孔55内にて保持された構造を有する。中心電極20は、主体金具50に接合された接地電極30との間で火花放電間隙GAPを形成するが、その中心電極20の内部に熱電対70が収容されている。温測プラグ100は、中心電極20が燃焼室から受ける熱を熱電対70で測定可能としたものである。   A thermometer plug 100 shown in FIG. 1 has a configuration substantially the same as that of a general spark plug in appearance, and generally includes an insulator 10 that holds a center electrode 20 in its own shaft hole 12, and a metal shell 50. It has the structure hold | maintained in the cylindrical hole 55 of this. The center electrode 20 forms a spark discharge gap GAP with the ground electrode 30 joined to the metal shell 50, and a thermocouple 70 is accommodated in the center electrode 20. The thermometer plug 100 enables the heat received by the center electrode 20 from the combustion chamber to be measured by the thermocouple 70.

次に、中心電極20について説明する。中心電極20は、Ni合金から形成された棒状の電極を母材とする。中心電極20は、絶縁碍子10の軸孔12内の先端側に保持されており、その先端部22が絶縁碍子10の先端から突出されている。また、図2に示すように、中心電極20の内部には軸線O方向に沿う挿入孔25が形成されており、その挿入孔25は、先端部22において底壁部24によって閉じられている。すなわち中心電極20は有底筒状をなし、その内部に、後述する熱電対70が収容されている。   Next, the center electrode 20 will be described. The center electrode 20 uses a rod-shaped electrode formed of a Ni alloy as a base material. The center electrode 20 is held on the distal end side in the shaft hole 12 of the insulator 10, and the distal end portion 22 protrudes from the distal end of the insulator 10. Further, as shown in FIG. 2, an insertion hole 25 is formed in the center electrode 20 along the direction of the axis O, and the insertion hole 25 is closed by the bottom wall portion 24 at the distal end portion 22. That is, the center electrode 20 has a bottomed cylindrical shape, and a thermocouple 70 described later is accommodated therein.

また、中心電極20の先端部22は、絶縁碍子10の先端における軸孔12の内周面との間にくすぶり時の自己清浄用の間隙を設けるため、若干縮径されている。この先端部22には、Pt合金からなるリング状の電極部材80が設けられている。なお、この電極部材80の材料としては、少なくともPt,Ir,Rhのうちの少なくとも1種以上の貴金属を主成分とし、貴金属の含有量が65〜100重量%である合金を用いることが好ましい。電極部材80は、中心電極20の母材の先端面21の外周縁23を含み、先端部22における母材の外周を周方向に取り囲む形態で設けられ、中心電極20の母材と一体になっている。詳述すると、中心電極20の先端部22のうち、母材の先端面21から電極部材80の軸線O方向の長さ(後述する軸線O方向の長さw)分までの部位の外周が、電極部材80の厚さ(後述する径方向の厚みt)分、さらに縮径されており、電極部材80はその縮径部分に嵌められて、中心電極20の母材と一体になっている。このように設けられる電極部材80の外周面86は、中心電極20の先端部22において母材の外周面26に連続し、また、電極部材80の先端面81も、中心電極20の母材の先端面21に連続する形態となっている。つまり、電極部材80の先端面81の外周縁83が、中心電極20の先端部22における稜角部分を形成している。   Further, the distal end portion 22 of the center electrode 20 is slightly reduced in diameter in order to provide a gap for self-cleaning during smoldering with the inner peripheral surface of the shaft hole 12 at the distal end of the insulator 10. The tip portion 22 is provided with a ring-shaped electrode member 80 made of a Pt alloy. In addition, as a material of this electrode member 80, it is preferable to use the alloy which has at least 1 or more types of noble metal of Pt, Ir, and Rh as a main component, and a noble metal content is 65 to 100 weight%. The electrode member 80 includes an outer peripheral edge 23 of the tip surface 21 of the base material of the center electrode 20, is provided in a form surrounding the outer periphery of the base material in the tip portion 22 in the circumferential direction, and is integrated with the base material of the center electrode 20. ing. More specifically, the outer periphery of a portion of the distal end portion 22 of the center electrode 20 from the distal end surface 21 of the base material to the length in the direction of the axis O of the electrode member 80 (length w in the direction of the axis O described later) is The diameter of the electrode member 80 is further reduced by the thickness (diameter thickness t described later), and the electrode member 80 is fitted to the reduced diameter portion and integrated with the base material of the center electrode 20. The outer peripheral surface 86 of the electrode member 80 provided in this way is continuous with the outer peripheral surface 26 of the base material at the front end portion 22 of the center electrode 20, and the front end surface 81 of the electrode member 80 is also the base material of the central electrode 20. It has a form that is continuous with the tip surface 21. That is, the outer peripheral edge 83 of the distal end surface 81 of the electrode member 80 forms a ridge angle portion at the distal end portion 22 of the center electrode 20.

次に、図1に示すように、中心電極20は、軸孔12の内部に設けられたシール体4およびセラミック抵抗3を経由して、後方(図1における上方)の端子金具40と電気的に接続されている。端子金具40にはプラグキャップ(図示外)を介して高圧ケーブル(図示外)が接続され、火花放電のための高電圧が印加されるようになっている。   Next, as shown in FIG. 1, the center electrode 20 is electrically connected to the terminal fitting 40 on the rear side (upper side in FIG. 1) via the seal body 4 and the ceramic resistor 3 provided in the shaft hole 12. It is connected to the. A high voltage cable (not shown) is connected to the terminal fitting 40 via a plug cap (not shown) so that a high voltage for spark discharge is applied.

次に、熱電対70について説明する。本実施の形態では温度センサの一例として、図2に示す、熱電対70を、中心電極20の挿入孔25内に収容している。熱電対70は、耐熱合金製のシース管75内に異種の金属線(例えばクロメル−アルメル線)72,73を挿通しマグネシア等の絶縁粉末で固定したものであり、両金属線72,73の端部が中心電極20の挿入孔25を塞ぐ底壁部24に接合されて、温度の測定を行う接点71が形成されている。また、熱電対70は、絶縁碍子10の軸孔12内を軸線Oに沿って後端側へ延び、シール体4、セラミック抵抗3および端子金具40を貫通して温測プラグ100の後端から外方に露出されている。   Next, the thermocouple 70 will be described. In the present embodiment, as an example of the temperature sensor, a thermocouple 70 shown in FIG. 2 is accommodated in the insertion hole 25 of the center electrode 20. The thermocouple 70 is formed by inserting different types of metal wires (for example, chromel-alumel wires) 72 and 73 into a sheath tube 75 made of a heat-resistant alloy and fixing them with insulating powder such as magnesia. An end portion is joined to the bottom wall portion 24 that closes the insertion hole 25 of the center electrode 20, and a contact 71 for measuring temperature is formed. The thermocouple 70 extends in the shaft hole 12 of the insulator 10 along the axis O to the rear end side, penetrates the seal body 4, the ceramic resistor 3, and the terminal fitting 40 from the rear end of the temperature measuring plug 100. Exposed to the outside.

次いで、接地電極30について説明する。図1に示す接地電極30は、耐腐食性の高い金属から棒状に形成されたものであり、一例として、インコネル(商標名)600または601等のニッケル合金が用いられる。この接地電極30は自身の長手方向の横断面が略長方形を有しており、基部32が主体金具50の先端面57に溶接により接合されている。また、接地電極30の先端部31は中心電極20の先端部22に向かって屈曲され、両者間に火花放電間隙GAPが形成されている。   Next, the ground electrode 30 will be described. The ground electrode 30 shown in FIG. 1 is formed in a rod shape from a metal having high corrosion resistance. As an example, a nickel alloy such as Inconel (trade name) 600 or 601 is used. The ground electrode 30 has a substantially rectangular cross section in the longitudinal direction, and the base 32 is joined to the distal end surface 57 of the metal shell 50 by welding. The tip 31 of the ground electrode 30 is bent toward the tip 22 of the center electrode 20, and a spark discharge gap GAP is formed therebetween.

