JP2010046618A - Method of forming fluororesin coating film - Google Patents

Method of forming fluororesin coating film Download PDF

Info

Publication number
JP2010046618A
JP2010046618A JP2008213783A JP2008213783A JP2010046618A JP 2010046618 A JP2010046618 A JP 2010046618A JP 2008213783 A JP2008213783 A JP 2008213783A JP 2008213783 A JP2008213783 A JP 2008213783A JP 2010046618 A JP2010046618 A JP 2010046618A
Authority
JP
Japan
Prior art keywords
fluororesin
coating layer
coating film
ptfe
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008213783A
Other languages
Japanese (ja)
Other versions
JP5003633B2 (en
Inventor
Jun Hoshikawa
潤 星川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2008213783A priority Critical patent/JP5003633B2/en
Publication of JP2010046618A publication Critical patent/JP2010046618A/en
Application granted granted Critical
Publication of JP5003633B2 publication Critical patent/JP5003633B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of forming a fluororesin coating film excellent in coating characteristics and the durability, which produces no crack on the coating film even if a thick film is formed, and can reduce the number of times of recoating. <P>SOLUTION: The method of forming a fluororesin coating film includes: a step of applying to a heat-resistant substrate a fluororesin aqueous dispersion liquid which contains 20-70 mass% fluororesin fine particles having an average particle size of 0.1-0.5 μm and a melting point of more than 200°C to the total amount of the dispersion liquid, and 2-12 mass% a nonionic surface-active agent to the fluororesin mass to form a coating layer; a step of heat-treating the coating layer at 200°C-the temperatures below the melting point of the fluororesin to reduce the content of the nonionic surface-active agent to below 2 mass% versus the fluororesin mass; a step of pressure-treating the coating layer at 0.1-100 MPa; and a step of heat-baking the coating layer at the melting point of the fluororesin-420°C, to form the coating film of the fluororesin on the heat-resistant substrate. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、フッ素樹脂塗膜の形成方法に関する。   The present invention relates to a method for forming a fluororesin coating film.

フッ素樹脂微粒子を含むフッ素樹脂水性分散液は、フッ素樹脂の特性である耐熱性、耐薬品性、非粘着性、自己潤滑性、耐候性、撥水性などを生かした用途に広く用いられている。
一般的に、フッ素樹脂水性分散液は、乳化重合法により製造される。例えば、ポリテトラフルオロエチレン(以下、PTFEという。)の場合には、以下の方法で水性分散液が製造される。
純水、過酸化物系重合開始剤、アニオン性のフッ素系界面活性剤、および重合安定剤であるパラフィンワックス等の混合物を撹拌しつつ、テトラフルオロエチレン(以下、TFEという。)を単独で重合あるいは微量のコモノマーと共重合させることにより、平均粒子径が0.1〜0.5μmのPTFE微粒子が前記混合物中に分散したPTFE水性乳化液が得られる(非特許文献1参照)。
Aqueous fluororesin dispersions containing fluororesin fine particles are widely used in applications that take advantage of the characteristics of fluororesins such as heat resistance, chemical resistance, non-adhesiveness, self-lubricity, weather resistance, and water repellency.
Generally, an aqueous fluororesin dispersion is produced by an emulsion polymerization method. For example, in the case of polytetrafluoroethylene (hereinafter referred to as PTFE), an aqueous dispersion is produced by the following method.
Tetrafluoroethylene (hereinafter referred to as TFE) is polymerized alone while stirring a mixture of pure water, a peroxide polymerization initiator, an anionic fluorosurfactant, and a paraffin wax as a polymerization stabilizer. Alternatively, a PTFE aqueous emulsion in which PTFE fine particles having an average particle diameter of 0.1 to 0.5 μm are dispersed in the mixture is obtained by copolymerization with a small amount of a comonomer (see Non-Patent Document 1).

該PTFE水性乳化液は凝集しやすく不安定であるため、従来、PTFE水性乳化液に、C81764O(C24O)10H(ダウケミカル社製トライトンX‐100)などのポリオキシエチレンアルキルフェニルエーテル系非イオン性界面活性剤を添加することで安定化を図っている。そして、該安定化されたPTFE水性乳化液を、電気泳動法や相分離法等の方法を用いて濃縮して高濃度PTFE水性分散液とし、さらに、高濃度PTFE水性分散液に必要に応じて水、アンモニア、界面活性剤やその他の成分を添加し、PTFE水性分散液を得ている。
上記で得られたPTFE水性分散液は、これを耐熱基材に塗布し、耐熱基材上にPTFE微粒子の塗布層を形成した後、PTFE微粒子の塗布層を耐熱基材とともにPTFEの融点以上に加熱して、PTFE微粒子を焼成し、融着させて、PTFE塗膜付き耐熱基材の形で使用される。この様なPTFE塗膜を有する耐熱基材の具体例としては、金属板にフッ素樹脂塗膜を形成した、非粘着性の電気釜や鍋、ガラス繊維布等にPTFE塗膜が形成された耐熱ベルト等が挙げられる。
Since the PTFE aqueous emulsion easily aggregates and is unstable, conventionally, the PTFE aqueous emulsion is added to C 8 H 17 C 6 H 4 O (C 2 H 4 O) 10 H (Triton X-100 manufactured by Dow Chemical Company). ) And other polyoxyethylene alkylphenyl ether type nonionic surfactants are added to stabilize the product. Then, the stabilized PTFE aqueous emulsion is concentrated using a method such as electrophoresis or phase separation to obtain a high concentration PTFE aqueous dispersion, and further to the high concentration PTFE aqueous dispersion as necessary. Water, ammonia, a surfactant and other components are added to obtain an aqueous PTFE dispersion.
The PTFE aqueous dispersion obtained above is applied to a heat-resistant substrate, and after a PTFE fine particle coating layer is formed on the heat-resistant substrate, the PTFE fine particle coating layer together with the heat-resistant substrate exceeds the melting point of PTFE. By heating, the PTFE fine particles are fired, fused, and used in the form of a heat-resistant substrate with a PTFE coating. As a specific example of such a heat-resistant substrate having a PTFE coating film, a heat-resistant base material having a PTFE coating film formed on a non-adhesive electric kettle, pan, glass fiber cloth, etc. having a fluororesin coating film formed on a metal plate A belt etc. are mentioned.

しかし、上記従来例におけるフッ素樹脂塗膜の形成方法は、下記の問題点があった。
フッ素樹脂水性分散液を一定以上の膜厚で塗布して塗布層を形成すると、焼成後の塗膜にクラックやピンホールが発生し、塗膜の連続性を損ね、塗膜の性能や耐久性が低下する等、塗膜の品質が低下する。クラックが発生し始める厚みは、クラック限界膜厚(Critical Film Thickness。以下、CFTとよぶ)と呼ばれ、PTFEの場合、CFTは一般的に10〜12μmである。このため、通常は塗膜厚がCFT以下となるような塗布厚で耐熱基材上にPTFE水性分散液が塗布される。しかし用途により、フッ素樹脂塗膜の充分な耐久性を確保するためにかなり厚い膜厚が必要となる場合がある。例えば、厚さ100μmのフッ素樹脂塗膜が必要な場合があるが、このような膜厚を得るためには、所定の厚みになるまで数回以上の塗布と焼成を繰返す必要があった。このため、塗布回数が著しく増加し、加工コストが増加する問題があった。
However, the method for forming a fluororesin coating film in the conventional example has the following problems.
When the coating layer is formed by coating the fluororesin aqueous dispersion with a film thickness of a certain level or more, cracks and pinholes are generated in the coated film after baking, and the coating film performance and durability are impaired. As a result, the quality of the coating film is degraded. The thickness at which cracks start to occur is called the crack limit film thickness (Critical Film Thickness, hereinafter referred to as CFT). In the case of PTFE, the CFT is generally 10 to 12 μm. For this reason, the PTFE aqueous dispersion is usually applied onto the heat-resistant substrate with a coating thickness such that the coating thickness is CFT or less. However, depending on the application, a considerably thick film may be required to ensure sufficient durability of the fluororesin coating film. For example, a fluororesin coating film having a thickness of 100 μm may be required, but in order to obtain such a film thickness, it has been necessary to repeat application and baking several times or more until a predetermined thickness is obtained. For this reason, there has been a problem that the number of coatings is remarkably increased and the processing cost is increased.

前記問題点に対応する方法として、PTFE水性分散液中の界面活性剤含有量を増やし、CFTを増大することが提案されている(特許文献1、特許文献2)が、大幅な改善効果は得られていない。その一方、界面活性剤の増量のためのコストが増加したり、水性分散液の粘度が増大したり、界面活性剤の熱分解ガス発生にともなう臭気が増加するという問題があった。   As a method for addressing the above problems, it has been proposed to increase the surfactant content in the PTFE aqueous dispersion and increase the CFT (Patent Document 1, Patent Document 2), but a significant improvement effect is obtained. It is not done. On the other hand, there are problems that the cost for increasing the amount of the surfactant increases, the viscosity of the aqueous dispersion increases, and the odor accompanying the generation of pyrolytic gas of the surfactant increases.

また、別な方法として、粒径分布の異なるPTFE微粒子を配合してCFTを増大させる試みもある(特許文献3)が、大きな改善効果は得られていない。
特開2001−89624号公報 特開2006−117900号公報 特開2001−64466号公報 ふっ素樹脂ハンドブック、28頁、里川孝臣編、日刊工業新聞社1990年発行
As another method, there is an attempt to increase CFT by blending PTFE fine particles having different particle size distributions (Patent Document 3), but a great improvement effect has not been obtained.
JP 2001-89624 A JP 2006-117900 A JP 2001-64466 A Fluoropolymer Handbook, 28 pages, edited by Takaomi Satokawa, published by Nikkan Kogyo Shimbun, 1990

本発明は、上記従来の課題に鑑みなされたものであり、厚く塗布しても、塗膜の品質が低下せず、重ね塗り回数を低減できるために加工コストが低下し、塗膜特性やその耐久性に優れるフッ素樹脂塗膜を得ることができる、フッ素樹脂塗膜の形成方法を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and even if it is applied thickly, the quality of the coating film does not deteriorate, and the number of overcoating can be reduced. It aims at providing the formation method of the fluororesin coating film which can obtain the fluororesin coating film excellent in durability.

本発明者は、前述の課題を克服するために研究を重ねた結果、非イオン性界面活性剤を含む特定のフッ素樹脂水性分散液を用い、耐熱基材への塗布後に特定温度で加熱処理して塗布層の非イオン性界面活性剤量を低減したのち、加圧手段を用いて塗布層を加圧処理し、焼成することにより、クラックやピンホールのないフッ素樹脂塗膜を一定以上の膜厚で形成することが可能であり、これにより前述の問題点をすべて解決可能であることを見出し、本発明を完成するに至った。   As a result of repeated research to overcome the above-mentioned problems, the present inventor uses a specific fluororesin aqueous dispersion containing a nonionic surfactant and heat-treats it at a specific temperature after application to a heat-resistant substrate. After reducing the amount of nonionic surfactant in the coating layer, pressurize the coating layer using a pressurizing means and calcinate it to form a fluororesin coating film free of cracks and pinholes beyond a certain level. The present invention has been completed by finding that it is possible to form the film with a large thickness, and that all of the above-mentioned problems can be solved.

すなわち、本発明は、以下の構成を有するフッ素樹脂塗膜の形成方法を提供する。
[1]平均粒子径が0.1〜0.5μmであり、融点が200℃超であるフッ素樹脂の微粒子を分散液全量に対して20〜70質量%、非イオン性界面活性剤を前記フッ素樹脂微粒子の全質量に対して2〜12質量%含有するフッ素樹脂水性分散液を、耐熱基材に塗布して、前記耐熱基材上に前記フッ素樹脂水性分散液の塗布層を形成する塗布層形成工程と、前記塗布層形成工程後の前記塗布層を200℃〜前記フッ素樹脂の融点未満の温度で加熱処理して前記塗布層中の非イオン性界面活性剤の含有量を前記フッ素樹脂微粒子の全質量に対して2質量%未満に低減する加熱工程と、前記加熱工程後の前記塗布層を加圧手段を用いて0.1〜100MPaの圧力で加圧処理する加圧工程と、前記加圧工程後の前記塗布層を前記フッ素樹脂の融点〜420℃の温度で加熱して、前記塗布層中のフッ素樹脂微粒子を焼成し、前記耐熱基材上に前記フッ素樹脂の塗膜を形成する焼成工程とを有することを特徴とするフッ素樹脂塗膜の形成方法。
That is, this invention provides the formation method of the fluororesin coating film which has the following structures.
[1] Fluororesin fine particles having an average particle diameter of 0.1 to 0.5 μm and a melting point exceeding 200 ° C. are 20 to 70% by mass with respect to the total amount of the dispersion, and the nonionic surfactant is the fluorine. A coating layer in which a fluororesin aqueous dispersion containing 2 to 12% by mass with respect to the total mass of the resin fine particles is applied to a heat resistant substrate, and a coating layer of the fluororesin aqueous dispersion is formed on the heat resistant substrate. The coating layer after the forming step and the coating layer forming step is heat-treated at a temperature of 200 ° C. to less than the melting point of the fluororesin, and the content of the nonionic surfactant in the coating layer is determined by the fluororesin fine particles. A heating step for reducing the total mass of the coating layer to less than 2% by mass, a pressurizing step for pressurizing the coating layer after the heating step with a pressure of 0.1 to 100 MPa using a pressurizing means, The coating layer after the pressing step is melted with the fluororesin. Heating at a temperature of ˜420 ° C., firing the fluororesin fine particles in the coating layer, and forming a coating film of the fluororesin on the heat-resistant substrate. Method for forming a film.

[2]前記非イオン性界面活性剤が、下記式(1)で表される化合物である上記[1]に記載のフッ素樹脂塗膜の形成方法。
−O−A−H (1)
(式中、Rは炭素数が6〜18であり、水素原子の10%以下がハロゲン原子で置換されていてもよい飽和アルキル基である。Oは酸素原子である。Aは5〜20個のオキシエチレン基、0〜3個のオキシプロピレン基、および0〜3個のオキシブチレン基より構成されるポリオキシアルキレン鎖である。)
[3]前記フッ素樹脂が、ポリテトラフルオロエチレンあるいはテトラフルオロエチレン共重合体である上記[1]又は[2]に記載のフッ素樹脂塗膜の形成方法。
[2] The method for forming a fluororesin coating film according to the above [1], wherein the nonionic surfactant is a compound represented by the following formula (1).
R 1 —O—A—H (1)
(Wherein R 1 is a saturated alkyl group having 6 to 18 carbon atoms and 10% or less of hydrogen atoms may be substituted with a halogen atom. O is an oxygen atom. A is 5 to 20) And a polyoxyalkylene chain composed of 0 to 3 oxyethylene groups, 0 to 3 oxypropylene groups, and 0 to 3 oxybutylene groups.)
[3] The method for forming a fluororesin coating film according to the above [1] or [2], wherein the fluororesin is polytetrafluoroethylene or a tetrafluoroethylene copolymer.

[4]前記フッ素樹脂水性分散液の粘度としては、ブルックフィールド型粘度計で#1スピンドルを用い、液温23℃、60rpmの条件で測定した場合に、1〜1000mPa・sの範囲にある上記[1]〜[3]のいずれか1項に記載のフッ素樹脂塗膜の形成方法。
[5]前記塗膜の厚みが、1〜1000μmである上記[1]〜[4]のいずれか1項に記載のフッ素樹脂塗膜の形成方法。
[4] The viscosity of the aqueous fluororesin dispersion is in the range of 1 to 1000 mPa · s when measured with a Brookfield viscometer using a # 1 spindle at a liquid temperature of 23 ° C. and 60 rpm. The method for forming a fluororesin coating film according to any one of [1] to [3].
[5] The method for forming a fluororesin coating film according to any one of the above [1] to [4], wherein the coating film has a thickness of 1 to 1000 μm.

本発明のフッ素樹脂塗膜の形成方法によれば、フッ素樹脂水性分散液を厚く塗布し焼成してもクラックやピンホールの発生を抑制することが可能であり、少ない塗布回数で所望の厚さのフッ素樹脂塗膜を形成することができ、加工コストが低下する経済的利点がある。
また、本発明のフッ素樹脂塗膜の形成方法が有する加圧工程は、塗膜の表面の平滑化、外観の向上に寄与している。さらに、本発明のフッ素樹脂塗膜の形成方法によれば、塗布時にフッ素樹脂の凝集塊が付着して異物状の欠点となる頻度が低下し、製品歩留まりが向上する効果も得られる。
さらに、本発明のフッ素樹脂塗膜の形成方法においては、フッ素樹脂水性分散液塗布層中に存在する非イオン性界面活性剤を熱分解し除去した後に加圧処理を行なうことから、前記塗布層中のフッ素樹脂微粒子間の空隙体積を小さくすることができ、焼成時のフッ素樹脂の融着速度の増大に貢献できると考えられる。
According to the method for forming a fluororesin coating film of the present invention, it is possible to suppress the occurrence of cracks and pinholes even if the fluororesin aqueous dispersion is applied thickly and baked, and the desired thickness can be reduced with a small number of applications. The fluororesin coating film can be formed, and there is an economic advantage that the processing cost is reduced.
Moreover, the pressurization process which the formation method of the fluororesin coating film of this invention has contributed to the smoothness of the surface of a coating film, and the improvement of an external appearance. Furthermore, according to the method for forming a fluororesin coating film of the present invention, the frequency at which fluororesin agglomerates adhere to form a foreign defect is reduced during application, and the product yield can be improved.
Furthermore, in the method for forming a fluororesin coating film according to the present invention, the nonionic surfactant present in the fluororesin aqueous dispersion coating layer is thermally decomposed and removed, and then the pressure treatment is performed. It is considered that the void volume between the fluororesin fine particles in the inside can be reduced, and it can contribute to an increase in the fusion rate of the fluororesin during firing.

