JP2010045891A - Cable duct for radiation generating apparatuses - Google Patents

Cable duct for radiation generating apparatuses Download PDF

Info

Publication number
JP2010045891A
JP2010045891A JP2008206842A JP2008206842A JP2010045891A JP 2010045891 A JP2010045891 A JP 2010045891A JP 2008206842 A JP2008206842 A JP 2008206842A JP 2008206842 A JP2008206842 A JP 2008206842A JP 2010045891 A JP2010045891 A JP 2010045891A
Authority
JP
Japan
Prior art keywords
duct
cable
airtight
internal pipe
cable duct
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008206842A
Other languages
Japanese (ja)
Other versions
JP5135618B2 (en
Inventor
Hidetomo Oguri
英知 小栗
Akira Ueno
彰 上野
Yoshihiro Murano
佳大 村野
Kazuhisa Kashiwazaki
和久 柏崎
Takashi Tsuchida
崇 土田
Masaharu Kawasaki
正治 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kandenko Co Ltd
Japan Atomic Energy Agency
Original Assignee
Kandenko Co Ltd
Japan Atomic Energy Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kandenko Co Ltd, Japan Atomic Energy Agency filed Critical Kandenko Co Ltd
Priority to JP2008206842A priority Critical patent/JP5135618B2/en
Publication of JP2010045891A publication Critical patent/JP2010045891A/en
Application granted granted Critical
Publication of JP5135618B2 publication Critical patent/JP5135618B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Particle Accelerators (AREA)
  • Installation Of Indoor Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cable duct for radiation generating apparatus which can satisfy each of three characteristics, i.e. withstand voltage, high hermeticity and fire protection area, being requested when the cable duct is used in a radiation generating apparatus such as an accelerator. <P>SOLUTION: A cable duct for radiation generating apparatus has a double coaxial structure of tubular internal metal piping 11 and an outer duct 13 of square cross-section, wherein airtight treatment and withstand voltage treatment are performed by means of an airtight treatment board 17 and an airtight gasket at an airtight treatment section A, and fire protection area treatment and withstand voltage treatment are performed by means of a fire protection treatment board 19 and a coating of fire protection material at a fire protection area treatment section B. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、加速器等の放射線発生装置に用いる場合に要求される耐電圧性、高気密性、及び防火区画性の3特性をいずれも満足することができる放射線発生装置用ケーブルダクトに関するものである。   The present invention relates to a cable duct for a radiation generator capable of satisfying all of the three characteristics required for use in a radiation generator such as an accelerator, withstand voltage, high airtightness, and fire-proofing property. .

工場や発電所などの大規模な施設では、施設内にケーブルダクト等の敷設路が縦横に設置され、それら敷設路に多数の電気ケーブルや絶縁電線、コード等が相互に密着混在して敷設される(例えば、特許文献1参照)。   In large-scale facilities such as factories and power plants, laying paths such as cable ducts are installed vertically and horizontally in the facilities, and many electrical cables, insulated wires, cords, etc. are laid in close contact with each other. (For example, see Patent Document 1).

しかしながら、一般的な電気施設で用いられているケーブルダクトでは、耐電圧性、高気密性及び防火区画性を同時に満たすことができない。例えば、一般の電気施設において防火区画を形成することは通常行なわれているが、加速器等で要求される程度の耐電圧まで考慮されることがない。   However, a cable duct used in a general electric facility cannot satisfy voltage resistance, high airtightness, and fireproof compartment at the same time. For example, a fire prevention section is usually formed in a general electric facility, but the withstand voltage required for an accelerator or the like is not taken into consideration.

一方、高気密性が要求される箇所では一般にガスケットが用いられるが、気密ガスケットが利用される分野では、一般的に耐電圧性は考慮されていない。
特開2002−5982号公報
On the other hand, gaskets are generally used in places where high airtightness is required, but voltage resistance is not generally considered in fields where airtight gaskets are used.
JP 2002-5982 A

しかしながら、大強度の陽子を加速するような加速器施設では、加速器トンネルが高線量放射線場となる。このような場所で使用できる消火設備は現存しないため、部屋を貫通するケーブルダクトは防火区画性を有する必要がある。また、トンネル外へ高放射化空気が漏洩するのを防止するために、ケーブルダクトには高気密性を有することが必須となる。さらに、加速器等では、直流電圧DC70kV程度まで印加され得るため、この電圧まで耐電圧が要求される。   However, in an accelerator facility that accelerates high-intensity protons, the accelerator tunnel becomes a high-dose radiation field. Since there is no fire extinguishing equipment that can be used in such a place, the cable duct that penetrates the room needs to have a fireproofing property. Further, in order to prevent the highly activated air from leaking outside the tunnel, it is essential for the cable duct to have high airtightness. Furthermore, since an accelerator or the like can be applied up to a DC voltage of about 70 kV, a withstand voltage is required up to this voltage.

