JP2010048907A - Lighting device using voltage control type liquid crystal filter - Google Patents

Lighting device using voltage control type liquid crystal filter Download PDF

Info

Publication number
JP2010048907A
JP2010048907A JP2008211130A JP2008211130A JP2010048907A JP 2010048907 A JP2010048907 A JP 2010048907A JP 2008211130 A JP2008211130 A JP 2008211130A JP 2008211130 A JP2008211130 A JP 2008211130A JP 2010048907 A JP2010048907 A JP 2010048907A
Authority
JP
Japan
Prior art keywords
filter
liquid crystal
voltage
control type
voltage control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008211130A
Other languages
Japanese (ja)
Inventor
Kazuo Yoshida
和雄 吉田
Shinji Noguchi
晋治 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Electric Works Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Electric Works Co Ltd filed Critical Panasonic Electric Works Co Ltd
Priority to JP2008211130A priority Critical patent/JP2010048907A/en
Publication of JP2010048907A publication Critical patent/JP2010048907A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Liquid Crystal (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting device that uses a voltage control type liquid crystal filter, in which tones are quickly changed and safeness is improved. <P>SOLUTION: The lighting device 10 includes a light source 19 and a voltage control type liquid crystal filter 11. The filter 11 comprises filter substrates 12 each having a transparent substrate 121, a transparent electrode 122 disposed thereon, and an alignment layer 123 further disposed thereon, stacked with the alignment layers 123 opposing to each other, and a liquid crystal 14 mixed with a dye 13 and filling the gap between the alignment layers 123. The filter 11 has a resistance part 15 that releases charges accumulated in the filter 11. Thereby, charges accumulated in the filter 11 are discharged by the resistance part 15. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、吸収分光特性の異なる二色性色素を含む液晶が透明電極付の透明基板間に充填され、透明電極に印加する電圧によって調色制御される電圧制御型液晶フィルタを用いた照明装置に関する。   The present invention relates to an illuminating device using a voltage-controlled liquid crystal filter in which liquid crystals containing dichroic dyes having different absorption spectral characteristics are filled between transparent substrates with transparent electrodes and color-adjusted by voltage applied to the transparent electrodes About.

従来から、光学フィルタと、光源と、を備えた照明装置にあって、光学フィルタとして、波長域及び分子配列に応じて吸収分光特性の異なる二色性色素が混合された液晶が透明電極付の透明基板間に挟設されて成る液晶セルを用いたものが知られている(例えば、特許文献1参照)。図5は、このような照明装置の光学フィルタの構成を示す。光学フィルタ50は、偏光フィルタ51と、少なくとも一つの液晶セル52a、52bとを備え、各液晶セル52a、52bは、二色性色素53(以下、色素という)が混合された液晶54を挟み込むように並置された透明電極55付の透明基板56を備える。液晶54と色素53は、制御回路57から透明電極55に印加される駆動電圧に応じて配向し、色素53の分子配列が変化する。そのため、光学フィルタ50への入射光58は、それによる色温度が制御された照明光59とされる。この液晶セル52a、52bは、駆動電圧によって調色制御される電圧制御型の液晶フィルタである。   Conventionally, in an illuminating device including an optical filter and a light source, as an optical filter, a liquid crystal mixed with dichroic dyes having different absorption spectral characteristics according to a wavelength region and a molecular arrangement is provided with a transparent electrode. A device using a liquid crystal cell sandwiched between transparent substrates is known (see, for example, Patent Document 1). FIG. 5 shows the configuration of the optical filter of such an illumination device. The optical filter 50 includes a polarizing filter 51 and at least one liquid crystal cell 52a, 52b. The liquid crystal cells 52a, 52b sandwich a liquid crystal 54 mixed with a dichroic dye 53 (hereinafter referred to as a dye). The transparent substrate 56 with the transparent electrode 55 juxtaposed to each other is provided. The liquid crystal 54 and the dye 53 are aligned according to the drive voltage applied to the transparent electrode 55 from the control circuit 57, and the molecular arrangement of the dye 53 changes. Therefore, the incident light 58 on the optical filter 50 is used as illumination light 59 in which the color temperature is controlled. The liquid crystal cells 52a and 52b are voltage control type liquid crystal filters that are toned and controlled by a drive voltage.