次に、主体金具50について説明する。主体金具50は、内燃機関のエンジンヘッド(図示外)に温測プラグ100を固定するための円筒状の金具であり、絶縁碍子10の後端側胴部18の一部から脚長部13にかけての部位を取り囲むようにして、絶縁碍子10を筒孔55に保持している。主体金具50は低炭素鋼材より形成され、図示外のスパークプラグレンチが嵌合する工具係合部51と、エンジンヘッドのねじ孔(図示外)に螺合するねじ山が形成された取付部52とを有する。また、主体金具50の工具係合部51と取付部52との間には、鍔状のシール部54が形成されている。そして、取付部52とシール部54との間には、温測プラグ100をエンジンヘッドの取付孔(図示外)に取り付けた際の気密漏れ防止のため、板体を折り曲げ環状に形成したガスケット5が嵌挿されている。   Next, the metal shell 50 will be described. The metal shell 50 is a cylindrical metal fitting for fixing the temperature measuring plug 100 to the engine head (not shown) of the internal combustion engine. The metal shell 50 extends from a part of the rear end side body portion 18 of the insulator 10 to the leg length portion 13. The insulator 10 is held in the cylindrical hole 55 so as to surround the part. The metal shell 50 is made of a low carbon steel material, and a tool engaging portion 51 to which a spark plug wrench (not shown) is fitted and a mounting portion 52 in which a screw thread to be screwed into a screw hole (not shown) of the engine head is formed. And have. Further, a hook-shaped seal portion 54 is formed between the tool engaging portion 51 and the attachment portion 52 of the metal shell 50. A gasket 5 is formed between the mounting portion 52 and the seal portion 54 by bending the plate body into an annular shape to prevent airtight leakage when the temperature measuring plug 100 is mounted in a mounting hole (not shown) of the engine head. Is inserted.

主体金具50の筒孔55内で取付部52の位置には内向きに突出する保持部56が設けられ、環状の板パッキン8を介し、絶縁碍子10の段部15が保持されている。また、主体金具50の工具係合部51より後端側には薄肉の加締部53が設けられている。そして、工具係合部51から加締部53にかけての主体金具50の筒孔55の内周と絶縁碍子10の後端側胴部18の外周との間に、円環状のリング部材6,7が介在されており、さらに両リング部材6,7間にタルク(滑石)9の粉末が充填されている。加締部53の加締めにより、筒孔55内で先端側に向け押圧された絶縁碍子10が加締部53と保持部56との間に支持されて、軸孔12内に中心電極20等を保持した絶縁碍子10と、主体金具50とが一体となる。   A holding portion 56 that protrudes inward is provided at the position of the attachment portion 52 in the cylindrical hole 55 of the metal shell 50, and the step portion 15 of the insulator 10 is held via the annular plate packing 8. Further, a thin caulking portion 53 is provided on the rear end side of the metal fitting 50 from the tool engaging portion 51. And between the inner periphery of the cylindrical hole 55 of the metal shell 50 from the tool engaging portion 51 to the caulking portion 53 and the outer periphery of the rear end side body portion 18 of the insulator 10, the annular ring members 6, 7 Is interposed between the ring members 6 and 7 and talc (talc) 9 powder is filled. By the caulking of the caulking portion 53, the insulator 10 pressed toward the front end side in the cylindrical hole 55 is supported between the caulking portion 53 and the holding portion 56, and the center electrode 20 and the like are accommodated in the shaft hole 12. And the metal shell 50 are integrated.

このように、中心電極20の母材の先端面21の外周縁23を含む先端部22の外周を周方向に取り囲むリング状の電極部材80を設けたことで、電界集中によって接地電極30との間での火花放電の起点を誘導しやすい稜角部分が電極部材80により構成されることとなり、中心電極20の消耗が抑えられる。中心電極が消耗すると熱電対の接点付近における熱引きの状態が変化して測定される温度の値(温度指示値)が消耗前の値と異なってしまう虞があるが、本実施の形態の温測プラグ100であれば、温測プラグ100の長期の使用においてもこうした温度指示値への影響を効果的に低減することができる。もっとも、温測プラグ100はスパークプラグや自動車の設計等において試験用に用いるプラグであり、試験対象のスパークプラグの中心電極には電極部材が設けられていない。本実施の形態では、Ni合金からなる中心電極20とは熱伝導率の異なるPt等の貴金属を用いた電極部材80を先端部22に設けたことにより熱電対70の温度指示値に対して及ぶ影響を低減するため、電極部材80や中心電極20の大きさを以下のように規定している。   Thus, by providing the ring-shaped electrode member 80 that circumferentially surrounds the outer periphery of the distal end portion 22 including the outer peripheral edge 23 of the distal end surface 21 of the base material of the center electrode 20, the contact with the ground electrode 30 due to electric field concentration is provided. The ridge angle portion that easily induces the starting point of the spark discharge between them is constituted by the electrode member 80, and the consumption of the center electrode 20 is suppressed. When the center electrode is consumed, the heat value in the vicinity of the thermocouple contact changes, and the measured temperature value (temperature indication value) may be different from the value before consumption. With the measurement plug 100, the influence on the temperature indication value can be effectively reduced even when the temperature measurement plug 100 is used for a long time. However, the temperature measuring plug 100 is a plug used for a test in the design of a spark plug or an automobile, and the electrode member is not provided on the center electrode of the spark plug to be tested. In the present embodiment, an electrode member 80 using a noble metal such as Pt having a different thermal conductivity from the central electrode 20 made of an Ni alloy is provided at the tip 22 to reach the temperature indication value of the thermocouple 70. In order to reduce the influence, the sizes of the electrode member 80 and the center electrode 20 are defined as follows.

図2に示すように、中心電極20の先端部22における外径をdとしたとき、本実施の形態では外径dの大きさをφ1.7〜φ3.0[mm]に規定している。中心電極20の先端部22には電極部材80が設けられるが、電極部材80自身の火花放電に伴う消耗を抑えるにはある程度の大きさを確保する必要があり、先端部22の外径dがφ1.7mmより小さいと、その先端部22において中心電極20の母材の占める体積に対し電極部材80の占める体積の割合が大きくなってしまう。中心電極20の母材と電極部材80との熱伝導率の違いから、電極部材80の占める体積の割合が増えると中心電極20全体としての熱引き性能が変化し、熱電対70により測定される中心電極20の温度指示値と実際の中心電極20の温度との間の誤差が大きくなる虞がある。   As shown in FIG. 2, when the outer diameter at the distal end portion 22 of the center electrode 20 is d, in the present embodiment, the size of the outer diameter d is defined as φ1.7 to φ3.0 [mm]. . An electrode member 80 is provided at the distal end portion 22 of the center electrode 20. However, it is necessary to ensure a certain size in order to suppress wear caused by the spark discharge of the electrode member 80 itself, and the outer diameter d of the distal end portion 22 is small. If the diameter is smaller than 1.7 mm, the ratio of the volume occupied by the electrode member 80 to the volume occupied by the base material of the center electrode 20 at the tip 22 becomes large. Due to the difference in thermal conductivity between the base material of the center electrode 20 and the electrode member 80, when the volume ratio occupied by the electrode member 80 increases, the heat extraction performance of the center electrode 20 as a whole changes and is measured by the thermocouple 70. There is a possibility that an error between the temperature indication value of the center electrode 20 and the actual temperature of the center electrode 20 becomes large.

また、電極部材80は、中心電極20の母材の先端面21の外周縁23を含む先端部22の外周に設けられているため、電極部材80の先端面81の外周縁83において、先端面81と外周面86とがなす稜角が形成される。中心電極20の母材は、Ni合金からなり、Pt合金からなる電極部材80よりも電子を放出しやすいため、より低い電圧で放電を生じやすい。しかし、上記の稜角部分では電界集中を生じやすく、その稜角部分が中心電極20の母材の先端面21を一周して取り巻いている。このため、稜角部分を構成するのが電極部材80であっても、その稜角部分に火花放電の起点(発生位置)が誘導され、接地電極30と電極部材80の外周縁83との間で火花放電を生じやすくなるため、中心電極20の消耗が抑えられる。   In addition, since the electrode member 80 is provided on the outer periphery of the distal end portion 22 including the outer peripheral edge 23 of the distal end surface 21 of the base material of the center electrode 20, the distal end surface of the outer peripheral edge 83 of the distal end surface 81 of the electrode member 80 is A ridge angle formed by 81 and the outer peripheral surface 86 is formed. Since the base material of the center electrode 20 is made of an Ni alloy and emits electrons more easily than the electrode member 80 made of a Pt alloy, discharge is likely to occur at a lower voltage. However, electric field concentration is likely to occur at the ridge angle portion, and the ridge angle portion surrounds the distal end surface 21 of the base material of the center electrode 20. Therefore, even if the electrode member 80 constitutes the ridge angle portion, the starting point (generation position) of the spark discharge is induced at the ridge angle portion, and a spark is generated between the ground electrode 30 and the outer peripheral edge 83 of the electrode member 80. Since discharge tends to occur, the consumption of the center electrode 20 can be suppressed.

