JP2010046052A - Method for raising or maintaining moss - Google Patents

Method for raising or maintaining moss Download PDF

Info

Publication number
JP2010046052A
JP2010046052A JP2008243297A JP2008243297A JP2010046052A JP 2010046052 A JP2010046052 A JP 2010046052A JP 2008243297 A JP2008243297 A JP 2008243297A JP 2008243297 A JP2008243297 A JP 2008243297A JP 2010046052 A JP2010046052 A JP 2010046052A
Authority
JP
Japan
Prior art keywords
moss
water
calculation unit
pixel intensity
calculated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008243297A
Other languages
Japanese (ja)
Inventor
Haruhiko Murase
治比古 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
VALORE CORP
Original Assignee
VALORE CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by VALORE CORP filed Critical VALORE CORP
Priority to JP2008243297A priority Critical patent/JP2010046052A/en
Publication of JP2010046052A publication Critical patent/JP2010046052A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/24Structural elements or technologies for improving thermal insulation
    • Y02A30/254Roof garden systems; Roof coverings with high solar reflectance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B80/00Architectural or constructional elements improving the thermal performance of buildings
    • Y02B80/32Roof garden systems

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for raising or maintaining moss capable of reducing stress related to water. <P>SOLUTION: This method for raising or maintaining moss includes supplying water to the moss so as to bring a moisture content of the moss to 1-5 times the dry weight of the moss. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、建造物による人工地盤の緑化資材として有望なコケの育成又は維持管理方法に関する。  The present invention relates to a method for growing or maintaining moss that is promising as a greening material for artificial ground by buildings.

近時、化石燃料の使用増大に伴う地球温暖化が顕在化してきており、また、これに並行して都市部ではヒートアイランド現象が深刻化している。これらの問題の解決手段の1つとして、都市の緑化が提唱されているが、都市部では緑化可能な地盤が限られている。このため、建造物の屋上や壁面といった人工地盤を植物で覆い、都市部に植物を増やすことが検討されている。  Recently, global warming due to increased use of fossil fuels has become apparent, and in parallel, the heat island phenomenon has become serious in urban areas. As one of the solutions to these problems, urban greening has been proposed, but the ground that can be greened is limited in urban areas. For this reason, it has been studied to cover artificial ground such as rooftops and wall surfaces of buildings with plants and increase plants in urban areas.

スナゴケ(Rhacomitrium Canescens)をはじめとするコケは、弾力性が高く、かつ、耐乾燥性に優れていることから、近時、建造物の屋上や壁面の緑化資材として注目されている(特許文献1、特許文献2)。  The moss such as Snagoke (Rhacomitium Canescens) is recently attracting attention as a greening material for rooftops and walls of buildings because of its high elasticity and excellent drying resistance (Patent Document 1). Patent Document 2).

しかし、建造物の屋上や壁面にコケを植栽しても、管理が適切に行なわれなければ、企図した効果を得ることはできないが、コケの維持・管理方法、なかでも適切な給水方法は充分に確立されていない。また、コケの生物学的な特性として、土壌を必要としないことから、既知の灌水手段によることはできない。
特開2007−111031 特開2007−202471
However, even if moss is planted on the rooftop or wall of a building, if the management is not carried out properly, the intended effect cannot be obtained. It is not well established. Moreover, as a biological characteristic of moss, it does not require soil, so it cannot be used by known irrigation means.
JP2007-111031 JP2007-202471A

本発明はかかる問題点に鑑みなされたものであって、水関連ストレスを低減することができるコケの育成又は維持管理方法を提供することをその主たる所期課題としたものである。  This invention is made | formed in view of this problem, Comprising: It provides the moss cultivation or maintenance method which can reduce water-related stress as the main desired subject.

維管束をもたないコケは、根を介して吸水するシダ植物や種子植物とは異なり、その体表面から吸水するため、土壌等の吸水性を有する基質上で育てる必要がなく、吸水性をもたない支持体に固定して育成することができる。このような支持体としては、例えば、樹脂繊維を編んでなるネット、樹脂糸状体を絡ませて包絡面を板状体にしたもの、射出成形等で作られた樹脂製の枠体、又は、それらを組み合わせてなるもの等が挙げられる。そして、このような支持体に固定してコケを育成した場合、給水による重量増加分は全てコケ自体が吸水した水分量に相当する。  Unlike fern and seed plants that absorb water through the roots, moss that does not have vascular bundles absorbs water from the surface of the body, so it is not necessary to grow on a substrate that has water absorption, such as soil. It is possible to grow by fixing to an unsupported support. As such a support, for example, a net formed by knitting resin fibers, a resin thread-like body entangled into a plate-like body, a resin frame made by injection molding or the like, or those The thing etc. which combine these are mentioned. When moss is grown by being fixed to such a support, all the increase in weight due to water supply corresponds to the amount of water absorbed by the moss itself.

コケはその乾燥重量の約8倍程度まで吸水可能であることが知られているが、本発明者は、鋭意検討の結果、コケの含水量がその乾燥重量の約1〜5倍程度(1.0〜5.0g(水分量)/g(コケ乾燥重量))であるとコケの水関連ストレスが最小になることを見出し、本発明を完成させるに至った。  Although it is known that moss can absorb water up to about 8 times its dry weight, the present inventor has intensively studied and the water content of moss is about 1 to 5 times its dry weight (1 From 0.0 to 5.0 g (moisture content) / g (moss dry weight)), the water-related stress of moss was found to be minimized, and the present invention was completed.

すなわち本発明に係るコケ育成又は維持管理方法は、コケの含水量がその乾燥重量の1〜5倍となるように、コケへの給水(潅水)を調節することを特徴とする。  That is, the moss growing or maintenance method according to the present invention is characterized by adjusting water supply (irrigation) to the moss so that the moisture content of the moss is 1 to 5 times its dry weight.

このようなものであれば、水関連ストレスが低減された状態でコケを育成又は維持管理することができるので、生理学的にも審美的にもコケを良好な状態に保つことができる。  If it is such, since the moss can be grown or maintained in a state where water-related stress is reduced, the moss can be maintained in a good state both physiologically and aesthetically.

前記コケとしては、有菌及び無菌のいずれであってもよく、養液中で生育させて配偶体の周囲に再生芽が繁殖するコケ類であれば特に限定されないが、蘚類や苔類のコケ植物が好ましい。  The moss may be either microbial or aseptic, and is not particularly limited as long as it is a moss grown in a nutrient solution and having regenerated buds around the gametophyte. Plants are preferred.