しかしながら、上述したような液晶セル52a、52bは、いわゆる液晶シャッタと異なり、透明電極55が連続する1枚で形成され、ワンセルとしてのサイズ(対角長)が大きく、例えば125mm程度にもなる。このため、電圧制御型の液晶セル52a、52bは、キャパシタ成分が大きく、印加する駆動電圧を切り替えた場合に、透明電極55に電荷が残存し、調色の切り替りが遅れる。また、制御回路57の動作時に液晶セル52a、52bのみを取り外した際に、大きなキャパシタ成分に電荷が充電された状態が保持され、不安全である。
特開2004−61828号公報
However, unlike the so-called liquid crystal shutters, the liquid crystal cells 52a and 52b as described above are formed by one continuous transparent electrode 55 and have a large size (diagonal length) as one cell, for example, about 125 mm. Therefore, the voltage-controlled liquid crystal cells 52a and 52b have a large capacitor component, and when the drive voltage to be applied is switched, charges remain in the transparent electrode 55, and the switching of toning is delayed. Further, when only the liquid crystal cells 52a and 52b are removed during the operation of the control circuit 57, the state in which charges are charged in the large capacitor components is maintained, which is unsafe.
JP 2004-61828 A

本発明は、上記問題を解決するものであり、電圧制御型液晶フィルタを用いた照明装置において、調色の切り替りを速くすると共に、安全性を向上することを目的とする。   The present invention solves the above-described problem, and an object of the present invention is to speed up switching of toning and improve safety in an illumination device using a voltage-controlled liquid crystal filter.

上記目的を達成するために請求項1の発明は、透明基板と、前記透明基板上に設けられる透明電極と、前記透明電極上に設けられる配向膜と、を有するフィルタ用基板を、前記配向膜同士が対向するように重ねて、前記配向膜相互の隙間に色素を混合した液晶を充填して成る電圧制御型液晶フィルタと、光源と、を備え、前記光源からの光が前記電圧制御型液晶フィルタによって調色制御される照明装置において、前記電圧制御型液晶フィルタは、該フィルタに充電された電荷を放電する抵抗部を備えたものである。   In order to achieve the above object, the invention according to claim 1 provides a substrate for a filter having a transparent substrate, a transparent electrode provided on the transparent substrate, and an alignment film provided on the transparent electrode. A voltage-controlled liquid crystal filter formed by filling a liquid crystal mixed with a dye in a gap between the alignment films, and a light source, and the light from the light source is the voltage-controlled liquid crystal In the lighting device that is toned and controlled by a filter, the voltage-controlled liquid crystal filter includes a resistance unit that discharges charges charged in the filter.

請求項2の発明は、請求項1に記載の照明装置において、前記抵抗部は、前記対向する透明電極間に配置されているものである。   According to a second aspect of the present invention, in the illumination device according to the first aspect, the resistance portion is disposed between the opposing transparent electrodes.

請求項1の発明によれば、電圧制御型液晶フィルタに充電された電荷が抵抗部によって放電されるので、電荷が残存する期間が短くなり、調色の切り替りが速くなる。また、電荷が確実に放電されるので、安全性が向上する。   According to the first aspect of the present invention, since the charge charged in the voltage-controlled liquid crystal filter is discharged by the resistance portion, the period during which the charge remains is shortened, and the toning switching is accelerated. Moreover, since the electric charge is reliably discharged, safety is improved.

請求項2の発明によれば、抵抗部が透明電極間に配置されるので、電圧制御型液晶フィルタの透明電極のキャパシタに見合った抵抗を容易に設定することができる。   According to the invention of claim 2, since the resistance portion is disposed between the transparent electrodes, it is possible to easily set a resistance corresponding to the capacitor of the transparent electrode of the voltage controlled liquid crystal filter.

