JP2010046623A - Method of purifying contaminated soil - Google Patents

Method of purifying contaminated soil Download PDF

Info

Publication number
JP2010046623A
JP2010046623A JP2008213984A JP2008213984A JP2010046623A JP 2010046623 A JP2010046623 A JP 2010046623A JP 2008213984 A JP2008213984 A JP 2008213984A JP 2008213984 A JP2008213984 A JP 2008213984A JP 2010046623 A JP2010046623 A JP 2010046623A
Authority
JP
Japan
Prior art keywords
acid
contaminated soil
purifying contaminated
soil according
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008213984A
Other languages
Japanese (ja)
Other versions
JP4964844B2 (en
Inventor
Ichiro Fujita
一郎 藤田
Shinji Yamaki
進二 山木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2008213984A priority Critical patent/JP4964844B2/en
Publication of JP2010046623A publication Critical patent/JP2010046623A/en
Application granted granted Critical
Publication of JP4964844B2 publication Critical patent/JP4964844B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of purifying efficiently and economically contaminated soil. <P>SOLUTION: In a bioremediation treatment utilizing a decomposition activity of aerobic microbes to the contaminated soil, the contaminated soil is purified by adding a metal peroxide of a Group II metal as an oxygen release agent, and an organic acid or a mixture of an organic acid and its salt as a neutralizer while satisfying and keeping both of the aerobic property and neutral pH. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、微生物による分解活性を利用する汚染土壌の浄化方法に関する。さらに詳しくは、土壌の好気性と中性領域のpHを保持して好気性微生物を活性化して浄化する汚染土壌の浄化方法に関する。   The present invention relates to a method for purifying contaminated soil using the decomposition activity by microorganisms. More particularly, the present invention relates to a method for purifying contaminated soil, which maintains aerobic soil and neutral pH and activates and purifies aerobic microorganisms.

2003年の土壌汚染対策法施行(=以下「土対法」とする)を契機に、土壌汚染の浄化事例は増加傾向にあり、その浄化方法として、微生物の分解活性を利用したバイオレメディエーションの技術開発が進められてきている。   As a result of the enforcement of the Soil Contamination Countermeasures Law (hereinafter referred to as the “Soil-to-Section Law”) in 2003, the number of cases of soil contamination purification is increasing, and as a purification method, bioremediation technology that utilizes microbial degradation activity Development is ongoing.

バイオレメディエーションにおいて、特にシアン化合物や油類などの浄化のような好気性微生物を活用して行う浄化を短時間で効率的に実現するには、微生物の分解活性を高める好気性環境や中性領域のpH環境を作り、その状態を持続させることが重要な鍵となる。   In bioremediation, in order to achieve cleanup using aerobic microorganisms such as cyanide compounds and oils in a short time and efficiently, an aerobic environment or neutral region that enhances the degradation activity of microorganisms It is an important key to create and maintain the pH environment.

好気的条件下での微生物による汚染土壌の浄化方法として、土壌を活性汚泥の溶液によりスラリー状態にして、そのスラリーを反応槽で酸素供給と撹拌により好気状態を保持して浄化する方法が知られている(特許第3820180号公報;特許文献1参照)。また、酸素供給装置を必要としない好気状態を維持する方法として、土壌に脂肪族塩塩素化合物分解菌とともに過酸化水素や過酸化カルシウム、過酸化マグネシウムなどの酸素放出剤を散布する方法が提唱されている(特開平6−226230号公報;特許文献2参照)。また、酸素供給するための装置や設備を設置せずに好気性を維持する処理として、汚染土壌中に過酸化物等の酸素放出剤を添加する方法が知られている(特許第3961193号公報;特許文献3参照)。   As a method for purifying soil contaminated with microorganisms under aerobic conditions, the soil is made into a slurry state with an activated sludge solution, and the slurry is purified by maintaining the aerobic state by supplying oxygen and stirring in a reaction tank. It is known (see Japanese Patent No. 3820180; Patent Document 1). In addition, as a method of maintaining an aerobic state that does not require an oxygen supply device, a method of spraying oxygen-releasing agents such as hydrogen peroxide, calcium peroxide, and magnesium peroxide together with aliphatic salt chlorine compound-degrading bacteria to the soil is proposed. (See JP-A-6-226230; see Patent Document 2). Further, as a treatment for maintaining aerobic properties without installing an apparatus or facility for supplying oxygen, a method of adding an oxygen releasing agent such as peroxide to contaminated soil is known (Japanese Patent No. 3916193). ; See Patent Document 3).

しかしながら、特許文献1における浄化は処理後に脱水工程を必要とし、設備と処理の負荷がかかる。
特許文献2では、液剤である過酸化水素の酸素放出の長期持続性については言及されておらず、また、過酸化物である過酸化カルシウム、過酸化マグネシウムの酸素放出に伴うpH上昇対策についても言及されていない。
特許文献3には過酸化物の酸素放出に伴うpH上昇対策が記載されているが、処理対象土壌の下層に過酸化物を装填する方法をとり、対象土壌の分解阻害を防止しているだけで、装填した下層でのpH上昇に対する対策はなされておらず、アルカリが残留することになる。
以上のことから、酸素放出剤添加手法において好気性と中性領域pHを両立し、かつそれを持続することを可能とする、効率的な好気性土壌浄化方法を確立することが望まれていた。
However, the purification in Patent Document 1 requires a dehydration step after the treatment, which is burdened with equipment and treatment.
Patent Document 2 does not mention long-term persistence of oxygen release from hydrogen peroxide, which is a liquid agent, and also measures against pH increase associated with oxygen release from peroxides such as calcium peroxide and magnesium peroxide. Not mentioned.
Patent Document 3 describes countermeasures for increasing the pH associated with oxygen release of peroxide, but it takes a method of loading peroxide into the lower layer of the soil to be treated, and only prevents degradation of the target soil. Thus, no countermeasure is taken against the pH increase in the lower layer loaded, and alkali remains.
From the above, it has been desired to establish an efficient aerobic soil remediation method that makes it possible to maintain and maintain both aerobic and neutral pH in the oxygen release agent addition technique. .