前記蘚類としては、例えば、スナゴケ、ハイスナゴケ、エゾスナゴケ、シモフリゴケ、クロカワキゴケ、キスナゴケ、ヒメスナゴケ、ミヤマスナゴケ、ナガエノスナゴケ、チョウセンスナゴケ、マルバナスナゴケ等のシモフリゴケ属(Rhacomitrium Bird.)、トヤマシノブゴケ、ヒメシノブゴケ、オオシノブゴケ、コバノエゾシノブゴケ、エゾシノブゴケ、アオシノブゴケ、チャボシノブゴケ等のシノブゴケ属(Thuidium B.S.G)、コウヤノマンネングサ、フロウソウ等のコウヤノマンネングサ属(Climacium Web et Mohr)、カモジゴケ、シッポゴケ、オオシッポゴケ、チャシッポゴケ、チシマシッポゴケ、アオシッポゴケ、ナミシッポゴケ、ナガシッポゴケ、ヒメカモジゴケ、コカモジゴケ、タカネカモジゴケ、フジシッポゴケ、カギカモジゴケ、ナスシッポゴケ等のシッポゴケ属(Dicranum Hedw.)、ハイゴケ、オオベニハイゴケ、ヒメハイゴケ、チチブハイゴケ、フジハイゴケ、ハイヒバゴケ、イトハイゴケ、キノウエノコハイゴケ、キノウエノハイゴケ、ミヤマチリメンゴケ、ハイサワラゴケモドキ、タチヒラゴケモドキ、エゾハイゴケ等のハイゴケ属(Hypnum Hedw.)、ヒノキゴケ、ヒロハヒノキゴケ、ハリヒノキゴケ等のヒノキゴケ属(Rhizogonium Brid.)等が挙げられ、前記苔類としては、例えば、ツクシウロコゴケ、ウロコゴケ、オオウロコゴケ、トサカゴケモドキ、マルバソコマメゴケ、アマノウロコゴケ等のウロコゴケ属(Heteroscyphus Schiffn.)、クラマゴケモドキ、カハルクラマゴケモドキ、トサクラマゴケモドキ、ヒメクラマゴケモドキ、ヤマトクラマゴケモドキ、ナガバクラマゴケモドキ、オオクラマゴケモドキ、ニスビキカヤゴケ、ケクラマゴケモドキ、ホソクラマゴケモドキ等のクラマゴケモドキ属(Porella.L)、ヤマトムチゴケ、ヨシナガムチゴケ、フォウリィムチゴケ、エゾムチゴケ、タマゴバムチゴケ、フタバムチゴケ、サケバムチゴケ、ヤマムチゴケ、ムチゴケ、コムチゴケ、マエバラムチゴケ等のムチゴケ属(Bazzania S.Gray)等が挙げられる。  Examples of the moss include Snagoke, Hyosnagoke, Ezosagogoke, Shimofurigoke, Black Kawagogoke, Kisunagoke, Himesagogo, Miyamasunago, Nagaenosago, etc. , Sphagnum moss, Ezo cynoboke, Chaobushi noboke, Chaboshi noboke, etc. (Thuidium B.S.G.), Koyano Mannengsa, Fusoso, etc., Climacium Web et Mogo Shippogoke, Chashippogoke, Chishima Shippogoke, Ao Shippogoke, Namishippogoke, Nagashippogoke, Himekajigogoke, Cockamok Jigoke, Takanejigogoke, Fujisipokegoke, Kasugojigoke, Nasippogoke, etc. Examples of the moss include Rhygogonium Brid., And the like, and the like, such as the moss genus (Rhizogonium Brid.) And the like, such as the moss genus (Hypnum Hedw.), Heteroscyphus S, such as Tsukushi scale moss, scale mushrooms, scale mushrooms, crested moss, marbasomokome moss, amanoko moss Hiffn.), Kuramagomodoki, Kaharkuramagokemodoki, Tosamamagokemodoki, Himekuramagokemodoki, Yamatokuradokemodoki, Nagabamakuradokemodoki, Okuramagokemodoki, Nisbikikadokemodoke, L ), Yamatom chinoke, Yoshina gum chinoke, Fourimuchigoke, Ezomuchigoke, Tamagobumuchigoke, Futabumuchigoke, Salamander pokeweed, Yamamuchigoke, Muchigoke, Kochigoke, Maebara Migoke, and the like.

これらのコケ植物のなかでも、スナゴケ、ハイスナゴケ、エゾスナゴケ等のスナゴケ(Rhacomitrium Canescens)に分類されるものは、建造物表面の緑化に好適である。このコケは、育成するために吸水性の基質も栄養分も不要であり、建造物表面に過剰な負担をかけず、非常に乾燥した状況で生存することができる。  Among these moss plants, those categorized as snags (Rhacomitium Canescens) such as snags, hysnagos, and ezosnagos are suitable for greening the building surface. This moss does not require a water-absorbing substrate or nutrients to grow, and can survive in a very dry condition without overloading the building surface.

そして前記コケがスナゴケである場合は、スナゴケの含水量がその乾燥重量の1.5〜3倍(1.5〜3.0g(水分量)/g(スナゴケ乾燥重量))となるように、スナゴケに給水することが好ましい。  And when the moss is snail, the water content of snag is 1.5 to 3 times its dry weight (1.5 to 3.0 g (water content) / g (snoke dry weight)), It is preferable to supply water to Snago.

このような含水量になるようにコケに給水する装置としては、コケはその体表面から吸水するため、底面(根)側から給水するより、表面(葉)側から給水することが好ましい。また例えば、建造物の壁面にスナゴケ等のコケを植栽した場合、これらのコケは吸水性に富むので、高所から給水するとより高い位置にあるコケが独占的に吸水してしまい、低い位置にあるコケまで水が行き亘らないという問題が生じる。このため、建造物の壁面に植栽したコケに給水する場合は、表面から吹き付けるように給水する給水装置を使用することが好ましい。このため、当該コケ給水装置としては、ミスト状の水を散布する散水器を備えていることが好ましい。このようなコケ給水装置もまた、本発明の1つである。なお、このようなコケ給水装置は、建造物の表面に植栽したコケに給水する場合に用いられるに限らず、全ての育成段階で用いることができ、コケの稚苗を順化装置内で順化(一次順化)する場合や一次順化が終了したコケの群落を屋外で順化(二次順化)する場合にも用いることができる。  As a device for supplying water to the moss so as to have such a water content, since the moss absorbs water from the body surface, it is preferable to supply water from the surface (leaf) side rather than supplying from the bottom surface (root) side. Also, for example, when planting moss such as snails on the wall of a building, these moss are highly water-absorbing. There is a problem that water does not reach the moss in the area. For this reason, when supplying water to the moss planted on the wall surface of the building, it is preferable to use a water supply device that supplies water so as to spray from the surface. For this reason, it is preferable that the moss water supply device includes a sprinkler for spraying mist-like water. Such a moss water supply apparatus is also one aspect of the present invention. Such a moss water supply device is not limited to being used when supplying water to moss planted on the surface of a building, but can be used at all stages of growth. It can also be used when acclimatizing (primary acclimatization) or when moss communities that have undergone primary acclimatization are acclimatized outdoors (secondary acclimatization).

本発明に係るコケ給水装置は更に、建造物の壁面に植栽したスナゴケ等のコケに給水する場合、前記散水器を建造物の表面上を移動させる移動機構を備えていることが好ましい。  The moss water supply apparatus according to the present invention preferably further includes a moving mechanism for moving the watering device on the surface of the building when supplying water to moss such as snails planted on the wall surface of the building.

本発明者はまた、コケにおいて、その含水量と、CWSI(Crop Water Stress Index)及び色とは、高い相関性を有することを見出し、この知見に基づき、以下のようなコケ含水量測定装置を完成した。すなわち、当該コケ含水量測定装置は、コケ表面用温度センサと、大気用温度センサと、前記コケ表面用温度センサが測定したコケ表面温度と、前記大気用温度センサが測定した大気温度との差分を算出する温度差算出部と、前記温度差算出部で算出されたコケ表面温度と大気温度との差分から、コケの含水量を算出する含水量算出部と、を備えていることを特徴とする。更に、可視画像センサと、前記可視画像センサが撮影したコケ表面の可視画像における、赤色帯域幅の画素強度、緑色帯域幅の画素強度、又は、青色帯域幅の画素強度の比率を算出する色比算出部と、を備えていて、前記含水量算出部は、前記温度差算出部で算出されたコケ表面温度と大気温度との差分、及び、前記色比算出部で算出された赤色帯域幅の画素強度、緑色帯域幅の画素強度、又は、青色帯域幅の画素強度の比率から、コケの含水量を算出することが好ましい。当該コケ含水量測定装置もまた、本発明の1つであり、コケへの適切な給水量を算出するときに好適に用いられる。  The present inventor has also found that, in moss, its water content, CWSI (Crop Water Stress Index) and color have a high correlation, and based on this finding, the following moss water content measuring device is provided. completed. That is, the moss moisture content measuring device includes a moss surface temperature sensor, an atmospheric temperature sensor, a moss surface temperature measured by the moss surface temperature sensor, and a difference between the atmospheric temperature measured by the atmospheric temperature sensor. And a water content calculation unit that calculates the water content of moss from the difference between the moss surface temperature and the atmospheric temperature calculated by the temperature difference calculation unit. To do. Further, a color ratio for calculating a ratio of the pixel intensity of the red bandwidth, the pixel intensity of the green bandwidth, or the pixel intensity of the blue bandwidth in the visible image sensor and the visible image of the moss surface captured by the visible image sensor. A water content calculation unit, the difference between the moss surface temperature calculated by the temperature difference calculation unit and the atmospheric temperature, and the red bandwidth calculated by the color ratio calculation unit. It is preferable to calculate the moisture content of moss from the ratio of the pixel intensity, the pixel intensity of the green bandwidth, or the pixel intensity of the blue bandwidth. The moss water content measuring device is also one aspect of the present invention, and is suitably used when calculating an appropriate amount of water supply to moss.