以下に本発明の実施の形態について説明する。
本発明のフッ素樹脂塗膜の形成方法は、耐熱基材上に特定のフッ素樹脂水性分散液の塗布層を形成する塗布層形成工程と、前記塗布層を特定条件で加熱する加熱工程と、前記加熱後の塗布層を特定条件で加圧する加圧工程と、前記加圧後の塗布層を特定条件で焼成する焼成工程とを順に有する。
まず、本発明に用いる前記フッ素樹脂水性分散液について以下に説明する。
本発明に用いるフッ素樹脂水性分散液は、平均粒子径が0.1〜0.5μmであり、融点が200℃超であるフッ素樹脂の微粒子を分散液全量に対して20〜70質量%、非イオン性界面活性剤を前記フッ素樹脂微粒子の全質量に対して2〜12質量%含有するものである。
Embodiments of the present invention will be described below.
The method for forming a fluororesin coating film of the present invention includes a coating layer forming step of forming a coating layer of a specific fluororesin aqueous dispersion on a heat-resistant substrate, a heating step of heating the coating layer under specific conditions, It has in order a pressurization process which pressurizes the application layer after heating on specific conditions, and a baking process which bakes the application layer after pressurization on specific conditions.
First, the said fluororesin aqueous dispersion used for this invention is demonstrated below.
The aqueous fluororesin dispersion used in the present invention has an average particle size of 0.1 to 0.5 μm, and a fine particle of fluororesin having a melting point of more than 200 ° C. is 20 to 70% by mass with respect to the total amount of the dispersion. The ionic surfactant is contained in an amount of 2 to 12% by mass with respect to the total mass of the fluororesin fine particles.

前記フッ素樹脂水性分散液が含有するフッ素樹脂微粒子の平均粒子径は、前記の通り0.1〜0.50μmであるが、本発明において前記平均粒子径は、0.15〜0.40μmであることが好ましく、0.20〜0.35μmであることがより好ましい。該平均粒子径が0.1μmよりも小さいとフッ素樹脂の分子量が低く、得られるフッ素樹脂製品の機械的物性が低下し、0.50μmよりも大きいとフッ素樹脂微粒子の沈降が速く、これを含有する水性分散液の保存安定性が劣ることになる。
なお、本明細書において用いるフッ素樹脂微粒子の平均粒子径は、フッ素樹脂微粒子を走査型電子顕微鏡を用いて1万倍で写真撮影し、微粒子100個について長軸と短軸の長さを測定し、各微粒子の長軸と短軸の長さの合計を2で除した値をその微粒子の粒子径として100個の平均値を求めたものである。
As described above, the average particle size of the fluororesin fine particles contained in the aqueous fluororesin dispersion is 0.1 to 0.50 μm. In the present invention, the average particle size is 0.15 to 0.40 μm. It is preferably 0.20 to 0.35 μm. When the average particle size is less than 0.1 μm, the molecular weight of the fluororesin is low, and the mechanical properties of the obtained fluororesin product are lowered. When the average particle size is greater than 0.50 μm, the fluororesin fine particles are rapidly precipitated and contained. The storage stability of the aqueous dispersion is poor.
In addition, the average particle diameter of the fluororesin fine particles used in this specification is obtained by photographing fluororesin fine particles at a magnification of 10,000 using a scanning electron microscope, and measuring the length of the major axis and the minor axis of 100 fine particles. The average value of 100 particles was obtained by setting the value obtained by dividing the total length of the long axis and short axis of each fine particle by 2 as the particle diameter of the fine particle.

また、本発明に用いる前記フッ素樹脂微粒子を構成するフッ素樹脂は、その融点が200℃を超えるフッ素樹脂である。このようなフッ素樹脂として、具体的には、PTFE、TFE/パーフルオロ(アルキルビニルエーテル)(以下、PAVEという)共重合体(以下、PFAという)、TFE/ヘキサフルオロプロピレン(以下、HFPという)共重合体(以下、FEPという)、ポリクロロトリフルオロエチレン(以下、クロロトリフルオロエチレンをCTFE、ポリクロロトリフルオロエチレンをPCTFEという)、エチレン/TFE共重合体(以下、ETFEという)、エチレン/CTFE共重合体(以下、ECTFEという)、TFE/ビニリデンフルオリド(以下、VdFという)共重合体等が挙げられる。   The fluororesin constituting the fluororesin fine particles used in the present invention is a fluororesin having a melting point exceeding 200 ° C. Specific examples of such fluororesins include PTFE, TFE / perfluoro (alkyl vinyl ether) (hereinafter referred to as PAVE) copolymer (hereinafter referred to as PFA), and TFE / hexafluoropropylene (hereinafter referred to as HFP). Polymer (hereinafter referred to as FEP), polychlorotrifluoroethylene (hereinafter referred to as chlorotrifluoroethylene as CTFE, polychlorotrifluoroethylene as PCTFE), ethylene / TFE copolymer (hereinafter referred to as ETFE), ethylene / CTFE And a copolymer (hereinafter referred to as ECTFE), a TFE / vinylidene fluoride (hereinafter referred to as VdF) copolymer, and the like.

なお、前記PAVEとしては、パーフルオロ(メチルビニルエーテル)、パーフルオロ(エチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)などが挙げられる。PAVEは、これらの1種または2種以上を含んだものであってもよい。
この様なフッ素樹脂のうちでも、本発明のフッ素樹脂塗膜の形成方法に用いるフッ素樹脂としては、PTFE又はTFE共重合体が好ましく、PTFEがより好ましい。TFE共重合体として具体的には、前記PFA、FEP、ETFE、TFE/VdF共重合体等が挙げられる。
なお、前記PTFEには、TFEの単独重合体のみでなく、実質的に溶融加工性を付与しない程度の微量のCTFE等のハロゲン化エチレン、HFP等のハロゲン化プロピレン、PAVE等のフルオロビニルエーテル、パーフルオロ(ブテニルビニルエーテル)、パーフルオロ(2,2−ジメチル−1,3−ジオキソール)、パーフルオロ(4−メチル−1,3−ジオキソール)等の、TFEと共重合しうる共重合成分に基づく重合単位を含むいわゆる変性PTFEも含まれる。
Examples of the PAVE include perfluoro (methyl vinyl ether), perfluoro (ethyl vinyl ether), perfluoro (propyl vinyl ether) and the like. PAVE may include one or more of these.
Among such fluororesins, PTFE or TFE copolymer is preferable and PTFE is more preferable as the fluororesin used in the method for forming a fluororesin coating film of the present invention. Specific examples of the TFE copolymer include the PFA, FEP, ETFE, TFE / VdF copolymer, and the like.
The PTFE includes not only a TFE homopolymer but also a very small amount of halogenated ethylene such as CTFE, a halogenated propylene such as HFP, fluorovinyl ether such as PAVE, or the like that does not substantially impart melt processability. Based on copolymerizable components that can be copolymerized with TFE, such as fluoro (butenyl vinyl ether), perfluoro (2,2-dimethyl-1,3-dioxole), perfluoro (4-methyl-1,3-dioxole) Also included are so-called modified PTFE containing polymerized units.

本発明に用いる前記フッ素樹脂微粒子を構成するフッ素樹脂は、融点および微粒子の状態での平均粒子径が上記条件を満たしていれば、平均分子量については任意に選ぶことが可能である。本発明に好ましく用いられるPTFEの場合、数平均分子量は50万〜3000万の範囲が好ましく、100万〜2500万の範囲がより好ましい。数平均分子量が50万よりも小さいとPTFEの機械的物性が低下することがあり、また、3000万よりも大きい分子量のPTFEは工業的に製造することが困難である。なお、本明細書に用いるPTFEの数平均分子量とは、諏訪(J.Appl.Polym.Sci,17,3253(1973)記載)の方法によって示差熱分析での潜熱量から求めた数平均分子量をいう。   The fluororesin constituting the fluororesin fine particles used in the present invention can be arbitrarily selected with respect to the average molecular weight as long as the melting point and the average particle size in the state of fine particles satisfy the above conditions. In the case of PTFE preferably used in the present invention, the number average molecular weight is preferably in the range of 500,000 to 30 million, more preferably in the range of 1 million to 25 million. If the number average molecular weight is less than 500,000, the mechanical properties of PTFE may be lowered, and PTFE having a molecular weight greater than 30 million is difficult to produce industrially. The number average molecular weight of PTFE used in the present specification is the number average molecular weight obtained from the latent heat amount in differential thermal analysis by the method of Suwa (described in J. Appl. Polym. Sci, 17, 3253 (1973)). Say.

本発明におけるフッ素樹脂水性分散液に含まれるフッ素樹脂微粒子は、内部層と外側層の2層構造を有し、該2層がモノマー組成および/または平均分子量が異なるフッ素樹脂で構成されるものであってもよい。また、2層以上の複層構造を有し、各層が異なるモノマー組成及び/または異なる平均分子量を有するフッ素樹脂で構成されていてもよく、さらにこれらの層を構成するフッ素樹脂が、そのモノマー組成または平均分子量を連続的に変化させたものであってもよい。
例えば、以下に重合方法を説明するTFEの重合中に重合開始剤の添加パターンを変えることにより内部層より外側層を高分子量のPTFEまたは低分子量のPTFEとしたもの、TFEの重合後期に共重合モノマー(CTFE、HFP等)を注入して、内部層をPTFE、外側層をTFE共重合体(TFE/CTFE共重合体、TEF/HFP共重合体)としたもの、TFEの重合初期にのみ共重合モノマー(CTFE、HFP等)を注入しその後はTFEを重合させ内部層をTFE/CTFE共重合体、TFE/HFP共重合体等、外側層をPTFEとしたもの、などをフッ素樹脂微粒子として本発明に用いることが可能である。
The fluororesin fine particles contained in the aqueous fluororesin dispersion in the present invention have a two-layer structure of an inner layer and an outer layer, and the two layers are composed of fluororesins having different monomer compositions and / or average molecular weights. There may be. Moreover, it has a multilayer structure of two or more layers, and each layer may be composed of a fluororesin having a different monomer composition and / or a different average molecular weight, and the fluororesin constituting these layers is a monomer composition. Alternatively, the average molecular weight may be continuously changed.
For example, the polymerization method is described below. During the polymerization of TFE, the addition pattern of the polymerization initiator is changed to change the outer layer from the inner layer to high molecular weight PTFE or low molecular weight PTFE. Copolymerization is performed later in the polymerization of TFE. Monomers (CTFE, HFP, etc.) are injected, the inner layer is PTFE, the outer layer is a TFE copolymer (TFE / CTFE copolymer, TEF / HFP copolymer), and only in the initial stage of TFE polymerization. Polymerization monomers (CTFE, HFP, etc.) are injected, and then TFE is polymerized, and the inner layer is made of TFE / CTFE copolymer, TFE / HFP copolymer, etc., and the outer layer is made of PTFE. It can be used in the invention.

前記本発明に用いる、平均粒子径が0.1〜0.5μmであり、融点が200℃超であるフッ素樹脂微粒子は、例えば、フッ素樹脂微粒子を一般的に製造する方法である乳化重合法により、上記例示した融点が200℃を超えるフッ素樹脂の構成モノマーを原料モノマーとして重合させることで製造することができる。
乳化重合法は、水性媒体中でビニル基を有する含フッ素モノマーを単独重合もしくは該含フッ素モノマーと他の原料モノマー(含フッ素であってもなくてもよい)とを共重合させてフッ素樹脂水性乳化液を得る重合法である。含フッ素モノマーの乳化重合法は、一般的には、水、重合開始剤、界面活性剤などの混合物を撹拌しつつ、この混合物に原料モノマーを導入して、含フッ素モノマーを単独重合もしくは他の原料モノマーと共重合することにより行われる。例えば、TFEの好適な乳化重合法としては、耐圧オートクレーブ中で、水、重合開始剤、アニオン性フッ素系界面活性剤、パラフィンワックス等の重合安定剤等の混合物を撹拌しつつ、TFEを加圧下で注入することにより重合する方法が挙げられる。
The fluororesin fine particles having an average particle diameter of 0.1 to 0.5 μm and a melting point exceeding 200 ° C. used in the present invention are obtained by, for example, an emulsion polymerization method which is a general method for producing fluororesin fine particles. It can be produced by polymerizing, as a raw material monomer, a constituent monomer of a fluororesin whose melting point exemplified above exceeds 200 ° C.
In the emulsion polymerization method, a fluorine resin aqueous solution is obtained by homopolymerizing a fluorine-containing monomer having a vinyl group in an aqueous medium or copolymerizing the fluorine-containing monomer and another raw material monomer (which may or may not be fluorine-containing). This is a polymerization method for obtaining an emulsion. In general, emulsion polymerization of a fluorinated monomer is carried out by introducing a raw material monomer into this mixture while stirring a mixture of water, a polymerization initiator, a surfactant, etc. It is carried out by copolymerizing with raw material monomers. For example, as a suitable emulsion polymerization method for TFE, in a pressure-resistant autoclave, while stirring a mixture of water, a polymerization initiator such as a polymerization initiator, an anionic fluorosurfactant, and paraffin wax, TFE is pressurized. The method of superposing | polymerizing by inject | pouring is mentioned.

前記乳化重合法に用いる重合開始剤としては、過硫酸アンモニウムや過硫酸カリウム等の過硫酸塩、ジコハク酸パーオキシド、ジグルタル酸パーオキシド、tert−ブチルヒドロパーオキシド等の水溶性有機過酸化物、塩素酸塩や臭素酸塩や過マンガン酸塩と還元剤との組み合わせによる酸化還元系重合開始剤等の1種以上が使用できる。乳化重合に用いる重合開始剤の量として具体的には、最終的に生成するフッ素樹脂の質量に対して、0.001〜1質量%を挙げることができる。
また、重合安定剤としては、パラフィンワックスなどが挙げられる。
Examples of the polymerization initiator used in the emulsion polymerization method include persulfates such as ammonium persulfate and potassium persulfate, water-soluble organic peroxides such as disuccinic acid peroxide, diglutaric acid peroxide, and tert-butyl hydroperoxide, and chlorates. One or more of oxidation-reduction polymerization initiators, or the like, which are combinations of bromates, permanganates and reducing agents can be used. Specifically, the amount of the polymerization initiator used for the emulsion polymerization may be 0.001 to 1% by mass with respect to the mass of the finally produced fluororesin.
Examples of the polymerization stabilizer include paraffin wax.

前記乳化重合法に用いるアニオン性フッ素系界面活性剤として、具体的には、下記式(2)で表されるアニオン性フッ素系界面活性剤が挙げられる。
−COOX (2)
(式中、Rは、1〜2個のエーテル性酸素原子を含んでもよい炭素数4〜9のアルキル基における水素原子の90〜100%がフッ素原子で置換されているポリフルオロアルキル基であり、Oは酸素原子であり、Xはアンモニウムイオンまたは水素イオンである。)
式(2)で表されるアニオン性フッ素系界面活性剤の具体例としては、C15COONH、HC14COONH、C13COONH、HC12COONH、C11COONH、HC10COONH、CCOONH、C17COONH、COCOCFCOONH、COCOCFCOONH、COCOCFCOOH、COCF(CF)CFOCF(CF)COONH、COCF(CF)CFOCF(CF)COONH、COCF(CF)COONH等が挙げられる。これらアニオン性フッ素系界面活性剤のうちでも、乳化重合プロセスの安定性の観点から、C15COONH(パーフルオロオクタン酸アンモニウム)、COCOCFCOONH等が、好ましく用いられる。
Specific examples of the anionic fluorine-based surfactant used in the emulsion polymerization method include an anionic fluorine-based surfactant represented by the following formula (2).
R 2 -COOX (2)
(In the formula, R 2 is a polyfluoroalkyl group in which 90 to 100% of the hydrogen atoms in the alkyl group having 4 to 9 carbon atoms which may contain 1 to 2 etheric oxygen atoms are substituted with fluorine atoms) Yes, O is an oxygen atom, and X is an ammonium ion or a hydrogen ion.)
Specific examples of the anionic fluorine-based surfactant represented by the formula (2) include C 7 F 15 COONH 4 , HC 7 F 14 COONH 4 , C 6 F 13 COONH 4 , HC 6 F 12 COONH 4 , C 5 F 11 COONH 4, HC 5 F 10 COONH 4, C 4 F 9 COONH 4, C 8 F 17 COONH 4, C 4 F 9 OC 2 F 4 OCF 2 COONH 4, C 2 F 5 OC 2 F 4 OCF 2 COONH 4, C 2 F 5 OC 2 F 4 OCF 2 COOH, C 3 F 7 OCF (CF 3) CF 2 OCF (CF 3) COONH 4, C 2 F 5 OCF (CF 3) CF 2 OCF (CF 3) COONH 4, C 4 F 9 OCF (CF 3) COONH 4 , and the like. Among these anionic fluorosurfactants, C 7 F 15 COONH 4 (ammonium perfluorooctanoate), C 2 F 5 OC 2 F 4 OCF 2 COONH 4 and the like are used from the viewpoint of stability of the emulsion polymerization process. Are preferably used.

前記アニオン性フッ素系界面活性剤の使用量は、含フッ素モノマーの重合時に、最終的に得られるフッ素樹脂微粒子の全質量に対して0.05〜1.0質量%が好ましく、より好ましくはフッ素樹脂微粒子の全質量に対して0.1〜0.5質量%であり、最も好ましくは0.15〜0.3質量%である。前記界面活性剤の使用量が0.05質量%よりも少ないと、フッ素樹脂微粒子が凝集しやすく、1.0質量%よりも多いとフッ素樹脂が微粒子として得られにくい。なお、アニオン性フッ素系界面活性剤は、重合反応開始前の水に溶解させて使用してもよく、重合中のオートクレーブに水溶液として注入してもよい。   The amount of the anionic fluorosurfactant used is preferably 0.05 to 1.0% by mass, more preferably fluorine based on the total mass of the fluororesin fine particles finally obtained during the polymerization of the fluorine-containing monomer. It is 0.1-0.5 mass% with respect to the total mass of resin fine particles, Most preferably, it is 0.15-0.3 mass%. When the amount of the surfactant used is less than 0.05% by mass, the fluororesin fine particles are likely to aggregate, and when it is more than 1.0% by mass, the fluororesin is hardly obtained as fine particles. The anionic fluorosurfactant may be used after being dissolved in water before the start of the polymerization reaction, or may be injected as an aqueous solution into the autoclave during the polymerization.