特許第3820180号公報Japanese Patent No. 3820180 特開平6−226230号公報JP-A-6-226230 特許第3961193号公報Japanese Patent No. 3961193

本発明は、酸素放出剤添加手法において好気性と中性領域pHを両立し、かつそれを持続することを可能とする、効率的な好気性細菌による土壌浄化方法の提供をその目的とする。   It is an object of the present invention to provide an efficient soil purification method using aerobic bacteria that makes it possible to achieve and maintain both aerobic and neutral pH in the oxygen release agent addition technique.

本発明者らは、上記課題を解決するために鋭意研究を重ねた結果、酸素放出剤としてアルカリ土類金属過酸化物、中和剤として生分解性の酸とその塩を添加することにより、好気性と中性pHを両立し持続できることを見出し、本発明を完成した。   As a result of intensive studies to solve the above problems, the present inventors have added an alkaline earth metal peroxide as an oxygen release agent, a biodegradable acid and its salt as a neutralizer, The inventors have found that aerobic and neutral pH can be maintained at the same time and have completed the present invention.

すなわち、本発明の汚染土壌の浄化方法は、下記1〜12の実施態様を含む。
〔1〕微生物による分解活性を利用するバイオレメディエーション処理を用いた汚染土壌の浄化方法において、酸素放出剤として第2族金属過酸化物、中和剤として酸または酸とその塩の混合物を汚染土壌に添加することを特徴とする汚染土壌の浄化方法。
〔2〕前記酸素放出剤として用いる第2族金属過酸化物が、過酸化カルシウム及び/または過酸化マグネシウムである前記1に記載の汚染土壌の浄化方法。
〔3〕前記中和剤が、有機酸または有機酸とその塩の混合物である前記1または2に記載の汚染土壌の浄化方法。
〔4〕前記有機酸または有機酸とその塩の混合物が、コハク酸、クエン酸、ピルビン酸、マレイン酸、フマル酸、乳酸、酢酸、蟻酸、シュウ酸、リンゴ酸、グルコン酸、酒石酸から選ばれる少なくとも一種の有機酸、または有機酸とその塩の混合物である前記1乃至3のいずれかに記載の汚染土壌の浄化方法。
〔5〕前記酸素放出剤と中和剤の添加により、pHを5〜9に保持し、かつ溶存酸素を0ppmより大きくする前記1乃至5のいずれかに記載の汚染土壌の浄化方法。
〔6〕前記バイオレメディエーション処理開始後、溶存酸素が低下して0ppmになるまでの間に、酸素放出剤及び中和剤を、処理土壌のpHが5〜9になるように追添加する前記1乃至5のいずれかに記載の汚染土壌の浄化方法。
〔7〕前記バイオレメディエーション処理開始後、中和剤を、処理土壌のpHが5〜9になるように追添加する前記1乃至6のいずれかに記載の汚染土壌の浄化方法。
〔8〕微生物の栄養源として、酵母エキス及び/またはペプトンを用いる前記1乃至7のいずれかに記載の汚染土壌の浄化方法。
〔9〕浄化する対象汚染物質がシアン化合物、油類、及び/または揮発性有機化合物である前記1乃至8のいずれかに記載の汚染土壌の浄化方法。
〔10〕さらに、浄化する対象汚染物質の分解活性を有する微生物を添加する前記1乃至9のいずれかに記載の汚染土壌の浄化方法。
〔11〕浄化する対象汚染物質がシアン化合物であり、添加するシアン化合物分解活性を有する微生物がアースロバクター(Arthrobacter)属に属する微生物である前記10に記載の汚染土壌の浄化方法。
〔12〕アースロバクター(Arthrobacter)属に属する微生物が、アースロバクター・エスピー(Arthrobacter sp.)No.5菌株(FERM P-21400号)である前記11に記載の汚染土壌の浄化方法。
That is, the contaminated soil purification method of the present invention includes the following embodiments 1 to 12.
[1] In a method for purifying contaminated soil using a bioremediation process utilizing biodegradation activity by microorganisms, contaminated soil with a Group 2 metal peroxide as an oxygen release agent and an acid or a mixture of an acid and its salt as a neutralizer A method for purifying contaminated soil, characterized by being added to the soil.
[2] The method for purifying contaminated soil as described in 1 above, wherein the Group 2 metal peroxide used as the oxygen release agent is calcium peroxide and / or magnesium peroxide.
[3] The method for purifying contaminated soil according to 1 or 2, wherein the neutralizing agent is an organic acid or a mixture of an organic acid and a salt thereof.
[4] The organic acid or a mixture of organic acids and salts thereof is selected from succinic acid, citric acid, pyruvic acid, maleic acid, fumaric acid, lactic acid, acetic acid, formic acid, oxalic acid, malic acid, gluconic acid, and tartaric acid. 4. The method for purifying contaminated soil according to any one of 1 to 3, which is at least one organic acid or a mixture of an organic acid and a salt thereof.
[5] The method for purifying contaminated soil according to any one of 1 to 5, wherein the pH is maintained at 5 to 9 and the dissolved oxygen is greater than 0 ppm by the addition of the oxygen releasing agent and the neutralizing agent.
[6] The above-mentioned 1 in which an oxygen release agent and a neutralizing agent are additionally added so that the pH of the treated soil becomes 5 to 9 during the period from the start of the bioremediation treatment until the dissolved oxygen decreases to 0 ppm. The purification | cleaning method of the contaminated soil in any one of thru | or 5.
[7] The method for purifying contaminated soil according to any one of 1 to 6, wherein after the bioremediation treatment starts, a neutralizing agent is additionally added so that the pH of the treated soil becomes 5 to 9.
[8] The method for purifying contaminated soil according to any one of 1 to 7 above, wherein yeast extract and / or peptone is used as a nutrient source for microorganisms.
[9] The method for purifying contaminated soil according to any one of 1 to 8, wherein the target pollutant to be purified is a cyanide compound, oils, and / or a volatile organic compound.
[10] The method for purifying contaminated soil according to any one of 1 to 9, further comprising adding a microorganism having an activity of decomposing the target pollutant to be purified.
[11] The method for purifying contaminated soil as described in 10 above, wherein the target pollutant to be purified is a cyanide compound, and the added microorganism having a cyanide decomposition activity is a microorganism belonging to the genus Arthrobacter.
[12] The method for purifying contaminated soil as described in 11 above, wherein the microorganism belonging to the genus Arthrobacter is Arthrobacter sp. No. 5 strain (FERM P-21400).