なお、CWSIとは、式(1)で表される指数である。
CWSI=(dT−dTl)/(dTu−dTl)・・・(1)
式(1)中、dTは植物表面温度と大気温度との差分の実測値を、dTuは蒸発しない植物の植物表面温度と大気温度との差分(上限)を、dTlは充分に水を与えられた植物の植物表面温度と大気温度との差分(下限)を、それぞれ表す。
CWSI is an index represented by the formula (1).
CWSI = (dT−dTl) / (dTu−dTl) (1)
In the formula (1), dT is an actual measured value of the difference between the plant surface temperature and the atmospheric temperature, dTu is a difference (upper limit) between the plant surface temperature and the atmospheric temperature of a plant that does not evaporate, and dTl is given sufficient water. The difference (lower limit) between the plant surface temperature and the atmospheric temperature of each plant is shown.

また、赤色帯域幅の画素強度R、緑色帯域幅の画素強度G、及び、青色帯域幅の画素強度Bの、それぞれの比率r、g、bは、式(2)〜(4)で表される。
赤色画素強度Rの比率r=R/(R+G+B)・・・(2)
緑色画素強度Gの比率g=G/(R+G+B)・・・(3)
青色画素強度Bの比率b=B/(R+G+B)・・・(4)
The ratios r, g, and b of the pixel intensity R of the red bandwidth, the pixel intensity G of the green bandwidth, and the pixel intensity B of the blue bandwidth are expressed by equations (2) to (4). The
Ratio of red pixel intensity R r = R / (R + G + B) (2)
Green pixel intensity G ratio g = G / (R + G + B) (3)
Blue pixel intensity B ratio b = B / (R + G + B) (4)

そして、図6(図中、◆はr比を表し、●はg比を表し、▲はb比を表し、×はCWSIを表す。)に示すように、スナゴケの場合、rとgの比率は含水量1.5g/gまで増加して、1.5〜3.0g/gでは略一定で、その後減少し、bはその反対である。一方、CWSIは概して含水量と逆比例して変化し、3.0g/gまで減少し、その後は略一定となる。このように、コケにおいてCWSIと色比率r、g、bとは含水量と高い相関性を示し、CWSI(温度差)と色比率r、g、bとを組み合わせることにより低含水量から高含水量にわたりコケの含水量を算出できることが分かる。  As shown in FIG. 6 (in the figure, ◆ represents an r ratio, ● represents a g ratio, ▲ represents a b ratio, and x represents CWSI). Increases to a water content of 1.5 g / g, is approximately constant from 1.5 to 3.0 g / g and then decreases, b is the opposite. On the other hand, CWSI generally varies in inverse proportion to the water content, decreases to 3.0 g / g, and thereafter becomes substantially constant. Thus, in moss, CWSI and color ratios r, g, and b have a high correlation with water content, and by combining CWSI (temperature difference) and color ratios r, g, and b, low water content is increased to high content. It turns out that the water content of moss can be calculated over the amount of water.

なお、スナゴケの含水量を測定する場合、CWSI(温度差)のみでは、低含水量を算出することはできるが、高含水量を算出することができず、色比率r、g、bのみでは、渇水状態(低含水量)と飽水状態(高含水量)とを区別することができないので、広範囲にわたって含水量を算出するためには、温度差(CWSI)と色比率r、g、bとの両方が必要である。  In addition, when measuring the water content of snail, the low water content can be calculated only by CWSI (temperature difference), but the high water content cannot be calculated, and only the color ratios r, g, and b are used. Since it is not possible to distinguish between a drought state (low water content) and a saturated water state (high water content), in order to calculate the water content over a wide range, the temperature difference (CWSI) and the color ratios r, g, b And both are necessary.

前記コケ表面用温度センサは、非接触でコケ表面温度を測定するためには、赤外線センサであることが好ましい。  The moss surface temperature sensor is preferably an infrared sensor in order to measure the moss surface temperature without contact.

また、前記コケ含水量測定装置と前記給水装置とを組み合わせて、コケ給水システムを構築することができる。このようなコケ給水システムとしては、例えば、コケ表面用温度センサと、大気用温度センサと、前記コケ表面用温度センサが測定したコケ表面温度と、前記大気用温度センサが測定した大気温度との差分を算出する温度差算出部と、前記温度差算出部で算出されたコケ表面温度と大気温度との差分から、コケの含水量を算出する含水量算出部と、ミスト状の水を散布する散水器と、前記散水器を建造物の表面上を移動させる移動機構と、前記含水量算出部で算出されたコケの含水量に基づいて、散水量を算出する散水量算出部と、前記散水量算出部で算出された散水量に基づき制御信号を作成し、前記散水器に出力する散水器制御部と、を備えているものが挙げられる。当該コケ給水システムもまた、本発明の1つである。  Moreover, a moss water supply system can be constructed by combining the moss water content measuring device and the water supply device. As such a moss water supply system, for example, a moss surface temperature sensor, an atmospheric temperature sensor, a moss surface temperature measured by the moss surface temperature sensor, and an atmospheric temperature measured by the atmospheric temperature sensor A temperature difference calculation unit that calculates a difference, a moisture content calculation unit that calculates a moisture content of moss from a difference between the moss surface temperature and the atmospheric temperature calculated by the temperature difference calculation unit, and mist-like water are sprayed A sprinkler, a moving mechanism for moving the sprinkler over the surface of a building, a sprinkling amount calculation unit that calculates a sprinkling amount based on a moss water content calculated by the water content calculation unit, and the sprinkling unit The thing provided with the sprinkler control part which produces a control signal based on the sprinkling amount computed in the water amount calculation part, and outputs it to the sprinkler is mentioned. The moss water supply system is also one aspect of the present invention.

本発明に係るコケ給水システムを用いて、スナゴケへの適切な給水量を算出するためには、渇水状態(1.5〜3.0g/g未満)にある場合の含水量を測定できればよいので、色比率r、g、bは算出できなくてもよい。  In order to calculate an appropriate amount of water supply to Snagoke using the moss water supply system according to the present invention, it is only necessary to measure the water content in a drought state (less than 1.5 to 3.0 g / g). The color ratios r, g, and b may not be calculated.

しかし、スナゴケに対し給水を行なうとともに、低含水量から高含水量にわたる広範囲においてスナゴケの含水量を把握する必要がある場合は、更に、可視画像センサと、前記可視画像センサが撮影したコケ表面の可視画像における、赤色帯域幅の画素強度、緑色帯域幅の画素強度、又は、青色帯域幅の画素強度の比率を算出する色比算出部と、を備えていて、前記含水量算出部は、前記温度差算出部で算出されたコケ表面温度と大気温度との差分、及び、前記色比算出部で算出された赤色帯域幅の画素強度、緑色帯域幅の画素強度、又は、青色帯域幅の画素強度の比率から、コケの含水量を算出することが好ましい。このようなものであれば、スナゴケを給水対象とする場合、広範囲にわたり含水量を算出することができる。  However, when it is necessary to supply water to the moss, and to grasp the water content of the moss in a wide range from a low water content to a high water content, a visible image sensor and a moss surface photographed by the visible image sensor are further provided. A color ratio calculation unit that calculates a ratio of a pixel intensity of a red bandwidth, a pixel intensity of a green bandwidth, or a pixel intensity of a blue bandwidth in a visible image, and the water content calculation unit includes: The difference between the moss surface temperature calculated by the temperature difference calculation unit and the atmospheric temperature, and the pixel intensity of the red bandwidth, the pixel intensity of the green bandwidth, or the pixel of the blue bandwidth calculated by the color ratio calculation unit It is preferable to calculate the moisture content of the moss from the strength ratio. If it is such, when Snagoke is made into water supply object, water content can be calculated over a wide range.

このような構成の本発明によれば、スナゴケをはじめとするコケを生理学的にも審美的にも良好な状態に維持しつつ育成又は維持管理することができる。  According to the present invention having such a configuration, it is possible to grow or maintain moss including snails while maintaining a physiological and aesthetically favorable state.

以下に本発明の一実施形態について図面を参照して説明する。  An embodiment of the present invention will be described below with reference to the drawings.