本発明は上記課題に鑑みてなされたものであり、本発明の目的は、加速器等の放射線発生装置に用いる場合に要求される耐電圧性、高気密性、及び防火区画性の3特性をいずれも満足することができる放射線発生装置用ケーブルダクトを提供することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to provide any of the three characteristics of voltage resistance, high airtightness, and fireproofing properties required when used in a radiation generator such as an accelerator. It is another object of the present invention to provide a cable duct for a radiation generator that can satisfy the above requirements.

本発明の放射線発生装置用ケーブルダクトは、遮蔽壁を貫通して少なくとも一方の側が放射化空気発生区域内に接続される放射線発生装置用ケーブルダクトであって、金属製の内部配管と外部ダクトとの二重同軸構造で構成され、前記内部配管内にはケーブルが敷設されると共に当該ケーブルと同じ電圧が印加され、他方、前記外部ダクトには接地電位とされ、かつ、気密処理部において、前記内部配管と前記外部ダクトとの間に、ガラスFRP製の気密処理板を設けると共に、当該気密処理板と前記内部配管との隙間、及び前記気密処理板と前記外部ダクトとの隙間に、それぞれシリコンゴム製のガスケットを設け、かつ、防火区画処理部において、前記内部配管と前記外部ダクトとの間に、ケイ酸カルシウム板に2液型シリコーンゴムをコーティングした防火処理板を設けると共に、当該防火処理板と前記内部配管との隙間に、2液型シリコーンゴムからなる防火材被覆を設けたことを特徴とする。   The cable duct for a radiation generator according to the present invention is a cable duct for a radiation generator that has a shield wall penetrating at least one side thereof and is connected to the activated air generating area. The cable is laid in the internal pipe and the same voltage as the cable is applied to the external duct, and the external duct is set to the ground potential. A glass FRP hermetic treatment plate is provided between the internal pipe and the external duct, and silicon is formed in the gap between the gas tight treatment plate and the internal pipe and the gap between the air tight treatment plate and the external duct. A rubber gasket is provided, and a two-pack type silicone rubber is placed on the calcium silicate plate between the internal pipe and the external duct in the fire prevention compartment processing section. Provided with a fire protection plate having computing, the gap between the inner pipe and the fire protection plates, characterized in that a fire protection material coating of two-liquid type silicone rubber.

印加電圧が70kVの場合に、前記防火材被覆の厚みを18.4mm以上とすることが好ましい。   When the applied voltage is 70 kV, the thickness of the fireproof material coating is preferably 18.4 mm or more.

前記気密処理板をエポキシ系ガラスFRPとすることが好ましい。   It is preferable that the airtight processing plate is an epoxy glass FRP.

前記内部配管を高絶縁性のFRPアングルによって前記外部ダクトに支持することが好ましい。   It is preferable that the internal pipe is supported on the external duct by a highly insulating FRP angle.

本発明によれば、耐電圧性、高気密性、及び防火区画性の3特性をいずれも満足することができる放射線発生装置用ケーブルダクトを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the cable duct for radiation generators which can satisfy all three characteristics, withstand voltage property, high airtightness, and fireproof division property, can be provided.

物質を構成する原子の原子核に、高エネルギーの陽子ビームをぶつけると、原子核が砕けて、中性子、陽子、π中間子、ニュートリノ、ミューオン、k中間子、反陽子等の二次粒子が発生する。このような方法で生成した強力な中性子(neutron)ビームを用いて、核変換法により半減期の長い長寿命核を短寿命化して放射性廃棄物を処理したり、タンパク質や酵素の未知の微細構造を解明して医薬品や食品の開発に利用したりすることができる。   When a high-energy proton beam strikes the atomic nucleus that constitutes a substance, the atomic nucleus breaks, generating secondary particles such as neutrons, protons, pions, neutrinos, muons, k mesons, and antiprotons. Using a powerful neutron beam generated in this way, the nuclear transmutation method shortens long-lived nuclei with a long half-life to process radioactive waste, and unknown fine structures of proteins and enzymes. Can be used to develop pharmaceuticals and foods.

このような目的のために用いられる、大強度、かつ、高エネルギーの陽子ビームを生成するための陽子加速器は、通常、直線形のリニアック部と円形のシンクロトロン部とで構成される。陽子はリニアック部と大小2つのシンクロトロン部で徐々に加速され、最終的には光の速度の99.98%まで加速された陽子ビームとなる。   A proton accelerator for generating a high-intensity and high-energy proton beam used for such a purpose is usually composed of a linear linac part and a circular synchrotron part. Protons are gradually accelerated in the linac part and the two large and small synchrotron parts, and finally become a proton beam accelerated to 99.98% of the speed of light.