ここで、中心電極20の先端部22の外径dが大きくなると、母材の先端面21の中央が、電極部材80の先端面81の外周縁83から遠ざかり、上記稜角部分における電界集中による火花放電の起点の誘導が、中心電極20の母材の先端面21に対して及びにくくなる。具体的に、外径dがφ3.0mmより大きくなると、接地電極30と中心電極20の母材の先端面21との間で火花放電が発生して中心電極20が消耗し、熱電対70の示す温度指示値にずれが生ずる虞がある。   Here, when the outer diameter d of the distal end portion 22 of the center electrode 20 is increased, the center of the distal end surface 21 of the base material is moved away from the outer peripheral edge 83 of the distal end surface 81 of the electrode member 80, and a spark due to electric field concentration at the ridge angle portion. The induction of the discharge starting point is difficult to reach the front end surface 21 of the base material of the center electrode 20. Specifically, when the outer diameter d is larger than φ3.0 mm, a spark discharge occurs between the ground electrode 30 and the tip end surface 21 of the base electrode 20, and the center electrode 20 is consumed, and the thermocouple 70 There is a possibility that a deviation occurs in the indicated temperature value.

次に、中心電極20の底壁部24について、軸線O方向におけるその厚みをhとしたとき、本実施の形態では、厚みhの大きさを0.5mm〜1.5mmに規定している。中心電極20の底壁部24の厚みhが1.5mmより大きい場合、中心電極20は先端部22においてもともと十分な体積を有するため、火花放電によって中心電極20が消耗しても、先端部22における熱引き性能に与える影響が小さく、熱電対70の示す温度指示値への影響も小さい。このため、底壁部の厚みhが1.5mmより大きい中心電極を有する温測プラグについては本発明の対象外としている。   Next, regarding the bottom wall portion 24 of the center electrode 20, when the thickness in the direction of the axis O is h, in the present embodiment, the thickness h is regulated to 0.5 mm to 1.5 mm. When the thickness h of the bottom wall portion 24 of the center electrode 20 is larger than 1.5 mm, the center electrode 20 originally has a sufficient volume at the tip portion 22, so even if the center electrode 20 is consumed by spark discharge, the tip portion 22. The influence on the heat-drawing performance of the thermocouple 70 is small, and the influence on the temperature indication value indicated by the thermocouple 70 is also small. For this reason, a thermometer plug having a center electrode having a thickness h of the bottom wall portion larger than 1.5 mm is excluded from the scope of the present invention.

また、中心電極20の底壁部24の厚みhが0.5mmより小さい場合、その底壁部24において中心電極20は十分な体積を有することができない。すると、上記同様、先端部22において中心電極20の占める体積に対し電極部材80の占める体積の割合が大きくなってしまい、中心電極20全体としての熱引き性能が変化し、熱電対70の示す温度指示値と実際の中心電極20の温度との間の誤差が大きくなる虞がある。   When the thickness h of the bottom wall portion 24 of the center electrode 20 is smaller than 0.5 mm, the center electrode 20 cannot have a sufficient volume in the bottom wall portion 24. Then, as described above, the ratio of the volume occupied by the electrode member 80 to the volume occupied by the center electrode 20 at the tip end portion 22 increases, and the heat extraction performance of the center electrode 20 as a whole changes, and the temperature indicated by the thermocouple 70. There is a possibility that an error between the indicated value and the actual temperature of the center electrode 20 becomes large.

次に、中心電極20の母材の先端面21側において、電極部材80の径方向の厚みをtとしたとき、厚みtの大きさを0.2mm〜0.5mmに規定している。電極部材80の厚みtが0.2mmより小さいと、電極部材80自身が火花放電により消耗し、中心電極20の消耗抑制に対し十分な効果を得られなくなる虞がある。また、上記したように、Pt合金からなる電極部材80よりもNi合金からなる中心電極20の方が放電を生じやすい(電子を放出しやすい)。このため、電極部材80の厚みtが小さくなって中心電極20の母材の先端面21の外周縁23が稜角部分(電極部材80の外周縁83)に近づくと、稜角部分における電界集中によって誘導された火花放電の起点が、より放電しやすい中心電極20の母材側に移行して、中心電極20の消耗を招き、熱電対70の示す温度指示値にずれが生ずる虞がある。   Next, on the tip surface 21 side of the base material of the center electrode 20, when the radial thickness of the electrode member 80 is t, the size of the thickness t is regulated to 0.2 mm to 0.5 mm. If the thickness t of the electrode member 80 is smaller than 0.2 mm, the electrode member 80 itself is consumed by spark discharge, and there is a possibility that a sufficient effect for suppressing the consumption of the center electrode 20 cannot be obtained. In addition, as described above, the center electrode 20 made of Ni alloy is more likely to cause discharge than the electrode member 80 made of Pt alloy (emission of electrons is easier). For this reason, when the thickness t of the electrode member 80 is reduced and the outer peripheral edge 23 of the front end surface 21 of the base material of the center electrode 20 approaches the ridge angle portion (the outer peripheral edge 83 of the electrode member 80), induction is caused by electric field concentration at the ridge angle portion. The starting point of the spark discharge thus made moves to the base material side of the center electrode 20 which is more likely to be discharged, leading to the consumption of the center electrode 20, and the temperature indication value indicated by the thermocouple 70 may be shifted.

一方、電極部材80の厚みtが0.5mmより大きいと、先端部22において中心電極20の占める体積に対し電極部材80の占める体積の割合が大きくなり、上記同様、中心電極20全体としての熱引き性能が変化し、熱電対70により測定される中心電極20の温度指示値と実際の中心電極20の温度との間の誤差が大きくなる虞がある。   On the other hand, if the thickness t of the electrode member 80 is greater than 0.5 mm, the ratio of the volume occupied by the electrode member 80 to the volume occupied by the center electrode 20 at the tip portion 22 increases, and as in the above, the heat of the entire center electrode 20 is increased. The pulling performance changes, and there is a possibility that an error between the temperature indication value of the center electrode 20 measured by the thermocouple 70 and the actual temperature of the center electrode 20 becomes large.

次に、電極部材80が軸線O方向に延びる長さをwとしたとき、長さwの大きさを0.6mm〜1.4mmに規定している。電極部材80の長さwが1.4mmより大きいと、先端部22において中心電極20の占める体積に対し電極部材80の占める体積の割合が大きくなり、上記同様、中心電極20全体としての熱引き性能が変化し、熱電対70により測定される中心電極20の温度指示値と実際の中心電極20の温度との間の誤差が大きくなる虞がある。   Next, when the length in which the electrode member 80 extends in the direction of the axis O is w, the size of the length w is defined as 0.6 mm to 1.4 mm. If the length w of the electrode member 80 is greater than 1.4 mm, the ratio of the volume occupied by the electrode member 80 to the volume occupied by the center electrode 20 at the tip portion 22 increases, and as in the above, the heat extraction of the center electrode 20 as a whole. The performance changes, and there is a possibility that an error between the temperature indication value of the center electrode 20 measured by the thermocouple 70 and the actual temperature of the center electrode 20 becomes large.

一方、電極部材80の長さwが0.6mmより小さいと、電極部材80の先端面81と中心電極20の母材の外周面26との間の距離が近くなる。上記したように、Pt合金からなる電極部材80よりもNi合金からなる中心電極20の方が放電を生じやすい(電子を放出しやすい)。このため、電極部材80の長さwが小さくなって中心電極20の母材の外周面26が稜角部分(電極部材80の外周縁83)に近づくと、稜角部分における電界集中によって誘導された火花放電の起点が、より放電しやすい中心電極20の母材側に移行して、中心電極20の消耗を招く虞がある。   On the other hand, when the length w of the electrode member 80 is smaller than 0.6 mm, the distance between the tip end surface 81 of the electrode member 80 and the outer peripheral surface 26 of the base material of the center electrode 20 becomes close. As described above, the center electrode 20 made of Ni alloy is more likely to cause discharge (electrons are more likely to be emitted) than the electrode member 80 made of Pt alloy. For this reason, when the length w of the electrode member 80 decreases and the outer peripheral surface 26 of the base material of the center electrode 20 approaches the ridge angle portion (the outer peripheral edge 83 of the electrode member 80), a spark induced by electric field concentration at the ridge angle portion. There is a possibility that the starting point of the discharge moves to the base material side of the center electrode 20 which is more likely to be discharged, and the center electrode 20 is consumed.