本発明に用いるフッ素樹脂微粒子を乳化重合により製造する際の重合温度は特に制限されないが、30〜100℃が好ましく、特に50〜90℃が好ましい。
上述の様にして乳化重合によりフッ素樹脂微粒子が、重合に用いた各種物質の混合液中に分散した状態のフッ素樹脂水性乳化液として得られる。フッ素樹脂微粒子の平均粒子径を本発明に用いる0.1〜0.5μmに調整するには、原料モノマーの種類にもよるが、アニオン性フッ素系界面活性剤の使用量や、重合時間の調節等の重合条件を適宜調整すればよい。
この様にして得られるフッ素樹脂水性乳化液をそのままの状態でフッ素樹脂水性分散液の調製に用いる。ただし、該フッ素樹脂水性乳化液におけるフッ素樹脂微粒子の含有量が、本発明に用いるフッ素樹脂水性分散液に求められるフッ素樹脂微粒子の含有量(分散液全量に対して20〜70質量%)より低い場合には、フッ素樹脂微粒子の含有量がフッ素樹脂水性分散液調製に使用可能な含有量となるように、フッ素樹脂水性乳化液を適当な方法で濃縮することが好ましい。
The polymerization temperature for producing the fluororesin fine particles used in the present invention by emulsion polymerization is not particularly limited, but is preferably from 30 to 100 ° C, particularly preferably from 50 to 90 ° C.
As described above, fluororesin fine particles are obtained by emulsion polymerization as a fluororesin aqueous emulsion in a state of being dispersed in a mixture of various substances used in the polymerization. In order to adjust the average particle size of the fluororesin fine particles to 0.1 to 0.5 μm used in the present invention, although it depends on the type of raw material monomer, the amount of anionic fluorosurfactant used and the adjustment of the polymerization time are adjusted. The polymerization conditions such as the above may be adjusted as appropriate.
The fluororesin aqueous emulsion thus obtained is used as it is for the preparation of an aqueous fluororesin dispersion. However, the content of the fluororesin fine particles in the aqueous fluororesin emulsion is lower than the content of the fluororesin fine particles required for the aqueous fluororesin dispersion used in the present invention (20 to 70 mass% with respect to the total amount of the dispersion). In this case, the fluororesin aqueous emulsion is preferably concentrated by an appropriate method so that the content of the fluororesin fine particles becomes a content that can be used for preparing the fluororesin aqueous dispersion.

また、式(2)で表されるアニオン性フッ素系界面活性剤に代表されるアニオン性フッ素系界面活性剤は、一般的に自然界中で分解されにくいため、本発明に用いるフッ素樹脂水性分散液中での含有量を低く押えることが望ましい。前記アニオン性フッ素系界面活性剤の含有量を低く押える方法としては、できるだけ少ない使用量で乳化重合を行なう他に、乳化重合終了後に濃縮時の上澄みから前記アニオン性フッ素系界面活性剤を除去する方法(国際公開WO03/078479号パンフレット)、陰イオン交換樹脂で吸着する方法(国際公開WO00/35971号パンフレット)、限外濾過により除去する方法(特開55−120630号公報)等の公知の方法が挙げられる。   In addition, an anionic fluorosurfactant represented by the anionic fluorosurfactant represented by the formula (2) is generally difficult to be decomposed in nature. Therefore, the fluororesin aqueous dispersion used in the present invention It is desirable to keep the content inside low. As a method for keeping the content of the anionic fluorosurfactant low, emulsion polymerization is carried out with as little use amount as possible, and the anionic fluorosurfactant is removed from the supernatant after concentration after emulsion polymerization. Known methods such as a method (International Publication WO 03/078379 pamphlet), a method of adsorbing with an anion exchange resin (International Publication WO 00/35971 pamphlet), a method of removing by ultrafiltration (JP 55-120630 A) Is mentioned.

本発明で使用されるフッ素樹脂水性分散液は、このようにして得られる、平均粒子径が0.1〜0.5μmであり、融点が200℃超であるフッ素樹脂の微粒子を分散液全量に対して20〜70質量%含有するものである。このフッ素樹脂微粒子の含有量は、好ましくは35〜67質量%であり、50〜65質量%であることがより好ましい。フッ素樹脂微粒子の含有量が20質量%よりも低いと、フッ素樹脂水性分散液の粘度が低く、保存安定性が充分でない。また、フッ素樹脂含有量が70質量%よりも高いと製造が容易でない。   The fluororesin aqueous dispersion used in the present invention is obtained by the fluororesin fine particles having an average particle diameter of 0.1 to 0.5 μm and a melting point of more than 200 ° C. in the total amount of the dispersion. On the other hand, it is contained in an amount of 20 to 70% by mass. The content of the fluororesin fine particles is preferably 35 to 67% by mass, and more preferably 50 to 65% by mass. If the content of the fluororesin fine particles is lower than 20% by mass, the viscosity of the fluororesin aqueous dispersion is low and the storage stability is not sufficient. Moreover, manufacture is not easy when fluororesin content is higher than 70 mass%.

本発明に用いるフッ素樹脂水性分散液は、さらに、非イオン性界面活性剤を前記フッ素樹脂微粒子の全質量に対して2〜12質量%含有する。非イオン性界面活性剤を含有することでフッ素樹脂水性分散液は、フッ素樹脂微粒子の安定した分散を保持することが可能となる。前記非イオン性界面活性剤として、具体的には、ポリオキシエチレンアルキルエーテル、ポリオキシエチレン脂肪酸エステル、ソルビタン脂肪酸エステル、アルキルポリグルコシド、脂肪酸ジエタノールアミド、アルキルモノグリセリルエーテル、ポリオキシエチレンアルキルフェニルエーテル、脂肪酸モノグリセリド等が挙げられる。本発明においては、これらの1種を単独で、または2種以上を混合物として、用いることが可能である。なお、本発明においては、以下の理由により前記フッ素樹脂水性分散液に含まれるフッ素樹脂の融点よりも熱分解温度が低い非イオン性界面活性剤を用いることが好ましい。   The aqueous fluororesin dispersion used in the present invention further contains 2 to 12% by mass of a nonionic surfactant with respect to the total mass of the fluororesin fine particles. By containing a nonionic surfactant, the fluororesin aqueous dispersion can maintain a stable dispersion of fluororesin fine particles. As the nonionic surfactant, specifically, polyoxyethylene alkyl ether, polyoxyethylene fatty acid ester, sorbitan fatty acid ester, alkyl polyglucoside, fatty acid diethanolamide, alkyl monoglyceryl ether, polyoxyethylene alkyl phenyl ether, Fatty acid monoglyceride etc. are mentioned. In the present invention, one of these can be used alone, or two or more can be used as a mixture. In the present invention, it is preferable to use a nonionic surfactant having a thermal decomposition temperature lower than the melting point of the fluororesin contained in the fluororesin aqueous dispersion for the following reasons.

後述する本発明のフッ素樹脂塗膜形成方法において、加圧処理前にフッ素樹脂水性分散液の塗布層から非イオン性界面活性剤をフッ素樹脂微粒子全質量に対して2質量%未満の濃度となるよう熱分解して除去する工程があるが、非イオン性界面活性剤の熱分解温度がフッ素樹脂の融点よりも高いと、非イオン性界面活性剤を熱分解させるためにフッ素樹脂を融点以上に加熱することが必要になる。この加熱処理によりフッ素樹脂微粒子が融着すると、前記塗布層は比較的固い樹脂層となり、次いで行われる加圧処理の効果、すなわちフッ素樹脂を比較的やわらかい状態で含有する塗布層を加圧することで、通常この前段階ですでに発生しているクラック等の欠損を消去する効果、が得られにくい。また、非イオン性界面活性剤が熱分解されないで、前記量より多く含有された塗布層の表面は、乾燥されて水分が除去されていたとしても、加圧処理において、圧力を開放した段階でフッ素樹脂含有塗布層の欠落を生じ、最終的に得られる塗膜の均一性を損ねることになる。   In the fluororesin coating film forming method of the present invention to be described later, the concentration of the nonionic surfactant from the coating layer of the fluororesin aqueous dispersion is less than 2% by mass with respect to the total mass of the fluororesin fine particles before the pressure treatment. However, if the thermal decomposition temperature of the nonionic surfactant is higher than the melting point of the fluororesin, the fluororesin will exceed the melting point in order to thermally decompose the nonionic surfactant. It is necessary to heat. When the fluororesin fine particles are fused by this heat treatment, the coating layer becomes a relatively hard resin layer, and the effect of the subsequent pressure treatment, that is, by pressurizing the coating layer containing the fluororesin in a relatively soft state. In general, it is difficult to obtain the effect of erasing defects such as cracks already generated in the previous stage. In addition, even when the surface of the coating layer containing the nonionic surfactant is not thermally decomposed and is contained in an amount larger than the above amount, the pressure is released in the pressurizing process even if moisture is removed. The loss of the fluororesin-containing coating layer occurs, and the uniformity of the finally obtained coating film is impaired.

この様な非イオン性界面活性剤のうちでも、本発明において好ましくは、下記式(1)で表される非イオン性界面活性剤を挙げることができる。
−O−A−H (1)
(式中、Rは炭素数が6〜18であり、水素原子の10%以下がハロゲン原子で置換されていてもよい飽和アルキル基である。Oは酸素原子である。Aは5〜20個のオキシエチレン基、0〜3個のオキシプロピレン基、および0〜3個のオキシブチレン基より構成されるポリオキシアルキレン鎖である。)
Among such nonionic surfactants, a nonionic surfactant represented by the following formula (1) can be preferably used in the present invention.
R 1 —O—A—H (1)
(Wherein R 1 is a saturated alkyl group having 6 to 18 carbon atoms and 10% or less of hydrogen atoms may be substituted with a halogen atom. O is an oxygen atom. A is 5 to 20) And a polyoxyalkylene chain composed of 0 to 3 oxyethylene groups, 0 to 3 oxypropylene groups, and 0 to 3 oxybutylene groups.)

式(1)において、Rで示されるアルキル基は、構造中に二重結合やベンゼン環などを有しない、飽和アルキル基である。また、Rで示されるアルキル基は、そのアルキル基中の水素原子の10%以下が、フッ素、塩素、臭素、等のハロゲン原子で置き換えられたものであってもよい。水素原子の10%以下がハロゲン原子で置換されていてもよいアルキル基(以下、単に「アルキル基」という)の炭素数は6〜18の範囲が本発明に適しているが、好ましくは8〜16であり、より好ましくは10〜14である。アルキル基の炭素数が6より少ないとフッ素樹脂水性分散液の表面張力が高くなりぬれ性が低下することがあり、逆にアルキル基の炭素数が18より多いと分散液を放置した場合にはフッ素樹脂水性分散液の保存安定性が損なわれることがある。アルキル基の炭素数が前記範囲にあれば、ぬれ性が良く、保存安定性も良い。 In the formula (1), the alkyl group represented by R 1 is a saturated alkyl group having no double bond or benzene ring in the structure. The alkyl group represented by R 1 may be one in which 10% or less of the hydrogen atoms in the alkyl group are replaced with halogen atoms such as fluorine, chlorine, bromine and the like. The number of carbon atoms of an alkyl group (hereinafter simply referred to as “alkyl group”) in which 10% or less of hydrogen atoms may be substituted with a halogen atom is suitable for the present invention, preferably 8 to 16, more preferably 10-14. When the carbon number of the alkyl group is less than 6, the surface tension of the fluororesin aqueous dispersion may increase and the wettability may decrease. Conversely, when the alkyl group has more than 18 carbon atoms, the dispersion may be left standing. The storage stability of the fluororesin aqueous dispersion may be impaired. When the carbon number of the alkyl group is within the above range, the wettability is good and the storage stability is also good.

で示されるアルキル基が分岐構造を有する場合、さらにぬれ性が良好で好適なフッ素樹脂水性分散液が得られるため好ましい。枝分かれのある炭素原子としては、第二級炭素原子でもよいし、第三級炭素原子でもよいが、好ましくは第二級炭素原子である。分岐構造を有するアルキル基の好適な具体例としては、C1021CH(CH)CH−、C19CH(C)−、C13CH(C13)−、CHCH(CH)CHCH(CHCH(CH)CHCH(CH)−などが挙げられる。 When the alkyl group represented by R 1 has a branched structure, wettability is better and a suitable aqueous fluororesin dispersion is obtained, which is preferable. The branched carbon atom may be a secondary carbon atom or a tertiary carbon atom, preferably a secondary carbon atom. Preferable specific examples of the alkyl group having a branched structure, C 10 H 21 CH (CH 3) CH 2 -, C 9 H 19 CH (C 3 H 7) -, C 6 H 13 CH (C 6 H 13 ) -, CH 3 CH (CH 3) CH 2 CH (CH 2 CH (CH 3) CH 2 CH (CH 3) 2) - , and the like.

式(1)中のAは5〜20個のオキシエチレン基および0〜3個のオキシプロピレン基および0〜3個のオキシブチレン基からなるポリオキシアルキレン鎖である。オキシエチレン基の基数は、好ましくは6〜15であり、特に好ましくは7〜12である。オキシプロピレン基の基数は、好ましくは0〜2であり、特に好ましくは0〜1.5である。オキシブチレン基の基数は、好ましくは0〜2であり、特に好ましくは0〜1.5である。オキシエチレン基数が20個、オキシプロピレン基、オキシプロピレン基の数がそれぞれ3個より多いとフッ素樹脂水性分散液の粘度上昇や安定性の低下を生じることがあり、オキシエチレン基数が5個より少ないとフッ素樹脂水性分散液組成物の消泡性やぬれ性や粘度特性が劣る場合がある。各基の個数が前記範囲内であれば、粘度や安定性や消泡性やぬれ性等の特性が良好であり好ましい。
オキシプロピレン基やオキシブチレン基は、分岐したものであってもよいし、直鎖のものであってもよいが、分岐したものが好ましい。
なお、一般的には、非イオン性界面活性剤は一定の鎖長分布や異性体の混在する複数の分子の混合物であり、式(1)中の鎖長は複数の分子における平均鎖長を表わす。また、各数値は整数に限らない。
A in Formula (1) is a polyoxyalkylene chain composed of 5 to 20 oxyethylene groups, 0 to 3 oxypropylene groups, and 0 to 3 oxybutylene groups. The number of oxyethylene groups is preferably 6 to 15, particularly preferably 7 to 12. The number of oxypropylene groups is preferably 0 to 2, particularly preferably 0 to 1.5. The number of oxybutylene groups is preferably 0 to 2, particularly preferably 0 to 1.5. When the number of oxyethylene groups is 20 and the number of oxypropylene groups and oxypropylene groups is more than 3, respectively, the viscosity of the fluororesin aqueous dispersion may be lowered or the stability may be lowered, and the number of oxyethylene groups is less than 5. And the fluororesin aqueous dispersion composition may have poor defoaming properties, wettability, and viscosity characteristics. When the number of each group is within the above range, properties such as viscosity, stability, defoaming property and wettability are good, which is preferable.
The oxypropylene group or oxybutylene group may be branched or linear, but is preferably branched.
In general, a nonionic surfactant is a mixture of a plurality of molecules in which a certain chain length distribution and isomers are mixed, and the chain length in the formula (1) is an average chain length in a plurality of molecules. Represent. Each numerical value is not limited to an integer.

また、式(1)で示される非イオン性界面活性剤は、数平均分子量が450〜800であるものが好ましく、500〜750であるものがより好ましく、550〜700であるものが特に好ましい。数平均分子量が800より大きい場合には非イオン性界面活性剤の流動性が低いために取扱いにくいことがあり、また450より小さい場合にはフッ素樹脂水性分散液の浸透性やぬれ性が低くなることがあり好ましくない。
前記非イオン性界面活性剤の数平均分子量は、界面活性剤合成時の原料仕込みのモル数に従うが、水溶液としたのちにGPC(パーミエーションクロマトグラフィー)法や、超遠心法によって測定することができる。
The nonionic surfactant represented by the formula (1) preferably has a number average molecular weight of 450 to 800, more preferably 500 to 750, and particularly preferably 550 to 700. If the number average molecular weight is greater than 800, the nonionic surfactant may be difficult to handle due to low fluidity. If it is less than 450, the permeability and wettability of the aqueous fluororesin dispersion will be low. This is not preferable.
The number average molecular weight of the nonionic surfactant depends on the number of moles of raw materials charged during the synthesis of the surfactant, but can be measured by GPC (permeation chromatography) method or ultracentrifugation after preparing an aqueous solution. it can.

式(1)で示される非イオン性界面活性剤として、具体的には、
1327-(OC10-OH、
1327-(OC-OH、
1327-(OC-OC-OH、
12−1425−29-(OC-OH、
1225-(OC10-OH、
1021CH(CH)CH-(OC-OH、
1021CH(CH)CH-(OC-OC-OH、
1021CH(CH)CH-(OC-OCH(CH)CH-OH、
1633-(OC10-OH、
HC(C11)(C15)-(OC-OH、
1327-OCH(C)CH-(OC-OH、
1327-OCH(C)CH-(OC-OH、
CHCH(CH)CHCH(CHCH(CH)CHCH(CH)−(OC-OH、
などが挙げられる。市販品としては、ダウケミカル社製タージトール(登録商標)15Sシリーズ、ライオン社製ライオノール(登録商標)TDシリーズ、日本乳化剤社製ニューコールシリーズなどが挙げられる。
Specifically, as the nonionic surfactant represented by the formula (1),
C 13 H 27 - (OC 2 H 4) 10 -OH,
C 13 H 27 - (OC 2 H 4) 9 -OH,
C 13 H 27 - (OC 2 H 4) 8 -OC 3 H 6 -OH,
C 12-14 H 25-29 - (OC 2 H 4) 9 -OH,
C 12 H 25 - (OC 2 H 4) 10 -OH,
C 10 H 21 CH (CH 3 ) CH 2 - (OC 2 H 4) 9 -OH,
C 10 H 21 CH (CH 3 ) CH 2 - (OC 2 H 4) 8 -OC 3 H 6 -OH,
C 10 H 21 CH (CH 3 ) CH 2 - (OC 2 H 4) 8 -OCH (CH 3) CH 2 -OH,
C 16 H 33- (OC 2 H 4 ) 10 -OH,
HC (C 5 H 11) ( C 7 H 15) - (OC 2 H 4) 9 -OH,
C 13 H 27 -OCH (C 2 H 5) CH 2 - (OC 2 H 4) 9 -OH,
C 13 H 27 -OCH (C 2 H 5) CH 2 - (OC 2 H 4) 8 -OH,
CH 3 CH (CH 3) CH 2 CH (CH 2 CH (CH 3) CH 2 CH (CH 3) 2) - (OC 2 H 4) 9 -OH,
Etc. Examples of commercially available products include Taditol (registered trademark) 15S series manufactured by Dow Chemical Company, Lionol (registered trademark) TD series manufactured by Lion Corporation, and New Coal Series manufactured by Nippon Emulsifier Co., Ltd.

式(1)で示される非イオン性界面活性剤は、1種単独もしくは2種以上の複数を混合して使用することができる。   The nonionic surfactant shown by Formula (1) can be used individually by 1 type or in mixture of 2 or more types.