(第1の実施形態)
本発明の第1の実施形態に係る照明装置10を図1乃至図3を参照して説明する。図1(a)は本実施形態の照明装置10を示し、図1(b)は同照明装置10の電圧制御型液晶フィルタ11(以下、フィルタという)の電気的な接続を示し、図1(c)はフィルタ11の断面構成を示す。図1(a)に示すように、照明装置10は、フィルタ11と、光源19とを備える。光源19は、交流又は直流等の電力で点灯される。フィルタ11は、光源19からの光がフィルタ11を透過するように配設される。図1(b)に示すように、フィルタ11は、対を成すフィルタ用基板12を有する。図1(c)に示すように、フィルタ用基板12は、透明基板121と、透明基板121上に設けられる透明電極122と、透明電極122上に設けられる配向膜123とを有する。フィルタ11は、フィルタ用基板12を、配向膜123同士が対向するように重ねて、スペーサ16と配向膜123相互の隙間に色素13を混合した液晶14が充填される。フィルタ11は、そのフィルタ11に充電された電荷を放電する抵抗部15を備える。
(First embodiment)
A lighting device 10 according to a first embodiment of the present invention will be described with reference to FIGS. FIG. 1A shows the lighting device 10 of the present embodiment, and FIG. 1B shows the electrical connection of a voltage-controlled liquid crystal filter 11 (hereinafter referred to as a filter) of the lighting device 10, and FIG. c) shows a cross-sectional configuration of the filter 11. As shown in FIG. 1A, the illumination device 10 includes a filter 11 and a light source 19. The light source 19 is lit with electric power such as alternating current or direct current. The filter 11 is disposed so that light from the light source 19 passes through the filter 11. As shown in FIG. 1B, the filter 11 has a pair of filter substrates 12. As shown in FIG. 1C, the filter substrate 12 includes a transparent substrate 121, a transparent electrode 122 provided on the transparent substrate 121, and an alignment film 123 provided on the transparent electrode 122. In the filter 11, the filter substrate 12 is overlapped so that the alignment films 123 face each other, and the liquid crystal 14 in which the pigment 13 is mixed is filled in the gap between the spacer 16 and the alignment film 123. The filter 11 includes a resistance unit 15 that discharges the electric charge charged in the filter 11.

透明基板121は、透光性を有する絶縁物等から成る基板であり、例えば、ガラス基板である。透明電極122は、液晶14の配向を調節する電界を発生する電極であり、例えば、酸化インジウムスズが用いられる。配向膜123は、樹脂等から成る薄い膜であり、その表面に液晶14を配向するための配向処理が施される。配向処理は、例えば、ローラ状の樹脂繊維を配向膜123上の一方向に摩擦するラビング処理である。対向する配向膜123相互の隙間は、隙間に分散されるスペーサ粒子・柱(図示せず)と共に外周のスペーサ16によって設定される。透明電極122は、電極ピン17a、17bを端部に有し、電極ピン17a、17bを介して制御回路18に接続される。制御回路18は、フィルタ11を調色制御するための電気回路であり、透明電極122に駆動電圧を供給する制御電源181と、駆動電圧の印加を入切するスイッチSWとを備える。   The transparent substrate 121 is a substrate made of a light-transmitting insulator or the like, for example, a glass substrate. The transparent electrode 122 is an electrode that generates an electric field that adjusts the alignment of the liquid crystal 14, and for example, indium tin oxide is used. The alignment film 123 is a thin film made of a resin or the like, and an alignment process for aligning the liquid crystal 14 is performed on the surface thereof. The alignment process is, for example, a rubbing process in which a roller-shaped resin fiber is rubbed in one direction on the alignment film 123. The gap between the facing alignment films 123 is set by the outer peripheral spacer 16 together with spacer particles and columns (not shown) dispersed in the gap. The transparent electrode 122 has electrode pins 17a and 17b at its ends, and is connected to the control circuit 18 via the electrode pins 17a and 17b. The control circuit 18 is an electric circuit for controlling the color of the filter 11, and includes a control power source 181 that supplies a drive voltage to the transparent electrode 122 and a switch SW that turns on and off the application of the drive voltage.