また、電極部材80の材料について、本実施の形態では、貴金属としてPt,Ir,Rhのうちの少なくとも1種以上を含有し、その貴金属の含有量が65重量%〜100重量%であることを規定している。電極部材80における貴金属の含有量が少ないと、電極部材80の耐火花消耗性が低下し、火花放電による電極部材80自身の消耗を招くため、中心電極20の消耗抑制に対し十分な効果を得られなくなる虞がある。後述する実施例5によれば、電極部材80を貴金属もしくは貴金属の含有量が65重量%以上の合金から形成すれば、火花放電による電極部材80自身の消耗を抑制でき、ひいては中心電極20の消耗を抑制できることが確認できた。   Moreover, about the material of the electrode member 80, in this Embodiment, it contains at least 1 or more types of Pt, Ir, and Rh as a noble metal, and the content of the noble metal is 65 to 100 weight%. It prescribes. If the content of the noble metal in the electrode member 80 is small, the spark wear resistance of the electrode member 80 is reduced and the electrode member 80 itself is consumed by spark discharge, so that a sufficient effect for suppressing the consumption of the center electrode 20 is obtained. There is a risk of being lost. According to Example 5 to be described later, if the electrode member 80 is formed of a noble metal or an alloy having a noble metal content of 65 wt% or more, the wear of the electrode member 80 itself due to spark discharge can be suppressed, and the wear of the center electrode 20 can be suppressed. It was confirmed that it can be suppressed.

なお、本発明は各種の変形が可能なことはいうまでもない。例えば、図3に示すように、本実施の形態と同様の中心電極20の先端部22において、電極部材180の先端面181を中心電極20の母材の先端面21よりも先端側に設けつつ径方向内向きに延ばし、電極部材180の外周縁183が中心電極20の母材の外周縁23を覆う形態としてもよい。また、電極部材80は、中心電極20の先端部22において母材の外周を周方向に取り囲む形態で周方向に一周させて設けたが、周方向に一周していなくともよい。   Needless to say, the present invention can be modified in various ways. For example, as shown in FIG. 3, the tip surface 181 of the electrode member 180 is provided closer to the tip than the tip surface 21 of the base material of the center electrode 20 at the tip 22 of the center electrode 20 similar to the present embodiment. The outer peripheral edge 183 of the electrode member 180 may extend inward in the radial direction and cover the outer peripheral edge 23 of the base material of the center electrode 20. In addition, the electrode member 80 is provided in the circumferential direction so as to surround the outer periphery of the base material in the circumferential direction at the distal end portion 22 of the center electrode 20.

また、温度センサの一例として熱電対70を挙げたが、エンジンの稼働時に1000℃以上の高温となる中心電極20の温度を測定可能、且つ、中心電極20の内部に収容可能な大きさ条件を満たす温度センサであれば利用可能である。   Moreover, although the thermocouple 70 was mentioned as an example of a temperature sensor, the size conditions which can measure the temperature of the center electrode 20 which becomes high temperature 1000 degreeC or more at the time of engine operation, and can be accommodated in the inside of the center electrode 20 are set. Any temperature sensor that satisfies this requirement can be used.

[実施例1]
次に、上記した各種規定を設けたことによる効果を確認するため評価試験を行った。まず、中心電極20の先端部22に設けた電極部材80の径方向の厚みtを0.2mm〜0.5mmに規定したことによる効果を確認するため、評価試験を行った。
[Example 1]
Next, an evaluation test was performed in order to confirm the effects of providing the various regulations described above. First, an evaluation test was performed in order to confirm the effect of defining the thickness t in the radial direction of the electrode member 80 provided at the distal end portion 22 of the center electrode 20 to 0.2 mm to 0.5 mm.

この評価試験では、外径dがφ1.7mmで底壁部の厚みhを0.5mmとした中心電極を複数本用意した。また、Pt(100重量%)を用い、外径をφ1.7mm、軸線O方向の長さwを1.0mm、径方向の厚みtを0.1mm〜0.7mmの範囲で0.1mmごとに異ならせて作製した7種類のリング状の電極部材を用意した。そして各電極部材にあわせて中心電極の先端部を加工した上で両者を接合するとともに、中心電極内に熱電対を組み込んで、温測プラグのサンプルを作製した。さらに比較用に、中心電極に電極部材を設けなかった(すなわち電極部材の径方向の厚みtを0mmとした)温測プラグの基準サンプルを用意した。   In this evaluation test, a plurality of center electrodes having an outer diameter d of φ1.7 mm and a bottom wall thickness h of 0.5 mm were prepared. Also, using Pt (100% by weight), the outer diameter is 1.7 mm, the length w in the direction of the axis O is 1.0 mm, and the thickness t in the radial direction is 0.1 mm to 0.7 mm every 0.1 mm. Seven types of ring-shaped electrode members prepared by differentiating the above were prepared. And after processing the front-end | tip part of a center electrode according to each electrode member, while joining both, the thermocouple was integrated in the center electrode and the sample of the thermometer plug was produced. Further, for comparison, a reference sample of a thermometer plug in which no electrode member was provided on the center electrode (that is, the radial thickness t of the electrode member was set to 0 mm) was prepared.

まず、比較用の基準サンプルを、排気量2000ccの直列6気筒DOHC直噴型エンジンに組み付けた。そしてエンジンを始動させ、アクセルをフルスロットル(6000rpm)にし、回転数が安定したところで基準サンプルの温度を測定し、測定結果を基準温度として記録した。次に、各サンプルについても同様に、それぞれ上記のエンジンに組み付け、アクセルをフルスロットル(6000rpm)にし、回転数が安定したところで温度を測定し、各サンプルごとに第1測定温度として記録した。そして、第1測定温度と基準温度との差分を温度ずれΔθ1として各サンプルごとに求め、厚みtとの関係がわかるように、図4にグラフ化した。   First, a reference sample for comparison was assembled into an in-line 6-cylinder DOHC direct injection engine having a displacement of 2000 cc. Then, the engine was started, the accelerator was at full throttle (6000 rpm), the temperature of the reference sample was measured when the rotational speed was stabilized, and the measurement result was recorded as the reference temperature. Next, each sample was similarly assembled to the above-mentioned engine, the accelerator was set to full throttle (6000 rpm), the temperature was measured when the rotational speed was stabilized, and each sample was recorded as the first measured temperature. Then, the difference between the first measured temperature and the reference temperature is obtained for each sample as a temperature deviation Δθ1, and is graphed in FIG. 4 so that the relationship with the thickness t can be understood.

さらに、エンジンの駆動を100時間継続し、各サンプルの100時間使用後の温度を測定し、各サンプルごとに第2測定温度として記録した。試験後に、第1測定温度と第2測定温度との差分を温度ずれΔθ2として各サンプルごとに求め、上記同様、厚みtとの関係がわかるように、図5にグラフ化した。   Furthermore, the driving of the engine was continued for 100 hours, and the temperature of each sample after 100 hours of use was measured and recorded as the second measured temperature for each sample. After the test, the difference between the first measurement temperature and the second measurement temperature was determined for each sample as a temperature deviation Δθ2, and as shown above, the relationship between the first measurement temperature and the second measurement temperature was plotted in FIG.

図4に示すように、電極部材の径方向の厚みtが大きくなるにつれて、温度ずれΔθ1が大きくなっていくことがわかる。つまり、中心電極自身よりも熱伝導率の小さな電極部材が中心電極の先端部にて占める体積の割合が大きくなるにつれて、その先端部における熱引き性能が変化し、熱電対により測定される中心電極の温度(第1測定温度)と実際の中心電極の温度(基準温度)との間の誤差、すなわち温度ずれΔθ1が大きくなることが確認できる。温度ずれΔθ1の許容値を5℃に設定した場合(エンジンの稼働時に1000℃以上の高温となるスパークプラグの中心電極において測定される温度のずれとして0.5%以内の誤差を目標として設定した場合)、許容値を満たすには、図4のグラフから、電極部材の径方向の厚みtを0.5mm以下とすればよいことがわかった。   As shown in FIG. 4, it can be seen that the temperature deviation Δθ1 increases as the radial thickness t of the electrode member increases. In other words, as the proportion of the volume occupied by the electrode member having a lower thermal conductivity than the center electrode itself at the tip of the center electrode increases, the heat extraction performance at the tip changes, and the center electrode measured by the thermocouple It can be confirmed that the error between the temperature (first measured temperature) and the actual center electrode temperature (reference temperature), that is, the temperature deviation Δθ1 increases. When the allowable value of the temperature deviation Δθ1 is set to 5 ° C. (the temperature deviation measured at the center electrode of the spark plug, which becomes a high temperature of 1000 ° C. or higher when the engine is running, is set with an error within 0.5% as a target. In the case), it was found from the graph of FIG. 4 that the thickness t in the radial direction of the electrode member should be 0.5 mm or less in order to satisfy the allowable value.