図1に、リニアック部の概略断面図を示す。リニアック部10は、イオン源電源室1と加速器トンネル3とがコンクリート壁2によって区画され、加速器トンネル3内が放射化空気発生区域となる。イオン源電源室1内には、イオン源の電源となるイオン源電源ユニット5が配置され、ケーブルダクト6によりイオン源7と接続されている。イオン源7にはリニアック9が接続され、加速された陽子がその内部を通過するようになっている。   FIG. 1 shows a schematic cross-sectional view of the linac portion. In the linac portion 10, the ion source power source chamber 1 and the accelerator tunnel 3 are partitioned by the concrete wall 2, and the inside of the accelerator tunnel 3 becomes a radioactive air generation area. In the ion source power source chamber 1, an ion source power source unit 5 serving as a power source for the ion source is disposed and connected to the ion source 7 by a cable duct 6. A linac 9 is connected to the ion source 7 so that accelerated protons pass through it.

図2に、ケーブルダクト6の拡大図を示す。
ケーブルダクト6の基本構成は、金属製で円筒状の内部配管11と断面正方状の外部ダクト13の二重同軸構造とし、内部配管11内にはケーブルが敷設される。また、外部ダクト13は接地電位とし、内部配管11は敷設するケーブルと同じ高電圧が印加される。
FIG. 2 shows an enlarged view of the cable duct 6.
The basic configuration of the cable duct 6 is a double coaxial structure made of a metal-made cylindrical internal pipe 11 and a square cross-section of an external duct 13, and a cable is laid in the internal pipe 11. The external duct 13 is set to ground potential, and the internal pipe 11 is applied with the same high voltage as the cable to be laid.

ケーブルダクト6は、図面左側でイオン源電源ユニット5に接続される一方、図面右側でイオン源7に接続される。なお、コンクリート壁2より右側は放射化空気発生区域である。内部配管11及び外部ダクト13は、図中の気密処理部Aで気密処理及び耐電圧処理が施され、防火区画処理部Bで防火区画処理及び耐電圧処理が施されている。   The cable duct 6 is connected to the ion source power supply unit 5 on the left side of the drawing, and is connected to the ion source 7 on the right side of the drawing. The right side of the concrete wall 2 is an activated air generation area. The internal pipe 11 and the external duct 13 are subjected to airtight processing and withstand voltage processing in the airtight processing section A in the figure, and are subjected to fireproof section processing and withstand voltage processing in the fireproof section processing section B.

(内部配管11、外部ダクト13)
内部配管11の材質としては、鋼管(電気部材の汎用品)、銅管、アルミニウム管等が挙げられるが、電気特性、表面状態及びコストの観点から、アルミニウム管が好ましい。また、外部ダクト13の材質としては、ステンレス鋼や、アルミニウム、鉄等の金属を用いることができる。更に、内部配管11を外部ダクト13に支持するための部材としては、高絶縁性のFRPアングル14が好適に使用される。このFRPアングル14によって耐電圧性を付与することができる。
(Internal piping 11, external duct 13)
Examples of the material of the internal pipe 11 include steel pipes (general-purpose products for electric members), copper pipes, aluminum pipes, and the like, but aluminum pipes are preferable from the viewpoints of electrical characteristics, surface conditions, and costs. Moreover, as a material of the external duct 13, metals, such as stainless steel, aluminum, and iron, can be used. Furthermore, as a member for supporting the internal pipe 11 on the external duct 13, a highly insulating FRP angle 14 is preferably used. With this FRP angle 14, voltage resistance can be imparted.

次に、気密処理部Aでの気密処理について説明する。 Next, the airtight processing in the airtight processing unit A will be described.

(気密処理板17)
図3に、気密処理部Aに設けられた気密処理板の拡大図を示す。気密処理板17は、内部配管11と外部ダクト13との隙間の気密処理のために設けられる。気密処理板17の材質としては、エポキシ系アラミドFRP、フェノール系ガラスFRP、エポキシ系ガラスFRP、メラミン系ガラスFRP、無機質系ガラスFRP、ポリイミド系ガラスFRP、シリコン系ガラスFRP等が挙げられるが、絶縁抵抗及び機械強度の観点から、エポキシ系ガラスFRPが好ましい。
(Airtight treatment plate 17)
In FIG. 3, the enlarged view of the airtight process board provided in the airtight process part A is shown. The airtight treatment plate 17 is provided for the airtight treatment of the gap between the internal pipe 11 and the external duct 13. Examples of the material of the hermetic treatment plate 17 include epoxy-based aramid FRP, phenol-based glass FRP, epoxy-based glass FRP, melamine-based glass FRP, inorganic-based glass FRP, polyimide-based glass FRP, and silicon-based glass FRP. From the viewpoint of resistance and mechanical strength, epoxy glass FRP is preferred.

また、内部配管11と気密処理板17との隙間には、気密ガスケット22が設けられている。本用途の場合、ガスケットの装着状態を挿入方向の反対側から確認する必要があるが、スポンジ状ガスケットはそれに対応できないこと、及び数値解析ができない理由から、気密ガスケット22として円形用Y型ガスケットを採用した。気密ガスケット22の材質としては、後述する電気特性試験(実験例)の結果、シリコンゴムを用いることが好ましく、クロロプレンゴムは絶縁性能が低いことから好ましくない。   An airtight gasket 22 is provided in the gap between the internal pipe 11 and the airtight treatment plate 17. In the case of this application, it is necessary to check the mounting state of the gasket from the opposite side of the insertion direction. However, for the reason that the sponge-like gasket cannot cope with it and numerical analysis cannot be performed, a circular Y-type gasket is used as the airtight gasket 22. Adopted. As a material of the airtight gasket 22, silicon rubber is preferably used as a result of an electrical property test (experimental example) described later, and chloroprene rubber is not preferable because of its low insulating performance.