本発明に用いるフッ素樹脂水性分散液において、前記非イオン性界面活性剤の含有量は、フッ素樹脂水性分散液が含有するフッ素樹脂微粒子の全質量に対して前述の通り2〜12質量%であるが、好ましくは3〜9質量%であり、より好ましくは4〜7質量%である。フッ素樹脂微粒子に対する前記非イオン性界面活性剤の含有量が、2質量%よりも少ないと保存安定性が低下するほか、塗膜に、はじきを生じ易くなる。また、12質量%よりも多いと経済的でない。また、後述する本発明のフッ素樹脂塗膜形成方法における加熱工程で非イオン性界面活性剤の含有量を2質量%未満にまで低減させることが容易でない。   In the aqueous fluororesin dispersion used in the present invention, the content of the nonionic surfactant is 2 to 12% by mass as described above with respect to the total mass of the fluororesin fine particles contained in the aqueous fluororesin dispersion. However, Preferably it is 3-9 mass%, More preferably, it is 4-7 mass%. When the content of the nonionic surfactant with respect to the fluororesin fine particles is less than 2% by mass, the storage stability is lowered and the coating film is likely to be repelled. Moreover, when more than 12 mass%, it is not economical. Moreover, it is not easy to reduce content of a nonionic surfactant to less than 2 mass% by the heating process in the fluororesin coating film formation method of this invention mentioned later.

本発明におけるフッ素樹脂水性分散液には、フッ素樹脂微粒子の分散媒として水が含有されるが、この水は、前記フッ素樹脂水性乳化液に含まれる水であってもよいし、フッ素樹脂水性乳化液の水とは別に用意した水であってもよい。フッ素樹脂水性分散液が含有する水の量として、具体的には、フッ素樹脂水性分散液全量に対して30〜80質量%が挙げられる。   The aqueous fluororesin dispersion in the present invention contains water as a dispersion medium for the fluororesin fine particles, but this water may be water contained in the aqueous fluororesin emulsion or the aqueous fluororesin emulsion. Water prepared separately from liquid water may be used. Specifically, the amount of water contained in the aqueous fluororesin dispersion is 30 to 80% by mass with respect to the total amount of the aqueous fluororesin dispersion.

前記フッ素樹脂水性分散液には、必須成分であるフッ素樹脂微粒子、非イオン性界面活性剤、水の他に必要に応じてアンモニア等のpH調整剤、ラウリン酸アンモニウム、ラウリン酸トリエタノールアミン、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ラウリル硫酸トリエタノールアミン等のアニオン性界面活性剤、チキソトロピ性付与剤、シリコーン系ぬれ性改良剤、フッ素系ぬれ性改良剤、防腐剤などの1種以上が適宜微量含有されていてもよい。本発明に用いる前記フッ素樹脂水性分散液には、さらに、水溶性有機溶剤、トルエン、キシレン等の有機溶媒、酸化チタン、酸化鉄、カーボンブラック、コバルトブルー等の顔料、硝子粉末、中空ガラスビーズ、黒鉛微粒子、シリカ微粒子、雲母又は酸化チタン被覆雲母粉末等の着色剤等の1種以上が適宜微量配合されていてもよい。
また、平均分子量10万〜200万のポリエチレンオキシド系増粘剤や、水溶性ポリウレタン系会合型増粘剤を任意成分として前記フッ素樹脂水性分散液に、フッ素樹脂微粒子の全質量に対して0.1〜5.0質量%程度含有させることにより、粘度が高くなり、厚く塗布しやすくなるほか、フッ素樹脂水性分散液の機械的安定性や保存安定性を改良することができる。
The fluororesin aqueous dispersion contains essential fluororesin particles, nonionic surfactant, water and a pH adjuster such as ammonia as necessary, ammonium laurate, triethanolamine laurate, lauryl. One or more kinds of anionic surfactants such as sodium sulfate, ammonium lauryl sulfate, triethanolamine lauryl sulfate, thixotropic agent, silicone wettability improver, fluorine wettability improver, preservative and the like are contained in a trace amount as appropriate. It may be. The fluororesin aqueous dispersion used in the present invention further includes a water-soluble organic solvent, an organic solvent such as toluene and xylene, a pigment such as titanium oxide, iron oxide, carbon black, and cobalt blue, glass powder, hollow glass beads, One or more kinds of colorants such as graphite fine particles, silica fine particles, mica or titanium oxide-coated mica powder may be appropriately mixed in a trace amount.
Further, a polyethylene oxide thickener having an average molecular weight of 100,000 to 2,000,000 or a water-soluble polyurethane-based associative thickener as an optional component is added to the fluororesin aqueous dispersion in an amount of 0. By containing about 1 to 5.0% by mass, the viscosity increases and the coating becomes thick and easy, and the mechanical stability and storage stability of the aqueous fluororesin dispersion can be improved.

本発明に用いる前記フッ素樹脂水性分散液の粘度は、ブルックフィールド型粘度計で#1スピンドルを用い、液温23℃、60rpmの条件で測定した場合に、1〜1000mPa・sであることが好ましく、3〜500mPa・sがより好ましく、5〜200mPa・sが特に好ましい。前記粘度が1mPa・sよりも小さい場合には塗布後に流動しやすく塗布厚が不均一になりやすいことがあり、1000mPa・sよりも大きいと作業上取扱いにくい場合がある。特に、前記フッ素樹脂水性分散液を耐熱基材に厚く塗布する場合には、50〜200mPa・sの粘度が好ましい。なお、前記粘度の調製は、上記増粘剤をフッ素樹脂水性分散液に適宜配合することにより行うことが可能である。   The viscosity of the fluororesin aqueous dispersion used in the present invention is preferably 1 to 1000 mPa · s when measured with a Brookfield viscometer using a # 1 spindle at a liquid temperature of 23 ° C. and 60 rpm. 3 to 500 mPa · s is more preferable, and 5 to 200 mPa · s is particularly preferable. When the viscosity is less than 1 mPa · s, it tends to flow after application, and the coating thickness tends to be uneven. When it is greater than 1000 mPa · s, it may be difficult to handle in operation. In particular, when the fluororesin aqueous dispersion is applied thickly to a heat resistant substrate, a viscosity of 50 to 200 mPa · s is preferable. In addition, the said viscosity can be prepared by mix | blending the said thickener with a fluororesin aqueous dispersion suitably.

本発明におけるフッ素樹脂水性分散液のpHは、8.0〜11.0に調整することが好ましく、9.0〜11.0のpHがさらに好ましい。pHの調整は、上記アンモニアやアンモニア水等のpH調整剤をフッ素樹脂水性分散液に適宜添加することで実施可能である。前記フッ素樹脂水性分散液のpHがこの範囲にあると、粘度が安定し、また、保存安定性に優れる。   The pH of the aqueous fluororesin dispersion in the present invention is preferably adjusted to 8.0 to 11.0, and more preferably 9.0 to 11.0. The pH can be adjusted by appropriately adding a pH adjusting agent such as ammonia or aqueous ammonia to the fluororesin aqueous dispersion. When the pH of the aqueous fluororesin dispersion is within this range, the viscosity is stable and the storage stability is excellent.

本発明におけるフッ素樹脂水性分散液の表面張力は、24〜32mN/mの範囲にあることが好ましく、25〜31mN/mがより好ましく、26〜30mN/mが特に好ましい。前記表面張力が24mN/mよりも小さいと消泡性が低下することがあり好ましくなく、32mN/mよりも大きいと、耐熱基材表面に塗布する際にはじきやあばた状の厚みむらを生じやすくなる。なお、フッ素樹脂水性分散液の表面張力が高すぎる場合には、シリコーン系界面活性剤(ぬれ性改良剤)やフッ素系界面活性剤(ぬれ性改良剤)を少量添加する等して表面張力を低下させ、はじきにくくして使用することができる。   The surface tension of the aqueous fluororesin dispersion in the present invention is preferably in the range of 24 to 32 mN / m, more preferably 25 to 31 mN / m, and particularly preferably 26 to 30 mN / m. If the surface tension is less than 24 mN / m, the defoaming property may be lowered, and it is not preferable. If the surface tension is more than 32 mN / m, it is likely to cause repellency or flapping thickness unevenness when applied to the heat-resistant substrate surface. Become. If the surface tension of the fluororesin aqueous dispersion is too high, add a small amount of silicone surfactant (wetting improver) or fluorine surfactant (wetting improver) to reduce the surface tension. It can be used with reduced and less repellency.

次に、上記フッ素樹脂水性分散液を用いた本発明のフッ素樹脂塗膜の形成方法について説明する。
本発明のフッ素樹脂塗膜の形成方法は、(1)耐熱基材上に上記フッ素樹脂水性分散液の塗布層を形成する塗布層形成工程と、(2)前記塗布層を特定条件で加熱する加熱工程と、(3)前記加熱後の塗布層を特定条件で加圧する加圧工程と、(4)前記加圧後の塗布層を特定条件で焼成する焼成工程とを順に有する。以下、各工程について順に説明する。
ここで、本発明のフッ素樹脂塗膜の形成方法において、(1)の塗布層形成工程で、耐熱基材上に形成された塗布層を構成する上記フッ素樹脂水性分散液は、焼成処理が終了するまでは(2)の加熱工程によりその組成が変化するが、フッ素樹脂自体は変化せずこれを主構成成分とする塗布層であることは一貫していることから、本明細書において、全ての工程において前記塗布層を総称してフッ素樹脂塗布層という。なお、(4)の焼成工程が終了することによりフッ素樹脂塗布層はフッ素樹脂塗膜となる。
Next, a method for forming a fluororesin coating film of the present invention using the above fluororesin aqueous dispersion will be described.
The method for forming a fluororesin coating film according to the present invention includes (1) a coating layer forming step of forming a coating layer of the fluororesin aqueous dispersion on a heat-resistant substrate, and (2) heating the coating layer under specific conditions. A heating step, (3) a pressing step of pressing the heated coating layer under specific conditions, and (4) a firing step of baking the pressurized coating layer under specific conditions. Hereinafter, each process is demonstrated in order.
Here, in the method for forming a fluororesin coating film of the present invention, in the coating layer forming step (1), the fluororesin aqueous dispersion constituting the coating layer formed on the heat-resistant substrate has been baked. Until then, the composition changes due to the heating step of (2), but the fluororesin itself does not change and it is consistent that it is a coating layer comprising this as a main constituent. In the step, the coating layer is generically referred to as a fluororesin coating layer. In addition, a fluororesin coating layer turns into a fluororesin coating film by finishing the baking process of (4).

(1)塗布層形成工程
本発明における塗布層形成工程は、上記フッ素樹脂水性分散液を、耐熱基材に塗布して、前記耐熱基材上に前記フッ素樹脂水性分散液の塗布層を形成する工程である。なお、塗布とはフッ素樹脂水性分散液を耐熱基材に付着させることをいう。
(1) Coating layer forming step In the coating layer forming step in the present invention, the fluororesin aqueous dispersion is applied to a heat resistant substrate, and the coating layer of the fluororesin aqueous dispersion is formed on the heat resistant substrate. It is a process. In addition, application | coating means making a fluororesin aqueous dispersion adhere to a heat-resistant base material.

本発明における耐熱基材としては、後述するフッ素樹脂の焼成温度に耐える材質で構成されるものであれば特に制限されず、フッ素樹脂の焼成温度で溶融または軟化しない基材が好ましい。耐熱基材の形状についても特に制限されず、例えば、板状、フィルム状、ロール状のもの、布状のものを本発明に使用することができる。耐熱基材の具体例としては、アルミニウム板、鉄板、ステンレス鋼板等の金属板、ガラス板、セラミック板等の無機材料板、ポリイミドフィルムなどの耐熱樹脂基材、ガラス繊維布、カーボン繊維布、アラミド繊維布などの布状基材等が挙げられる。なお、用いる耐熱基材の表面が平滑である場合、サンドブラスト加工やエッチング加工などの公知の方法によって表面を粗面化すると、最終的に該耐熱基材上に形成されるフッ素樹脂塗膜との密着性が向上し好ましい。   The heat-resistant substrate in the present invention is not particularly limited as long as it is made of a material that can withstand the firing temperature of the fluororesin described later, and a substrate that does not melt or soften at the firing temperature of the fluororesin is preferable. The shape of the heat-resistant substrate is not particularly limited, and for example, a plate shape, a film shape, a roll shape, or a cloth shape can be used in the present invention. Specific examples of heat-resistant substrates include aluminum plates, iron plates, stainless steel plates and other metal plates, glass plates, ceramic plates and other inorganic material plates, polyimide films and other heat-resistant resin substrates, glass fiber cloths, carbon fiber cloths and aramids. Examples thereof include cloth-like substrates such as fiber cloth. In addition, when the surface of the heat-resistant base material to be used is smooth, when the surface is roughened by a known method such as sandblasting or etching, the fluororesin coating film finally formed on the heat-resistant base material Adhesion is improved, which is preferable.

本発明において、前記フッ素樹脂水性分散液を前記耐熱基材に塗布する方法として、具体的には、スプレー塗布法、スピンコート法、浸漬引き上げ法(ディッピング法)、グラビア塗布法、カーテンコート法、フローコート法、スクリーン印刷法、ステンシル印刷法など、公知の方法が挙げられる。前記フッ素樹脂水性分散液は、耐熱基材の片面だけに塗布されてもよく、両面に塗布されてもよく、また印刷法等によって部分的に塗布されてもよい。また、耐熱基材が繊維布の場合には、浸漬引き上げ法(ディッピング法)等により含浸する状態で前記フッ素樹脂水性分散液を塗布することも好ましい。   In the present invention, as a method of applying the fluororesin aqueous dispersion to the heat-resistant substrate, specifically, a spray coating method, a spin coating method, a dip pulling method (dipping method), a gravure coating method, a curtain coating method, Known methods such as a flow coating method, a screen printing method, and a stencil printing method may be used. The fluororesin aqueous dispersion may be applied to only one surface of the heat-resistant substrate, may be applied to both surfaces, or may be partially applied by a printing method or the like. Further, when the heat resistant substrate is a fiber cloth, it is also preferable to apply the fluororesin aqueous dispersion in a state where it is impregnated by a dipping method (dipping method) or the like.

本発明において、フッ素樹脂水性分散液の塗布層の厚みは、焼成後のフッ素樹脂塗膜の厚さとして、1〜1000μmとなる範囲が好ましく、5〜300μmがより好ましく、10〜100μmが最も好ましい。焼成後のフッ素樹脂塗膜を前記厚さにする加熱工程前の塗布層の厚みは、フッ素樹脂水性分散液が水分や界面活性剤を含有するため、前記フッ素樹脂塗膜の厚さの200〜500%が好ましい。フッ素樹脂水性分散液の塗布層の厚さがこの範囲よりも小さい場合には得られるフッ素樹脂塗膜の耐久性が劣り、また、この範囲よりも大きい場合には、後述の加圧処理時にフッ素樹脂塗布層に欠落を生じる場合がある。   In the present invention, the thickness of the coating layer of the fluororesin aqueous dispersion is preferably 1 to 1000 μm, more preferably 5 to 300 μm, and most preferably 10 to 100 μm as the thickness of the fluororesin coating film after firing. . The thickness of the coating layer before the heating step for making the thickness of the fluororesin coating film after baking is 200 to 200 times the thickness of the fluororesin coating film because the fluororesin aqueous dispersion contains moisture and a surfactant. 500% is preferred. When the thickness of the coating layer of the fluororesin aqueous dispersion is smaller than this range, the durability of the resulting fluororesin coating film is inferior. Missing may occur in the resin coating layer.

(2)加熱工程
本発明のフッ素樹脂塗膜形成方法における加熱工程は、前記塗布層形成工程後の前記フッ素樹脂塗布層を200℃〜前記塗布層中のフッ素樹脂の融点未満の温度で加熱処理して前記塗布層中の非イオン性界面活性剤の含有量を前記フッ素樹脂微粒子の全質量に対して2質量%未満に低減する工程である。加熱工程後の前記塗布層中の非イオン性界面活性剤の含有量は、好ましくはフッ素樹脂微粒子の全質量に対して1.5質量%以下であり、より好ましくは1質量%未満である。フッ素樹脂塗布層中の非イオン性界面活性剤の含有量が、前記フッ素樹脂微粒子の全質量に対して2質量%以上の場合には、次に行われる加圧処理に際して前記塗布層からフッ素樹脂微粒子が脱落しやすくなる。
(2) Heating step The heating step in the fluororesin coating film forming method of the present invention is a heat treatment of the fluororesin coating layer after the coating layer forming step at a temperature of 200 ° C. to less than the melting point of the fluororesin in the coating layer. In this step, the content of the nonionic surfactant in the coating layer is reduced to less than 2% by mass with respect to the total mass of the fluororesin fine particles. The content of the nonionic surfactant in the coating layer after the heating step is preferably 1.5% by mass or less, more preferably less than 1% by mass with respect to the total mass of the fluororesin fine particles. When the content of the nonionic surfactant in the fluororesin coating layer is 2% by mass or more with respect to the total mass of the fluororesin fine particles, the fluororesin is applied from the coating layer during the subsequent pressure treatment. Fine particles easily fall off.