また、図5に示すように、電極部材の厚みtが小さくなるにつれて、温度ずれΔθ2が大きくなっていくことがわかる。電極部材の厚みtが小さくなって中心電極の母材の先端面の外周縁が電極部材の外周縁(すなわち接地電極との間で火花放電を生じやすい稜角部分)に近づくにつれ、接地電極と中心電極の母材との間で火花放電が発生しやすくなり、中心電極が消耗するため温度上昇を招き、100時間の使用前後における温度変動(第1測定温度と第2測定温度との差分)、すなわち温度ずれΔθ2が大きくなることが確認できる。上記同様に温度測定誤差を0.5%以内とするために設定した温度ずれΔθ2の許容値(5℃以内)を満たすには、図5のグラフから、電極部材の径方向の厚みtを0.2mm以上とすればよいことがわかった。   Further, as shown in FIG. 5, it can be seen that the temperature deviation Δθ2 increases as the thickness t of the electrode member decreases. As the thickness t of the electrode member decreases and the outer peripheral edge of the front end surface of the base material of the center electrode approaches the outer peripheral edge of the electrode member (that is, the ridge angle portion where spark discharge is likely to occur with the ground electrode), Spark discharge is likely to occur between the electrode base material and the center electrode is consumed, resulting in a temperature rise, temperature fluctuations before and after use for 100 hours (difference between the first measurement temperature and the second measurement temperature), That is, it can be confirmed that the temperature deviation Δθ2 increases. Similarly to the above, in order to satisfy the allowable value (within 5 ° C.) of the temperature deviation Δθ2 set to make the temperature measurement error within 0.5%, the radial thickness t of the electrode member is set to 0 from the graph of FIG. It was found that it should be 2 mm or more.

[実施例2]
次に、中心電極20の先端部22に設けた電極部材80の軸線O方向の長さwを0.6mm〜1.4mmに規定したことによる効果を確認するため、評価試験を行った。この評価試験でも、外径dがφ1.7mmで底壁部の厚みhを0.5mmとした中心電極を複数本用意した。また、Pt(100重量%)を用い、外径をφ1.7mm、径方向の厚みtを0.5mm、軸線O方向の長さwを0.2mm〜2.0mmの範囲で0.2mmごとに異ならせて作製した10種類のリング状の電極部材を用意した。そして、各電極部材にあわせて中心電極の先端部を加工した上で両者を接合するとともに、中心電極内に熱電対を組み込んで、温測プラグのサンプルを作製した。さらに比較用に、中心電極に電極部材を設けなかった(すなわち電極部材の軸線O方向の長さwを0mmとした)温測プラグの基準サンプルを用意した。そして、各サンプルに対し、実施例1と同様の評価試験(同一のエンジン条件による)を行い、温度ずれΔθ1を求めた。電極部材の軸線O方向の長さwと温度ずれΔθ1との関係をグラフ化したものを図6に示す。
[Example 2]
Next, an evaluation test was performed in order to confirm the effect of defining the length w in the axis O direction of the electrode member 80 provided at the distal end portion 22 of the center electrode 20 to 0.6 mm to 1.4 mm. In this evaluation test, a plurality of center electrodes having an outer diameter d of φ1.7 mm and a bottom wall thickness h of 0.5 mm were prepared. Also, using Pt (100% by weight), the outer diameter is 1.7 mm, the radial thickness t is 0.5 mm, and the length w in the direction of the axis O is 0.2 mm to 2.0 mm every 0.2 mm. Ten kinds of ring-shaped electrode members prepared by differentiating the above were prepared. And after processing the front-end | tip part of a center electrode according to each electrode member, while joining both, the thermocouple was integrated in the center electrode and the sample of the thermometer plug was produced. Further, for comparison, a reference sample of a temperature measurement plug was prepared in which no electrode member was provided on the center electrode (that is, the length w of the electrode member in the direction of the axis O was 0 mm). Each sample was subjected to the same evaluation test as in Example 1 (under the same engine conditions) to obtain a temperature deviation Δθ1. FIG. 6 is a graph showing the relationship between the length w of the electrode member in the direction of the axis O and the temperature deviation Δθ1.

さらに、Pt(100重量%)を用い、外径をφ1.7mm、径方向の厚みtを0.2mm、軸線O方向の長さwを0.2mm〜2.0mmの範囲で0.2mmごとに異ならせて作製した10種類のリング状の電極部材を用意した。そして、各電極部材にあわせて上記同様に作製した中心電極の先端部を加工した上で両者を接合するとともに、中心電極内に熱電対を組み込んで、温測プラグのサンプルを作製した。次いで各サンプルに対し、実施例1と同様の100時間の耐久試験を行い、各サンプルの100時間使用後の温度を測定して温度ずれΔθ2を求めた。電極部材の軸線O方向の長さwと温度ずれΔθ2との関係をグラフ化したものを図7に示す。   Further, using Pt (100% by weight), the outer diameter is φ1.7 mm, the radial thickness t is 0.2 mm, and the length w in the axis O direction is 0.2 mm to 2.0 mm every 0.2 mm. Ten kinds of ring-shaped electrode members prepared by differentiating the above were prepared. And after processing the front-end | tip part of the center electrode produced similarly to the above according to each electrode member, while joining both, the thermocouple was integrated in the center electrode, and the sample of the thermometer plug was produced. Each sample was then subjected to a 100-hour endurance test similar to Example 1, and the temperature of each sample after 100 hours of use was measured to determine the temperature deviation Δθ2. FIG. 7 is a graph showing the relationship between the length w of the electrode member in the direction of the axis O and the temperature deviation Δθ2.

図6に示すように、電極部材の長さwが大きくなるにつれて、温度ずれΔθ1が大きくなっていくことがわかる。中心電極自身よりも熱伝導率の小さな電極部材が中心電極の先端部にて占める体積の割合が大きくなるにつれて、その先端部における熱引き性能が変化することによる。上記同様に温度測定誤差を0.5%以内とするために設定した温度ずれΔθ1の許容値(5℃以内)を満たすには、図6のグラフから、電極部材の軸線O方向の長さwを1.4mm以下とすればよいことがわかった。   As shown in FIG. 6, it can be seen that the temperature deviation Δθ1 increases as the length w of the electrode member increases. This is because, as the proportion of the volume occupied by the electrode member having a lower thermal conductivity than the center electrode itself at the tip of the center electrode increases, the heat-drawing performance at the tip changes. Similarly to the above, in order to satisfy the allowable value (within 5 ° C.) of the temperature deviation Δθ1 set to make the temperature measurement error within 0.5%, the length w of the electrode member in the direction of the axis O from the graph of FIG. Was found to be 1.4 mm or less.

また、図7に示すように、電極部材の長さwが小さくなるにつれて、温度ずれΔθ2が大きくなっていくことがわかる。電極部材の長さwが小さくなって中心電極の母材の外周面が電極部材の外周縁(すなわち接地電極との間で火花放電を生じやすい稜角部分)に近づくにつれ、接地電極との間の火花放電が稜角部分を飛び越して中心電極の母材の外周面との間で生じ、中心電極の消耗を招くことによる。上記のように温度測定誤差を0.5%以内とするために設定した温度ずれΔθ2の許容値(5℃以内)を満たすには、図7のグラフから、電極部材の軸線O方向の長さwを0.6mm以上とすればよいことがわかった。   Further, as shown in FIG. 7, it can be seen that the temperature deviation Δθ2 increases as the length w of the electrode member decreases. As the length w of the electrode member decreases and the outer peripheral surface of the base material of the center electrode approaches the outer periphery of the electrode member (that is, the ridge portion where spark discharge is likely to occur with the ground electrode), This is because a spark discharge is generated between the outer peripheral surface of the base material of the center electrode by jumping over the ridge angle portion, and the center electrode is consumed. In order to satisfy the allowable value (within 5 ° C.) of the temperature deviation Δθ2 set so that the temperature measurement error is within 0.5% as described above, the length of the electrode member in the direction of the axis O from the graph of FIG. It was found that w should be 0.6 mm or more.