更に、外部ダクト13と気密処理板17との隙間にも、気密ガスケット24が設けられる。気密ガスケット24の材質としては、独自の数値解析や気密特性を考慮した結果から、Y型ガスケットが好ましい。気密ガスケット24の材質としても、シリコンゴムを用いることが好ましい。   Further, an airtight gasket 24 is also provided in the gap between the external duct 13 and the airtight treatment plate 17. The material of the airtight gasket 24 is preferably a Y-type gasket from the result of taking into account unique numerical analysis and airtight characteristics. As the material of the airtight gasket 24, it is preferable to use silicon rubber.

(難燃シール材15)
内部配管11内に敷設するケーブルのケーブル間の隙間、及びケーブルと内部配管内との隙間の気密処理のために、内部配管内に難燃シール材15を充填する。難燃シール材15の材質としては、独自の気密特性試験の結果、「ダンシールL」((株)古河テクノマテリアル製)と「ダンシールW」((株)古河テクノマテリアル製)のいずれも本用途の仕様を満たすことが分かったが、ダンシールLは難燃性能も有しているのでより好ましい。
(Flame retardant sealant 15)
The flame retardant sealing material 15 is filled in the internal pipe for airtight processing of the gap between the cables laid in the internal pipe 11 and the gap between the cable and the internal pipe. As a material of the flame retardant sealing material 15, both "Dan Seal L" (Furukawa Techno Material Co., Ltd.) and "Dan Seal W" (Furukawa Techno Material Co., Ltd.) are used for this purpose as a result of an original airtight characteristic test. However, Dunseal L is more preferable because it also has flame retardancy.

なお、本実施形態では、気密処理部Aに、気密処理板17、難燃シール材15をそれぞれ二ヶ所づつ設けたが、必要に応じて、個数を増減させても良い。   In the present embodiment, two airtight processing plates 17 and two flame retardant sealing materials 15 are provided in the airtight processing portion A, but the number may be increased or decreased as necessary.

次に、防火区画処理部Bでの気密処理について説明する。 Next, an airtight process in the fire prevention section processing unit B will be described.

(防火処理板19)
図4に、防火区画処理部Bに設けられた防火処理板の拡大図を示す。防火処理板19は、内部配管11と外部ダクト13との防火区画処理のための仕切りとして設置される。防火処理板19の材質としては、通常、ケイ酸カルシウム板(ケイカル板)や耐火ブロック等が揚げられるが、ケイカル板は建築工事のほかに電気設備工事としての防火区画処理工法の認定を受けているので、ケイカル板がより好ましい。
(Fire prevention plate 19)
In FIG. 4, the enlarged view of the fire prevention board provided in the fire prevention division process part B is shown. The fire prevention plate 19 is installed as a partition for the fire prevention compartment process between the internal pipe 11 and the external duct 13. As a material of the fire-proofing board 19, a calcium silicate board (calcal board), a fireproof block, etc. are usually raised, but the calcium-based board has received the certification of the fire-proof division processing method as an electric equipment construction besides a construction work. Therefore, a calcium plate is more preferable.

しかしながら、通常のケイカル板のみでは、本発明者らの独自の電気特性試験の結果、絶縁性能が低く、本放射線発生装置用途には不適であることが分かった。このため、絶縁性能を付与すべく鋭意研究を行った結果、以下に示す2液混合型区画材をケイカル板にコーティングすることにより、絶縁性、耐電圧性が劇的に向上し、本放射線発生装置用途に好適に用いることができることが判明した。   However, as a result of the inventors' original electrical property test, the ordinary calcium plate alone was found to have low insulation performance and was unsuitable for the radiation generator application. For this reason, as a result of earnest research to provide insulation performance, insulation and voltage resistance are dramatically improved by coating the following two-liquid mixed type partition material on the calcium plate, and this radiation is generated. It was found that it can be suitably used for apparatus applications.