前記加熱工程における加熱処理の温度は、200℃〜前記塗布層中のフッ素樹脂の融点未満の範囲の温度である。例えば、前記フッ素樹脂が、融点が327℃であるPTFEの場合には、前記加熱工程における加熱処理の温度は、200℃〜327℃未満の範囲が好ましく、230℃〜320℃の範囲がより好ましく、250℃〜320℃の範囲が最も好ましい。加熱処理の温度が、200℃より低い場合には非イオン性界面活性剤の熱分解が充分でなく、フッ素樹脂の融点以上の場合にはフッ素樹脂が溶融して、続いて行われる加圧処理の効果が得られない。本発明において、加熱工程をフッ素樹脂の融点未満の温度で行えば、フッ素樹脂微粒子は比較的やわらかい状態を維持することができる。その結果、加熱工程後の加圧処理によってフッ素樹脂塗布層は容易に変形し、加圧工程以前にフッ素樹脂塗布層に生じたクラック等の欠陥を消失させることができる。しかし、加熱工程の時点で前記フッ素樹脂塗布層をフッ素樹脂の融点以上に加熱した場合には、フッ素樹脂塗布層内でフッ素樹脂微粒子が融着してフッ素樹脂塗布層は比較的硬い状態となるため、その後に加圧処理を実施してもフッ素樹脂塗布層の変形は生じにくく、フッ素樹脂塗布層に生じたクラック等の欠陥が残存することになる。なお、この傾向は、PTFEにおいて特に顕著であり、PTFEが本発明のフッ素樹脂塗膜形成方法に好適である理由となっている。   The temperature of the heat treatment in the heating step is a temperature in the range of 200 ° C. to less than the melting point of the fluororesin in the coating layer. For example, when the fluororesin is PTFE having a melting point of 327 ° C., the temperature of the heat treatment in the heating step is preferably in the range of 200 ° C. to less than 327 ° C., more preferably in the range of 230 ° C. to 320 ° C. The range of 250 ° C to 320 ° C is most preferable. When the temperature of the heat treatment is lower than 200 ° C., the thermal decomposition of the nonionic surfactant is not sufficient, and when the temperature is higher than the melting point of the fluororesin, the fluororesin is melted, followed by pressure treatment The effect of can not be obtained. In the present invention, if the heating step is performed at a temperature lower than the melting point of the fluororesin, the fluororesin fine particles can maintain a relatively soft state. As a result, the fluororesin coating layer is easily deformed by the pressure treatment after the heating step, and defects such as cracks generated in the fluororesin coating layer before the pressurization step can be eliminated. However, when the fluororesin coating layer is heated to the melting point of the fluororesin or higher at the time of the heating step, the fluororesin fine particles are fused in the fluororesin coating layer, and the fluororesin coating layer becomes relatively hard. Therefore, even if the pressure treatment is subsequently performed, the fluororesin coating layer is hardly deformed, and defects such as cracks generated in the fluororesin coating layer remain. This tendency is particularly remarkable in PTFE, which is why PTFE is suitable for the fluororesin coating film forming method of the present invention.

本発明における加熱処理の時間は、前記塗布層中の非イオン性界面活性剤の含有量を前記フッ素樹脂微粒子の全質量に対して2質量%未満に低減できる時間であればよく、前記塗布層中の非イオン性界面活性剤の種類、初期含有量、塗布層の厚さや面積、加熱温度等にもよるが、具体的には、1〜120分間が、好ましくは2〜60分間が、特に好ましくは5〜30分間の範囲が挙げられる。加熱処理時間が1分間よりも短い場合には非イオン性界面活性剤の熱分解が充分でない場合があり、また概ね120分間よりも長い場合には生産効率の点から好ましくない。
前記塗布層の加熱処理は塗布層に対してのみ行われる処理ではなく、具体的には、フッ素樹脂塗布層が形成された耐熱基材の全体を温度調節されたオーブン等に入れる、赤外線照射により加熱する、等の方法で行われる。
The time for the heat treatment in the present invention may be any time as long as the content of the nonionic surfactant in the coating layer can be reduced to less than 2% by mass with respect to the total mass of the fluororesin fine particles. Depending on the type of nonionic surfactant, initial content, thickness and area of the coating layer, heating temperature, etc., specifically, 1 to 120 minutes, preferably 2 to 60 minutes, especially Preferably the range for 5 to 30 minutes is mentioned. When the heat treatment time is shorter than 1 minute, the thermal decomposition of the nonionic surfactant may be insufficient, and when it is longer than about 120 minutes, it is not preferable from the viewpoint of production efficiency.
The heat treatment of the coating layer is not a treatment performed only on the coating layer. Specifically, the entire heat-resistant substrate on which the fluororesin coating layer is formed is placed in a temperature-controlled oven or the like by infrared irradiation. It is performed by a method such as heating.

また、本発明のフッ素樹脂塗膜形成方法においては前記加熱工程に先立って、前記塗布層形成工程後の前記フッ素樹脂塗布層を乾燥する乾燥工程を設けることが好ましい。この乾燥工程の目的は、前記塗布層から水分等を除去し、フッ素樹脂塗布層を構成するフッ素樹脂水性分散液を流動性を有しない状態にすることにある。乾燥の方法として具体的には、自然乾燥、風乾、100〜200℃程度の温度での加熱乾燥等が挙げられる。乾燥時間は、前記塗布層のフッ素樹脂水性分散液が流動性を有しない状態になる程度の時間とする。   Moreover, in the fluororesin coating-film formation method of this invention, it is preferable to provide the drying process which dries the said fluororesin coating layer after the said coating layer formation process prior to the said heating process. The purpose of this drying step is to remove moisture and the like from the coating layer so that the fluororesin aqueous dispersion constituting the fluororesin coating layer has no fluidity. Specific examples of the drying method include natural drying, air drying, and heat drying at a temperature of about 100 to 200 ° C. The drying time is set to such a time that the aqueous fluororesin dispersion of the coating layer is not fluid.

(3)加圧工程
本発明における加圧工程は、前記加熱工程後の前記フッ素樹脂塗布層を加圧手段を用いて0.1〜100MPaの圧力で加圧処理する工程である。前記加圧処理における圧力は、0.1〜100MPaであるが、好ましくは1〜80MPaであり、より好ましくは10〜50Mpaである。本発明のフッ素樹脂塗膜形成方法においては、この加圧工程を実施することにより、加圧工程以前に前記フッ素樹脂塗布層に生じたクラック等の欠陥を消失させることができ、最終的に品質の高いフッ素樹脂塗膜を形成させることが可能となる。前記圧力が0.1MPaよりも低い場合には、本加圧工程前に前記フッ素樹脂塗布層に生じたクラック等を消失させることが困難であり、100MPaよりも高い場合には前記フッ素樹脂塗布層を加圧する加圧手段の加圧面に前記フッ素樹脂塗布層の一部または全部が付着して、除圧時に前記付着したフッ素樹脂塗布層が耐熱基材から脱落する場合がある。
(3) Pressurization process The pressurization process in this invention is a process of pressurizing the said fluororesin coating layer after the said heating process with the pressure of 0.1-100 Mpa using a pressurization means. Although the pressure in the said pressurization process is 0.1-100 Mpa, Preferably it is 1-80 Mpa, More preferably, it is 10-50 Mpa. In the fluororesin coating film forming method of the present invention, by performing this pressurization step, defects such as cracks generated in the fluororesin coating layer before the pressurization step can be eliminated, and finally the quality High fluororesin coating film can be formed. When the pressure is lower than 0.1 MPa, it is difficult to eliminate cracks and the like generated in the fluororesin coating layer before the pressurizing step. When the pressure is higher than 100 MPa, the fluororesin coating layer In some cases, a part or the whole of the fluororesin coating layer adheres to the pressure surface of the pressurizing means for pressurizing and the adhered fluororesin coating layer falls off from the heat-resistant base material when the pressure is released.

前記加圧工程における加圧処理時の前記フッ素樹脂塗布層またはフッ素樹脂塗布層付き耐熱基材の全体の温度は、0〜200℃未満が好ましく、10〜150℃がより好ましく、特に好ましくは20〜100℃である。加圧処理時の前記フッ素樹脂塗布層の温度が0℃よりも低い場合には加圧装置が結露しやすく、得られるフッ素樹脂塗膜の品質に影響を与えることがあり、200℃以上では加圧処理時に耐熱基材上の前記フッ素樹脂塗布層が欠落する場合がある。
前記加圧工程における加圧処理の時間は、前記圧力で処理を行い、加圧工程以前に前記フッ素樹脂塗布層に生じたクラック等の欠陥を消失させることができる時間であれば特に制限されず、加圧時の圧力、温度、前記フッ素樹脂塗布層の厚さ等により適宜調整される。この様な加圧処理の時間としては、0.001〜60分間が好ましく、0.005〜30分間がより好ましく、0.01〜10分間を特に好ましい。加圧時間が、0.001分間よりも短い場合には加圧効果が不充分なことがあり、60分間よりも長い場合には生産効率の点から好ましくない。
The total temperature of the fluororesin coating layer or the heat-resistant substrate with a fluororesin coating layer during the pressurizing process in the pressurizing step is preferably 0 to less than 200 ° C, more preferably 10 to 150 ° C, and particularly preferably 20 ~ 100 ° C. When the temperature of the fluororesin coating layer during the pressure treatment is lower than 0 ° C, the pressurizer tends to condense, which may affect the quality of the resulting fluororesin coating film. The fluororesin coating layer on the heat-resistant substrate may be lost during the pressure treatment.
The time for the pressure treatment in the pressurization step is not particularly limited as long as the treatment is performed at the pressure and the defects such as cracks generated in the fluororesin coating layer before the pressurization step can be eliminated. The pressure is appropriately adjusted depending on the pressure, temperature, the thickness of the fluororesin coating layer, and the like. The pressure treatment time is preferably 0.001 to 60 minutes, more preferably 0.005 to 30 minutes, and particularly preferably 0.01 to 10 minutes. When the pressurization time is shorter than 0.001 minutes, the pressurization effect may be insufficient, and when the pressurization time is longer than 60 minutes, it is not preferable from the viewpoint of production efficiency.

本発明のフッ素樹脂塗膜形成方法における加圧工程の前記加圧手段として、具体的には、加圧ローラー、プレス装置等を挙げることができる。
本発明において、加圧ローラーを用いて前記加熱工程後のフッ素樹脂塗布層に加圧処理を施す実施の態様を図1および図2に模式的に示す。図1には、前記加熱工程後のフッ素樹脂塗布層2を片面に有する耐熱基材1を、2個の加圧ローラー4の間に連続的に通過させ、加圧処理されたフッ素樹脂塗布層3を有する耐熱基材1を得る具体例を示す。図2は、同様にして前記加熱工程後のフッ素樹脂塗布層2を両面に有する耐熱基材1の加圧ローラー4を用いた加圧処理の工程を具体的に示すものである。加圧処理に用いる加圧ローラー4は、通常、鉄、ステンレス鋼等の金属製であるが、加圧ローラー4の表面は、シリコンゴム、フッ素ゴム、エチレンプロピレンゴム等の材料で被覆されていてもよい。また、加圧ローラー4は内部にヒーターが組み込まれた構造のものであってもよく、この様な加圧ローラーを用いれば、前記フッ素樹脂塗布層またはフッ素樹脂塗布層付き耐熱基材を上記好ましい範囲の温度で加熱しながら加圧処理することが可能である。
Specific examples of the pressurizing means in the pressurizing step in the fluororesin coating film forming method of the present invention include a pressurizing roller and a press device.
In the present invention, an embodiment in which a pressure treatment is performed on the fluororesin coating layer after the heating step using a pressure roller is schematically shown in FIGS. In FIG. 1, a heat-resistant substrate 1 having a fluororesin coating layer 2 on one side after the heating step is continuously passed between two pressure rollers 4 and subjected to pressure treatment. The specific example which obtains the heat-resistant base material 1 which has 3 is shown. FIG. 2 specifically shows the step of pressure treatment using the pressure roller 4 of the heat-resistant substrate 1 having the fluororesin coating layer 2 on both sides after the heating step in the same manner. The pressure roller 4 used for the pressure treatment is usually made of metal such as iron or stainless steel, but the surface of the pressure roller 4 is coated with a material such as silicon rubber, fluorine rubber, or ethylene propylene rubber. Also good. Further, the pressure roller 4 may have a structure in which a heater is incorporated therein. If such a pressure roller is used, the fluororesin coating layer or the heat resistant substrate with the fluororesin coating layer is preferably used. It is possible to perform pressure treatment while heating at a temperature in the range.

加圧時間の調整は、加圧ローラーの回転速度の調整によって実施可能である。また、圧力の調整方法としては、例えば、富士フィルム社製プレスケール(登録商標)を加圧ローラーにかけ、加圧ローラー通過後の着色の度合いによって圧力を判定し、所定圧力になるよう調整する方法等が好ましく挙げられる。   The pressurization time can be adjusted by adjusting the rotation speed of the pressure roller. In addition, as a method for adjusting the pressure, for example, a prescale (registered trademark) manufactured by Fuji Film Co., Ltd. is applied to a pressure roller, the pressure is determined according to the degree of coloring after passing through the pressure roller, and the pressure is adjusted to a predetermined pressure. Etc. are preferable.

本発明において、プレス装置を用いて前記加熱工程後のフッ素樹脂塗布層に加圧処理を施す実施の態様を図3に模式的に示す。図3(a)は、プレス装置(全体は図示されていない)の2枚のプレス板5の間に前記加熱工程後のフッ素樹脂塗布層2を片面に有する耐熱基材1を挿入した図である。2枚のプレス板5が前記フッ素樹脂塗布層2付き耐熱基材1を挟み込みさらにこれに所定の圧力を加える機構をプレス装置は有している。前記加熱工程後のフッ素樹脂塗布層への加圧処理は、前記加圧状態を所定の時間保持することにより実施される。(b)はこの様にしてプレス装置により加圧処理されたフッ素樹脂塗布層3を有する耐熱基材1を示す。プレス板5は、通常、鉄、ステンレス鋼等の金属製であるが、その加圧面は、シリコンゴム、フッ素ゴム、エチレンプロピレンゴム等の材料で被覆されていてもよい。   In the present invention, an embodiment in which pressure treatment is performed on the fluororesin coating layer after the heating step using a press device is schematically shown in FIG. FIG. 3A is a view in which a heat-resistant substrate 1 having a fluororesin coating layer 2 after the heating step on one side is inserted between two press plates 5 of a press device (not shown in its entirety). is there. The press device has a mechanism in which two press plates 5 sandwich the heat-resistant substrate 1 with the fluororesin coating layer 2 and apply a predetermined pressure thereto. The pressurization process to the fluororesin coating layer after the heating step is performed by holding the pressurized state for a predetermined time. (B) shows the heat-resistant substrate 1 having the fluororesin coating layer 3 that has been pressure-treated by the press device in this way. The press plate 5 is usually made of a metal such as iron or stainless steel, but its pressure surface may be covered with a material such as silicon rubber, fluorine rubber, or ethylene propylene rubber.

あるいは、前記加熱工程後のフッ素樹脂塗布層2を有する耐熱基材1の両面にシリコンゴム、フッ素ゴム、エチレンプロピレンゴム等のシートを積層して、前記加圧処理したのち、該シートを剥離除去する方法で加圧処理を行ってもよい。このようにシートで前記フッ素樹脂塗布層付き耐熱基材の加圧面を保護する方法は、加圧ローラーによる加圧処理にも適用可能である。また、プレス板5の加圧面にヒーターが組み込まれた構造のものであってもよく、上記範囲の温度で加熱しながら前記フッ素樹脂塗布層付き耐熱基材の加圧処理を行ってもよい。この様なプレス装置として具体的には、油圧式プレスを挙げることができる。   Alternatively, a sheet of silicon rubber, fluorine rubber, ethylene propylene rubber or the like is laminated on both surfaces of the heat-resistant substrate 1 having the fluororesin coating layer 2 after the heating step, and after the pressure treatment, the sheet is peeled and removed. You may perform a pressurizing process by the method to do. Thus, the method of protecting the pressing surface of the heat-resistant substrate with a fluororesin coating layer with a sheet can also be applied to a pressing process using a pressing roller. Moreover, the thing of the structure where the heater was integrated in the pressurization surface of the press board 5 may be sufficient, and the pressurization process of the said heat resistant base material with a fluororesin coating layer may be performed, heating at the temperature of the said range. A specific example of such a pressing device is a hydraulic press.

(4)焼成工程
本発明における焼成工程は、前記加圧工程後の前記フッ素樹脂塗布層を前記フッ素樹脂の融点〜420℃の温度で加熱して、前記フッ素樹脂塗布層中のフッ素樹脂微粒子を焼成し、前記耐熱基材上に前記フッ素樹脂の塗膜を形成する工程である。なお、焼成とはフッ素樹脂の融点以上の温度でフッ素樹脂微粒子を融着させることをいう。
本発明において、焼成温度は、フッ素樹脂の融点〜420℃の範囲である。PTFEの場合には、さらに350〜400℃が好ましく、特に好ましくは360〜390℃である。焼成温度が420℃よりも高い場合にはフッ素樹脂が熱分解して性能低下を生じ、またフッ素樹脂の融点よりも低い場合には耐熱基材への密着が不十分であり性能や耐久性の低下を生ずる。
前記焼成工程において焼成時間は、前記焼成温度で処理を行い、前記フッ素樹脂塗布層中のフッ素樹脂微粒子を十分に融着できる時間であれば特に制限されず、前記塗布層の厚さ、焼成温度等の条件等により適宜調整される。この様な焼成時間として、1〜120分間が好ましく、2〜60分間がより好ましく、3〜30分間を特に好ましい時間として挙げることができる。焼成時間が1分間よりも短い場合には耐熱基材への密着が不十分であり性能や耐久性の低下を生ずることがある。また、120分間よりも長い場合には生産効率の点から好ましくない。
(4) Firing step In the firing step of the present invention, the fluororesin coating layer after the pressurizing step is heated at a temperature of the melting point of the fluororesin to 420 ° C., and the fluororesin fine particles in the fluororesin coating layer are removed. It is a step of firing and forming a coating film of the fluororesin on the heat-resistant substrate. Firing refers to fusing the fluororesin fine particles at a temperature equal to or higher than the melting point of the fluororesin.
In the present invention, the firing temperature is in the range of the melting point of the fluororesin to 420 ° C. In the case of PTFE, 350 to 400 ° C. is further preferable, and 360 to 390 ° C. is particularly preferable. When the firing temperature is higher than 420 ° C., the fluororesin is thermally decomposed to deteriorate the performance, and when it is lower than the melting point of the fluororesin, the adhesion to the heat-resistant substrate is insufficient and the performance and durability are deteriorated. Cause a drop.
The firing time in the firing step is not particularly limited as long as the treatment is performed at the firing temperature and the fluororesin fine particles in the fluororesin coating layer can be sufficiently fused, and the thickness of the coating layer and the firing temperature are not limited. It adjusts suitably by conditions, such as. Such firing time is preferably 1 to 120 minutes, more preferably 2 to 60 minutes, and particularly preferably 3 to 30 minutes. When the firing time is shorter than 1 minute, the adhesion to the heat-resistant substrate is insufficient and the performance and durability may be deteriorated. Moreover, when longer than 120 minutes, it is unpreferable from the point of production efficiency.