[実施例3]
次に、中心電極20の先端部22の外径dをφ1.7〜φ3.0[mm]に規定したことによる効果を確認するため、評価試験を行った。この評価試験では、外径dをφ1.6,φ1.7,φ3.0,φ3.1[mm]、底壁部の厚みhを0.5mmとした4種類の中心電極を用意した。また、Pt(100重量%)を用い、外径をφ1.6,φ1.7,φ3.0,φ3.1[mm]、径方向の厚みtを0.5mm、軸線O方向の長さwを1.4mmに形成した4種類のリング状の電極部材を用意した。そして、各電極部材にあわせて中心電極の先端部を加工した上で両者を接合するとともに、中心電極内に熱電対を組み込んで、温測プラグのサンプルを作製した。また、温度ずれΔθ1を求める上での基準用として、電極部材を接合しない基準サンプルも用意した。そして、各サンプルに対し、実施例1と同様の評価試験(同一のエンジン条件による)を行い、温度ずれΔθ1およびΔθ2を求めた。この評価試験の結果を表1に示す。
[Example 3]
Next, an evaluation test was performed in order to confirm the effect of defining the outer diameter d of the front end portion 22 of the center electrode 20 to φ1.7 to φ3.0 [mm]. In this evaluation test, four types of center electrodes having an outer diameter d of φ1.6, φ1.7, φ3.0, φ3.1 [mm] and a bottom wall thickness h of 0.5 mm were prepared. Also, Pt (100% by weight) is used, the outer diameter is φ1.6, φ1.7, φ3.0, φ3.1 [mm], the radial thickness t is 0.5 mm, and the length w in the axis O direction is w. Four types of ring-shaped electrode members having a thickness of 1.4 mm were prepared. And after processing the front-end | tip part of a center electrode according to each electrode member, while joining both, the thermocouple was integrated in the center electrode and the sample of the thermometer plug was produced. In addition, a reference sample in which no electrode member was joined was prepared as a reference for obtaining the temperature deviation Δθ1. Each sample was subjected to the same evaluation test as in Example 1 (under the same engine conditions) to obtain temperature deviations Δθ1 and Δθ2. The results of this evaluation test are shown in Table 1.

Figure 2010049856
Figure 2010049856

表1に示すように、中心電極の先端部の外径dが小さくなるほど、温度ずれΔθ1が大きくなっていくことがわかる。中心電極自身よりも熱伝導率の小さな電極部材が中心電極の先端部にて占める体積の割合が大きくなるにつれて、その先端部における熱引き性能が変化することによる。上記同様に温度測定誤差を0.5%以内とするために設定した温度ずれΔθ1の許容値(5℃以内)を満たすには、表1から、中心電極の先端部の外径dをφ1.7mm以上とすればよいことがわかった。なお、中心電極の先端部の外径dがφ3.1mmのサンプルでは、中心電極の母材の先端面の中央が外周縁から離れ、外周縁をなす稜角部分による電界集中の影響が及びにくくなり、接地電極と中心電極の母材の先端面との間で火花放電が発生してしまったため、無効とした。   As shown in Table 1, it can be seen that the temperature deviation Δθ1 increases as the outer diameter d of the tip of the center electrode decreases. This is because, as the proportion of the volume occupied by the electrode member having a lower thermal conductivity than the center electrode itself at the tip of the center electrode increases, the heat-drawing performance at the tip changes. Similarly to the above, in order to satisfy the allowable value (within 5 ° C.) of the temperature deviation Δθ1 set to make the temperature measurement error within 0.5%, from Table 1, the outer diameter d of the tip of the center electrode is φ1. It was found that it should be 7 mm or more. In addition, in the sample having an outer diameter d of φ3.1 mm at the tip of the center electrode, the center of the tip of the center electrode base material is separated from the outer rim, and the influence of electric field concentration due to the ridge angle portion forming the outer rim becomes less likely. Since a spark discharge occurred between the ground electrode and the front end surface of the base electrode base metal, it was invalidated.

そして、温度ずれΔθ1が許容値を満たした、中心電極の先端部の外径dがφ1.7,φ3.0[mm]の2つのサンプルについて温度ずれΔθ2を求めたところ、表1に示すように、それぞれ1.6,1.2[℃]となった。いずれも上記のように温度測定誤差を0.5%以内とするために設定した温度ずれΔθ2の許容値(5℃以内)を満たしており、このことから中心電極の先端部の外径dは、φ1.7〜φ3.0[mm]とすればよいことがわかった。なお、表1では、中心電極の先端部の外径dが大きいほど、先端部における中心電極の体積の占める割合が大きくなるため、体積に対する火花放電による消耗の度合いは小さくなることがわかる。   Then, when the temperature deviation Δθ2 was obtained for two samples in which the temperature deviation Δθ1 satisfied an allowable value and the outer diameter d of the tip of the center electrode was φ1.7, φ3.0 [mm], as shown in Table 1. And 1.6 and 1.2 [° C.], respectively. Both satisfy the allowable value (within 5 ° C.) of the temperature deviation Δθ2 set to make the temperature measurement error within 0.5% as described above, and from this, the outer diameter d of the tip of the center electrode is It has been found that φ1.7 to φ3.0 [mm] is sufficient. In Table 1, it can be seen that the greater the outer diameter d of the tip of the center electrode, the greater the proportion of the volume of the center electrode at the tip, and the less the amount of wear due to spark discharge with respect to the volume.

[実施例4]
次に、中心電極20の底壁部24の厚みhを0.5mm〜1.5mmに規定したことによる効果を確認するため、評価試験を行った。この評価試験では、外径dをφ1.7mm、底壁部の厚みhを0.4,0.5,1.5[mm]とした3種類の中心電極を用意した。また、Pt(100重量%)を用い、外径をφ1.7mm、径方向の厚みtを0.5mm、軸線O方向の長さwを1.4mmに形成したリング状の電極部材を用意した。そして、各電極部材にあわせて各中心電極の先端部を加工した上で両者を接合するとともに、中心電極内に熱電対を組み込んで、温測プラグのサンプルを作製した。また、温度ずれΔθ1を求める上での基準用として、電極部材を接合しない基準サンプルも用意した。そして、各サンプルに対し、実施例1と同様の評価試験(同一のエンジン条件による)を行い、温度ずれΔθ1およびΔθ2を求めた。この評価試験の結果を表2に示す。
[Example 4]
Next, an evaluation test was performed in order to confirm the effect of defining the thickness h of the bottom wall portion 24 of the center electrode 20 to 0.5 mm to 1.5 mm. In this evaluation test, three types of center electrodes with an outer diameter d of φ1.7 mm and a bottom wall thickness h of 0.4, 0.5, and 1.5 [mm] were prepared. In addition, a ring-shaped electrode member using Pt (100 wt%), having an outer diameter of φ1.7 mm, a radial thickness t of 0.5 mm, and a length w in the axis O direction of 1.4 mm was prepared. . And after processing the front-end | tip part of each center electrode according to each electrode member, while joining both, the thermocouple was integrated in the center electrode, and the sample of the thermometer plug was produced. In addition, a reference sample in which no electrode member was joined was prepared as a reference for obtaining the temperature deviation Δθ1. Each sample was subjected to the same evaluation test as in Example 1 (under the same engine conditions) to obtain temperature deviations Δθ1 and Δθ2. The results of this evaluation test are shown in Table 2.

Figure 2010049856
Figure 2010049856

表2に示すように、中心電極の底壁部の厚みhが小さくなるほど、温度ずれΔθ1が大きくなっていくことがわかる。中心電極自身よりも熱伝導率の小さな電極部材が中心電極の先端部にて占める体積の割合が大きくなるにつれて、その先端部における熱引き性能が変化することによる。上記同様に温度測定誤差を0.5%以内とするために設定した温度ずれΔθ1の許容値(5℃以内)を満たすには、表2から、中心電極の底壁部の厚みhを0.5mm以上とすればよいことがわかった。   As shown in Table 2, it can be seen that the temperature deviation Δθ1 increases as the thickness h of the bottom wall portion of the center electrode decreases. This is because, as the proportion of the volume occupied by the electrode member having a lower thermal conductivity than the center electrode itself at the tip of the center electrode increases, the heat-drawing performance at the tip changes. Similarly to the above, in order to satisfy the allowable value (within 5 ° C.) of the temperature deviation Δθ1 set to make the temperature measurement error within 0.5%, from Table 2, the thickness h of the bottom wall portion of the center electrode is set to 0. It was found that it should be 5 mm or more.

そして、温度ずれΔθ1が許容値を満たした、中心電極の底壁部の厚みhが0.5mm,1.5mmの2つのサンプルについて温度ずれΔθ2を求めたところ、表2に示すように、それぞれ1.6,1.3[℃]となった。いずれも上記のように温度測定誤差を0.5%以内とするために設定した温度ずれΔθ2の許容値(5℃以内)を満たしており、このことから、中心電極の底壁部の厚みhは、0.5mm以上とすればよいことがわかった。   And when temperature deviation (DELTA) (theta) 1 satisfy | filled tolerance and the thickness h of the bottom wall part of a center electrode calculated | required temperature deviation (DELTA) (theta) 2 about 0.5 mm and 1.5 mm, as shown in Table 2, respectively, 1.6, 1.3 [° C.]. All satisfy the allowable value (within 5 ° C.) of the temperature deviation Δθ 2 set to make the temperature measurement error within 0.5% as described above, and from this, the thickness h of the bottom wall portion of the center electrode Was found to be 0.5 mm or more.