(2液混合型区画材)
基本組成として、ベースポリマー(末端にビニル基を持ったポリジオルガノシロキサン)、架橋剤(ベースポリマー同士をつなぎ、架橋させてゴム弾性体化するためのケイ素原子結合水素原子を持つポリオルガノシロキサン)、及び白金化合物などの硬化触媒(1〜100ppm程度の極微量)を有し、その他、充填剤(補強、増量、熱伝導、導電等)やその他添加剤(接着性付与剤、反応抑制剤、顔料等)を含む2液型シリコーンゴムを用いることができる。上記の必須3成分は、2液型の場合、A液または主剤として、ベースポリマー、硬化触媒、B液または硬化剤として、架橋剤、(ベースポリマー)のように組み合わせることができる。具体的に、かかる2液型混合区画材としては、「シリコーン・シールSE1811」(東レ・ダウコーニング製)が、気密・防水性を有し、優れた耐火性を備えている耐火充填材であるであるため、最適である。なお、防火区画板(ケイカル板)への2液混合型区画材のコーティング厚さは、施工性を考慮して2mmとすることが好ましい。
(Two-component mixed partition material)
As basic composition, base polymer (polydiorganosiloxane having vinyl group at the terminal), cross-linking agent (polyorganosiloxane having silicon-bonded hydrogen atoms to connect base polymers together and cross-link to make rubber elastic body), And a curing catalyst such as a platinum compound (1 to 100 ppm), other fillers (reinforcement, weight increase, heat conduction, conductivity, etc.) and other additives (adhesion imparting agent, reaction inhibitor, pigment) Etc.) can be used. In the case of the two-component type, the above essential three components can be combined as a base polymer, a curing catalyst, a B liquid or a curing agent as a crosslinking agent, (base polymer) as a liquid A or a main agent. Specifically, “Silicon seal SE1811” (manufactured by Dow Corning Toray) is a fireproof filler that is airtight and waterproof and has excellent fire resistance. Is optimal. In addition, it is preferable that the coating thickness of the two-liquid mixed type partition material on the fireproof partition plate (calcal plate) is 2 mm in consideration of workability.

(防火材被覆21)
防火区画処理部Bに耐電圧性を付加するために、2液混合型区画材をコーティングしたケイカル板からなる防火処理板19を用いると共に、更に、内部配管11に上記の2液混合型区画材を巻き付け、防火材被覆21を形成する。具体的には、まず、円柱型の型枠を作り、内部配管11にこの型枠を取り付けた後、型枠に液状の2液混合型区画材を流し込む。しばらく放置すると、液状の区画材が固形化する。固形化後、型枠を外すと、内部配管11に防火区画材が巻かれたものが形成される。巻き付け厚は、後述する実験例1の結果による2液混合型防火区画材の1mm厚当たりの耐電圧性能9.5kV/mmに従って決定することができる。
(Fireproof material coating 21)
In order to add voltage resistance to the fire prevention compartment processing section B, a fire prevention treatment plate 19 made of a calcium plate coated with a two-component mixed compartment material is used, and the above-mentioned two-liquid mixture type compartment material is further provided in the internal pipe 11. To form a fire protection material coating 21. Specifically, first, a cylindrical mold is made, this mold is attached to the internal pipe 11, and then a liquid two-component mixed partition material is poured into the mold. If left for a while, the liquid partition material solidifies. When the formwork is removed after solidification, the internal pipe 11 is wound with a fireproof compartment material. The winding thickness can be determined according to the withstand voltage performance per 1 mm thickness of the two-component mixed fireproof compartment material according to the result of Experimental Example 1 described later.

すなわち、配管11への印加電圧をV[kV]とすると、最小厚さt[mm]は、次式より求めることができる。
t=(V/V)×α
但し、V:配管への印加電圧[kV]
:2液混合型防火区画材の耐電圧[kV/mm]
α:安全率
今回、V=70[kV]、V=9.5[kV/mm]、α=2.5とし、最小厚さt=18.4mmを得た。従って、実際には厚さを20mm程度とすることができる。
That is, when the applied voltage to the pipe 11 is V 1 [kV], the minimum thickness t [mm] can be obtained from the following equation.
t = (V 1 / V 2 ) × α
V 1 : Applied voltage to piping [kV]
V 2 : Dielectric strength [kV / mm] of the two-component mixed fireproof compartment material
alpha: safety factor time, V 1 = 70 [kV] , V 2 = 9.5 [kV / mm], and alpha = 2.5, to obtain a minimum thickness t = 18.4 mm. Therefore, the thickness can actually be about 20 mm.

(ケーブル端部気密材)
内部配管11内に敷設するケーブル端部の芯線と被覆間の気密処理のために、ケーブル端部にシール材を塗布することが好ましい。シール材としては、2液混合型防火区画材を用いることができる。
(Cable end airtight material)
It is preferable to apply a sealing material to the cable end portion for airtight treatment between the core wire of the cable end portion laid in the internal pipe 11 and the covering. As the sealing material, a two-component mixed fireproof compartment material can be used.

(本実施態様の効果)
以上説明したように、ケーブルダクト6を用いることにより、
(1)内部配管への印加電圧70kVに対しても耐電圧性を有し、
(2)気密処理部について、JIS A1516に準拠した気密試験において、0.5等級以上、具体的には2000Paの気圧条件下で1.5m/h以下の高気密性を有し、
(3)国土交通大臣の認定工法である25mmケイカル板壁工法(PS060WL−0236)の準用と、認定工法材料の使用により、防火区画処理部において耐火性能(防火区画性)を有するものとすることができる。
(Effect of this embodiment)
As explained above, by using the cable duct 6,
(1) Withstand voltage against an applied voltage of 70 kV to the internal piping,
(2) About the airtight processing part, in the airtight test based on JIS A1516, it has a high airtightness of 0.5 m 3 / h or less under a pressure of 0.5 grade or more, specifically 2000 Pa,
(3) It shall have fireproof performance (fireproofing property) in the fired compartment processing part by applying the 25mm calcium plate wall construction method (PS060WL-0236), which is the authorized construction method of the Minister of Land, Infrastructure, Transport and Tourism, and the use of the certified construction method material. it can.

実験例1Experimental example 1

(絶縁性能試験)
クロロプレンゴム(タケチ工業ゴム)、シリコンゴム(タケチ工業ゴム)、2液混合型防火区画材(「シリコーンシールSE1811」 東レ ダウコーニング シリコーン製)について、絶縁破壊試験を行った。試験方法は、「JIS C2110−1994」に準じて実施し、試験の種類は絶縁破壊試験(短時間破壊試験)によった。測定は、JISC2320に規定される1種2号絶縁油(油温22℃)を用い、図5に示すように、10×10cmの寸法の試料31の上部に直径25mmの円筒形電極(正極)33を載せる一方、試料31の下に直径75mmの円筒形電極(負極)35を配置し、絶縁油37中に試料31を沈めて、高電圧発生装置39により電圧を発生させて行った。なお、電圧上昇速度は2kV/20秒とした。結果を次表に示す。
(Insulation performance test)
Dielectric breakdown tests were conducted on chloroprene rubber (Takechi Kogyo Rubber), silicon rubber (Takechi Kogyo Rubber), and two-component mixed fireproof compartment material (“Silicone Seal SE1811” manufactured by Toray Dow Corning Silicone). The test method was carried out according to “JIS C2110-1994”, and the type of the test was an insulation breakdown test (short-time breakdown test). The measurement was performed using Type 1 No. 2 insulating oil (oil temperature 22 ° C.) defined in JISC2320, and as shown in FIG. 5, a cylindrical electrode (positive electrode) having a diameter of 25 mm on the top of a sample 31 having a size of 10 × 10 cm. On the other hand, a cylindrical electrode (negative electrode) 35 having a diameter of 75 mm was placed under the sample 31, the sample 31 was submerged in the insulating oil 37, and a voltage was generated by the high voltage generator 39. The voltage increase rate was 2 kV / 20 seconds. The results are shown in the following table.

Figure 2010045891
Figure 2010045891

上記の結果より、耐電圧の平均値はシリコンゴムで10.5kV/mm、2液混合型防火区画材で9.5kV/mmであったが、クロロプレンゴムでは絶縁性能が低すぎて測定不可能であった。   From the above results, the average value of the withstand voltage was 10.5 kV / mm for silicon rubber and 9.5 kV / mm for the two-component mixed fireproof compartment, but the insulation performance was too low for chloroprene rubber to measure. Met.

実験例2Experimental example 2

(電気抵抗試験)
クロロプレンゴム(タケチ工業ゴム)、シリコンゴム(タケチ工業ゴム)、2液混合型防火区画材(「シリコーンシールSE1811」 東レ ダウコーニング シリコーン製)について、電気抵抗試験を行った。試験方法は、JIS K6249「未硬化及び硬化シリコンゴムの試験方法」及びK6271「加硫ゴム及び熱可塑性ゴム−体積抵抗率及び表面抵抗率の求め方」に準じて実施した。使用機器として、デジタル超高抵抗・微小電流計(ADVANTEST社 R8340)及び抵抗測定試料箱(ADVANTEST社 R12702A)を使用し、前処理として湿度15%気中に16時間静置した後、気温22℃、湿度64%、測定電圧1000[V]、測定時圧力3[kgf]の条件で測定した。結果を次表に示す。
(Electrical resistance test)
An electrical resistance test was performed on chloroprene rubber (Takechi Kogyo Rubber), silicon rubber (Takechi Kogyo Rubber), and two-component mixed fireproof compartment material (“Silicone Seal SE1811” manufactured by Toray Dow Corning Silicone). The test method was carried out according to JIS K6249 “Test method for uncured and cured silicone rubber” and K6271 “Vulcanized rubber and thermoplastic rubber—How to obtain volume resistivity and surface resistivity”. A digital ultra-high resistance / microammeter (ADVANTEST R8340) and a resistance measurement sample box (ADVANTEST R12702A) were used as equipment used, and after standing for 16 hours in a 15% humidity atmosphere as a pretreatment, the temperature was 22 ° C. , Humidity 64%, measurement voltage 1000 [V], measurement pressure 3 [kgf]. The results are shown in the following table.

Figure 2010045891
Figure 2010045891

上記の結果より、シリコンゴム、2液混合型防火区画材の体積抵抗はそれぞれ、3.6×1016、1.9×1014Ωcmと十分な値が得られたが、クロロプレンゴムのそれは3.9×107Ωcmと十分な値を得ることができなかった。 From the above results, the volume resistance of the silicon rubber and the two-component mixed type fireproof compartment material was obtained as 3.6 × 10 16 and 1.9 × 10 14 Ωcm 3 , respectively. A sufficient value of 3.9 × 10 7 Ωcm 3 could not be obtained.

実施例1及び2の結果より、シリコンゴム及び2液混合型防火区画材が絶縁性能に優れており、好ましいことが判明した。   From the results of Examples 1 and 2, it was found that the silicon rubber and the two-component mixed fireproof partition material are excellent in insulation performance and are preferable.

陽子加速器のリニアック部を示す概略断面図である。It is a schematic sectional drawing which shows the linac part of a proton accelerator. 本実施形態に係るケーブルダクトを示す拡大図である。It is an enlarged view which shows the cable duct which concerns on this embodiment. 図2の気密処理部Aに設けられた気密処理板を示す拡大図である。It is an enlarged view which shows the airtight process board provided in the airtight process part A of FIG. 図2の防火区画処理部Bに設けられた防火処理板を示す拡大図である。It is an enlarged view which shows the fire prevention board provided in the fire prevention division process part B of FIG. 実験例1で行った絶縁破壊試験の概念図である。6 is a conceptual diagram of a dielectric breakdown test performed in Experimental Example 1. FIG.

符号の説明Explanation of symbols

1 イオン源電源室
2 コンクリート壁
3 加速器トンネル
5 イオン源電源ユニット
6 ケーブルダクト
7 イオン源
9 リニアック
10 リニアック部
11 内部配管
13 外部ダクト
14 FRPアングル
15 難燃シール材
17 気密処理板
19 防火処理板
21 防火材被覆
22 気密ガスケット
24 気密ガスケット
DESCRIPTION OF SYMBOLS 1 Ion source power supply room 2 Concrete wall 3 Accelerator tunnel 5 Ion source power supply unit 6 Cable duct 7 Ion source 9 Linac 10 Linac part 11 Internal piping 13 External duct 14 FRP angle 15 Flame-resistant sealing material 17 Airtight treatment board 19 Fire prevention board 21 Fireproof coating 22 Airtight gasket 24 Airtight gasket

Claims (4)

遮蔽壁を貫通して少なくとも一方の側が放射化空気発生区域内に接続される放射線発生装置用ケーブルダクトであって、金属製の内部配管と外部ダクトとの二重同軸構造で構成され、前記内部配管内にはケーブルが敷設されると共に当該ケーブルと同じ電圧が印加され、他方、前記外部ダクトには接地電位とされ、かつ、気密処理部において、前記内部配管と前記外部ダクトとの間に、ガラスFRP製の気密処理板を設けると共に、当該気密処理板と前記内部配管との隙間、及び前記気密処理板と前記外部ダクトとの隙間に、それぞれシリコンゴム製のガスケットを設け、かつ、防火区画処理部において、前記内部配管と前記外部ダクトとの間に、ケイ酸カルシウム板に2液型シリコーンゴムをコーティングした防火処理板を設けると共に、当該防火処理板と前記内部配管との隙間に、2液型シリコーンゴムからなる防火材被覆を設けたことを特徴とする放射線発生装置用ケーブルダクト。   A cable duct for a radiation generator, having at least one side passing through a shielding wall and connected to the inside of the activated air generation area, comprising a double coaxial structure of a metal internal pipe and an external duct, A cable is laid in the pipe and the same voltage as the cable is applied.On the other hand, the external duct is set to the ground potential, and in the airtight processing section, between the internal pipe and the external duct, A glass FRP hermetic treatment plate is provided, and a gasket made of silicon rubber is provided in the gap between the hermetic treatment plate and the internal pipe, and the gap between the hermetic treatment plate and the external duct, and a fire-proof compartment In the processing section, between the internal pipe and the external duct, a fire proof processing plate in which a two-pack type silicone rubber is coated on a calcium silicate plate is provided, The gap between the inner pipe and-proof fire processing board, the radiation generating device for cable ducts, characterized in that a fire protection material coating of two-liquid type silicone rubber. 印加電圧が70kVの場合に、前記防火材被覆の厚みを18.4mm以上とすることを特徴とする請求項1記載の放射線発生装置用ケーブルダクト。   The cable duct for a radiation generator according to claim 1, wherein when the applied voltage is 70 kV, the thickness of the fireproof material coating is 18.4 mm or more. 前記気密処理板が、エポキシ系ガラスFRPであることを特徴とする請求項1記載の放射線発生装置用ケーブルダクト。   2. The cable duct for a radiation generator according to claim 1, wherein the airtight processing plate is an epoxy glass FRP. 前記内部配管を高絶縁性のFRPアングルによって前記外部ダクトに支持したことを特徴とする請求項1記載の放射線発生装置用ケーブルダクト。   2. The cable duct for a radiation generator according to claim 1, wherein the internal pipe is supported on the external duct by a highly insulating FRP angle.
JP2008206842A 2008-08-11 2008-08-11 Cable duct for radiation generator Active JP5135618B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008206842A JP5135618B2 (en) 2008-08-11 2008-08-11 Cable duct for radiation generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008206842A JP5135618B2 (en) 2008-08-11 2008-08-11 Cable duct for radiation generator

Publications (2)

Publication Number Publication Date
JP2010045891A true JP2010045891A (en) 2010-02-25
JP5135618B2 JP5135618B2 (en) 2013-02-06

Family

ID=42016781

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008206842A Active JP5135618B2 (en) 2008-08-11 2008-08-11 Cable duct for radiation generator

Country Status (1)

Country Link
JP (1) JP5135618B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217811A (en) * 2012-04-10 2013-10-24 Toshiba Corp Internal state observation method and internal state observation device
KR20180028754A (en) * 2016-09-09 2018-03-19 기초과학연구원 Cable duct for high level radioactive isotope production device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825513U (en) * 1981-08-10 1983-02-18 日立電線株式会社 cable line
JPS62244210A (en) * 1986-04-17 1987-10-24 株式会社日立製作所 Structure of wall penetration of wire
JPH0644320U (en) * 1992-11-04 1994-06-10 株式会社岡部マイカ工業所 Fireproof bus duct
JP2001183494A (en) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp Radiation shielding wall
JP2003235148A (en) * 2002-02-01 2003-08-22 Sumitomo 3M Ltd Airtight housing vessel for joint of communication cable, etc., and gasket
JP2007209102A (en) * 2006-02-01 2007-08-16 Toshiba Corp Electric penetration assembly, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5825513U (en) * 1981-08-10 1983-02-18 日立電線株式会社 cable line
JPS62244210A (en) * 1986-04-17 1987-10-24 株式会社日立製作所 Structure of wall penetration of wire
JPH0644320U (en) * 1992-11-04 1994-06-10 株式会社岡部マイカ工業所 Fireproof bus duct
JP2001183494A (en) * 1999-12-24 2001-07-06 Mitsubishi Electric Corp Radiation shielding wall
JP2003235148A (en) * 2002-02-01 2003-08-22 Sumitomo 3M Ltd Airtight housing vessel for joint of communication cable, etc., and gasket
JP2007209102A (en) * 2006-02-01 2007-08-16 Toshiba Corp Electric penetration assembly, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013217811A (en) * 2012-04-10 2013-10-24 Toshiba Corp Internal state observation method and internal state observation device
KR20180028754A (en) * 2016-09-09 2018-03-19 기초과학연구원 Cable duct for high level radioactive isotope production device
KR101985780B1 (en) * 2016-09-09 2019-06-04 기초과학연구원 Cable duct for high level radioactive isotope production device

Also Published As

Publication number Publication date
JP5135618B2 (en) 2013-02-06

Similar Documents

Publication Publication Date Title
US20160329129A1 (en) Insulated wire construction with liner
Wang et al. Failure of submarine cables used in high‐voltage power transmission: Characteristics, mechanisms, key issues and prospects
Haque et al. Electrical properties of different polymeric materials and their applications: The influence of electric field
CN105277822B (en) A kind of artificial accelerated aging test method for GIS disc insulators
JP5135618B2 (en) Cable duct for radiation generator
Gao et al. Surface potential decay of negative corona charged epoxy/Al 2 O 3 nanocomposites degraded by 7.5-MeV electron beam
RU2625166C1 (en) Sealed cable feed-through module
CN105489326A (en) Method for improving vacuum surface flashover performance of solid insulation medium
Xie et al. Effect of liquid diffusion and segregation on GFRP insulation performance in typical hygrothermal environment
Wang et al. Water diffusivity transition in fumed silica-filled polydimethylsiloxane composite: Correlation with the interfacial free volumes characterized by positron annihilation lifetime spectroscopy
Jiang et al. Research on corona discharge suppression of high-voltage direct-current transmission lines based on dielectric-film-covered conductor
CN106710710A (en) Photoelectric hybrid cable and preparation method thereof
CN201804596U (en) Cable for gas-cooled reactor
Ohki et al. Reasons for Resistivity Increase in FR‐EPDM Insulation of Cables Aged in Nuclear Power Plants
CN208706271U (en) A kind of high fire-retardance insulated wire cable
CN107103943A (en) Unleaded polyvinyl chloride insulation environment-friendly cable
Rajainmaki et al. The electrical insulation of large superconducting magnets
Keizer et al. Radiation-resistent magnets
CN206947005U (en) Unleaded protective layer novel cable
Banerjee et al. Electrical discharge resistance of polymeric nanocomposites
CN110570962A (en) Local shielding structure of return bend of shielding performance adjustable
Zhang et al. Effects of external heat radiation on combustion and toxic gas release of flame retardant cables
CN103941165B (en) GIS device experimental rig and method
EP1751776A2 (en) Fire protection of openings in fire rated barriers around metallic penetrants and cables using only external rigid seals
CN104844947A (en) Irradiation-resistant halogen-free flame-retardant ethylene-propylene cable material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120925

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121024

R150 Certificate of patent or registration of utility model

Ref document number: 5135618

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250