色素13は、波長域及び分子配列に応じて吸収分光特性の異なる二色性色素であり、固有の分子構造に起因する吸光ピークを持ち、長波長域から短波長域にかけて吸収分光特性が連続的に増加するものや、短波長域から長波長域にかけて吸収分光特性が連続的に増加するもの等がある。なお、吸収分光特性とは、各々の物質が有する波長ごとの光の吸収特性を言う。一般的な二色性色素としては、アゾ系色素、アントラキノン系色素等が挙げられ、本実施形態においては、例えば、退色性が少ない蛍光性ベンゾチアジアゾール系二色性色素が用いられる。液晶14は、ネマティック液晶、コレステリック液晶、スメクティック液晶のいずれを用いてもよく、スメクティック液晶の一種である強誘電性液晶を用いてもよい。   The dye 13 is a dichroic dye having different absorption spectral characteristics depending on the wavelength range and molecular arrangement, has an absorption peak due to a unique molecular structure, and has continuous absorption spectral characteristics from a long wavelength range to a short wavelength range. And the absorption spectral characteristics continuously increase from a short wavelength region to a long wavelength region. The absorption spectral characteristic refers to the light absorption characteristic for each wavelength of each substance. Common dichroic dyes include azo dyes, anthraquinone dyes, and the like. In this embodiment, for example, fluorescent benzothiadiazole dichroic dyes with less fading are used. The liquid crystal 14 may be a nematic liquid crystal, a cholesteric liquid crystal, or a smectic liquid crystal, or may be a ferroelectric liquid crystal that is a kind of smectic liquid crystal.

フィルタ11は、対向する透明電極122と、それらの間に充填されている色素13及び液晶14とによって、等価的に平行板キャパシタを構成する。平行板キャパシタのキャパシタ成分(キャパシタンス)は、平行板電極の面積に略比例するので、フィルタ11は、ワンセルのサイズが大きい程、そのキャパシタ成分は大きい。   The filter 11 equivalently forms a parallel plate capacitor by the transparent electrodes 122 facing each other and the dye 13 and the liquid crystal 14 filled between them. Since the capacitor component (capacitance) of the parallel plate capacitor is substantially proportional to the area of the parallel plate electrode, the capacitor component of the filter 11 increases as the size of one cell increases.

抵抗部15は、対向する透明電極122間に接続された高抵抗材料である。高抵抗材料は、例えば、導電性ポリマー(導電性高分子)である。図2(a)(b)は、抵抗部15に用いられる導電性ポリマーの例を示す。図2(a)はポリチオフェン誘導体、図2(b)は「自己ドープ型」ポリイソチアナフテン誘導体(いずれもティーエーケミカル株式会社製)である。抵抗部15は、このような導電性ポリマーを、例えば、スペーサ16の内面に塗布して構成される。   The resistance portion 15 is a high resistance material connected between the transparent electrodes 122 facing each other. The high resistance material is, for example, a conductive polymer (conductive polymer). FIGS. 2A and 2B show examples of conductive polymers used for the resistance portion 15. FIG. 2A shows a polythiophene derivative, and FIG. 2B shows a “self-doped” polyisothianaphthene derivative (both manufactured by TA Chemical Co., Ltd.). The resistance portion 15 is configured by applying such a conductive polymer to the inner surface of the spacer 16, for example.

次に、上記のように構成された照明装置10の動作を図1(b)(c)及び図3(a)(b)を参照して説明する。図1(b)(c)はスイッチSWがONの場合、図3(a)(b)はスイッチSWがOFFの場合を示す。図1(b)に示すように、スイッチSWがONにされると、電極ピン17a−17b間に制御電源181から矩形波交流の駆動電圧が印加される。図1(c)に示すように、対向する透明電極122間に駆動電圧によって電界が発生し、細長い分子構造の液晶14及び色素13は、電界方向に配向して、フィルタ用基板12に対して垂直に立ち上がる。そのため、色素13による光吸収は少なくなり、フィルタ11の光の透過率は高い状態が保たれる。このとき、フィルタ11は、駆動電圧によって電荷が充電される。   Next, the operation of the illumination device 10 configured as described above will be described with reference to FIGS. 1B and 1C and FIGS. 3A and 3B. FIGS. 1B and 1C show the case where the switch SW is ON, and FIGS. 3A and 3B show the case where the switch SW is OFF. As shown in FIG. 1B, when the switch SW is turned on, a rectangular wave AC driving voltage is applied from the control power source 181 between the electrode pins 17a-17b. As shown in FIG. 1C, an electric field is generated between the opposing transparent electrodes 122 by a driving voltage, and the liquid crystal 14 and the dye 13 having a long and narrow molecular structure are aligned in the direction of the electric field, and the filter substrate 12 is aligned. Stand up vertically. Therefore, light absorption by the dye 13 is reduced, and the light transmittance of the filter 11 is kept high. At this time, the filter 11 is charged with the drive voltage.