なお、中心電極の底壁部の厚みhが大きいほど、先端部における中心電極の体積の占める割合が大きくなるため、体積に対する火花放電による消耗の度合いは小さくなる。表2には示さないが、底壁部の厚みhが1.5mmより大きいと、中心電極はもともと先端部において十分な体積を有するため、火花放電により電極が消耗しても、先端部における熱引き性能に与える影響が小さい。このため、先端部に電極部材を設けない中心電極であっても、上記したエンジン駆動を100時間行う評価試験の前後における温度ずれΔθ2はほとんどみられないことが確認されている。本発明にかかる効果を奏するには、中心電極の底壁部の厚みhが1.5mm以下(すなわち0.5mm〜1.5mm)であることが望ましい。   Note that the greater the thickness h of the bottom wall portion of the center electrode, the greater the proportion of the volume of the center electrode in the tip portion, and therefore the degree of consumption due to spark discharge with respect to the volume becomes smaller. Although not shown in Table 2, if the thickness h of the bottom wall is greater than 1.5 mm, the center electrode originally has a sufficient volume at the tip, so even if the electrode is consumed by spark discharge, The effect on pulling performance is small. For this reason, it has been confirmed that even with the center electrode in which no electrode member is provided at the tip, there is almost no temperature deviation Δθ2 before and after the evaluation test in which the engine is driven for 100 hours. In order to achieve the effects of the present invention, it is desirable that the thickness h of the bottom wall portion of the center electrode is 1.5 mm or less (that is, 0.5 mm to 1.5 mm).

[実施例5]
次に、電極部材80の材料に貴金属を用い、その含有量を65重量%〜100重量%としたことの効果を確認するため、評価試験を行った。この評価試験では、外径dをφ1.7mm、底壁部の厚みhを0.5mmとした中心電極を用意した。また、電極部材の材料として、Ptと中心電極の材料(Ni)との合金で、Ptの含有量を50重量%〜100重量%の間で10重量%ずつ異ならせた6種類の材料(ただし、Ptの含有量が100重量%のものはNiが含まれていない)を用意した。各材料から、外径をφ1.7mm、径方向の厚みtを0.5mm、軸線O方向の長さwを1.4mmに形成したリング状の電極部材をそれぞれ作製した。そして、電極部材にあわせて中心電極の先端部を加工した上で両者を接合するとともに、中心電極内に熱電対を組み込んで、温測プラグのサンプルを作製した。また、温度ずれΔθ1を求める上での基準用として、電極部材を接合しない基準サンプルも用意した。
[Example 5]
Next, an evaluation test was performed in order to confirm the effect of using a noble metal as the material of the electrode member 80 and setting its content to 65 wt% to 100 wt%. In this evaluation test, a center electrode having an outer diameter d of φ1.7 mm and a bottom wall thickness h of 0.5 mm was prepared. In addition, as an electrode member material, an alloy of Pt and a center electrode material (Ni), and six kinds of materials (however, the Pt content is varied by 10 wt% between 50 wt% and 100 wt% (however, , Pt content of 100% by weight does not contain Ni). From each material, ring-shaped electrode members each having an outer diameter of φ1.7 mm, a radial thickness t of 0.5 mm, and a length w in the axis O direction of 1.4 mm were prepared. And after processing the front-end | tip part of a center electrode according to an electrode member, while joining both, the thermocouple was integrated in the center electrode and the sample of the thermometer plug was produced. In addition, a reference sample in which no electrode member was joined was prepared as a reference for obtaining the temperature deviation Δθ1.

そして、各サンプルに対し、実施例1と同様の評価試験(同一のエンジン条件による)を行い、温度ずれΔθ1およびΔθ2を求めた。電極部材のPt含有量と温度ずれΔθ1との関係をグラフ化したものを図8に、Pt含有量と温度ずれΔθ2との関係をグラフ化したものを図9に示す。   Each sample was subjected to the same evaluation test as in Example 1 (under the same engine conditions) to obtain temperature deviations Δθ1 and Δθ2. FIG. 8 is a graph showing the relationship between the Pt content of the electrode member and the temperature deviation Δθ1, and FIG. 9 is a graph showing the relationship between the Pt content and the temperature deviation Δθ2.

図8に示すように、電極部材のPt含有量が増えるほど、温度ずれΔθ1が大きくなっていくことがわかる。中心電極自身よりも熱伝導率の小さな電極部材が中心電極の先端部にて占める体積の割合が大きくなるにつれて、その先端部における熱引き性能が変化することによる。もっとも、電極部材が実施例1〜実施例4の規定を満たすため、Ptから形成した電極部材(Pt含有量100重量%)であっても、上記の温度測定誤差を0.5%以内とするために設定した温度ずれΔθ1の許容値(5℃以内)を満たす。   As shown in FIG. 8, it can be seen that the temperature deviation Δθ1 increases as the Pt content of the electrode member increases. This is because, as the proportion of the volume occupied by the electrode member having a lower thermal conductivity than the center electrode itself at the tip of the center electrode increases, the heat-drawing performance at the tip changes. However, since the electrode member satisfies the provisions of Examples 1 to 4, even if the electrode member is formed from Pt (Pt content: 100% by weight), the temperature measurement error is within 0.5%. Therefore, the allowable value (within 5 ° C.) of the set temperature deviation Δθ1 is satisfied.

次いで、図9に示すように、電極部材のPt含有量が少なくなるにつれて、温度ずれΔθ2は、大きくなっていくことがわかる。電極部材における貴金属の含有量が少なくなるほど、電極部材自身が火花放電により消耗しやすくなり、中心電極の消耗抑制に対し十分な効果を得られなくなることによる。上記のように温度測定誤差を0.5%以内とするために設定した温度ずれΔθ2の許容値(5℃以内)を満たすには、図9のグラフから、電極部材のPt含有量を65重量%以上とするとよいことがわかった。より詳細には、Pt含有量が60重量%のとき、温度ずれΔθ2は5.3℃であり、Pt含有量が70重量%のとき、温度ずれΔθ2が4.4℃であったことから、Pt含有量が63.4重量%以上であれば望ましい。   Next, as shown in FIG. 9, it can be seen that the temperature shift Δθ2 increases as the Pt content of the electrode member decreases. This is because as the content of the noble metal in the electrode member decreases, the electrode member itself is more easily consumed by spark discharge, and a sufficient effect for suppressing the consumption of the center electrode cannot be obtained. In order to satisfy the allowable value (within 5 ° C.) of the temperature deviation Δθ2 set so that the temperature measurement error is within 0.5% as described above, the Pt content of the electrode member is set to 65 wt. It was found that it should be more than%. More specifically, when the Pt content is 60% by weight, the temperature shift Δθ2 is 5.3 ° C., and when the Pt content is 70% by weight, the temperature shift Δθ2 is 4.4 ° C. It is desirable if the Pt content is 63.4% by weight or more.

温測プラグ100の部分断面図である。2 is a partial cross-sectional view of a temperature measurement plug 100. FIG. 中心電極20の先端部22付近の断面を示す斜視図である。3 is a perspective view showing a cross section near the tip 22 of the center electrode 20. FIG. 変形例としての電極部材180を説明するための中心電極20の先端部22付近の断面を示す斜視図である。It is a perspective view which shows the cross section of the front-end | tip part 22 vicinity of the center electrode 20 for demonstrating the electrode member 180 as a modification. 電極部材の径方向の厚みtと温度ずれΔθ1との関係を示すグラフである。It is a graph which shows the relationship between the thickness t of the radial direction of an electrode member, and temperature deviation (DELTA) (theta) 1. 電極部材の径方向の厚みtと温度ずれΔθ2との関係を示すグラフである。It is a graph which shows the relationship between the thickness t of the radial direction of an electrode member, and temperature shift (DELTA) (theta) 2. 電極部材の軸線方向の長さwと温度ずれΔθ1との関係を示すグラフである。It is a graph which shows the relationship between the length w of the axial direction of an electrode member, and temperature deviation (DELTA) (theta) 1. 電極部材の軸線方向の長さwと温度ずれΔθ2との関係を示すグラフである。It is a graph which shows the relationship between the length w of the axial direction of an electrode member, and temperature deviation (DELTA) (theta) 2. 電極部材のPt含有量と温度ずれΔθ1との関係を示すグラフである。It is a graph which shows the relationship between Pt content of an electrode member, and temperature deviation (DELTA) (theta) 1. 電極部材のPt含有量と温度ずれΔθ2との関係を示すグラフである。It is a graph which shows the relationship between Pt content of an electrode member, and temperature deviation (DELTA) (theta) 2.