本発明の土壌浄化方法を用いれば、効率的かつ経済的に、好気性微生物を利用するバイオレメディエーションによる土壌浄化処理を行うことができる。   If the soil purification method of this invention is used, the soil purification process by the bioremediation using an aerobic microorganism can be performed efficiently and economically.

以下、本発明についてより詳細に説明する。
本発明では、好気性微生物による土壌浄化処理を、土壌への酸素放出剤、中和剤等を添加して行うものである。土壌への酸素放出剤、中和剤等の添加方法や実施スケールは特に限定されず、土壌浄化における公知の方法で行うことができる。
Hereinafter, the present invention will be described in more detail.
In the present invention, soil purification treatment with aerobic microorganisms is performed by adding an oxygen release agent, a neutralizing agent, and the like to the soil. The method for adding oxygen release agent, neutralizing agent and the like to the soil and the implementation scale are not particularly limited, and can be performed by a known method in soil purification.

添加する酸素放出剤、中和剤等は水溶液、粉末のいずれでも構わないが、水溶液の場合でも粉末の場合でも土壌に拡散・浸透するよう混和することが好ましい。水溶液で添加する場合は、増加した水分を抜き出してもよい。   The oxygen releasing agent, neutralizing agent and the like to be added may be either an aqueous solution or a powder, but it is preferable to mix them so as to diffuse and permeate the soil in both aqueous solutions and powders. When added as an aqueous solution, the increased water may be extracted.

処理温度は成り行きで行うが、ラボスケールで浄化性能を定量的に確認する場合には、恒温槽等に土壌サンプルを入れて5〜50℃、好ましくは15〜35℃の温度に制御して行うことができる。   The treatment temperature is carried out according to circumstances, but when the purification performance is quantitatively confirmed on a lab scale, the soil sample is put in a thermostatic bath or the like and controlled at a temperature of 5 to 50 ° C., preferably 15 to 35 ° C. be able to.

酸素放出剤、中和剤等を添加するタイミングは、好気性と中性領域pHを両立する範囲においては特に限定されず、各成分を別々のタイミングで添加しても、全成分同時に添加してもいずれでも構わない。また、その添加回数も限定されない。好気性と中性領域pHの両立の観点で考えると全成分を同時に添加することが好ましい。   The timing of adding the oxygen release agent, neutralizing agent, etc. is not particularly limited as long as both aerobic and neutral pH are compatible. Even if each component is added at a separate timing, all components are added simultaneously. Can be either. Further, the number of additions is not limited. From the viewpoint of achieving both aerobic and neutral pH, it is preferable to add all components simultaneously.

[酸素放出剤]
土壌に栄養源を添加した場合、好気性微生物が栄養源を代謝するに伴い土中の酸素は消費され、嫌気状態となり、好気性微生物の生育とその分解活性はやがて大きく低減してしまう。このような浄化性能の低下を回避し、好気状態を保持するためには設備を設置しての酸素添加や、重機による土壌混和の繰り返し施工を行うことが有効であるが、これらは費用負担が大きい。
[Oxygen release agent]
When a nutrient source is added to the soil, oxygen in the soil is consumed as the aerobic microorganism metabolizes the nutrient source, resulting in an anaerobic state, and the growth and decomposition activity of the aerobic microorganism are eventually greatly reduced. In order to avoid such deterioration in purification performance and maintain an aerobic state, it is effective to add oxygen with equipment installed and repeat soil mixing with heavy machinery, but these are costly Is big.

そこで、本発明では上記費用負担を軽減できる手法として酸素放出剤添加を行う。酸素放出剤は、水に溶解すると酸素を放出し、かつ難水溶性で長期にわたり酸素放出が持続するという理由により、周期表の第2族金属(Be,Mg,Ca,Sr,Ba,Ra)の過酸化物を使用する。第2族金属過酸化物としては、例えば過酸化カルシウム、過酸化マグネシウム、あるいはこれらの混合物を用いることが、経済性と酸素放出性の観点から好ましい。また添加濃度は、通常土壌に対して0.001〜2.0w/w%、望ましくは0.01〜0.5w/w%程度で用いることができる。   Therefore, in the present invention, an oxygen release agent is added as a technique that can reduce the cost burden. The oxygen release agent releases oxygen when dissolved in water, and it is sparingly water-soluble and oxygen release lasts for a long time, so that it is a group 2 metal (Be, Mg, Ca, Sr, Ba, Ra) of the periodic table. The peroxide is used. As the Group 2 metal peroxide, for example, calcium peroxide, magnesium peroxide, or a mixture thereof is preferably used from the viewpoints of economy and oxygen release properties. Moreover, the addition density | concentration can be used normally with 0.001-2.0 w / w% with respect to soil, Desirably about 0.01-0.5 w / w%.