本発明のフッ素樹脂塗膜の形成方法において、前記焼成後の冷却は、自然冷却、風冷、水冷などいずれの方法でもよい。
本発明において、上記説明した工程を経て焼成後、最終的に得られるフッ素樹脂塗膜の厚さとしては、1〜1000μmの範囲が好ましく、5〜300μmがより好ましく、10〜100μmが最も好ましい範囲として挙げられる。本発明によれば、最終的に得られるフッ素樹脂塗膜の厚さが前記1〜1000μmの範囲内であれば、クラックやピンホール、欠落等がなく耐久性のある品質が確保されたフッ素樹脂塗膜を耐熱基材上に形成することが可能である。
本発明の方法によれば上記の様にして耐熱基材上に所望の厚さのフッ素樹脂塗膜が形成されるが、さらに必要に応じて、上記で得られたフッ素樹脂塗膜の上に、これと同種のフッ素樹脂や、異なる種類のフッ素樹脂からなる塗膜を形成し、必要とされる塗膜厚になるようフッ素樹脂塗膜を積層形成することも可能である。
In the method for forming a fluororesin coating film of the present invention, the cooling after baking may be any method such as natural cooling, air cooling, or water cooling.
In the present invention, the thickness of the fluororesin coating film finally obtained after firing through the steps described above is preferably in the range of 1 to 1000 μm, more preferably 5 to 300 μm, and most preferably 10 to 100 μm. As mentioned. According to the present invention, as long as the thickness of the finally obtained fluororesin coating film is in the range of 1 to 1000 μm, the fluororesin is free from cracks, pinholes, omissions, etc., and ensures durable quality. It is possible to form a coating film on a heat-resistant substrate.
According to the method of the present invention, a fluororesin coating film having a desired thickness is formed on the heat-resistant substrate as described above, and if necessary, on the fluororesin coating film obtained above. It is also possible to form a coating film made of the same type of fluororesin or a different type of fluororesin and laminate the fluororesin coating film so as to have a required coating thickness.

以下、実施例1〜7および比較例1〜6により本発明をさらに詳しく説明するが、これらは本発明を限定するものではない。
なお、以下の各実施例および各比較例で使用した非イオン性界面活性剤(A)、(B)、および(C)は、以下の表1に示す非イオン性界面活性剤に相当する。また、非イオン性界面活性剤(A)〜(C)のパーキンエルマー社製PYRIS1−TGAを用い、毎分10℃の昇温速度で測定した熱重量分析(TGA)結果を図4に示す。
EXAMPLES Hereinafter, although this invention is demonstrated in more detail by Examples 1-7 and Comparative Examples 1-6, these do not limit this invention.
In addition, the nonionic surfactants (A), (B), and (C) used in the following examples and comparative examples correspond to the nonionic surfactants shown in Table 1 below. Moreover, the thermogravimetric analysis (TGA) result measured with the temperature increase rate of 10 degree-C / min using PYRIS1-TGA by Perkin-Elmer of nonionic surfactant (A)-(C) is shown in FIG.

Figure 2010046618
Figure 2010046618

また、各実施例、および各比較例で用いたフッ素樹脂微粒子、フッ素樹脂水性分散液、フッ素樹脂塗膜等については、以下にその評価方法を示す各評価項目(1)〜(9)で評価した。   In addition, the fluororesin fine particles, the fluororesin aqueous dispersion, the fluororesin coating film and the like used in each example and each comparative example are evaluated by each evaluation item (1) to (9) indicating the evaluation method below. did.

<フッ素樹脂微粒子についての評価>
(1)フッ素樹脂の数平均分子量:PTFEについて、諏訪(J.Appl.Polym.Sci,17,3253(1973)記載)の方法によって示差熱分析での潜熱量から求めた。
(2)フッ素樹脂の平均粒子径:フッ素樹脂水性乳化液を乾燥後、走査型電子顕微鏡を用いて10000倍で写真撮影し、微粒子100個について長軸と短軸の長さを測定し、各微粒子の長軸と短軸の長さの合計を2で除した値をその微粒子の粒子径として100個の平均値を求めた。
<Evaluation of fluororesin fine particles>
(1) Number average molecular weight of fluororesin: PTFE was determined from the amount of latent heat in differential thermal analysis by the method of Suwa (described in J. Appl. Polym. Sci, 17, 3253 (1973)).
(2) Average particle diameter of fluororesin: After drying the fluororesin aqueous emulsion, take a photograph at a magnification of 10,000 using a scanning electron microscope, measure the length of the major axis and minor axis of 100 fine particles, An average value of 100 particles was obtained by setting the value obtained by dividing the total length of the long axis and short axis of the fine particle by 2 as the particle diameter of the fine particle.

<フッ素樹脂水性分散液についての評価>
(3)フッ素樹脂水性分散液のフッ素樹脂および界面活性剤含有量:直径60mmのアルミニウム皿(質量=W)にフッ素樹脂水性分散液を約7g入れて秤量し(質量=W)、120℃で1時間乾燥後の質量(W120)、260℃で10分熱処理後の質量(W260)、300℃で10分熱処理後の質量(W300)、および380℃で35分間乾燥後の質量(W380)から、次式によって求めた。なお、本発明でいう界面活性剤含有量は、非イオン性界面活性剤、アニオン性フッ素系界面活性剤およびその他の熱分解成分を含む数値である。
・フッ素樹脂含有量(質量%)=[(W380−W)/(W−W)]×100
・界面活性剤含有量(質量%/フッ素樹脂)=[(W120−W380)/(W380−W)]×100
・260℃10分熱処理後の残存界面活性剤含有量(質量%/フッ素樹脂)=[(W260−W380)/(W380−W)]×100
・300℃10分熱処理後の残存界面活性剤含有量(質量%/フッ素樹脂)=[(W300−W380)/(W380−W)]×100
式中、質量%/フッ素樹脂とは、フッ素樹脂微粒子の全質量に対する質量%を示す。
<Evaluation of aqueous fluororesin dispersion>
(3) Content of fluororesin and surfactant in fluororesin aqueous dispersion: Approximately 7 g of fluororesin aqueous dispersion is placed in an aluminum dish (mass = W 0 ) having a diameter of 60 mm and weighed (mass = W 1 ). ° C. for 1 hour after drying the mass (W 120), mass after 10 minutes heat treatment at 260 ℃ (W 260), mass after 10 minutes heat treatment at 300(W 300), and after drying for 35 minutes at 380 ° C. It calculated | required by following Formula from mass ( W380 ). The surfactant content referred to in the present invention is a numerical value including a nonionic surfactant, an anionic fluorosurfactant and other thermal decomposition components.
・ Fluorine resin content (% by mass) = [(W 380 −W 0 ) / (W 1 −W 0 )] × 100
Surfactant content (mass% / fluororesin) = [(W 120 −W 380 ) / (W 380 −W 0 )] × 100
Residual surfactant content after heat treatment at 260 ° C. for 10 minutes (mass% / fluororesin) = [(W 260 −W 380 ) / (W 380 −W 0 )] × 100
Residual surfactant content after heat treatment at 300 ° C. for 10 minutes (mass% / fluororesin) = [(W 300 −W 380 ) / (W 380 −W 0 )] × 100
In the formula, mass% / fluororesin indicates mass% with respect to the total mass of the fluororesin fine particles.

(4)アニオン性フッ素系界面活性剤の含有量:アジレント社製GCMS(質量分析装置付きガスクロマトグラフィー)No.6850および5975を用いて測定した。サンプルは、20ccの専用バイアル瓶に、三フッ化ホウ素14質量%−メタノール溶液(ジーエルサイエンス社製)を1.5cc、アニオン性フッ素系界面活性剤を含むサンプル0.2ccを入れ、80℃で30分間反応させてメチルエステル化させたのち、アジレント社製ヘッドスペースサンプラーNo.G1888からGCMSに導入した。
得られた質量数69のフラグメントイオンのシグナル強度から、アニオン性フッ素系界面活性剤含有量を算出した。なお、測定に先立ち、あらかじめ含有量が既知のアニオン性フッ素系界面活性剤を使用して得られたシグナル強度から検量線を作成し、定量分析に用いた。この方法による検出感度は、パーフルオロオクタン酸アンモニウムの場合、サンプル液質量に対して0.1ppmである。
(4) Content of anionic fluorosurfactant: GCMS (gas chromatography with mass spectrometer) No. manufactured by Agilent Measurements were made using 6850 and 5975. The sample is placed in a 20 cc dedicated vial containing 1.5 cc of a boron trifluoride 14% by weight methanol solution (manufactured by GL Sciences Inc.) and 0.2 cc of a sample containing an anionic fluorosurfactant at 80 ° C. After reacting for 30 minutes for methyl esterification, headspace sampler no. It was introduced into GCMS from G1888.
From the signal intensity of the obtained fragment ion having a mass number of 69, the content of the anionic fluorosurfactant was calculated. Prior to the measurement, a calibration curve was created from the signal intensity obtained using an anionic fluorosurfactant with a known content in advance, and used for quantitative analysis. In the case of ammonium perfluorooctanoate, the detection sensitivity by this method is 0.1 ppm with respect to the sample liquid mass.

(5)pH:ガラス電極法によって測定した。
(6)粘度:ブルックフィールド型粘度計で#1スピンドルを用い、液温23℃、60rpmで粘度を測定した。
(5) pH: measured by the glass electrode method.
(6) Viscosity: The viscosity was measured at a liquid temperature of 23 ° C. and 60 rpm using a # 1 spindle with a Brookfield viscometer.

(7)CFT(クラック限界膜厚):厚み200μmまで連続的に塗布層の厚みが変化するアプリケーターを用い、厚み1mmのアルミニウム板上にフッ素樹脂水性分散液を塗布し、120℃10分間乾燥後、380℃10分間焼成した。塗布層の厚い部分にクラックが発生しクラックが薄い部分で消えるが、クラックの消えた部分の厚みを渦電流式膜厚計で5点測定し平均値を求め、CFTとした。 (7) CFT (Crack Limit Film Thickness): Using an applicator in which the thickness of the coating layer changes continuously up to a thickness of 200 μm, a fluororesin aqueous dispersion is applied on an aluminum plate having a thickness of 1 mm and dried at 120 ° C. for 10 minutes. Baked at 380 ° C. for 10 minutes. Cracks occurred in the thick part of the coating layer and disappeared in the thin part. The thickness of the part where the cracks disappeared was measured at five points with an eddy current film thickness meter, and the average value was obtained as CFT.

<フッ素樹脂塗膜についての評価>
(8)塗膜厚:アルミニウム板に塗布し焼成したサンプルについては、渦電流式膜厚計で膜厚を5点測定し平均値を求めた。また、ガラス繊維布に塗布し焼成したサンプルは、単位面積当たりの重量増加を測定して算出した。
<Evaluation of fluororesin coating film>
(8) Coating thickness: About the sample which apply | coated to the aluminum plate and baked, the film thickness was measured 5 points | pieces with the eddy current type film thickness meter, and the average value was calculated | required. Moreover, the sample which apply | coated to the glass fiber cloth and baked was calculated by measuring the weight increase per unit area.

(9)ピンホール電流値の測定:水89、エタノール10、食塩1の質量割合で混合し電解液を調製した。不織布(旭化成製ベンコット(登録商標)M−3)を8枚重ねて2cm角の大きさに切り(厚み約3mm)、アルミニウム板上に形成したフッ素樹脂塗膜面に乗せ、電解液1ccを吸収させ、上に乗せた白金電極とアルミニウム板裏面との間に10Vの交流電圧を印加し、流れた電流値を測定した。この電流値が大きいほど、クラックやピンホール等の塗膜の欠陥があることを示す。この電流値が1mA以上のときには不良とし、1mA未満のときには良好とした。 (9) Measurement of pinhole current value: An electrolyte solution was prepared by mixing water 89, ethanol 10, and salt 1 in a mass ratio. 8 sheets of non-woven fabric (Bencot (registered trademark) M-3 manufactured by Asahi Kasei Co., Ltd.) are stacked and cut to a size of 2 cm square (thickness: about 3 mm) and placed on the fluororesin coating film surface formed on the aluminum plate to absorb 1 cc of electrolyte Then, an AC voltage of 10 V was applied between the platinum electrode placed on the upper surface and the back surface of the aluminum plate, and the value of the flowing current was measured. It shows that there exists a defect of a coating film, such as a crack and a pinhole, so that this electric current value is large. When this current value was 1 mA or more, it was judged as defective, and when it was less than 1 mA, it was judged good.

[実施例1]
(PTFE水性乳化液の調製)
重合後に得られるPTFE質量に対して、0.24質量%のアニオン性フッ素系界面活性剤としてパーフルオロオクタン酸アンモニウム、および、0.1質量%のジコハク酸パーオキシド触媒を使用し、乳化重合法によりTFEを重合し、PTFEの数平均分子量が300万であり、PTFE微粒子の平均粒子径が0.25μmであり、PTFE微粒子含有量が27質量%であるPTFE水性乳化液を得た。
[Example 1]
(Preparation of aqueous PTFE emulsion)
By emulsion polymerization using ammonium perfluorooctanoate and 0.1% by mass disuccinic acid peroxide catalyst as 0.24% by mass anionic fluorosurfactant with respect to PTFE mass obtained after polymerization. TFE was polymerized to obtain a PTFE aqueous emulsion in which the number average molecular weight of PTFE was 3 million, the average particle diameter of PTFE fine particles was 0.25 μm, and the content of PTFE fine particles was 27% by mass.

(PTFE水性分散液の調製)
上記で得られたPTFE水性乳化液に、前記表1に示す非イオン性界面活性剤(A)を、PTFE微粒子全質量に対して3質量%の割合で溶解させ、陰イオン交換樹脂である三菱化学製ダイアイオン(登録商標)WA−30をPTFE微粒子全質量に対して3質量%加えて48時間攪拌を行ない、陰イオン交換樹脂にパーフルオロオクタン酸アンモニウムを吸着させた後、100メッシュフィルターで濾過し、前記陰イオン交換樹脂を除去した。
(Preparation of aqueous PTFE dispersion)
The nonionic surfactant (A) shown in Table 1 is dissolved in the PTFE aqueous emulsion obtained above at a ratio of 3% by mass with respect to the total mass of the PTFE fine particles, and Mitsubishi, which is an anion exchange resin. After adding 3% by mass of Diaion (registered trademark) WA-30 made by chemical to the total mass of PTFE fine particles and stirring for 48 hours, adsorbing ammonium perfluorooctanoate on the anion exchange resin, 100 mesh filter was used. Filtration was performed to remove the anion exchange resin.

得られた濾液を、電気泳動法により、30時間かけて濃縮を行なうことにより、PTFE含有量が66.1質量%であり、界面活性剤含有量がPTFE微粒子全質量に対して2.1質量%であるPTFE高濃度水性分散液を得た。ついで、該PTFE高濃度水性分散液に前記非イオン性界面活性剤(A)をPTFE微粒子全質量に対して2.7質量%、水およびPTFE微粒子全質量に対してアンモニア濃度が500ppmとなるようにアンモニア水を溶解させ、水性分散液全量に対してPTFE微粒子含有量が60.4質量%、界面活性剤含有量がPTFE微粒子全質量に対して4.8質量%、パーフルオロオクタン酸アンモニウム含有量がPTFE微粒子全質量に対して0.007質量%であるPTFE水性分散液を得た。
このPTFE水性分散液のpHは9.5であり、粘度は18mP・sであり、CFTは12μmであった。また、このPTFE水性分散液の260℃10分間熱処理後に残存する界面活性剤含有量はPTFE微粒子全質量に対して1.3質量%であり、300℃10分間熱処理後に残存する界面活性剤含有量はPTFE微粒子全質量に対して0.7質量%であった。
By concentrating the obtained filtrate by electrophoresis for 30 hours, the PTFE content is 66.1% by mass, and the surfactant content is 2.1% by mass with respect to the total mass of PTFE fine particles. % PTFE high-concentration aqueous dispersion was obtained. Next, the nonionic surfactant (A) is added to the PTFE high-concentration aqueous dispersion so that the concentration of ammonia is 2.7% by mass with respect to the total mass of PTFE fine particles and the ammonia concentration is 500 ppm with respect to the total mass of water and PTFE fine particles. Ammonia water is dissolved in the aqueous dispersion, the PTFE fine particle content is 60.4% by mass, the surfactant content is 4.8% by mass, and the perfluorooctanoic acid ammonium content is based on the total PTFE fine particle mass. An aqueous PTFE dispersion having an amount of 0.007% by mass with respect to the total mass of the PTFE fine particles was obtained.
This aqueous PTFE dispersion had a pH of 9.5, a viscosity of 18 mP · s, and a CFT of 12 μm. Further, the surfactant content remaining after heat treatment at 260 ° C. for 10 minutes in this PTFE aqueous dispersion is 1.3% by mass with respect to the total mass of PTFE fine particles, and the surfactant content remaining after heat treatment at 300 ° C. for 10 minutes. Was 0.7% by mass relative to the total mass of the PTFE fine particles.

(PTFE塗膜の形成)
耐熱基材として、片面をサンドブラスト処理した厚み1mm、長さ20cm、幅15cmのアルミニウム板を使用した。スプレーガン(Binks−Bullows Spray Gun Model 630)に上記で得られたPTFE水性分散液を入れ、アルミニウム板に5秒間スプレー塗布し、120℃オーブン中で10分間乾燥を行なった。PTFE樹脂塗布層の表面にはクラックが観察された。
(Formation of PTFE coating)
As the heat-resistant substrate, an aluminum plate having a thickness of 1 mm, a length of 20 cm, and a width of 15 cm with one side being sandblasted was used. The PTFE aqueous dispersion obtained above was placed in a spray gun (Binks-Blows Spray Gun Model 630), sprayed onto an aluminum plate for 5 seconds, and dried in a 120 ° C. oven for 10 minutes. Cracks were observed on the surface of the PTFE resin coating layer.

次に、上記PTFE樹脂塗布層付きアルミニウム板について300℃オーブン中で10分間の加熱処理を行ない、界面活性剤を熱分解させた。その後、このPTFE樹脂塗布層付きアルミニウム板を図1に構造を示す加圧ローラー間を通過させて加圧処理を行なった。加圧ローラーは直径25mm、長さ250mmで、表面にシリコンゴム層を形成したものであり、圧力30MPa、温度は室温で、通過速度10cm/分、加圧時間は約2秒で通過させた。   Next, the aluminum plate with the PTFE resin coating layer was heat-treated in a 300 ° C. oven for 10 minutes to thermally decompose the surfactant. Thereafter, the aluminum plate with the PTFE resin coating layer was subjected to pressure treatment by passing between pressure rollers whose structures are shown in FIG. The pressure roller had a diameter of 25 mm and a length of 250 mm, and a silicon rubber layer was formed on the surface. The pressure roller was 30 MPa, the temperature was room temperature, the passing speed was 10 cm / min, and the pressing time was about 2 seconds.

さらに、上記加圧処理後のPTFE樹脂塗布層付きアルミニウム板について380℃で30分間焼成を行ない、アルミニウム板上にPTFE塗膜を得た。このPTFE塗膜の厚みは15μmであり、目視観察では塗膜にクラック、ピンホール等はほとんど認められなかった。また、得られたPTFE塗膜のピンホール電流値は0.1mA以下であり、良好な結果であった。   Furthermore, the aluminum plate with the PTFE resin coating layer after the pressure treatment was baked at 380 ° C. for 30 minutes to obtain a PTFE coating on the aluminum plate. The thickness of this PTFE coating film was 15 μm, and cracks, pinholes and the like were hardly observed in the coating film by visual observation. Moreover, the pinhole electric current value of the obtained PTFE coating film was 0.1 mA or less, which was a good result.

[実施例2]
上記実施例1においてPTFE塗膜の形成における加熱処理の条件を260℃10分間とした以外は実施例1と同様にしてアルミニウム板上にPTFE塗膜を得た。PTFE塗膜厚は15μmであり、目視観察では塗膜にクラック、ピンホール等はほとんど認められなかった。得られたPTFE塗膜のピンホール電流値は0.1mA以下であり、良好な結果であった。
[Example 2]
A PTFE coating film was obtained on an aluminum plate in the same manner as in Example 1 except that the heat treatment conditions in the formation of the PTFE coating film were set at 260 ° C. for 10 minutes. The thickness of the PTFE coating film was 15 μm, and almost no cracks, pinholes, etc. were observed in the coating film by visual observation. The pinhole current value of the obtained PTFE coating film was 0.1 mA or less, which was a good result.

[実施例3]
上記実施例1においてPTFE塗膜の形成におけるアルミニウム板へのPTFE水性分散液のスプレー塗布を10秒間行なった以外は実施例1と同様にしてアルミニウム板上に28μmのPTFE塗膜を得た。さらに、この塗膜面に再度同じ塗布工程を1回だけ繰返して行い、合計55μmの塗膜厚を得た。目視観察では塗膜にクラック、ピンホール等はほとんど認められなかった。また、得られたPTFE塗膜のピンホール電流値は0.1mA以下であり、良好な結果であった。
[Example 3]
A 28 μm PTFE coating was obtained on the aluminum plate in the same manner as in Example 1 except that the PTFE aqueous dispersion was sprayed onto the aluminum plate for 10 seconds in the formation of the PTFE coating in Example 1 above. Furthermore, the same coating process was repeated once again on this coating film surface to obtain a coating film thickness of 55 μm in total. Visual observation showed almost no cracks, pinholes, etc. in the coating. Moreover, the pinhole electric current value of the obtained PTFE coating film was 0.1 mA or less, which was a good result.

[実施例4]
(PTFE水性分散液の調製)
上記実施例1で得られたのと同様のPTFE水性乳化液に、前記表1に示す非イオン性界面活性剤(B)を、PTFE微粒子の全質量に対して3質量%の割合で溶解させ、これを三菱化学製ダイアイオン(登録商標)WA−30を充填したカラムを通過させ、パーフルオロオクタン酸アンモニウムを吸着させた。
[Example 4]
(Preparation of aqueous PTFE dispersion)
In the same PTFE aqueous emulsion as obtained in Example 1, the nonionic surfactant (B) shown in Table 1 was dissolved at a ratio of 3% by mass with respect to the total mass of the PTFE fine particles. This was passed through a column packed with Diaion (registered trademark) WA-30 manufactured by Mitsubishi Chemical Corporation to adsorb ammonium perfluorooctanoate.

前記カラム通過後の濾液を、電気泳動法により濃縮し、PTFE含有量が65.6質量%であり、界面活性剤含有量がPTFE微粒子全質量に対して2.2質量%であるPTFE高濃度水性分散液を得た。このPTFE高濃度水性分散液に、非イオン性界面活性剤(B)をPTFE微粒子全質量に対して2.6質量%、シリコーン系ぬれ性改良剤である東レダウコーニング社製FZ‐77をPTFE微粒子全質量に対して0.5質量%、増粘剤としてPTFE微粒子全質量に対して0.1質量%のポリエチレンオキシド(住友精化社製PEO−3、分子量100万)、水およびPTFE微粒子全質量に対してアンモニア濃度が500ppmとなるようにアンモニア水を溶解させ、水性分散液全量に対してPTFE微粒子含有量が60.4質量%、界面活性剤含有量がPTFE微粒子全質量に対して4.8質量%、パーフルオロオクタン酸アンモニウム含有量がPTFE微粒子全質量に対して0.001質量%であるPTFE水性分散液を得た。
このPTFE水性分散液のpHは9.3であり、粘度は85mP・sであり、CFTが11μmであった。また、このPTFE水性分散液の300℃10分間熱処理後の界面活性剤含有量はPTFE微粒子全質量に対して0.9質量%であり、260℃10分間熱処理後の界面活性剤含有量はPTFE微粒子全質量に対して1.7質量%であった。
The filtrate after passing through the column is concentrated by electrophoresis, and the PTFE content is 65.6% by mass, and the surfactant content is 2.2% by mass with respect to the total mass of PTFE fine particles. An aqueous dispersion was obtained. To this PTFE high-concentration aqueous dispersion, 2.6% by mass of the nonionic surfactant (B) with respect to the total mass of PTFE fine particles, and FZ-77 manufactured by Toray Dow Corning Co., Ltd., which is a silicone-based wettability improver, were added to PTFE. Polyethylene oxide (PEO-3, molecular weight 1 million) manufactured by Sumitomo Seika Co., Ltd., water and PTFE fine particles of 0.5% by mass with respect to the total mass of fine particles and 0.1% by mass with respect to the total mass of PTFE fine particles as a thickener Ammonia water is dissolved so that the ammonia concentration is 500 ppm with respect to the total mass, the PTFE fine particle content is 60.4 mass% with respect to the total amount of the aqueous dispersion, and the surfactant content is with respect to the total mass of PTFE fine particles. A PTFE aqueous dispersion having 4.8% by mass and an ammonium perfluorooctanoate content of 0.001% by mass with respect to the total mass of PTFE fine particles was obtained.
This aqueous PTFE dispersion had a pH of 9.3, a viscosity of 85 mP · s, and a CFT of 11 μm. The surfactant content after heat treatment at 300 ° C. for 10 minutes in this PTFE aqueous dispersion was 0.9% by mass with respect to the total mass of PTFE fine particles, and the surfactant content after heat treatment at 260 ° C. for 10 minutes was PTFE. It was 1.7% by mass with respect to the total mass of the fine particles.

(PTFE塗膜の形成)
このPTFE水性分散液を塗布液として用いる以外は、上記実施例3と同様にして、アルミニウム板上にPTFE塗膜を形成させた。このPTFE塗膜の厚みは、28μmであった。目視観察では塗膜にクラック、ピンホール等はほとんど認められなかった。また、得られたPTFE塗膜のピンホール電流値は0.1mA以下であり、良好な結果であった。
(Formation of PTFE coating)
A PTFE coating film was formed on an aluminum plate in the same manner as in Example 3 except that this aqueous PTFE dispersion was used as a coating solution. The thickness of this PTFE coating film was 28 μm. Visual observation showed almost no cracks, pinholes, etc. in the coating. Moreover, the pinhole electric current value of the obtained PTFE coating film was 0.1 mA or less, which was a good result.

[実施例5]
上記実施例4において、PTFE塗膜の形成における加圧処理時にPTFE樹脂塗布層付きのアルミニウム板全体の温度を80℃に設定して加圧処理を行なった以外は、上記実施例4と同様にしてアルミニウム板上にPTFE塗膜を形成した。このPTFE塗膜厚は、27μmであった。目視観察では塗膜にクラック、ピンホール等はほとんど認められなかった。また、得られたPTFE塗膜のピンホール電流値は0.1mA以下であり、良好な結果であった。
[Example 5]
In Example 4 above, the same procedure as in Example 4 above was performed, except that the temperature of the entire aluminum plate with the PTFE resin coating layer was set to 80 ° C. during the pressure treatment in the formation of the PTFE coating. A PTFE coating was formed on the aluminum plate. The PTFE coating thickness was 27 μm. Visual observation showed almost no cracks, pinholes, etc. in the coating. Moreover, the pinhole electric current value of the obtained PTFE coating film was 0.1 mA or less, which was a good result.

[実施例6]
厚み220μmで単位重量200g/mのガラス繊維布(大きさ20cm×15cm)を耐熱基材として用い、このガラス繊維布を上記実施例4で得られたのと同様のPTFE水性分散液に1分間漬浸し引き上げ、自然乾燥後、300℃で10分間加熱処理を行なった。
[Example 6]
A glass fiber cloth (size 20 cm × 15 cm) having a thickness of 220 μm and a unit weight of 200 g / m 2 was used as a heat-resistant substrate, and this glass fiber cloth was added to the same PTFE aqueous dispersion as that obtained in Example 4 above. It was soaked for a minute and pulled up. After natural drying, it was heated at 300 ° C. for 10 minutes.

このPTFE樹脂塗布層を両面に有するガラス繊維布について、冷却後、圧力40Mpaに設定された加圧ローラーの間を毎分10cmの速度で通過させ、加圧処理を行なった。さらに、380℃で10分間焼成を行ない、PTFE塗膜を得た。このPTFE塗膜の片面の厚みは、55μmであり、目視観察では塗膜にクラック、ピンホール等はほとんど認められなかった。
さらに上記と同様の塗布工程を更に1回繰返して行い、片面あたり合計102μmの塗膜を得た。塗膜にクラック、ピンホール等はほとんど認められなかった。
About the glass fiber cloth which has this PTFE resin application layer on both surfaces, it passed between the pressurization rollers set to the pressure of 40 Mpa at a speed | rate of 10 cm / min after cooling, and the pressurization process was performed. Further, baking was performed at 380 ° C. for 10 minutes to obtain a PTFE coating film. The thickness of one side of this PTFE coating film was 55 μm, and cracks, pinholes and the like were hardly recognized in the coating film by visual observation.
Further, the same coating process as described above was further repeated once to obtain a coating film of 102 μm in total per side. Almost no cracks, pinholes, etc. were observed in the coating film.

[実施例7]
前記実施例4において、PTFE塗膜の形成における300℃10分間の加熱処理後の加圧処理を、PTFE樹脂塗布層の上に厚み1mmのシリコンゴムを乗せ、図3に示すのと同様の油圧プレスを用い、圧力30MPaで3分間加圧し、シリコンゴムを剥離する方法で実施し、その後380℃で10分間の焼成を行った以外は実施例4と同様にして、アルミニウム板上にPTFE塗膜を形成した。
このPTFE塗膜厚は、27μmであった。目視観察では塗膜にクラック、ピンホール等はほとんど認められなかった。また、得られたPTFE塗膜のピンホール電流値は0.1mA以下であり、良好な結果を得た。
[Example 7]
In Example 4, the pressure treatment after the heat treatment at 300 ° C. for 10 minutes in the formation of the PTFE coating was performed by placing silicon rubber having a thickness of 1 mm on the PTFE resin coating layer and the same hydraulic pressure as shown in FIG. A PTFE coating film was formed on an aluminum plate in the same manner as in Example 4 except that pressing was performed at a pressure of 30 MPa for 3 minutes and the silicon rubber was peeled off, followed by baking at 380 ° C. for 10 minutes. Formed.
The PTFE coating thickness was 27 μm. Visual observation showed almost no cracks, pinholes, etc. in the coating. Moreover, the pinhole current value of the obtained PTFE coating film was 0.1 mA or less, and good results were obtained.

[比較例1]
実施例1において、PTFE塗膜の形成における加圧処理を行なわない以外は実施例1と同様にしてアルミニウム板上にPTFE塗膜を得た。このPTFE塗膜厚は16μmであり、目視観察では焼成後の塗膜にはクラックや表面の荒れが認められた。また、得られたPTFE塗膜のピンホール電流値はクラックのために4mAと大きかった。
[Comparative Example 1]
In Example 1, a PTFE coating film was obtained on an aluminum plate in the same manner as in Example 1 except that no pressure treatment was performed in the formation of the PTFE coating film. The thickness of the PTFE coating film was 16 μm, and cracks and surface roughness were recognized in the coating film after firing by visual observation. Moreover, the pinhole current value of the obtained PTFE coating was as large as 4 mA due to cracks.

[比較例2]
実施例1において、PTFE塗膜の形成における300℃10分間の加熱処理を行なわない以外は実施例1と同様の操作を行なったが、加圧処理の際にPTFE樹脂塗布層の欠落を生じ、焼成後に得られたアルミニウム板上のPTFE塗膜にそのまま欠落が残った。このため得られたPTFE塗膜のピンホール電流値は16mAと大きかった。
[Comparative Example 2]
In Example 1, the same operation as in Example 1 was performed except that the heat treatment at 300 ° C. for 10 minutes in the formation of the PTFE coating was performed, but the PTFE resin coating layer was lost during the pressure treatment, A defect remained in the PTFE coating film on the aluminum plate obtained after firing. For this reason, the pinhole electric current value of the obtained PTFE coating film was as large as 16 mA.

[比較例3]
実施例1において、PTFE塗膜の形成における加熱処理を、PTFEの融点(327℃)を超える350℃で10分間行なった以外は実施例1と同様の操作を行なった。実施例1と同様、乾燥の操作後にPTFE樹脂塗布層にクラックが発生し、加圧工程でもクラックが消失せず、焼成後にアルミニウム板上に得られたPTFE塗膜には、クラックがそのまま残った。また、得られたPTFE塗膜のピンホール電流値も3mAと大きかった。
[Comparative Example 3]
In Example 1, the same operation as in Example 1 was performed except that the heat treatment in the formation of the PTFE coating film was performed at 350 ° C. exceeding the melting point (327 ° C.) of PTFE for 10 minutes. As in Example 1, cracks occurred in the PTFE resin coating layer after the drying operation, the cracks did not disappear even in the pressurizing step, and the cracks remained in the PTFE coating film obtained on the aluminum plate after firing. . Moreover, the pinhole current value of the obtained PTFE coating was as large as 3 mA.

[比較例4]
実施例1において、PTFE塗膜の形成における加圧処理の圧力を0.05MPaに下げた以外は実施例1と同様の操作を行なったが、加圧処理後にPTFE樹脂塗布層にクラックや表面の荒れが認められ、焼成後にアルミニウム板上に得られたPTFE塗膜には、クラックや表面の荒れがそのまま残った。また、得られたPTFE塗膜のピンホール電流値は3mAと大きかった。
[Comparative Example 4]
In Example 1, the same operation as in Example 1 was performed except that the pressure of the pressure treatment in the formation of the PTFE coating was reduced to 0.05 MPa. Roughness was observed, and cracks and surface roughness remained on the PTFE coating film obtained on the aluminum plate after firing. Moreover, the pinhole electric current value of the obtained PTFE coating film was as large as 3 mA.

[比較例5]
実施例7において、PTFE塗膜の形成における加圧処理の圧力を200MPaとして3分間加圧処理を行なった以外は、実施例7と同様の操作を行なったが、圧力が高すぎたために除圧後にシリコンゴムを取り除く際にPTFE樹脂塗布層の欠落を生じ、焼成後にアルミニウム板上に得られたPTFE塗膜には、欠落がそのまま残った。また、得られたPTFE塗膜のピンホール電流値は12mAと大きかった。
[Comparative Example 5]
In Example 7, the same operation as in Example 7 was performed except that the pressure treatment in forming the PTFE coating was performed at a pressure of 200 MPa for 3 minutes, but the pressure was too high and the pressure was removed. Later, when the silicon rubber was removed, the PTFE resin coating layer was missing, and the PTFE coating film obtained on the aluminum plate after firing remained missing. Moreover, the pinhole electric current value of the obtained PTFE coating film was as large as 12 mA.

[比較例6]
PTFE水性分散液として、旭硝子社製フルオン(登録商標)AD1を用いた以外は、実施例1と同様にして、アルミニウム板上にPTFE塗膜を形成させた。
前記PTFE水性分散液は、PTFE微粒子として実施例1で説明したPTFE水性乳化液が含有するPTFE微粒子と同様のPTFE微粒子を含有し、その含有量が水性分散液全量に対して60.6質量%、前記表1に示すポリオキシエチレンアルキルフェニルエーテル系の非イオン性界面活性剤(C)がPTFE微粒子全質量に対して4.9質量%、パーフルオロオクタン酸アンモニウム含有量がPTFE微粒子全質量に対して0.15質量%であり、pHは9.6であり、粘度は20mP・sであり、CFTが11μmである。また、このPTFE水性分散液の300℃10分間加熱処理後の界面活性剤含有量は、PTFE微粒子全質量に対して3.6質量%であった。
[Comparative Example 6]
A PTFE coating film was formed on an aluminum plate in the same manner as in Example 1 except that Asahi Glass Co., Ltd. Fullon (registered trademark) AD1 was used as the aqueous PTFE dispersion.
The PTFE aqueous dispersion contains the same PTFE fine particles as the PTFE fine particles contained in the PTFE aqueous emulsion described in Example 1 as PTFE fine particles, and the content thereof is 60.6% by mass with respect to the total amount of the aqueous dispersion. The polyoxyethylene alkylphenyl ether nonionic surfactant (C) shown in Table 1 is 4.9% by mass relative to the total mass of PTFE fine particles, and the content of ammonium perfluorooctanoate is based on the total mass of PTFE fine particles. On the other hand, it is 0.15% by mass, the pH is 9.6, the viscosity is 20 mP · s, and the CFT is 11 μm. Further, the surfactant content of the aqueous PTFE dispersion after heat treatment at 300 ° C. for 10 minutes was 3.6% by mass relative to the total mass of the PTFE fine particles.

このPTFE水性分散液が含有する非イオン性界面活性剤(C)は、熱分解しにくいため、PTFE塗膜の形成における加熱処理後にもPTFE樹脂塗布層中に非イオン性界面活性剤が残留し、加圧処理の際にPTFE樹脂塗布層の欠落を生じ、焼成後にアルミニウム板上に得られたPTFE塗膜には、欠落がそのまま残った。このため得られたPTFE塗膜のピンホール電流値は8mAと大きかった。
以下、表2に上記実施例1〜7について、表3に比較例1〜6について、それぞれ用いたフッ素樹脂水性分散液の特性、製造条件、得られたフッ素樹脂塗膜の評価結果を示す。
Since the nonionic surfactant (C) contained in this aqueous PTFE dispersion is hardly thermally decomposed, the nonionic surfactant remains in the PTFE resin coating layer even after the heat treatment in the formation of the PTFE coating film. The PTFE resin coating layer was missing during the pressure treatment, and the missing portion remained in the PTFE coating film obtained on the aluminum plate after firing. For this reason, the pinhole current value of the obtained PTFE coating film was as large as 8 mA.
Table 2 shows the characteristics of the fluororesin aqueous dispersion, the production conditions, and the evaluation results of the obtained fluororesin coating film for Tables 1 to 7 and Comparative Examples 1 to 6 in Table 3.

Figure 2010046618
Figure 2010046618

Figure 2010046618
Figure 2010046618

なお、表2および表3において、非イオン性界面活性剤種類の欄に表示した(A)、(B)、(C)はそれぞれ、表1に示す非イオン性界面活性剤(A)、(B)、(C)を表すものである。
また、膜厚は、塗膜形成を2回実施した実施例については、「1回目の膜厚/1回目と2回目の合計膜厚」の形で示している。
含有量については、フッ素樹脂微粒子は水性分散液全量に対する質量%を示し、界面活性剤、残留界面活性剤については、水性分散液が含有するフッ素樹脂微粒子全量に対する質量%(質量%/フッ素樹脂)を示す。
In Tables 2 and 3, (A), (B), and (C) indicated in the column of nonionic surfactant type are the nonionic surfactants (A) and (C) shown in Table 1, respectively. B) and (C) are represented.
The film thickness is shown in the form of “first film thickness / total film thickness of the first time and the second time” in the example in which the coating film was formed twice.
Regarding the content, the fluororesin fine particles indicate mass% with respect to the total amount of the aqueous dispersion, and for the surfactant and the residual surfactant, the mass% with respect to the total amount of fluororesin fine particles contained in the aqueous dispersion (% by mass / fluororesin). Indicates.

これらの結果から、本発明の方法による実施例で得られたフッ素樹脂塗膜は、フッ素樹脂水性分散液をCFTよりも厚く塗布し焼成してもクラックやピンホールの発生がなく高品質であることがわかる。比較例1〜6は、本発明のフッ素樹脂塗膜の形成方法の必須工程を省いたりあるいは条件を本発明の範囲外で実施したものであるが、これら比較例により得られたフッ素樹脂塗膜は、クラックの発生や欠落等の問題が発生していることが分かる。   From these results, the fluororesin coating film obtained in the examples according to the method of the present invention has high quality without generation of cracks and pinholes even when the fluororesin aqueous dispersion is applied thicker than CFT and fired. I understand that. In Comparative Examples 1 to 6, the essential steps of the fluororesin coating film forming method of the present invention are omitted or the conditions are carried out outside the scope of the present invention, but the fluororesin coating films obtained by these comparative examples It can be seen that problems such as the occurrence of cracks and missing parts occur.

また、上記比較例6で使用した、従来のアルキルフェノール系非イオン性界面活性剤である、ダウケミカル社製トライトンX−100は、図4(C)に熱重量分析(TGA)結果を示す通り、フッ素樹脂の融点(PTFEの場合には327℃)程度以上の高温でないと熱分解しにくい。この熱分解のしにくさは、トライトンX−100が分子中にベンゼン核を有しているためである。比較例6においては、加熱処理工程後も非イオン性界面活性剤が熱分解されないで、本発明の方法の範囲を超えて、つまりフッ素樹脂微粒子全質量に対して2質量%より多く含有されていた。このような状態では、フッ素樹脂塗布層の表面は、乾燥されて水分が除去されていたとしても、加圧処理において、圧力を開放した段階で塗膜の欠落を生じ、塗膜の均一性を損ねることがわかる。   Further, Triton X-100 manufactured by Dow Chemical Co., which is a conventional alkylphenol-based nonionic surfactant used in Comparative Example 6, is shown in FIG. 4 (C) as a result of thermogravimetric analysis (TGA). Unless the temperature is higher than the melting point of fluororesin (327 ° C. in the case of PTFE), thermal decomposition is difficult. This difficulty of thermal decomposition is because Triton X-100 has a benzene nucleus in the molecule. In Comparative Example 6, the nonionic surfactant is not thermally decomposed even after the heat treatment step and exceeds the range of the method of the present invention, that is, more than 2% by mass with respect to the total mass of the fluororesin fine particles. It was. In such a state, even if the surface of the fluororesin coating layer is dried and moisture is removed, in the pressure treatment, the coating film is lost when the pressure is released, and the uniformity of the coating film is increased. You can see that

一方、図4(A)、(B)にそれぞれTGA結果を示す通り、非イオン性界面活性剤(A)および(B)は、低温で熱分解しやすく、それらの熱分解温度がフッ素樹脂の融点よりも低い。本発明の方法において、このような非イオン性界面活性剤を使用すれば、加熱処理によりフッ素樹脂塗布層中の非イオン性界面活性剤を所定の量まで除去するという加熱工程を制御し易く、次の加圧工程でフッ素樹脂塗布層を加圧処理したのち除圧する段階でフッ素樹脂塗布層に欠落を生ぜず、良好に加圧処理を行なうことができることがわかる。   On the other hand, as shown in FIG. 4 (A) and FIG. 4 (B), respectively, the nonionic surfactants (A) and (B) are easily pyrolyzed at a low temperature. Below the melting point. In the method of the present invention, if such a nonionic surfactant is used, it is easy to control the heating step of removing the nonionic surfactant in the fluororesin coating layer to a predetermined amount by heat treatment, It can be seen that in the next pressurizing step, the fluororesin coating layer is pressurized and then depressurized, so that the fluororesin coating layer is not missing and the pressurization can be performed satisfactorily.

本発明のフッ素樹脂塗膜の形成方法は、従来の方法と比較して、厚く塗布しても品質が低下せず、重ね塗り回数を低減できるために加工コストが低下し、塗膜性能や耐久性の良いフッ素樹脂塗膜を得ることができる。
このため、従来、フッ素樹脂水性分散液が塗布されてきた多くの用途に対し、より好ましく使用できる。例えば、フッ素樹脂水性分散液単独または顔料や耐熱樹脂を配合しアルミニウム板にコーティングして電気釜やケーキ型の非粘着加工を行なう用途、ガラス繊維布やアラミド繊維布やカーボン繊維布に塗布して搬送用耐熱ベルトや建築用膜構造シートやプリント基板用材料に加工する用途、フッ素樹脂水性分散液をアルミニウム板やステンレス板等に塗布し焼成したのちにフッ素樹脂層を剥離して得られるフッ素樹脂極薄シートに加工する用途、その他にフッ素樹脂水性分散液が従来利用されてきた多くの用途が挙げられる。
Compared with conventional methods, the fluororesin coating film forming method of the present invention does not deteriorate in quality even when applied thickly, and the number of repeated coatings can be reduced, resulting in a reduction in processing costs, coating film performance and durability. A good fluororesin coating film can be obtained.
For this reason, it can be more preferably used for many applications where a fluororesin aqueous dispersion has been conventionally applied. For example, it can be applied to glass fiber cloths, aramid fiber cloths, and carbon fiber cloths, for use in non-adhesive processing of electric kettles and cakes by coating fluororesin aqueous dispersions alone or pigments and heat resistant resins and coating them on aluminum plates Fluorine resin obtained by peeling the fluororesin layer after applying and baking a fluororesin aqueous dispersion on an aluminum plate or stainless steel plate, etc. There are many uses in which the fluororesin aqueous dispersion has been conventionally used, in addition to the use for processing into an ultrathin sheet.

本発明のフッ素樹脂塗膜形成方法における加圧ローラーによる加圧工程の一態様を模式的に示す図である。It is a figure which shows typically the one aspect | mode of the pressurization process by the pressurization roller in the fluororesin coating-film formation method of this invention. 本発明のフッ素樹脂塗膜形成方法における加圧ローラーによる加圧工程の別の一態様を模式的に示す図である。It is a figure which shows typically another one aspect | mode of the pressurization process by the pressurization roller in the fluororesin coating-film formation method of this invention. 本発明のフッ素樹脂塗膜形成方法におけるプレス装置による加圧工程の一態様を模式的に示す図である。It is a figure which shows typically the one aspect | mode of the pressurization process by the press apparatus in the fluororesin coating-film formation method of this invention. 非イオン性界面活性剤(A)、(B)、および(C)のTGA分析結果を示す図である。It is a figure which shows the TGA analysis result of nonionic surfactant (A), (B), and (C).

符号の説明Explanation of symbols

1…耐熱基材、2…加熱処理後(加圧処理前)のフッ素樹脂塗布層、3…加圧処理後のフッ素樹脂塗布層、4…加圧ローラー、5…プレス板   DESCRIPTION OF SYMBOLS 1 ... Heat resistant substrate, 2 ... Fluorine resin coating layer after heat treatment (before pressure treatment), 3 ... Fluorine resin coating layer after pressure treatment, 4 ... Pressure roller, 5 ... Press plate

Claims (5)

平均粒子径が0.1〜0.5μmであり、融点が200℃超であるフッ素樹脂の微粒子を分散液全量に対して20〜70質量%、非イオン性界面活性剤を前記フッ素樹脂微粒子の全質量に対して2〜12質量%含有するフッ素樹脂水性分散液を、耐熱基材に塗布して、前記耐熱基材上に前記フッ素樹脂水性分散液の塗布層を形成する塗布層形成工程と、
前記塗布層形成工程後の前記塗布層を200℃〜前記フッ素樹脂の融点未満の温度で加熱処理して前記塗布層中の非イオン性界面活性剤の含有量を前記フッ素樹脂微粒子の全質量に対して2質量%未満に低減する加熱工程と、
前記加熱工程後の前記塗布層を加圧手段を用いて0.1〜100MPaの圧力で加圧処理する加圧工程と、
前記加圧工程後の前記塗布層を前記フッ素樹脂の融点〜420℃の温度で加熱して、前記塗布層中のフッ素樹脂微粒子を焼成し、前記耐熱基材上に前記フッ素樹脂の塗膜を形成する焼成工程と
を有することを特徴とするフッ素樹脂塗膜の形成方法。
Fluorine resin fine particles having an average particle diameter of 0.1 to 0.5 μm and a melting point of over 200 ° C. are 20 to 70% by mass with respect to the total amount of the dispersion, and a nonionic surfactant is added to the fluororesin fine particles. A coating layer forming step of applying a fluororesin aqueous dispersion containing 2 to 12% by mass with respect to the total mass to a heat resistant substrate, and forming a coating layer of the fluororesin aqueous dispersion on the heat resistant substrate; ,
The coating layer after the coating layer forming step is heat-treated at a temperature of 200 ° C. to less than the melting point of the fluororesin, and the content of the nonionic surfactant in the coating layer is adjusted to the total mass of the fluororesin fine particles. A heating step that reduces to less than 2% by weight,
A pressurizing step of pressurizing the coating layer after the heating step at a pressure of 0.1 to 100 MPa using a pressurizing means;
The coating layer after the pressurizing step is heated at a temperature of the melting point of the fluororesin to 420 ° C., the fluororesin fine particles in the coating layer are baked, and the fluororesin coating film is formed on the heat-resistant substrate. And a baking step for forming the fluororesin coating film.
前記非イオン性界面活性剤が、下記式(1)で表される化合物である請求項1に記載のフッ素樹脂塗膜の形成方法。
−O−A−H (1)
(式中、Rは炭素数が6〜18であり、水素原子の10%以下がハロゲン原子で置換されていてもよい飽和アルキル基である。Oは酸素原子である。Aは5〜20個のオキシエチレン基、0〜3個のオキシプロピレン基、および0〜3個のオキシブチレン基より構成されるポリオキシアルキレン鎖である。)
The method for forming a fluororesin coating film according to claim 1, wherein the nonionic surfactant is a compound represented by the following formula (1).
R 1 —O—A—H (1)
(Wherein R 1 is a saturated alkyl group having 6 to 18 carbon atoms and 10% or less of hydrogen atoms may be substituted with a halogen atom. O is an oxygen atom. A is 5 to 20) And a polyoxyalkylene chain composed of 0 to 3 oxyethylene groups, 0 to 3 oxypropylene groups, and 0 to 3 oxybutylene groups.)
前記フッ素樹脂が、ポリテトラフルオロエチレン又はテトラフルオロエチレン共重合体である請求項1又は2に記載のフッ素樹脂塗膜の形成方法。   The method for forming a fluororesin coating film according to claim 1 or 2, wherein the fluororesin is polytetrafluoroethylene or a tetrafluoroethylene copolymer. 前記フッ素樹脂水性分散液の粘度が、ブルックフィールド型粘度計で#1スピンドルを用い、液温23℃、60rpmの条件で測定した場合に、1〜1000mPa・sである請求項1〜3のいずれか1項に記載のフッ素樹脂塗膜の形成方法。   The viscosity of the fluororesin aqueous dispersion is 1-1000 mPa · s when measured with a Brookfield viscometer using a # 1 spindle under the conditions of a liquid temperature of 23 ° C. and 60 rpm. 2. A method for forming a fluororesin coating film according to item 1. 前記塗膜の厚みが、1〜1000μmである請求項1〜4のいずれか1項に記載のフッ素樹脂塗膜の形成方法。   The thickness of the said coating film is 1-1000 micrometers, The formation method of the fluororesin coating film of any one of Claims 1-4.
JP2008213783A 2008-08-22 2008-08-22 Method for forming fluororesin coating film Active JP5003633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008213783A JP5003633B2 (en) 2008-08-22 2008-08-22 Method for forming fluororesin coating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008213783A JP5003633B2 (en) 2008-08-22 2008-08-22 Method for forming fluororesin coating film

Publications (2)

Publication Number Publication Date
JP2010046618A true JP2010046618A (en) 2010-03-04
JP5003633B2 JP5003633B2 (en) 2012-08-15

Family

ID=42064178

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008213783A Active JP5003633B2 (en) 2008-08-22 2008-08-22 Method for forming fluororesin coating film

Country Status (1)

Country Link
JP (1) JP5003633B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102993889A (en) * 2012-11-28 2013-03-27 天长市开林化工有限公司 Preparation method of floor coating
CN103102760A (en) * 2012-11-28 2013-05-15 天长市开林化工有限公司 Acrylic acid emulsion floor coating
CN104231777A (en) * 2013-12-28 2014-12-24 张文知 Plane runway coating
EP4053181A4 (en) * 2019-10-29 2024-03-06 Agc Inc Method for producing polytetrafluoroethylene aqueous dispersion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445440A (en) * 1977-09-19 1979-04-10 Oiles Industry Co Ltd Double layer bearing and method of producing same
JPH07233345A (en) * 1993-09-08 1995-09-05 Sumitomo Electric Ind Ltd Fluororesin coating composition, production of fluororesin coated plate and production of fluororesin coated product
JPH10298310A (en) * 1997-04-24 1998-11-10 Nippon Aramido Kk Fluoroplastic-based sheet, sheet laminate, its production and its use
JP2001089624A (en) * 1999-09-22 2001-04-03 Asahi Glass Furoro Polymers Kk Polytetrafluoroethylene aqueous dispersion composition and preparation of coating film
JP2004306544A (en) * 2003-04-10 2004-11-04 Teijin Techno Products Ltd Fluoroplastic molded body and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445440A (en) * 1977-09-19 1979-04-10 Oiles Industry Co Ltd Double layer bearing and method of producing same
JPH07233345A (en) * 1993-09-08 1995-09-05 Sumitomo Electric Ind Ltd Fluororesin coating composition, production of fluororesin coated plate and production of fluororesin coated product
JPH10298310A (en) * 1997-04-24 1998-11-10 Nippon Aramido Kk Fluoroplastic-based sheet, sheet laminate, its production and its use
JP2001089624A (en) * 1999-09-22 2001-04-03 Asahi Glass Furoro Polymers Kk Polytetrafluoroethylene aqueous dispersion composition and preparation of coating film
JP2004306544A (en) * 2003-04-10 2004-11-04 Teijin Techno Products Ltd Fluoroplastic molded body and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102993889A (en) * 2012-11-28 2013-03-27 天长市开林化工有限公司 Preparation method of floor coating
CN103102760A (en) * 2012-11-28 2013-05-15 天长市开林化工有限公司 Acrylic acid emulsion floor coating
CN104231777A (en) * 2013-12-28 2014-12-24 张文知 Plane runway coating
EP4053181A4 (en) * 2019-10-29 2024-03-06 Agc Inc Method for producing polytetrafluoroethylene aqueous dispersion

Also Published As

Publication number Publication date
JP5003633B2 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
JP5050442B2 (en) Polytetrafluoroethylene aqueous dispersion
JP5141256B2 (en) Polytetrafluoroethylene aqueous dispersion and product thereof
JP5003633B2 (en) Method for forming fluororesin coating film
EP2902424B1 (en) Tetrafluoroethene polymer dispersions stabilized with aliphatic non-ionic surfactants
WO2016147790A1 (en) Coating composition and coated article
EP1512721B1 (en) Fluorinated resin water dispersion composition and fluorinated water base coating composition
CN103889719B (en) Fluorine-containing laminate and manufacture method thereof
TWI739921B (en) Laminated body and its manufacturing method
JP2007023088A (en) Aqueous dispersion of polytetrafluoroethylene and method for producing the same
EP3655478A1 (en) Fluorinated elastomers cured by actinic radiation and methods thereof
JP2015157474A (en) Coated article and method for forming corrosion resistant coating film
TWI749181B (en) Composition and coating film
JP7307368B2 (en) Polytetrafluoroethylene aqueous dispersion
CN103568420B (en) Covered article
JP2004523626A (en) High build dispersion
US20240034901A1 (en) Coating composition, coating membrane, laminate, and coated article
JP4425008B2 (en) Laminated body containing fluororesin coating and film-forming fluororesin
JP7311825B2 (en) Modified polytetrafluoroethylene aqueous dispersion
JP2005042066A (en) Vinylidene fluoride-based copolymer resin film
JP7315813B2 (en) Coating compositions and coated articles
TW202204532A (en) Powder coating material composition and laminated body
JP2006117912A (en) Modified polytetrafluoroethylene and method for producing the same
JP4175025B2 (en) Fluorine-containing resin layer forming method, fluorine-containing resin layer and article
KR101301321B1 (en) Laminate with fluoropolymer film and film-forming fluoropolymer
JP2020050878A (en) Composition and coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110308

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120413

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120424

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120507

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5003633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150601

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250