符号の説明Explanation of symbols

10 絶縁碍子
12 軸孔
20 中心電極
21 先端面
22 先端部
23 外周縁
24 底壁部
25 挿入孔
30 接地電極
31 先端部
32 基部
50 主体金具
70 熱電対
71 接点
80 電極部材
100 温測プラグ
DESCRIPTION OF SYMBOLS 10 Insulator 12 Shaft hole 20 Center electrode 21 Tip surface 22 Tip part 23 Outer peripheral edge 24 Bottom wall part 25 Insertion hole 30 Ground electrode 31 Tip part 32 Base part 50 Main metal fitting 70 Thermocouple 71 Contact 80 Electrode member 100 Thermometer plug

Claims (7)

軸線方向に沿う挿入孔が形成され、その挿入孔が自身の先端部において閉じられた有底筒状をなす中心電極と、
前記挿入孔内に挿入され、温度を測定する測定部が前記中心電極の前記先端部内に配置された状態で、その挿入孔内に固定される温度センサと、
軸線方向に沿って延びる軸孔を有し、その軸孔内で前記中心電極を保持する絶縁碍子と、
前記絶縁碍子を周方向に取り囲んで保持する主体金具と、
一端部が前記主体金具に接合され、他端部が前記中心電極の前記先端部に向けて屈曲された接地電極と、
を備えた温度センサ付きスパークプラグにおいて、
前記中心電極の前記先端部には、前記中心電極の母材の先端面の外周縁を含む前記中心電極の前記母材の先端部の外周を周方向に取り囲む電極部材が設けられていることを特徴とする温度センサ付きスパークプラグ。
A center electrode having a bottomed cylindrical shape in which an insertion hole is formed along the axial direction, and the insertion hole is closed at the tip of itself,
A temperature sensor that is inserted into the insertion hole and is fixed in the insertion hole in a state in which a measurement unit that measures temperature is disposed in the tip of the center electrode;
An insulator having an axial hole extending along the axial direction and holding the central electrode in the axial hole;
A metal shell that surrounds and holds the insulator in the circumferential direction;
A ground electrode having one end joined to the metal shell and the other end bent toward the tip of the center electrode;
In a spark plug with a temperature sensor equipped with
The front end portion of the center electrode is provided with an electrode member that circumferentially surrounds the outer periphery of the front end portion of the base material of the center electrode including the outer peripheral edge of the front end surface of the base material of the center electrode. Features a spark plug with temperature sensor.
前記中心電極の前記先端部の外径をdとしたとき、1.7≦d≦3.0[mm]を満たすことを特徴とする請求項1に記載の温度センサ付きスパークプラグ。   2. The spark plug with a temperature sensor according to claim 1, wherein when the outer diameter of the tip of the center electrode is d, 1.7 ≦ d ≦ 3.0 [mm] is satisfied. 前記中心電極の前記先端部に形成され、前記中心電極が有底筒状となるように前記挿入孔を閉じる底壁部は、前記中心電極の軸線方向におけるその厚みをhとしたときに、0.5≦h≦1.5[mm]を満たすことを特徴とする請求項1または2に記載の温度センサ付きスパークプラグ。   A bottom wall portion that is formed at the tip of the center electrode and closes the insertion hole so that the center electrode has a bottomed cylindrical shape is 0 when the thickness in the axial direction of the center electrode is h. The spark plug with a temperature sensor according to claim 1, wherein: 5 ≦ h ≦ 1.5 [mm] is satisfied. 前記中心電極の前記先端面における前記電極部材の径方向の厚みをtとしたとき、0.2≦t≦0.5[mm]を満たすことを特徴とする請求項1乃至3のいずれかに記載の温度センサ付きスパークプラグ。   4. The structure according to claim 1, wherein the thickness of the electrode member on the tip surface of the center electrode in the radial direction satisfies t ≦ 0.2 ≦ t ≦ 0.5 [mm]. Spark plug with temperature sensor as described. 前記中心電極の軸線方向において、前記先端面から後端側に向かって前記電極部材の延びる長さをwとしたとき、0.6≦w≦1.4[mm]を満たすことを特徴とする請求項1乃至4のいずれかに記載の温度センサ付きスパークプラグ。   In the axial direction of the central electrode, when the length of the electrode member extending from the front end surface toward the rear end side is w, 0.6 ≦ w ≦ 1.4 [mm] is satisfied. The spark plug with a temperature sensor according to any one of claims 1 to 4. 前記電極部材は、貴金属または貴金属を主成分とする合金からなり、貴金属として、Pt、Ir、Rhのうち少なくとも1種以上を含有することを特徴とする請求項1乃至5のいずれかに記載の温度センサ付きスパークプラグ。   The said electrode member consists of an alloy which has a noble metal or a noble metal as a main component, and contains at least 1 or more types among Pt, Ir, and Rh as a noble metal. Spark plug with temperature sensor. 前記電極部材は、貴金属を、65重量%以上100重量%以下含有することを特徴とする請求項6に記載の温度センサ付きスパークプラグ。   The spark plug with a temperature sensor according to claim 6, wherein the electrode member contains 65 wt% or more and 100 wt% or less of a noble metal.
JP2008211426A 2008-08-20 2008-08-20 Spark plug with thermal sensor Pending JP2010049856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211426A JP2010049856A (en) 2008-08-20 2008-08-20 Spark plug with thermal sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211426A JP2010049856A (en) 2008-08-20 2008-08-20 Spark plug with thermal sensor

Publications (1)

Publication Number Publication Date
JP2010049856A true JP2010049856A (en) 2010-03-04

Family

ID=42066777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211426A Pending JP2010049856A (en) 2008-08-20 2008-08-20 Spark plug with thermal sensor

Country Status (1)

Country Link
JP (1) JP2010049856A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021109131A1 (en) * 2019-12-06 2021-06-10 株洲湘火炬火花塞有限责任公司 Spark plug heat value measurement method and measurement system based on discharge current active heating method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289084A (en) * 1988-05-16 1989-11-21 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine
JPH0582236A (en) * 1991-09-20 1993-04-02 Ngk Spark Plug Co Ltd Multipolar spark plug
JPH09260021A (en) * 1996-03-21 1997-10-03 Ngk Spark Plug Co Ltd Spark plug for temperature measurement

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01289084A (en) * 1988-05-16 1989-11-21 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine
JPH0582236A (en) * 1991-09-20 1993-04-02 Ngk Spark Plug Co Ltd Multipolar spark plug
JPH09260021A (en) * 1996-03-21 1997-10-03 Ngk Spark Plug Co Ltd Spark plug for temperature measurement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021109131A1 (en) * 2019-12-06 2021-06-10 株洲湘火炬火花塞有限责任公司 Spark plug heat value measurement method and measurement system based on discharge current active heating method
US11923663B2 (en) 2019-12-06 2024-03-05 Weichai Torch Technology Co., Ltd. Spark plug heat rating measurement method and system based on spark discharge current active heating

Similar Documents

Publication Publication Date Title
US8294347B2 (en) Spark plug having specific configuration of packing area
CN101772869B (en) Spark plug for internal combustion engine
JP3900053B2 (en) Ignition device for internal combustion engine
US7944134B2 (en) Spark plug with center electrode having high heat dissipation property
JP2005243610A (en) Spark plug
JP4285366B2 (en) Spark plug for internal combustion engine
JP4430724B2 (en) Spark plug
JP5913445B2 (en) Spark plug
JP4965471B2 (en) Spark plug
JP2010049856A (en) Spark plug with thermal sensor
JP5032556B2 (en) Spark plug
JP4413728B2 (en) Spark plug
JP6418987B2 (en) Plasma jet plug
JP4398385B2 (en) Gas sensor
WO2009116553A1 (en) Spark plug
JP5519581B2 (en) Spark plug
JP5721680B2 (en) Spark plug
US9647428B2 (en) Spark plug for internal combustion engine
WO2013024579A1 (en) Gas sensor
JP2015190689A (en) internal combustion engine
JP2005166291A (en) Spark plug
JP2010165698A5 (en)
JP5498340B2 (en) Spark plug
JP6653785B2 (en) Spark plug
JP2010165698A (en) Spark plug

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100916

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120405

A131 Notification of reasons for refusal

Effective date: 20120410

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130402