[中和剤]
上述の酸素放出剤を土壌に添加すると、アルカリ土類金属の過酸化物が水に溶解し、酸素を放出すると同時に水酸化物が生成される。この水酸化物によるpH上昇、及び微生物の生育・分解活性の低下を回避するため、本発明では中和剤として酸または酸とその塩の混合物を用いる。
このような酸としては、例えば、コハク酸、クエン酸、ピルビン酸、マレイン酸、フマル酸、乳酸、酢酸、蟻酸、シュウ酸、リンゴ酸、グルコン酸、酒石酸などから選ばれる少なくとも一種の有機酸または有機酸とその塩の混合物を用いることが好ましい。生分解性の有機酸、有機酸塩は微生物の栄養源にもなり、分解活性を高めることができる。また、これらの有機酸が微生物に分解された場合、その結果発生する二酸化炭素によりアルカリ土類金属の水酸化物は炭酸塩となるため、中和の効果も損なわれることがない。
[Neutralizer]
When the oxygen release agent described above is added to the soil, the alkaline earth metal peroxide dissolves in the water, releasing oxygen and simultaneously producing a hydroxide. In order to avoid the increase in pH due to the hydroxide and the decrease in the growth / decomposition activity of microorganisms, the present invention uses an acid or a mixture of an acid and its salt as a neutralizing agent.
Examples of such acids include at least one organic acid selected from succinic acid, citric acid, pyruvic acid, maleic acid, fumaric acid, lactic acid, acetic acid, formic acid, oxalic acid, malic acid, gluconic acid, tartaric acid, and the like. It is preferable to use a mixture of an organic acid and its salt. Biodegradable organic acids and organic acid salts also serve as nutrient sources for microorganisms, and can enhance the degradation activity. Further, when these organic acids are decomposed into microorganisms, the alkaline earth metal hydroxide is carbonated by carbon dioxide generated as a result, so that the effect of neutralization is not impaired.

中和剤は、一般的に微生物が生育と活性化の挙動を中性領域で最もよく示すことから、pHが5〜9になるようにその量を添加することが好ましい。また、中和剤は弱酸及びその塩の混合した緩衝液として添加することもできる。   Since the neutralizing agent generally exhibits the growth and activation behavior best in the neutral region, it is preferable to add the neutralizing agent so that the pH is 5-9. Further, the neutralizing agent can be added as a buffer solution in which a weak acid and a salt thereof are mixed.

[栄養源]
上記酸素放出剤、中和剤以外の添加剤として通常のバイオレメディエーション処理同様に、炭素源、窒素源等の微生物の栄養源を汚染土壌に添加することができる。添加する栄養源は、微生物の菌数と分解活性を維持できるものであれば特に限定されない。
[Nutrition source]
As an additive other than the oxygen release agent and the neutralizing agent, a nutrient source of microorganisms such as a carbon source and a nitrogen source can be added to the contaminated soil in the same manner as a normal bioremediation treatment. The nutrient source to be added is not particularly limited as long as the number of microorganisms and the decomposition activity can be maintained.

炭素源としては、例えばグルコースやシュークロース、フルクトース、廃糖蜜等の糖類等を、単独、あるいは組み合わることにより、通常土壌に対して0.001〜2.0w/w%、好ましくは0.01〜0.05w/w%程度の濃度で用いることができる。   As the carbon source, for example, saccharides such as glucose, sucrose, fructose, and molasses, alone or in combination, are usually 0.001 to 2.0 w / w% with respect to soil, preferably 0.01. It can be used at a concentration of about 0.05% w / w.

窒素源としては、例えばペプトン、酵母エキス、肉エキス、アンモニア、硫酸アンモニウム、塩化アンモニウム、リン酸アンモニウム、硝酸アンモニウム、硝酸ナトリウム、硝酸カリウムまたは尿素等を単独、あるいは組み合わることにより、通常土壌に対して0.001〜2.0w/w%、望ましくは0.01〜0.05w/w%程度の濃度で用いることができる。   As the nitrogen source, for example, peptone, yeast extract, meat extract, ammonia, ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium nitrate, sodium nitrate, potassium nitrate, urea, etc. alone or in combination can be added to the normal soil. It can be used at a concentration of about 001 to 2.0 w / w%, desirably about 0.01 to 0.05 w / w%.

さらに必要に応じて、リン酸1水素カリウム、リン酸2水素カリウム等のリン酸塩、硫酸マグネシウム、硫酸第一鉄、酢酸カルシウム、塩化マンガンなどの金属塩、ビタミン類、アミノ酸、核酸等の供給源となるビオチン、チアミン等を添加することもできる。   Furthermore, if necessary, supply of phosphates such as potassium monohydrogen phosphate and potassium dihydrogen phosphate, metal salts such as magnesium sulfate, ferrous sulfate, calcium acetate and manganese chloride, vitamins, amino acids and nucleic acids Source biotin, thiamine and the like can also be added.

これらの栄養源の中では、菌数増大効果が大きい天然物である酵母エキス及び/またはペプトンを用いることがより好ましい。   Among these nutrient sources, it is more preferable to use a yeast extract and / or peptone which are natural products having a large effect on increasing the number of bacteria.

[菌の添加]
本発明では、酸素放出剤、中和剤、栄養剤の他に、浄化対象物の分解活性を有する微生物を添加して行うこともできる。
添加する微生物の濃度は、分解活性が発現できれば限定されないが、土壌への拡散、浸透と分解活性の両立を考慮すると、106 〜109 個/gが好ましく、特に107 〜108 個/gがより好ましい。
[Addition of bacteria]
In the present invention, in addition to the oxygen release agent, the neutralizing agent, and the nutrient, a microorganism having the activity of degrading the purification target can be added.
The concentration of the microorganism to be added is not limited as long as the decomposition activity can be expressed. However, when considering the diffusion into soil, the penetration and the decomposition activity, 10 6 to 10 9 / g is preferable, and particularly 10 7 to 10 8 / g is more preferable.