本実施形態に係るコケ給水システム1は、図1に示すように、コケ表面用温度センサ2と、大気用温度センサ3と、可視画像センサ4と、算出部5と、を備えたコケ含水量測定装置10と、給水装置6と、制御装置7と、を備えたものである。  As shown in FIG. 1, the moss water supply system 1 according to the present embodiment includes a moss surface temperature sensor 2, an atmospheric temperature sensor 3, a visible image sensor 4, and a calculation unit 5. A measuring device 10, a water supply device 6, and a control device 7 are provided.

以下に各部を詳述する。コケ表面用温度センサ2は、例えば、サーモパイルを備えた赤外線センサからなるものであって、コケ表面から放射される赤外線を検出してコケ表面温度を測定するものである。  Each part is described in detail below. The moss surface temperature sensor 2 includes, for example, an infrared sensor provided with a thermopile, and detects infrared rays emitted from the moss surface to measure the moss surface temperature.

大気用温度センサ3は、例えば、サーミスタを備えたものであって、温度変化に応じて電気抵抗値を変えることにより大気温度を測定するものである。  The atmospheric temperature sensor 3 includes, for example, a thermistor, and measures the atmospheric temperature by changing an electric resistance value according to a temperature change.

可視画像センサ4は、例えば、CMOSイメージセンサからなるものであって、コケ表面を撮影した可視画像を取得するものである。  The visible image sensor 4 is composed of, for example, a CMOS image sensor, and acquires a visible image obtained by photographing the moss surface.

算出部5は、CPUやメモリ、A/D変換器、D/A変換器等を有したデジタル乃至アナログ電気回路で構成されたもので、専用のものであってもよいし、一部又は全部にパソコン等の汎用コンピュータを利用するようにしたものであってもよい。また、CPUを用いず、アナログ回路のみで前記各部としての機能を果たすように構成してもよいし、物理的に一体である必要はなく、有線乃至無線によって互いに接続された複数の機器からなるものであってもよい。  The calculation unit 5 is configured by a digital or analog electric circuit having a CPU, a memory, an A / D converter, a D / A converter, and the like, and may be dedicated or partly or entirely. Alternatively, a general-purpose computer such as a personal computer may be used. Further, it may be configured such that the functions of the respective units are achieved by using only an analog circuit without using a CPU, and need not be physically integrated, but includes a plurality of devices connected to each other by wire or wirelessly. It may be a thing.

そして前記メモリに所定のプログラムを格納し、そのプログラムにしたがってCPUやその周辺機器を協働動作させることによって、算出部5が、温度差算出部51、色比算出部52、含水量算出部53としての機能を少なくとも発揮するように構成してある。  Then, by storing a predetermined program in the memory and causing the CPU and its peripheral devices to cooperate with each other according to the program, the calculation unit 5 performs the temperature difference calculation unit 51, the color ratio calculation unit 52, and the water content calculation unit 53. It is comprised so that the function as may be demonstrated at least.

温度差算出部51は、コケ表面用温度センサ2が取得したコケ表面温度と、大気用温度センサ3が取得した大気温度との差分を算出するものである。  The temperature difference calculation unit 51 calculates a difference between the moss surface temperature acquired by the moss surface temperature sensor 2 and the atmospheric temperature acquired by the atmospheric temperature sensor 3.

色比算出部52は、可視画像センサ4が撮影したコケ表面の可視画像における、赤色帯域幅の画素強度R、緑色帯域幅の画素強度G、又は、青色帯域幅の画素強度Bの比率r、g、bを、上記の式(2)〜(4)に従い算出するものである。  The color ratio calculation unit 52 is a ratio r of the pixel intensity R of the red bandwidth, the pixel intensity G of the green bandwidth, or the pixel intensity B of the blue bandwidth in the visible image of the moss surface photographed by the visible image sensor 4. g and b are calculated according to the above formulas (2) to (4).

含水量算出部53は、温度差算出部51で算出されたコケ表面温度と大気温度との差分、及び、色比算出部52で算出された赤色帯域幅の画素強度R、緑色帯域幅の画素強度G、又は、青色帯域幅の画素強度Bの比率r、g、bに、所定の演算処理を施すことによって、コケの含水量を算出するものである。  The water content calculation unit 53 includes the difference between the moss surface temperature calculated by the temperature difference calculation unit 51 and the atmospheric temperature, the pixel intensity R of the red bandwidth calculated by the color ratio calculation unit 52, and the pixel of the green bandwidth. The moisture content of moss is calculated by applying predetermined arithmetic processing to the ratios r, g, and b of the intensity G or the pixel intensity B of the blue bandwidth.

給水装置6は、図2に示すように、建造物Bの壁面に植栽されたコケに対してミスト状の水を散布する散水器61を備えているものであり、散水器61はレール部材62(移動機構に相当)によって建造物の壁面上を上下方向にスライド可能に支持されている。また、散水器61には、散水器61とともに建造物Bの壁面上を上下方向にスライド可能であり、更に横方向にもスライド可能であるようにコケ含水量測定装置10が固定されている。  As shown in FIG. 2, the water supply device 6 includes a sprinkler 61 that sprays mist-like water on the moss planted on the wall surface of the building B. The sprinkler 61 is a rail member. 62 (corresponding to a moving mechanism) is supported so as to be slidable in the vertical direction on the wall surface of the building. In addition, the moss water content measuring device 10 is fixed to the water sprinkler 61 so that it can be slid in the vertical direction on the wall surface of the building B together with the water sprinkler 61 and can also be slid in the horizontal direction.

制御装置7は、CPUやメモリ、A/D変換器、D/A変換器等を有したデジタル乃至アナログ電気回路で構成されたもので、専用のものであってもよいし、一部又は全部にパソコン等の汎用コンピュータを利用するようにしたものであってもよい。また、CPUを用いず、アナログ回路のみで前記各部としての機能を果たすように構成してもよいし、物理的に一体である必要はなく、有線乃至無線によって互いに接続された複数の機器からなるものであってもよい。  The control device 7 is constituted by a digital or analog electric circuit having a CPU, a memory, an A / D converter, a D / A converter, and the like, and may be dedicated or partly or entirely. Alternatively, a general-purpose computer such as a personal computer may be used. Further, it may be configured such that the functions of the respective units are achieved with only an analog circuit without using a CPU, and need not be physically integrated, but includes a plurality of devices connected to each other by wire or wirelessly. It may be a thing.

そして前記メモリに所定のプログラムを格納し、そのプログラムにしたがってCPUやその周辺機器を協働動作させることによって、制御装置7が、散水量算出部71、散水器制御部72としての機能を少なくとも発揮するように構成してある。  Then, by storing a predetermined program in the memory and operating the CPU and its peripheral devices in cooperation with each other according to the program, the control device 7 exhibits at least functions as a sprinkling amount calculation unit 71 and a sprinkler control unit 72. It is comprised so that it may do.

散水量算出部71は、含水量算出部53で算出されたコケの含水量に、所定の演算処理を施すことにより、散水量を算出するものである。具体的には、散水対象であるコケがスナゴケである場合は、スナゴケの含水量がその乾燥重量の1.5〜3倍となるように目標含水量を設定し、当該目標含水量と含水量算出部53で算出された現在の含水量との差分を散水量として算出する。  The sprinkling amount calculation unit 71 calculates a sprinkling amount by performing predetermined arithmetic processing on the moss water content calculated by the water content calculation unit 53. Specifically, when the moss to be sprinkled is snail, the target water content is set so that the water content of snag is 1.5 to 3 times its dry weight, and the target water content and water content are set. The difference from the current water content calculated by the calculation unit 53 is calculated as the watering amount.

散水器制御部72は、散水量算出部71で算出された散水量を取得して、これに基づき作成した制御信号を散水器61に出力するものである。  The sprinkler control unit 72 acquires the sprinkling amount calculated by the sprinkling amount calculation unit 71 and outputs a control signal created based on the sprinkling amount to the sprinkler 61.

次にコケ給水システム1を用いて建造物の壁面に植栽されたスナゴケに給水する方法を図3のフローチャートを参照して説明する。  Next, a method for supplying water to the moss planted on the wall surface of the building using the moss water supply system 1 will be described with reference to the flowchart of FIG.

まず、コケ表面用温度センサ2が、スナゴケの表面温度を測定し、大気用温度センサ3が、大気温度を測定する(ステップS1)。  First, the moss surface temperature sensor 2 measures the surface temperature of the snail, and the atmospheric temperature sensor 3 measures the atmospheric temperature (step S1).

次に、温度差算出部51が、コケ表面用温度センサ2からスナゴケの表面温度データを取得し、大気用温度センサ3から大気温度データを取得し、スナゴケの表面温度と大気温度との差分を算出する(ステップS2)。  Next, the temperature difference calculation unit 51 acquires snag surface data from the moss surface temperature sensor 2, acquires air temperature data from the air temperature sensor 3, and calculates the difference between the surface temperature of the snag and the air temperature. Calculate (step S2).

また、可視画像センサ4が、スナゴケ表面の可視画像を撮影する(ステップS3)。  Further, the visible image sensor 4 captures a visible image of the surface of the snag (step S3).

次に、色比算出部52が、可視画像センサ4が撮影した可視画像データを取得し、赤色帯域幅の画素強度R、緑色帯域幅の画素強度G、又は、青色帯域幅の画素強度Bの比率r、g、bを算出する(ステップS4)。ここで、画素強度の比率は、赤色、緑色及び青色のいずれか1色の帯域幅について算出してもよく、いずれか2色又は3色の帯域幅について算出してもよいが、なかでも、赤色又は緑色と青色との帯域幅の画素強度の変化を組み合わせて観察することがスナゴケの生理状態の変化をより正確に把握するために好ましい。  Next, the color ratio calculation unit 52 acquires the visible image data captured by the visible image sensor 4, and the pixel intensity R of the red bandwidth, the pixel intensity G of the green bandwidth, or the pixel intensity B of the blue bandwidth. The ratios r, g, and b are calculated (step S4). Here, the ratio of pixel intensity may be calculated for the bandwidth of any one of red, green, and blue, and may be calculated for the bandwidth of any two or three colors, Observation in combination with a change in pixel intensity in the red or green and blue bandwidth is preferable in order to more accurately grasp the change in the physiological state of the snail.

これらステップS1〜S4のなかで、散水量を算出するためにはステップS3〜4は必須ではないが、ステップS1〜S2とステップS3〜4との両方の工程を行えば、広範囲にわたり含水量を算出することができる。  Among these steps S1 to S4, steps S3 to S4 are not essential to calculate the watering amount, but if both steps S1 to S2 and steps S3 to S4 are performed, the water content can be increased over a wide range. Can be calculated.

続いて、含水量算出部53が、温度差算出部51からスナゴケの表面温度と大気温度との差分データを取得し、色比算出部52から赤色帯域幅の画素強度R、緑色帯域幅の画素強度G、又は、青色帯域幅の画素強度Bの比率r、g、bデータを取得し、所定の演算処理を行って、スナゴケの含水量を算出する(ステップS5)。  Subsequently, the water content calculation unit 53 acquires the difference data between the surface temperature of the snail and the atmospheric temperature from the temperature difference calculation unit 51, and the pixel intensity R of the red bandwidth and the pixel of the green bandwidth from the color ratio calculation unit 52. The ratio r, g, b data of the intensity G or the pixel intensity B of the blue bandwidth is acquired, and a predetermined calculation process is performed to calculate the water content of snags (step S5).

次に、散水量算出部71が、含水量算出部53で算出されたスナゴケの含水量に基づいて、スナゴケの含水量がその乾燥重量の1.5〜3倍となるように、散水量を算出する(ステップS6)。  Next, the watering amount calculation unit 71 adjusts the watering amount based on the water content of the snorkel calculated by the water content calculation unit 53 so that the water content of the snorkel is 1.5 to 3 times its dry weight. Calculate (step S6).

続いて、散水器制御部72が、散水量算出部71から散水量データを取得して当該散水量を有する制御信号を作成し、散水器61に出力する(ステップS7)。このとき、ステップS6で算出された散水量が0でない場合(含水量が1.5〜3.0g/g未満であった場合)はステップS8に進み、散水量が0である場合(含水量が1.5〜3.0g/g以上であった場合)はステップS9に進む。  Subsequently, the sprinkler control unit 72 acquires the sprinkling amount data from the sprinkling amount calculation unit 71, creates a control signal having the sprinkling amount, and outputs the control signal to the sprinkler 61 (step S7). At this time, when the watering amount calculated in step S6 is not 0 (when the water content is less than 1.5 to 3.0 g / g), the process proceeds to step S8, and when the watering amount is 0 (water content) Is 1.5 to 3.0 g / g or more), the process proceeds to step S9.

制御信号を受信した散水器61が所定量の水をスナゴケに散布する(ステップS8)。  The water sprinkler 61 that has received the control signal sprays a predetermined amount of water on the snag (step S8).

所定箇所でのスナゴケへの散水が終了すると、コケ含水量測定装置10が固定された散水器61が所定距離だけ移動し(ステップS9)、ステップS1からの動作を繰り返す。  When the sprinkling of snag at the predetermined location is completed, the sprinkler 61 to which the moss water content measuring device 10 is fixed moves by a predetermined distance (step S9), and the operation from step S1 is repeated.

したがって、このような構成を有するコケ給水システム1を、スナゴケをはじめとするコケを育成又は維持管理するときに用いれば、コケの含水量を測定しつつ給水を行うことができるので、コケの含水量を最適な状態に保つことができ、水関連ストレスが低減された状態でコケを育成又は維持管理することができる。このため、コケを生理学的にも審美的にも良好な状態に保つことができる。  Therefore, if the moss water supply system 1 having such a configuration is used when growing or maintaining moss including snails, water supply can be performed while measuring the moisture content of the moss. The amount of water can be maintained in an optimal state, and moss can be cultivated or maintained in a state where water-related stress is reduced. For this reason, moss can be maintained in a favorable state both physiologically and aesthetically.

なお、本発明は前記実施形態に限られるものではない。  The present invention is not limited to the above embodiment.

例えば、制御装置7とコケ含水量測定装置10とは別体であってもよいが、制御装置7とコケ含水量測定装置10とが一体となっていてもよい。  For example, the control device 7 and the moss water content measurement device 10 may be separate, but the control device 7 and the moss water content measurement device 10 may be integrated.

また、コケ含水量測定装置10は散水器61に固定されていなくともよく、コケ含水量測定装置10自体に移動機構が備わっていてもよい。  Further, the moss water content measuring device 10 may not be fixed to the water sprinkler 61, and the moss water content measuring device 10 itself may be provided with a moving mechanism.

コケ給水システム1の適用対象はスナゴケに限定されず、種々のコケを対象とすることができる。  The application target of the moss water supply system 1 is not limited to snago, and various moss can be targeted.

その他、本発明は上記の各実施形態に限られず、本発明の趣旨を逸脱しない限り、前述した種々の構成の一部又は全部を適宜組み合わせて構成してもよい。  In addition, the present invention is not limited to the above-described embodiments, and may be configured by appropriately combining some or all of the various configurations described above without departing from the spirit of the present invention.

以下に実施例を掲げて本発明を更に詳細に説明するが、本発明はこれら実施例により何ら限定されるものではない。  The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

可視画像センサ及び植物表面用温度センサとして、堀場製作所社製の非接触2次元放射温度計アイスクエアii−1064(図中101)を用い、大気用温度センサ及びその他の接触温度センサとして、T&D社製の温湿度データロガーTR−71U(図中102)を用い、これらをNKシステム社製の栽培チャンバであるバイオトロンNC350(図中103)内に設置して、図4に示すような試験装置100を組み立てた。  A non-contact two-dimensional radiation thermometer iSquare ii-1064 (101 in the figure) manufactured by HORIBA, Ltd. is used as a visible image sensor and a plant surface temperature sensor, and T & D is used as an atmospheric temperature sensor and other contact temperature sensors. Using a temperature / humidity data logger TR-71U (102 in the figure) manufactured by NK System Co., Ltd., installed in Biotron NC350 (103 in the figure), which is a cultivation chamber manufactured by NK System, and a test apparatus as shown in FIG. 100 was assembled.

栽培チャンバ103内の環境は、平均光強度86.54μmols−1−2(400〜700nm)、大気温度15℃、相対湿度60%に設定し、12時間ごとに照明のオン・オフを切り替えた。The environment in the cultivation chamber 103 was set to an average light intensity of 86.54 μmols −1 m −2 (400 to 700 nm), an atmospheric temperature of 15 ° C., and a relative humidity of 60%, and the lighting was switched on / off every 12 hours. .

試験用サンプルとしては、150×100×20mmのサイズのグラスウール培地上に生育しているスナゴケMを使用し、試験期間の6日間で1日毎に含水量の設定値を5、4、3、1.5、0.5、0.1g/gに変えて試験を行なった。なお、試験用サンプルに養分は与えなかった。  As a test sample, Snagoke M growing on a glass wool medium having a size of 150 × 100 × 20 mm was used, and the water content was set to 5, 4, 3, 1 every day for 6 days during the test period. The test was carried out at 0.5, 0.5 and 0.1 g / g. In addition, no nutrient was given to the test sample.

<スナゴケ表面からの赤外線放射率の測定>
栽培チャンバ103内にバックグラウンドミラー104を設置し、非接触2次元放射温度計101の放射率を1に設定し、温度データを24時間にわたり15分おきに採取した。一方、乾燥重量の5倍の水を供給したスナゴケMを1日栽培チャンバ103内に放置し、2日目にバッググラウンドミラー104を除去し、6日間にわたり15分おきにスナゴケMと比較放射体105から温度データを取得した。試験中は毎日はじめにスナゴケMの水状態をコンピュータで計算して、設定含水量に達するよう水を補給した。得られた温度データから式(5)を使ってスナゴケMの赤外線放射率を測定した。
<Measurement of infrared emissivity from the surface of Snagoke>
A background mirror 104 was installed in the cultivation chamber 103, the emissivity of the non-contact two-dimensional radiation thermometer 101 was set to 1, and temperature data was collected every 15 minutes for 24 hours. On the other hand, the snag M supplied with 5 times the dry weight of water is left in the daily cultivation chamber 103, the background mirror 104 is removed on the second day, and the snag M is compared with the snago M every 15 minutes for 6 days. Temperature data was acquired from 105. During the test, the water state of Snagoke M was first calculated every day using a computer, and water was replenished to reach the set water content. From the obtained temperature data, the infrared emissivity of Snagoke M was measured using Equation (5).

ms={(T e=1,ms−T back)/(T e=1,ref−T back)}eref・・・(5)
式(5)中、emsはスナゴケM表面の赤外線放射率を表し、T e=1,msは黒く塗装したスナゴケM表面の赤外線放射温度を表し、T e=1,refは比較放射体105の赤外線放射温度を表し、T backはバックグラウンドミラー104で測定されたバックグラウンド温度を表し、erefは比較放射体105の赤外線放射率を表す。結果を表1に示した。
e ms = {(T 4 e = 1, ms −T 4 back ) / (T 4 e = 1, ref −T 4 back )} e ref (5)
In equation (5), e ms represents the infrared emissivity of the surface of Snagoke M, T 4 e = 1, ms represents the infrared radiation temperature of the surface of Snagoke M painted black, and T 4 e = 1, ref represents the comparative radiation. Represents the infrared radiation temperature of the body 105, T 4 back represents the background temperature measured by the background mirror 104, and e ref represents the infrared radiation emissivity of the comparative radiator 105. The results are shown in Table 1.

<CWSIの測定>
スナゴケMに乾燥重量の5倍の水を供給し、チャンバ103内で1日順化させた後、6日間にわたり15分おきにスナゴケMと比較放射体105との赤外線画像と可視画像とを同時に撮影した。試験中は毎日まじめにスナゴケMの水状態を測定し、設定含水量に達するよう水を補給した。非接触2次元放射温度計101の放射率は1に設定し、撮像と同時に温度を記録した。非接触2次元放射温度計101の各瞬間視野(IFOV)の温度データを使用して、スナゴケMと比較放射体105の見かけ温度を、式(6)及び式(7)を用いてコンピュータで計算した。
<Measurement of CWSI>
After supplying water of 5 times the dry weight to Snago M and acclimatizing in chamber 103 for 1 day, infrared image and visible image of Snago M and comparative radiator 105 are simultaneously displayed every 15 minutes for 6 days. I took a picture. During the test, the water state of Snagoke M was seriously measured every day, and water was replenished to reach the set water content. The emissivity of the non-contact two-dimensional radiation thermometer 101 was set to 1, and the temperature was recorded simultaneously with imaging. Using the temperature data of each instantaneous field of view (IFOV) of the non-contact two-dimensional radiation thermometer 101, the apparent temperature of the snag M and the comparative radiator 105 is calculated by a computer using Equation (6) and Equation (7). did.

IR,ms=[{T e=1,ms−(1−ems)T back}/ems1/4・・・(6)
IR,ref=[{T e=1,ref−(1−eref)T back}/eref1/4・・・(7)
式(6)中、TIR,msはスナゴケMの見かけ上の赤外線放射表面温度を表し、式(7)中、TIR,refは比較放射体105の見かけ上の赤外線放射表面温度を表す。
T IR, ms = [{T 4 e = 1, ms - (1-e ms) T 4 back} / e ms] 1/4 ··· (6)
T IR, ref = [{T 4 e = 1, ref− (1−e ref ) T 4 back } / e ref ] 1/4 (7)
In formula (6), T IR, ms represents the apparent infrared radiation surface temperature of Snagoke M, and in formula (7), T IR, ref represents the apparent infrared radiation surface temperature of comparative radiator 105.

式(6)で得られた値は式(7)を用いて補正し、式(8)により最終温度を算出した。  The value obtained by equation (6) was corrected using equation (7), and the final temperature was calculated by equation (8).

F,ms=TIR,ms−(TIR,ref−TDC,ref)・・・(8)
式(8)中、TF,msはスナゴケM表面の最終温度(℃)を表し、TDC,refは比較放射体105の接触温度(℃)を表す。
TF, ms = TIR, ms- ( TIR, ref - TDC, ref ) (8)
In Formula (8), T F, ms represents the final temperature (° C.) of the surface of Snago M, and T DC, ref represents the contact temperature (° C.) of the comparative radiator 105.

式(8)で得られたスナゴケM表面の毎日の平均温度と栽培チャンバ103内の毎日の平均大気温度を用いて、上記の式(1)から毎日のCWSIを算出した。結果を図5に示した。なお、図5中、+は栽培チャンバ103内の大気温度を表し、◆はスナゴケMの表面温度を表し、▲はCWSIを表す。  The daily CWSI was calculated from the above equation (1) using the daily average temperature of the surface of Snago M obtained in Equation (8) and the daily average atmospheric temperature in the cultivation chamber 103. The results are shown in FIG. In FIG. 5, + represents the atmospheric temperature in the cultivation chamber 103, ◆ represents the surface temperature of the snail M, and ▲ represents CWSI.

<RGB比の測定>
スナゴケMの可視画像は、毎日の平均r、g、b比を算出するために、イメージJソフトウェア(米国国立衛生研究所製)で処理した。予め、関心領域(ROI)の選択、切り取り、120×96ピクセルへのサイズ変更、ヒストグラム平坦化の画像処理を行なった。ROIはスナゴケM表面の画像領域として選択した。ROIの下位画像は高速処理のため切り取ってサイズを変えて重ね合わせることより作成した。コントラストを改良するために、ヒストグラム平坦化を行ない、画像ピクセル強度を再分配した。RGB比は上記の式(2)〜(4)を用いてコンピュータで計算した。結果を表2及び図6に示した。なお、図6中、◆はr比を表し、●はg比を表し、▲はb比を表し、×はCWSIを表す。
<Measurement of RGB ratio>
Visible images of Snago M were processed with Image J software (National Institutes of Health) to calculate the daily average r, g, b ratio. A region of interest (ROI) was selected, cut out, resized to 120 × 96 pixels, and histogram flattened in advance. ROI was selected as the image area on the surface of Snagoke M. The lower ROI image was created by cutting out and changing the size for superimposing. To improve contrast, histogram flattening was performed to redistribute image pixel intensity. The RGB ratio was calculated by a computer using the above formulas (2) to (4). The results are shown in Table 2 and FIG. In FIG. 6, ♦ represents the r ratio, ● represents the g ratio, ▲ represents the b ratio, and x represents CWSI.

<結果><Result>

Figure 2010046052
Figure 2010046052

表1に示すように、試験用サンプルのスナゴケM表面の赤外線放射率emsは、0.1〜5.0g/gの含水量において0.79〜1.0の範囲であった。そして、試験用サンプルのスナゴケM表面の赤外線放射率は、概して含水量が減少するにつれて上昇したが、含水量1.5〜3.0g/gの範囲では一定であった。As shown in Table 1, the infrared emissivity e ms of Sunagoke M surface of the test sample was in the range of 0.79 to 1.0 in the water content of 0.1 to 5.0 g / g. The infrared emissivity on the surface of Snagoke M of the test sample generally increased as the water content decreased, but was constant in the range of the water content of 1.5 to 3.0 g / g.

図5は試験後半の3日間の結果を示すが、スナゴケMの表面温度とCWSIは含水量に逆比例して上昇した。なお、試験前半の3日間はこれらの値に目立った変化はなかった。CWSIは概してスナゴケMの表面温度とともに上昇した。しかし、明期間と暗期間のスナゴケMの生理的変化のばらつきに起因する偏差が認められた。また、栽培チャンバ103の大気温度は試験中ほとんど均一であった。  FIG. 5 shows the results for 3 days in the latter half of the test. The surface temperature and CWSI of Snago M increased in inverse proportion to the water content. There were no noticeable changes in these values for the first three days of the test. CWSI generally increased with the surface temperature of Snagoke M. However, deviations due to variations in the physiological changes of Snagoke M during the light and dark periods were observed. Also, the atmospheric temperature in the cultivation chamber 103 was almost uniform during the test.

Figure 2010046052
Figure 2010046052

表2より、全ての色比率が3日目に臨界点を示し、r、gは3日目まで増加し、略一定になった後減少し、bはこの逆だった。図6では、含水量1.5g/gまでrとgの比が増えて、1.5〜3.0g/gでは略一定で、その後減少することが示された。bはその反対であった。一方、CWSIは概して含水量と逆比例して変化した。  From Table 2, all color ratios showed a critical point on the third day, r and g increased until the third day, decreased after becoming substantially constant, and b was the opposite. FIG. 6 shows that the ratio of r and g increases up to a water content of 1.5 g / g, is substantially constant at 1.5 to 3.0 g / g, and then decreases. b was the opposite. On the other hand, CWSI generally changed in inverse proportion to the water content.

また、CWSIと含水量の1次回帰からR=0.85の決定係数が算出され、二次多項式としてデータを回帰するとR=0.99が算出された。従って、CWSIと含水量の間には高い相関性があることが分かった。これらのことより、1.5g/gより下、3.0g/gより上の設定含水量ではスナゴケMは水関連ストレスを示したと推測される。In addition, a coefficient of determination of R 2 = 0.85 was calculated from the primary regression of CWSI and water content, and R 2 = 0.99 was calculated when the data was regressed as a quadratic polynomial. Therefore, it was found that there is a high correlation between CWSI and water content. From these, it is surmised that Snagoke M showed water-related stress at a set water content below 1.5 g / g and above 3.0 g / g.

図7には、CWSIの二次多項式関数としてのRGB比を示した。図7中、◆はr比の、y=−0.0045x+0.0278x+0.337、R=0.71を表し、■はg比の、y=−0.0064x+0.047x+0.296、R=0.56を表し、▲はb比の、y=0.0109x−0.0725x+0.367、R=0.62を表わす。従って、色比率とCWSIとは相関性が高いことが分かった。FIG. 7 shows the RGB ratio as a CWSI quadratic polynomial function. In FIG. 7, ◆ represents the r ratio, y = −0.0045x 2 + 0.0278x + 0.337, R 2 = 0.71, and ■ represents the g ratio, y = −0.0064x 2 + 0.047x + 0.296. , R 2 = 0.56, and ▲ represents the b ratio, y = 0.0109x 2 -0.0725x + 0.367, R 2 = 0.62. Therefore, it was found that the color ratio and CWSI have a high correlation.

これらの結果より、CWSIはスナゴケの渇水ストレスの優れた指標であることが分かり、色比率がCWSIと高い相関を示すことより、色比率も植物の水ストレスを検出するのに使えることが示された。また、図6から、CWSIはスナゴケの渇水ストレスを検出するときのみ有効であるが、色比率は、水過剰と渇水の両方の水関連ストレスの指標となりうることが分かった。そして、含水量が1.5〜3.0g(水分量)/g(スナゴケ乾燥重量)の間でスナゴケは生物物理的にリラックスしていると推測され、スナゴケの含水量がその乾燥重量の1.5〜3倍になるように給水することが、生理学的・審美的に好適であることが分かった。  These results show that CWSI is an excellent indicator of snail drought stress, and the color ratio shows a high correlation with CWSI, indicating that the color ratio can also be used to detect water stress in plants. It was. Further, FIG. 6 shows that CWSI is effective only when detecting snail drought stress, but the color ratio can be an indicator of water-related stress of both excess water and drought. And it is speculated that snags are biophysically relaxed when the water content is between 1.5 and 3.0 g (water content) / g (snoke dry weight), and the water content of snago is 1 of its dry weight. It turned out that it is physiologically and aesthetically preferable to supply water so that it may become 5 to 3 times.

本発明の一実施形態におけるコケ給水システムの模式的構成図。  The typical block diagram of the moss water supply system in one Embodiment of this invention. 同実施形態における給水装置の斜視図。  The perspective view of the water supply apparatus in the embodiment. 同実施形態におけるスナゴケへの給水方法を示すフローチャート。  The flowchart which shows the water supply method to Snagoke in the embodiment. 実施例で用いた試験装置の模式的構成図。  The schematic block diagram of the test apparatus used in the Example. 実施例におけるCWSIの変化を示すグラフ。  The graph which shows the change of CWSI in an Example. 実施例におけるRGB比の変化を示すグラフ。  The graph which shows the change of RGB ratio in an Example. 実施例におけるCWSIの二次多項式関数としてのRGB比のグラフ。  The graph of RGB ratio as a CWSI quadratic polynomial function in an Example.

符号の説明Explanation of symbols

1・・・コケ給水システム
10・・・コケ含水量測定装置
2・・・コケ表面用温度センサ
3・・・大気用温度センサ
4・・・可視画像センサ
51・・・温度差算出部
52・・・色比算出部
53・・・含水量算出部
6・・・給水装置
61・・・散水器
62・・・移動機構(レール部材)
71・・・散水量算出部
72・・・散水器制御部
DESCRIPTION OF SYMBOLS 1 ... Moss water supply system 10 ... Moss moisture content measuring device 2 ... Temperature sensor 3 for moss surface ... Temperature sensor 4 for atmosphere ... Visual sensor 51 ... Temperature difference calculation part 52- .... Color ratio calculation unit 53 ... water content calculation unit 6 ... water supply device 61 ... sprinkler 62 ... moving mechanism (rail member)
71 ... sprinkling amount calculation part 72 ... sprinkler control part

Claims (10)

コケの含水量がその乾燥重量の1〜5倍となるように、コケに給水する、コケ育成又は維持管理方法。  A moss growing or maintenance method for supplying water to the moss so that the moisture content of the moss is 1 to 5 times its dry weight. スナゴケの含水量がその乾燥重量の1.5〜3倍となるように、スナゴケに給水する、請求項1記載のコケ育成又は維持管理方法。  The method for cultivating or maintaining moss according to claim 1, wherein water is supplied to the snail so that the water content of the snag is 1.5 to 3 times its dry weight. コケの含水量がその乾燥重量の1〜5倍となるように、コケに給水する、コケ給水装置。  A moss water supply device that supplies water to the moss so that the moisture content of the moss is 1 to 5 times its dry weight. ミスト状の水を散布する散水器を備えている、請求項3記載のコケ給水装置。  The moss water supply apparatus of Claim 3 provided with the water sprinkler which spreads mist-like water. 前記散水器を建造物の表面上を移動させる移動機構を備えている、請求項3又は4記載のコケ給水装置。  The moss watering device according to claim 3 or 4, comprising a moving mechanism for moving the watering device on the surface of a building. コケ表面用温度センサと、
大気用温度センサと、
前記コケ表面用温度センサが測定したコケ表面温度と、前記大気用温度センサが測定した大気温度との差分を算出する温度差算出部と、
前記温度差算出部で算出されたコケ表面温度と大気温度との差分から、コケの含水量を算出する含水量算出部と、を備えている、コケ含水量測定装置。
A moss surface temperature sensor;
An atmospheric temperature sensor;
A temperature difference calculation unit that calculates a difference between the moss surface temperature measured by the moss surface temperature sensor and the atmospheric temperature measured by the atmospheric temperature sensor;
A moss moisture content measuring device, comprising: a moisture content calculator for calculating a moisture content of moss from a difference between the moss surface temperature and the atmospheric temperature calculated by the temperature difference calculator.
可視画像センサと、
前記可視画像センサが撮影したコケ表面の可視画像における、赤色帯域幅の画素強度、緑色帯域幅の画素強度、又は、青色帯域幅の画素強度の比率を算出する色比算出部と、を備えていて、
前記含水量算出部は、前記温度差算出部で算出されたコケ表面温度と大気温度との差分、及び、前記色比算出部で算出された赤色帯域幅の画素強度、緑色帯域幅の画素強度、又は、青色帯域幅の画素強度の比率から、コケの含水量を算出する、請求項6記載のコケ含水量測定装置。
A visible image sensor;
A color ratio calculation unit that calculates a ratio of a pixel intensity of a red bandwidth, a pixel intensity of a green bandwidth, or a pixel intensity of a blue bandwidth in a visible image of a moss surface photographed by the visible image sensor. And
The water content calculation unit includes a difference between the moss surface temperature and the atmospheric temperature calculated by the temperature difference calculation unit, a pixel intensity of the red bandwidth, and a pixel intensity of the green bandwidth calculated by the color ratio calculation unit. The moss water content measuring device according to claim 6, wherein the moss water content is calculated from a pixel intensity ratio of a blue bandwidth.
前記コケ表面用温度センサは、赤外線センサである、請求項6又は7記載のコケ含水量測定装置。  The moss moisture content measuring device according to claim 6 or 7, wherein the moss surface temperature sensor is an infrared sensor. コケ表面用温度センサと、
大気用温度センサと、
前記コケ表面用温度センサが測定したコケ表面温度と、前記大気用温度センサが測定した大気温度との差分を算出する温度差算出部と、
前記温度差算出部で算出されたコケ表面温度と大気温度との差分から、コケの含水量を算出する含水量算出部と、
ミスト状の水を散布する散水器と、
前記散水器を建造物の表面上を移動させる移動機構と、
前記含水量算出部で算出されたコケの含水量に基づいて、散水量を算出する散水量算出部と、
前記散水量算出部で算出された散水量に基づき制御信号を作成し、前記散水器に出力する散水器制御部と、を備えている、コケ給水システム。
A moss surface temperature sensor;
An atmospheric temperature sensor;
A temperature difference calculation unit that calculates a difference between the moss surface temperature measured by the moss surface temperature sensor and the atmospheric temperature measured by the atmospheric temperature sensor;
From the difference between the moss surface temperature calculated by the temperature difference calculator and the atmospheric temperature, a moisture content calculator that calculates the moisture content of the moss,
A sprinkler for spraying mist-like water;
A moving mechanism for moving the watering device over the surface of the building;
Based on the water content of the moss calculated by the water content calculation unit,
A moss water supply system, comprising: a sprinkler control unit that creates a control signal based on the sprinkling amount calculated by the sprinkling amount calculation unit and outputs the control signal to the sprinkler.
可視画像センサと、
前記可視画像センサが撮影したコケ表面の可視画像における、赤色帯域幅の画素強度、緑色帯域幅の画素強度、又は、青色帯域幅の画素強度の比率を算出する色比算出部と、を備えていて、
前記含水量算出部は、前記温度差算出部で算出されたコケ表面温度と大気温度との差分、及び、前記色比算出部で算出された赤色帯域幅の画素強度、緑色帯域幅の画素強度、又は、青色帯域幅の画素強度の比率から、コケの含水量を算出する、請求項9記載のコケ給水システム。
A visible image sensor;
A color ratio calculation unit that calculates a ratio of a pixel intensity of a red bandwidth, a pixel intensity of a green bandwidth, or a pixel intensity of a blue bandwidth in a visible image of a moss surface photographed by the visible image sensor. And
The water content calculation unit includes a difference between the moss surface temperature and the atmospheric temperature calculated by the temperature difference calculation unit, a pixel intensity of the red bandwidth, and a pixel intensity of the green bandwidth calculated by the color ratio calculation unit. The moss water supply system according to claim 9, wherein the moss water content is calculated from a pixel intensity ratio of a blue bandwidth.
JP2008243297A 2008-08-25 2008-08-25 Method for raising or maintaining moss Pending JP2010046052A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008243297A JP2010046052A (en) 2008-08-25 2008-08-25 Method for raising or maintaining moss

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008243297A JP2010046052A (en) 2008-08-25 2008-08-25 Method for raising or maintaining moss

Publications (1)

Publication Number Publication Date
JP2010046052A true JP2010046052A (en) 2010-03-04

Family

ID=42063716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008243297A Pending JP2010046052A (en) 2008-08-25 2008-08-25 Method for raising or maintaining moss

Country Status (1)

Country Link
JP (1) JP2010046052A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060282A1 (en) * 2010-11-02 2012-05-10 シャープ株式会社 Temperature control system for plant factories, plant factory, temperature control method, temperature control program, and computer-readable recording medium
JP2013024642A (en) * 2011-07-19 2013-02-04 Kyoto Univ Noodle moisture distribution measuring apparatus and method
JP2018166505A (en) * 2018-03-19 2018-11-01 鹿島建設株式会社 Irrigation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060282A1 (en) * 2010-11-02 2012-05-10 シャープ株式会社 Temperature control system for plant factories, plant factory, temperature control method, temperature control program, and computer-readable recording medium
JP2013024642A (en) * 2011-07-19 2013-02-04 Kyoto Univ Noodle moisture distribution measuring apparatus and method
JP2018166505A (en) * 2018-03-19 2018-11-01 鹿島建設株式会社 Irrigation system
JP7112861B2 (en) 2018-03-19 2022-08-04 鹿島建設株式会社 Irrigation system

Similar Documents

Publication Publication Date Title
Fan et al. Plastic mulch decreases available energy and evapotranspiration and improves yield and water use efficiency in an irrigated maize cropland
EP3466248B1 (en) Moisture content observation device, moisture content observation method and cultivation device
Fernández et al. Analysis of on-farm irrigation performance in Mediterranean greenhouses
US10768102B2 (en) Moisture content observation device, moisture content observation method, and cultivating device
US20210239608A1 (en) Device for observing water content, method for observing water content, and cultivation device
BR112021004212A2 (en) method for determining plant stress, system for determining plant stress, system for managing irrigation, system for scheduling irrigation, method for scheduling land irrigation, and method for obtaining information about atmospheric conditions related to plant stress
US10874062B2 (en) Moisture content observation device, moisture content observation method, and cultivation device
JP6306384B2 (en) Method for controlling irrigation supply in plant cultivation and controller thereof
KR20120052469A (en) Cultivation management system for crop
JP5984075B1 (en) Water content observation device, water content observation method and cultivation device
JP6745459B2 (en) Water content observation device, water content observation method, and cultivation device
JP2009044999A (en) Plant cultivation controller
JP2010046052A (en) Method for raising or maintaining moss
JP6338184B2 (en) Environmental control system for plant cultivation
Giuliani et al. Potential use of infra-red thermometry for the detection of water stress in apple trees
WO2014118825A1 (en) Cultivation system, cultivation program, and cultivation method
JP7130203B2 (en) plant cultivation system
Kaukoranta et al. Detection of water deficit in greenhouse cucumber by infrared thermography and reference surfaces
Puértolas et al. Can we water crops with our phones? Smartphone technology application to infrared thermography for use in irrigation management
Langton et al. Control and optimization of the greenhouse environment using infra-red sensors
Shahidian et al. Use of crop canopy cover to estimate lettuce Etc in a greenhouse
JP2020177026A (en) Water content observation device, water content observation method and cultivation device
Tőkei et al. Investigation of crop canopy temperature in apple orchard
JP2019193583A (en) Water stress measuring device
Osama et al. Smart Planting