図3(a)に示すように、スイッチSWがOFFにされると、駆動電圧は電極ピン17a−17b間に印加されない。図3(b)に示すように、フィルタ11に充電されていた電荷が抵抗部15によって放電され、対向する透明電極122間の電界が消滅する。そのため、細長い分子構造の液晶14及び色素13は、配向膜123に対して平行に配向し、色素13は、その長軸方向に振動する偏光を強く吸収する。従って、例えば、長波長域に対する吸収分光特性を有する色素13を含むフィルタ11は、透過光の色温度を増加させ、他方、短波長域に対する吸収分光特性を有する色素13を含むフィルタ11は、透過光の色温度を減少させる。すなわち、照明装置10において、フィルタ11の調色がスイッチSWによって切り替わる。   As shown in FIG. 3A, when the switch SW is turned off, the drive voltage is not applied between the electrode pins 17a-17b. As shown in FIG. 3B, the electric charge charged in the filter 11 is discharged by the resistance portion 15, and the electric field between the transparent electrodes 122 facing each other disappears. Therefore, the liquid crystal 14 and the dye 13 having an elongated molecular structure are aligned in parallel to the alignment film 123, and the dye 13 strongly absorbs polarized light that vibrates in the major axis direction. Therefore, for example, the filter 11 including the dye 13 having the absorption spectral characteristic for the long wavelength region increases the color temperature of the transmitted light, while the filter 11 including the dye 13 having the absorption spectral characteristic for the short wavelength region is transmitted. Reduce the color temperature of light. That is, in the lighting device 10, the toning of the filter 11 is switched by the switch SW.

このように、本実施形態の照明装置10は、制御回路18のスイッチSWをONからOFFにしたとき、フィルタ11に充電された電荷が抵抗部15によって放電されるので、電荷が残存する期間が短くなり、調色の切り替りが速くなる。また、制御回路18の動作時にフィルタ11のみを取り外した際に、フィルタ11の大きなキャパシタ成分に充電された電荷が確実に放電されるので、電極ピン17a,17b等の充電部に誤って手を触れた場合の安全性がより向上する。   As described above, in the illumination device 10 according to the present embodiment, when the switch SW of the control circuit 18 is turned from ON to OFF, the charge charged in the filter 11 is discharged by the resistor unit 15, so that the period in which the charge remains is long. Shorter and faster toning switching. Further, when only the filter 11 is removed during the operation of the control circuit 18, the charge charged in the large capacitor component of the filter 11 is surely discharged, so that the charging parts such as the electrode pins 17a and 17b are mistakenly touched. Safety when touched is further improved.

(第2の実施形態)
本発明の第2の実施形態に係る照明装置を図4を参照して説明する。図4は本実施形態の照明装置におけるフィルタ21の断面構成を示す。本実施形態の照明装置は、第1の実施形態における抵抗部15を設けることに代えて、液晶14に溶解された導電性ポリマーを抵抗部25として用いるようにした。
(Second Embodiment)
An illumination device according to a second embodiment of the present invention will be described with reference to FIG. FIG. 4 shows a cross-sectional configuration of the filter 21 in the illumination device of the present embodiment. In the illumination device of this embodiment, instead of providing the resistor portion 15 in the first embodiment, a conductive polymer dissolved in the liquid crystal 14 is used as the resistor portion 25.