シアン分解、油類、揮発性有機化合物の分解に添加することの出来る微生物の種類としては、Achromobacter属、Acinetobacter属、Aeromonas属、Arthribacter属、Bacillus属、Corynebacteriumu属、Pseudomonas属、Beneckea属、Brevibacterium属、Flavobacterium属、Fusarium属、Methylobacter属、Methylobacteriumu属、Methylococcus属、Micromonospra属、Nocadia属、Pseudomonas属、Scytalidium属、Vibrio属などが利用できる。特にシアン分解にはArthrobacter.sp.No.5(FERM P-21400号)を用いることが好ましく、油類の分解にはPseudomonas属の微生物を用いることが好ましく、揮発性有機化合物の分解にはAcinetobacter属の微生物を用いることが好ましい。
このうち、シアン分解に好ましく用いられるアースロバクター・エスピー(Arthrobacter sp.)No.5菌株は、平成19年10月18日付で独立行政法人産業総合研究所特許生物寄託センターに受領番号:FERM P-21400号として寄託されている。
Types of microorganisms that can be added to decompose cyanides, oils, and volatile organic compounds include the genus Achromobacter, Acinetobacter, Aeromonas, Arthribacter, Bacillus, Corynebacteriumu, Pseudomonas, Beneckea, Brevibacterium Flavobacterium genus, Fusarium genus, Methylobacter genus, Methylobacteriumu genus, Methylococcus genus, Micromonospra genus, Nocadia genus, Pseudomonas genus, Scytalidium genus, Vibrio genus and the like can be used. Especially for cyan decomposition Arthrobacter.sp. No.5 (FERM No. P-21400) is preferably used, it is preferable to use microorganisms of Pseudomonas genus decomposition of oils, the decomposition of the volatile organic compound Acinetobacter It is preferable to use microorganisms of the genus.
Among these strains, Arthrobacter sp. No. 5 strain preferably used for cyanide degradation was received on October 18, 2007 at the National Institute of Advanced Industrial Science and Technology Patent Biological Deposit Center, receipt number: FERM P Deposited as -21400.

[追添加]
バイオレメディエーション処理開始後、溶存酸素が低下しはじめて0ppmになるまでの間に、処理土壌のpHが5〜9になるように酸素放出剤及び中和剤を適宜追添加することができる。
[Addition]
An oxygen release agent and a neutralizing agent can be appropriately added so that the pH of the treated soil becomes 5 to 9 after the start of the bioremediation treatment until the dissolved oxygen starts to decrease to 0 ppm.

[浄化対象物質]
本発明で浄化対象となる物質は、シアン化合物、油類、揮発性有機化合物である。
[Substance to be purified]
Substances to be purified in the present invention are cyanide compounds, oils, and volatile organic compounds.

シアン化合物としては、例えば鉄シアノ錯体、銅シアノ錯体、金属シアン錯体、ニッケルシアノ錯体、シアン化カリウム、シアン化ナトリウムなどの無機シアン化物や、ニトリル基を含む有機シアン化合物などが挙げられる。   Examples of the cyanide compound include inorganic cyanides such as iron cyano complex, copper cyano complex, metal cyanide complex, nickel cyano complex, potassium cyanide and sodium cyanide, and organic cyanide compounds containing a nitrile group.

また油類としては、例えば、鎖状飽和炭化水素であるアルカン炭化水素、ヘキサン、オクタン、ウンデカン、オクタデカンなど、鎖状不飽和炭化水素であるアルケン炭化水素、脂環式炭化水素であるシクロアルカン、シクロペンタン、シクロヘキサンなど、芳香族炭化水素であるベンゼン、トルエン、ナフタレン、クレゾールなどが挙げられる。   Examples of the oils include alkane hydrocarbons that are chain saturated hydrocarbons, alkene hydrocarbons that are chain unsaturated hydrocarbons such as hexane, octane, undecane, and octadecane, cycloalkanes that are alicyclic hydrocarbons, Examples thereof include aromatic hydrocarbons such as benzene, toluene, naphthalene, and cresol, such as cyclopentane and cyclohexane.

さらに、揮発性有機化合物としては、例えば、ベンゼン、トルエン、キシレン、n−ヘキサン、シクロヘキサン、クロロホルム、四塩化炭素、1,1−ジクロロエタン、1,2−ジクロロエタン、1,1,1−トリクロロエタン、1,1,2−トリクロロエタン、トリクロロエチレン、テトラクロロエチレン、1,1,1,2−テトラクロロエタン、1,1,2,2−テトラクロロエタン、メチルアミン、ジメチルアミン、トリメチルアミンなどが挙げられる。   Furthermore, examples of the volatile organic compound include benzene, toluene, xylene, n-hexane, cyclohexane, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,1-trichloroethane, 1 1,2,2-trichloroethane, trichloroethylene, tetrachloroethylene, 1,1,1,2-tetrachloroethane, 1,1,2,2-tetrachloroethane, methylamine, dimethylamine, trimethylamine and the like.

以下、実施例及び比較例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの記載により何らの限定を受けるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are given and this invention is demonstrated further in detail, this invention does not receive any limitation by these description.

実施例:密閉系での土壌への各成分添加による溶存酸素、pH、菌数、及び溶出全CNの比較
100Lガラス容器に土壌サンプル(比重1.7kg/L、含水率25%)を100g入れ、表1に示した添加条件1〜7に従い、各々各成分を土壌サンプルの含水率が30%となるように水溶液として添加し、混和した後、溶存酸素(=Dissolved Oxygen=DO)センサー(電極形名:OE−8270、原理:隔膜式ガルバニー電池法、メーカー:東亜ディーケーケー株式会社)、pHセンサー(本体形式:D−55、原理:ガラス電極法、メーカー:株式会社堀場製作所)及び排ガス回収ライン(内径2mmsus製チューブ)を差し込んだシリコン栓でガラス容器に蓋をした。排ガス回収ラインは、透明の容器内に仕込んだ水の中に、水がフルに入った状態で逆さにセットした50mLメスシリンダーに排ガスを回収できるように、その末端をメスシリンダーの口にセットした。20日間、30℃で静置保管する処理において、DO、pH、排ガス量を経時的測定し、0日目と20日目に土壌サンプルの生菌数をDIFCO社製ニュートリエントブロス寒天培地のプレートに無菌水で土壌を懸濁した希釈液を塗布して35℃、2日間培養して測定した。また、0日目と20日目に土壌サンプルの溶出全CNを測定した。なお、溶出全CNは、土壌汚染対策法にある土壌溶出全シアン濃度であり、平成15年度環境省告示18号「土壌溶出量調査に係る測定方法」に準じて測定した。単位はmg/L、土壌汚染対策法指定基準<0.1である。
各添加条件での測定結果を表1に合わせて示す。
Example: Comparison of dissolved oxygen, pH, number of bacteria, and total elution CN by adding each component to soil in a closed system 100 g of a soil sample (specific gravity 1.7 kg / L, moisture content 25%) is put in a 100 L glass container. In accordance with the addition conditions 1 to 7 shown in Table 1, each component was added as an aqueous solution so that the moisture content of the soil sample was 30%, mixed, and then dissolved oxygen (= Dissolved Oxygen = DO) sensor (electrode) Model name: OE-8270, Principle: Diaphragm type galvanic cell method, manufacturer: Toa DKK Corporation, pH sensor (Body type: D-55, Principle: Glass electrode method, manufacturer: Horiba, Ltd.) and exhaust gas recovery line The glass container was covered with a silicon stopper into which (a tube having an inner diameter of 2 mmsus) was inserted. The end of the exhaust gas recovery line was set at the end of the graduated cylinder so that the exhaust gas could be collected in a 50 mL graduated cylinder set upside down in the water charged in the transparent container. . In a process of stationary storage at 30 ° C. for 20 days, DO, pH, and amount of exhaust gas were measured over time, and the number of viable bacteria in the soil sample was measured on the 0th and 20th days on a plate of Nutrient Broth Agar Medium manufactured by DIFCO. A diluted solution obtained by suspending soil with sterile water was applied to the cells and cultured at 35 ° C. for 2 days for measurement. Moreover, the total elution CN of the soil sample was measured on the 0th day and the 20th day. Note that the total CN eluted is the total cyanide concentration in the soil contamination countermeasure method, and was measured according to the Ministry of the Environment Notification No. 18 “Measurement Method for Soil Elution Survey” in FY2003. The unit is mg / L and the soil pollution control law designation standard <0.1.
The measurement results under each addition condition are shown in Table 1.

Figure 2010046623
Figure 2010046623

条件1は添加成分なしのブランクであるが、pH、菌数の変動は殆どなく、DOは初発の2ppmから徐々に抜けていき、20日目には1.0ppmまで低下した。溶出全CNは全く低減しなかった。   Condition 1 was a blank with no added components, but there was almost no change in pH and the number of bacteria, and DO gradually dropped from the initial 2 ppm, and decreased to 1.0 ppm on the 20th day. The total CN eluted was not reduced at all.

ブランクに栄養剤のみ添加した条件2では、初発にある栄養源とDOにより、菌数が2×105 個/gから一桁増大し、pH変動は殆どなくDOは0ppmになった。菌の増殖にともない溶出全CNはわずかに低減した。 Under condition 2 in which only the nutrient was added to the blank, the number of bacteria increased by an order of magnitude from 2 × 10 5 cells / g due to the initial nutrient source and DO, there was almost no pH fluctuation, and DO became 0 ppm. The total CN eluted was slightly reduced with the growth of the fungus.

酸素放出剤の過酸化カルシウムのみを添加した条件3では、pHは初発より徐々に上昇し、DOは徐々に減少した。上昇したpHの影響で、菌数は死滅して一桁下がった。溶出全CNは全く低減しなかった。   Under condition 3 in which only the oxygen release agent calcium peroxide was added, the pH gradually increased from the initial release, and the DO gradually decreased. Under the influence of the increased pH, the number of bacteria died and decreased by an order of magnitude. The total CN eluted was not reduced at all.

酸素放出剤の過酸化カルシウムに対する中和剤であるクエン酸のモル当量比が約0.4の条件で過酸化カルシウムとクエン酸を添加した条件4では、pHは、終始7台に制御された。またDOも低減傾向であるものの20日目でも4ppmあり,終始好気状態を保持した。その結果、菌数はクエン酸を栄養源として一桁増大した。溶出全CNは菌の増殖と、好気性と中性pH保持により1.0mg/Lまで低減した。   In condition 4 in which calcium peroxide and citric acid were added under the condition that the molar equivalent ratio of citric acid as a neutralizing agent to calcium peroxide in the oxygen release agent was about 0.4, the pH was controlled to 7 units throughout. . Moreover, although DO was also decreasing, it was 4 ppm even on the 20th day, and kept aerobic throughout. As a result, the number of bacteria increased by an order of magnitude using citric acid as a nutrient source. Eluted total CN was reduced to 1.0 mg / L due to bacterial growth, aerobic and neutral pH retention.

条件4の条件に栄養剤である酵母エキスをさらに追加した条件5では、菌体の増殖が顕著で二桁上昇した。菌の酸素消費のため、DOは条件4より低下幅が大きかった。栄養剤添加効果により条件4よりさらに分解が進み溶出全CNは0.5mg/Lまで低減した。   In condition 5 in which yeast extract as a nutrient was further added to condition 4, the growth of the cells was remarkable and increased by two digits. Due to the oxygen consumption of the fungus, the range of decrease in DO was greater than in condition 4. Degradation further progressed from condition 4 due to the effect of adding nutrients, and the total eluted CN was reduced to 0.5 mg / L.

条件5の条件にシアン分解菌のアースロバクター(Arthrobacter)No.5をさらに追加した条件6では、添加した菌の代謝のため、DOは20日目にはなくなり嫌気状態になった。この影響で菌数も若干低下した。溶出全CNは、シアン分解菌の添加効果により<0.1mg/Lまで低減した。 In Condition 6, in which Arthrobacter No. 5 of cyanogen-degrading bacteria was further added to Condition 5, DO disappeared on the 20th day due to the metabolism of the added bacteria and became anaerobic. Due to this effect, the number of bacteria decreased slightly. Eluted total CN was reduced to <0.1 mg / L due to the effect of adding cyanide-degrading bacteria.