対向するフィルタ用基板12間に充填される液晶14には、導電性ポリマーが溶解されている。この導電性ポリマーは、高抵抗材料であり、対向する透明電極122間を高抵抗で接続することになり、フィルタ21に充電された電荷を放電する抵抗部25として機能する。導電性ポリマーは、例えば、ポリチオフェン誘導体、又は「自己ドープ型」ポリイソチアナフテン誘導体である(図2(a)(b)参照)。なお、抵抗部25は、配向膜123を介して透明電極122と電気的に接続されるが、配向膜123は薄い膜であり、電気的な接続は確保される。   A conductive polymer is dissolved in the liquid crystal 14 filled between the opposing filter substrates 12. This conductive polymer is a high-resistance material, and connects the opposing transparent electrodes 122 with high resistance, and functions as a resistance portion 25 that discharges the charge charged in the filter 21. The conductive polymer is, for example, a polythiophene derivative or a “self-doped” polyisothianaphthene derivative (see FIGS. 2A and 2B). In addition, although the resistance part 25 is electrically connected with the transparent electrode 122 through the alignment film 123, the alignment film 123 is a thin film and electrical connection is ensured.

ここで、対向する透明電極122間のキャパシタ成分をC、透明電極122間の抵抗部25による抵抗をRとすると、キャパシタ成分Cは透明電極122の面積に略比例し、抵抗Rはその面積に略反比例する。このため、透明電極122に充電された電荷の放電の時定数をTとすると、T=C×Rであるので、時定数Tは、透明電極122の面積に関わらない。一方、抵抗Rは、液晶14に溶解される導電性ポリマーの濃度に依存する。従って、時定数Tは、導電性ポリマーの濃度の増減によって調節可能であり、所望の時定数Tが得られる導電性ポリマーの濃度は、透明電極122の大きさに関わらずフィルタ21に適用される。   Here, when the capacitor component between the opposing transparent electrodes 122 is C, and the resistance of the resistance portion 25 between the transparent electrodes 122 is R, the capacitor component C is approximately proportional to the area of the transparent electrode 122, and the resistance R is the area. It is approximately inversely proportional. For this reason, if the time constant of the discharge of the charge charged in the transparent electrode 122 is T, T = C × R, so the time constant T is not related to the area of the transparent electrode 122. On the other hand, the resistance R depends on the concentration of the conductive polymer dissolved in the liquid crystal 14. Therefore, the time constant T can be adjusted by increasing or decreasing the concentration of the conductive polymer, and the concentration of the conductive polymer that provides the desired time constant T is applied to the filter 21 regardless of the size of the transparent electrode 122. .

このように、本実施形態の照明装置は、第1の実施形態と同様に、フィルタ21に充電された電荷が抵抗部25によって放電されるので、調色の切り替りが速くなり、フィルタ21に手を触れた場合の安全性が向上する。また、透明電極122に充電された電荷の放電の時定数は、透明電極122の面積に関わらないので、フィルタ21の透明電極122のキャパシタに見合った抵抗を容易に設定することができる。   As described above, in the illumination device according to the present embodiment, since the charge charged in the filter 21 is discharged by the resistance unit 25 as in the first embodiment, the switching of the toning becomes faster, and the filter 21 Safety when touched is improved. Further, since the time constant of the discharge of the charge charged in the transparent electrode 122 is not related to the area of the transparent electrode 122, the resistance corresponding to the capacitor of the transparent electrode 122 of the filter 21 can be easily set.

なお、本発明は、上記の実施形態の構成に限られず、発明の要旨を変更しない範囲で種々の変形が可能である。例えば、抵抗部15として、固定抵抗器或いは可変抵抗器又は半固定抵抗器を電極ピン17a−17b間に外付けしてもよい。   In addition, this invention is not restricted to the structure of said embodiment, A various deformation | transformation is possible in the range which does not change the summary of invention. For example, a fixed resistor, a variable resistor, or a semi-fixed resistor may be externally attached between the electrode pins 17a-17b as the resistor unit 15.

(a)は本発明の第1の実施形態に係る照明装置の構成図、(b)は同照明装置における電圧制御型液晶フィルタの駆動電圧印加時の接続図、(c)は同フィルタの駆動電圧印加時の断面図。(A) is the block diagram of the illuminating device which concerns on the 1st Embodiment of this invention, (b) is the connection figure at the time of the drive voltage application of the voltage control type liquid crystal filter in the illuminating device, (c) is the drive of the filter Sectional drawing at the time of voltage application. (a)(b)は同フィルタの抵抗部に用いられる導電性ポリマーの例の構造式。(A) (b) is a structural formula of the example of the conductive polymer used for the resistance part of the filter. (a)は同フィルタの駆動電圧無印加時の接続図、(b)は同フィルタの駆動電圧無印加時の断面図。(A) is a connection diagram when no drive voltage is applied to the filter, and (b) is a cross-sectional view when no drive voltage is applied to the filter. 本発明の第2の実施形態に係る照明装置における電圧制御型液晶フィルタの断面図。Sectional drawing of the voltage control type liquid crystal filter in the illuminating device which concerns on the 2nd Embodiment of this invention. 従来の電圧制御型液晶フィルタを用いた照明装置の構成図。The block diagram of the illuminating device using the conventional voltage control type liquid crystal filter.

符号の説明Explanation of symbols

10 照明装置
11、21 電圧制御型液晶フィルタ
12 フィルタ用基板
121 透明基板
122 透明電極
123 配向膜
13 色素
14 液晶
15、25 抵抗部
19 光源
DESCRIPTION OF SYMBOLS 10 Illuminating device 11, 21 Voltage control type liquid crystal filter 12 Filter substrate 121 Transparent substrate 122 Transparent electrode 123 Alignment film 13 Dye 14 Liquid crystal 15, 25 Resistor 19 Light source

Claims (2)

透明基板と、前記透明基板上に設けられる透明電極と、前記透明電極上に設けられる配向膜と、を有するフィルタ用基板を、前記配向膜同士が対向するように重ねて、前記配向膜相互の隙間に色素を混合した液晶を充填して成る電圧制御型液晶フィルタと、光源と、を備え、前記光源からの光が前記電圧制御型液晶フィルタによって調色制御される照明装置において、
前記電圧制御型液晶フィルタは、該フィルタに充電された電荷を放電する抵抗部を備えたことを特徴とする電圧制御型液晶フィルタを用いた照明装置。
A filter substrate having a transparent substrate, a transparent electrode provided on the transparent substrate, and an alignment film provided on the transparent electrode is stacked so that the alignment films face each other. In a lighting device comprising a voltage-controlled liquid crystal filter formed by filling a liquid crystal mixed with a pigment in a gap, and a light source, wherein the light from the light source is toned and controlled by the voltage-controlled liquid crystal filter,
The voltage control type liquid crystal filter is provided with a resistance portion for discharging the electric charge charged in the filter, and the illumination device using the voltage control type liquid crystal filter.
前記抵抗部は、前記対向する透明電極間に配置されていることを特徴とする請求項1に記載の電圧制御型液晶フィルタを用いた照明装置。   The illumination device using a voltage-controlled liquid crystal filter according to claim 1, wherein the resistance portion is disposed between the opposing transparent electrodes.
JP2008211130A 2008-08-19 2008-08-19 Lighting device using voltage control type liquid crystal filter Withdrawn JP2010048907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008211130A JP2010048907A (en) 2008-08-19 2008-08-19 Lighting device using voltage control type liquid crystal filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008211130A JP2010048907A (en) 2008-08-19 2008-08-19 Lighting device using voltage control type liquid crystal filter

Publications (1)

Publication Number Publication Date
JP2010048907A true JP2010048907A (en) 2010-03-04

Family

ID=42066062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008211130A Withdrawn JP2010048907A (en) 2008-08-19 2008-08-19 Lighting device using voltage control type liquid crystal filter

Country Status (1)

Country Link
JP (1) JP2010048907A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645782A (en) * 2011-05-17 2012-08-22 京东方科技集团股份有限公司 Method for manufacturing color liquid crystal films, color liquid crystal film and display device
JP5458218B1 (en) * 2012-12-03 2014-04-02 カラーリンク・ジャパン 株式会社 Optical device
WO2014087448A1 (en) * 2012-12-03 2014-06-12 カラーリンク・ジャパン 株式会社 Optical device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9310659B2 (en) 2011-05-17 2016-04-12 Boe Technology Group Co., Ltd. Colorful liquid crystal thin film, method of manufacturing thereof and display device
US10444561B2 (en) 2011-05-17 2019-10-15 Boe Technology Group Co., Ltd. Colorful liquid crystal thin film, method of manufacturing thereof and display device
KR101404269B1 (en) 2011-05-17 2014-06-05 보에 테크놀로지 그룹 컴퍼니 리미티드 Colorful liquid crystal thin film, method of manufacturing thereof and display device
CN102645782A (en) * 2011-05-17 2012-08-22 京东方科技集团股份有限公司 Method for manufacturing color liquid crystal films, color liquid crystal film and display device
WO2014087447A1 (en) * 2012-12-03 2014-06-12 カラーリンク・ジャパン 株式会社 Optical device
CN105026991A (en) * 2012-12-03 2015-11-04 可来灵菇日本株式会社 Optical device
WO2014087448A1 (en) * 2012-12-03 2014-06-12 カラーリンク・ジャパン 株式会社 Optical device
US9523866B2 (en) 2012-12-03 2016-12-20 Colorlink Japan, Ltd. Optical device provided to an eye glass or a helmet having a frontal transmittance and a peripheral transmittance
AU2012395866B2 (en) * 2012-12-03 2017-03-16 Colorlink Japan, Ltd. Optical device
AU2012395867B2 (en) * 2012-12-03 2017-05-11 Colorlink Japan, Ltd. Optical device
US9678362B2 (en) 2012-12-03 2017-06-13 Colorlink Japan, Ltd. Optical device provided to an eye glass or a helmet having a voltage control unit that switches a voltage cyclically
CN105026991B (en) * 2012-12-03 2018-01-19 可来灵菇日本株式会社 Optical devices
JP5458218B1 (en) * 2012-12-03 2014-04-02 カラーリンク・ジャパン 株式会社 Optical device

Similar Documents

Publication Publication Date Title
TWI467279B (en) Liquid crystal display substrate and liquid crystal display device
JP6210067B2 (en) Image display device
US7486349B2 (en) Polymer network liquid crystal element with predetermined gap for dimming device having image processing, temperature detecting and pulse width control units therefor
JP2012123360A (en) Liquid crystal lens structure and driving method thereof
EP2038698A1 (en) Protection of a cholesteric liquid crystal display device
US10976604B2 (en) Display panel, driving method thereof and display device
JP3659975B2 (en) Liquid crystal display element and manufacturing method thereof
JP2010048907A (en) Lighting device using voltage control type liquid crystal filter
KR100495971B1 (en) Liquid crystal device having variable reflected wavelength
JP2004333567A (en) Dimmer and image pickup device
WO2014205985A1 (en) Light guide plate and manufacturing method therefor, backlight source and transparent display apparatus
JP2018508840A (en) Material for making an electro-optic shutter device having three transmission states, and the device and use thereof
CN210605295U (en) Liquid crystal display device
KR100758986B1 (en) Dual liquid crystal display
KR101624633B1 (en) Bistable Cholesteric Liquid Crystal Display Device with Fast Response Time
JP2009282376A (en) Voltage control type toning filter
KR19980080131A (en) Reflective ferroelectric liquid crystal display
JP2004258228A (en) Reflective liquid crystal element, method for manufacturing the same, and display device
JP2004151714A (en) Liquid crystal display device
JP2003140193A (en) Light control device and image pickup device
KR20190102694A (en) Polarizing element for organic light emission display devices
JP2003295225A (en) Liquid crystal display element
JP2001100254A (en) Liquid crystal display device
KR20170097028A (en) Cholesteric liquid crystal cell with increased reflectivity
JP2007148232A (en) Liquid crystal display element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20111101