条件5における中和成分をクエン酸の代わりにコハク酸を対酸素放出剤モル当量比約0.5の条件で添加した条件7は、条件5と同傾向であった。   Condition 7 in which succinic acid was added in place of citric acid under the condition that the molar equivalent ratio of oxygen release agent to the oxygen releasing agent was about 0.5 was the same as condition 5 in condition 5.

本実施例において、20日間の処理期間で、好気性(溶存酸素が0ppmではない)と中性pHを保持できたのは条件4、5、及び7であった。実際の処理では、浄化対象物質の濃度に浄化終点が決まるため、処理期間や浄化対象物質の濃度に応じて好気性と中性pHを保持するように添加成分の追添加の手法をとり対応することができる。   In this example, conditions 4, 5, and 7 were able to maintain aerobic (dissolved oxygen is not 0 ppm) and neutral pH in the treatment period of 20 days. In actual processing, the end point of purification is determined by the concentration of the substance to be purified, so a method of adding additional components to cope with the treatment period and the concentration of the substance to be purified is maintained by maintaining the aerobic and neutral pH. be able to.

Claims (12)

微生物による分解活性を利用するバイオレメディエーション処理を用いた汚染土壌の浄化方法において、酸素放出剤として第2族金属過酸化物、中和剤として酸または酸とその塩の混合物を汚染土壌に添加することを特徴とする汚染土壌の浄化方法。   In a method for remediating contaminated soil using bioremediation treatment utilizing biodegradation activity by microorganisms, a Group 2 metal peroxide is added to the contaminated soil as an oxygen release agent and an acid or a mixture of an acid and a salt thereof as a neutralizer. A method for purifying contaminated soil, characterized in that 前記酸素放出剤として用いる第2族金属過酸化物が、過酸化カルシウム及び/または過酸化マグネシウムである請求項1に記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to claim 1, wherein the Group 2 metal peroxide used as the oxygen release agent is calcium peroxide and / or magnesium peroxide. 前記中和剤が、有機酸または有機酸とその塩の混合物である請求項1または2に記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to claim 1 or 2, wherein the neutralizing agent is an organic acid or a mixture of an organic acid and a salt thereof. 前記有機酸または有機酸とその塩の混合物が、コハク酸、クエン酸、ピルビン酸、マレイン酸、フマル酸、乳酸、酢酸、蟻酸、シュウ酸、リンゴ酸、グルコン酸、酒石酸から選ばれる少なくとも一種の有機酸、または有機酸とその塩の混合物である請求項1乃至3のいずれかに記載の汚染土壌の浄化方法。   The organic acid or a mixture of an organic acid and a salt thereof is at least one selected from succinic acid, citric acid, pyruvic acid, maleic acid, fumaric acid, lactic acid, acetic acid, formic acid, oxalic acid, malic acid, gluconic acid, and tartaric acid. The method for purifying contaminated soil according to any one of claims 1 to 3, which is an organic acid or a mixture of an organic acid and a salt thereof. 前記酸素放出剤と中和剤の添加により、pHを5〜9に保持し、かつ溶存酸素を0ppmより大きくする請求項1乃至5のいずれかに記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to any one of claims 1 to 5, wherein the pH is maintained at 5 to 9 and the dissolved oxygen is greater than 0 ppm by the addition of the oxygen releasing agent and the neutralizing agent. 前記バイオレメディエーション処理開始後、溶存酸素が低下して0ppmになるまでの間に、酸素放出剤及び中和剤を、処理土壌のpHが5〜9になるように追添加する請求項1乃至5のいずれかに記載の汚染土壌の浄化方法。   The oxygen release agent and the neutralizing agent are additionally added so that the pH of the treated soil becomes 5 to 9 after the start of the bioremediation treatment until the dissolved oxygen decreases to 0 ppm. The purification method of the contaminated soil in any one of. 前記バイオレメディエーション処理開始後、中和剤を、処理土壌のpHが5〜9になるように追添加する請求項1乃至6のいずれかに記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to any one of claims 1 to 6, wherein after the bioremediation treatment is started, a neutralizing agent is additionally added so that the pH of the treated soil becomes 5 to 9. 微生物の栄養源として、酵母エキス及び/またはペプトンを用いる請求項1乃至7のいずれかに記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to any one of claims 1 to 7, wherein yeast extract and / or peptone is used as a nutrient source of microorganisms. 浄化する対象汚染物質がシアン化合物、油類、及び/または揮発性有機化合物である請求項1乃至8のいずれかに記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to any one of claims 1 to 8, wherein the target pollutant to be purified is a cyanide compound, oils, and / or volatile organic compounds. さらに、浄化する対象汚染物質の分解活性を有する微生物を添加する請求項1乃至9のいずれかに記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to any one of claims 1 to 9, further comprising adding a microorganism having an activity of decomposing a target pollutant to be purified. 浄化する対象汚染物質がシアン化合物であり、添加するシアン化合物分解活性を有する微生物がアースロバクター(Arthrobacter)属に属する微生物である請求項10に記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to claim 10, wherein the target pollutant to be purified is a cyanide compound, and the added microorganism having a cyanide decomposition activity is a microorganism belonging to the genus Arthrobacter. アースロバクター(Arthrobacter)属に属する微生物が、アースロバクター・エスピー(Arthrobacter sp.)No.5菌株(FERM P-21400号)である請求項11に記載の汚染土壌の浄化方法。   The method for purifying contaminated soil according to claim 11, wherein the microorganism belonging to the genus Arthrobacter is Arthrobacter sp. No. 5 strain (FERM P-21400).
JP2008213984A 2008-08-22 2008-08-22 Purification method for contaminated soil Expired - Fee Related JP4964844B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008213984A JP4964844B2 (en) 2008-08-22 2008-08-22 Purification method for contaminated soil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008213984A JP4964844B2 (en) 2008-08-22 2008-08-22 Purification method for contaminated soil

Publications (2)

Publication Number Publication Date
JP2010046623A true JP2010046623A (en) 2010-03-04
JP4964844B2 JP4964844B2 (en) 2012-07-04

Family

ID=42064182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008213984A Expired - Fee Related JP4964844B2 (en) 2008-08-22 2008-08-22 Purification method for contaminated soil

Country Status (1)

Country Link
JP (1) JP4964844B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269244A (en) * 2009-05-21 2010-12-02 Ecocycle Corp Additive and method for cleaning medium contaminated with mineral oil
JP2011218251A (en) * 2010-04-05 2011-11-04 Ohbayashi Corp Cleaning method of contaminated ground
JP2017042722A (en) * 2015-08-27 2017-03-02 Adeka総合設備株式会社 Chemical material decomposition composition and decomposition treatment method of chemical material
CN114058377A (en) * 2021-11-11 2022-02-18 北京恩思沃生物科技有限公司 Soil remediation agent and soil remediation method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6817899B2 (en) * 2016-06-10 2021-01-20 宇部マテリアルズ株式会社 Oxygen sustained release agent, its manufacturing method and oxygen supply method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020090697A1 (en) * 2001-01-06 2002-07-11 Hince Eric Christian Slow-release solid-chemical composition and method for anaerobic bioremediation
JP2003251331A (en) * 2002-03-01 2003-09-09 Ecocycle Corp Method for biologically restoring polluted soil or underground water, and additive
JP2004016859A (en) * 2002-06-13 2004-01-22 Kajima Corp In situ purification method of polluted soil
JP2007075670A (en) * 2005-09-12 2007-03-29 Sumikon Serutekku Kk Purification method of soil polluted by organic materials and cyanide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020090697A1 (en) * 2001-01-06 2002-07-11 Hince Eric Christian Slow-release solid-chemical composition and method for anaerobic bioremediation
JP2003251331A (en) * 2002-03-01 2003-09-09 Ecocycle Corp Method for biologically restoring polluted soil or underground water, and additive
JP2004016859A (en) * 2002-06-13 2004-01-22 Kajima Corp In situ purification method of polluted soil
JP2007075670A (en) * 2005-09-12 2007-03-29 Sumikon Serutekku Kk Purification method of soil polluted by organic materials and cyanide

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010269244A (en) * 2009-05-21 2010-12-02 Ecocycle Corp Additive and method for cleaning medium contaminated with mineral oil
JP2011218251A (en) * 2010-04-05 2011-11-04 Ohbayashi Corp Cleaning method of contaminated ground
JP2017042722A (en) * 2015-08-27 2017-03-02 Adeka総合設備株式会社 Chemical material decomposition composition and decomposition treatment method of chemical material
CN114058377A (en) * 2021-11-11 2022-02-18 北京恩思沃生物科技有限公司 Soil remediation agent and soil remediation method

Also Published As

Publication number Publication date
JP4964844B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
Lu et al. Nitrogen removal in recirculating aquaculture water with high dissolved oxygen conditions using the simultaneous partial nitrification, anammox and denitrification system
Yang et al. Nitrogen removal characteristics of a heterotrophic nitrifier Acinetobacter junii YB and its potential application for the treatment of high-strength nitrogenous wastewater
Tran et al. Insight into metabolic and cometabolic activities of autotrophic and heterotrophic microorganisms in the biodegradation of emerging trace organic contaminants
Wang et al. An adsorption-release-biodegradation system for simultaneous biodegradation of phenol and ammonium in phenol-rich wastewater
JP4964844B2 (en) Purification method for contaminated soil
Liu et al. Simultaneous pyridine biodegradation and nitrogen removal in an aerobic granular system
CN100460499C (en) Sequencing batch active sludge process for eliminating ammonia nitrogen from sewage
Yan et al. Comparison of the effects of different salts on aerobic ammonia oxidizers for treating ammonium-rich organic wastewater by free and sodium alginate immobilized biomass system
Bromley-Challenor et al. Bacterial growth on N, N-dimethylformamide: implications for the biotreatment of industrial wastewater
CN108117221A (en) A kind of processing method of reverse osmosis concentrated water
CN106987547A (en) One plant of Acinetobacter bauamnnii and its application
Potivichayanon et al. Removal of high levels of cyanide and COD from cassava industrial wastewater by a fixed-film sequencing batch reactor
CN105585133B (en) The biological denitrification method of the high saline sewage of catalyst production process discharge
Kocamemi et al. Cometabolic degradation of TCE in enriched nitrifying batch systems
Mekuto et al. Heterotrophic nitrification-aerobic denitrification potential of cyanide and thiocyanate degrading microbial communities under cyanogenic conditions
Shen et al. Treatment of ampicillin‐loaded wastewater by combined adsorption and biodegradation
Wang et al. Enhanced nitrogen removal and minimization of N2O emission in a constant-flow multiple anoxic and aerobic process
Wang et al. Acceleration of nitrogen removal performance in a biofilm reactor augmented with Pseudomonas sp. using polycaprolactone as carbon source for treating low carbon to nitrogen wastewater
Alpaslan Kocamemi et al. Kinetic analysis of the inhibitory effect of trichloroethylene (TCE) on nitrification in cometabolic degradation
Wan et al. Influence of electron donors on perchlorate reduction and microbial community structure
CN109161513B (en) Sphingobacterium and application thereof
Mu et al. Characterization of Achromobacter denitrificans QHR-5 for heterotrophic nitrification-aerobic denitrification with iron oxidation function isolated from BSIS: Nitrogen removal performance and enhanced SND capability of BSIS
Mak et al. An overview of the effects of heavy metals content in wastewater on anammox bacteria
Simm et al. A targeted study on possible free ammonia inhibition of Nitrospira
Tabraiz et al. Biofilm-based simultaneous nitrification, denitrification, and phosphorous uptake in wastewater by Neurospora discreta

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110603

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120328

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150406

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees