JP2010044611A - Analysis method of flow state of fluid in composite stirring tank - Google Patents

Analysis method of flow state of fluid in composite stirring tank Download PDF

Info

Publication number
JP2010044611A
JP2010044611A JP2008208488A JP2008208488A JP2010044611A JP 2010044611 A JP2010044611 A JP 2010044611A JP 2008208488 A JP2008208488 A JP 2008208488A JP 2008208488 A JP2008208488 A JP 2008208488A JP 2010044611 A JP2010044611 A JP 2010044611A
Authority
JP
Japan
Prior art keywords
analysis
fluid
tank
stirrer
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008208488A
Other languages
Japanese (ja)
Other versions
JP5212630B2 (en
Inventor
Takeshi Narishima
毅 成島
Yasumasa Matsumoto
泰正 松本
Masayuki Sugawa
雅之 須川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2008208488A priority Critical patent/JP5212630B2/en
Publication of JP2010044611A publication Critical patent/JP2010044611A/en
Application granted granted Critical
Publication of JP5212630B2 publication Critical patent/JP5212630B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for precisely executing a fluid analysis, in a short period of time, of a composite stirring tank having a high speed rotation stirrer and a low speed rotation stirrer. <P>SOLUTION: An analysis method of a flow state of fluid in a composite stirring tank 1 having a high speed rotation stirrer (homo mixer 6) and a low speed rotation stirrer (rotation paddle 7) firstly applies steady analysis to a flow state caused by the driving of the high speed rotation stirrer 6, and secondly, by using the analysis result as boundary conditions, applies steady analysis to a flow state caused by the driving of the low speed rotation stirrer 7, and then, analyzes a flow state when driving the stirrers 6, 7 at the same time. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、高速回転型撹拌機と低速回転型撹拌機とを備えた複合型撹拌槽における流体の流動状態の解析方法に関する。   The present invention relates to a method for analyzing the flow state of a fluid in a combined stirring tank provided with a high-speed rotating stirrer and a low-speed rotating stirrer.

撹拌槽の流体解析では、通常、撹拌翼等の回転物体の周りの領域(回転領域)と静止領域とを分けて定義し、回転領域では計算メッシュを回転物体とともに移動させるという方法がとられる。その際、領域間のメッシュを再作成したり、あるいは領域間にインターフェース面を定義したりすることで、領域間で流速や圧力といった物理量がやり取りされる。(非特許文献1、3)   In the fluid analysis of the agitation tank, usually, a region around the rotating object such as a stirring blade (rotating region) and a stationary region are defined separately, and the calculation mesh is moved together with the rotating object in the rotating region. At that time, physical quantities such as flow velocity and pressure are exchanged between the regions by re-creating a mesh between the regions or defining an interface surface between the regions. (Non-Patent Documents 1 and 3)

この方法は回転物体を含む流動場の計算方法として厳密性が高いが、メッシュを経時的に移動させるために必然的に非定常解析となる。非定常解析では小さな時間ステップに分けて流体解析を行う。この時間ステップは、回転物体の回転速度に対応する時間スケールに比べて十分小さく取る必要があるため、アヂホモミクサーのように高速回転型撹拌機と低速回転型撹拌機を備える複合型撹拌槽では高速回転型撹拌機に対応して非常に小さい時間ステップを取ることが必要となる。一方、低速回転型撹拌機が存在するため、実現象として流れが安定するまでに時間を要する。そのため、複合型撹拌槽の非定常解析には、非常に小さい時間ステップで長い時間を解析しなくてはならないという問題がある。   This method is highly accurate as a method for calculating a flow field including a rotating object, but is inevitably an unsteady analysis in order to move the mesh over time. In transient analysis, fluid analysis is performed in small time steps. Since this time step needs to be sufficiently small compared to the time scale corresponding to the rotation speed of the rotating object, a high-speed rotation is required in a combined stirring tank equipped with a high-speed rotating stirrer and a low-speed rotating stirrer, such as the Ad homomixer. It is necessary to take very small time steps corresponding to the mold agitator. On the other hand, since a low-speed rotating stirrer exists, it takes time for the flow to stabilize as an actual phenomenon. Therefore, the unsteady analysis of the composite stirring tank has a problem that a long time must be analyzed with very small time steps.

非定常解析での流体解析の時間短縮のため、特許文献1では連続方程式とナビエ-ストークス方程式を同時に連立することで時間ステップを大きく取れるようにして計算時間の短縮を図っている。しかしながら、この方法でも時間ステップを回転物体固有の時間スケールより短くすることはできず、複合型撹拌槽の流体解析には不十分である。   In order to reduce the time required for fluid analysis in unsteady analysis, Patent Document 1 attempts to reduce the calculation time by simultaneously taking a continuous equation and a Navier-Stokes equation so that a large time step can be taken. However, even with this method, the time step cannot be made shorter than the time scale inherent to the rotating object, which is insufficient for fluid analysis of the composite stirred tank.

また、特許文献2では時間積分に陽解法を用いることで計算時間の短縮を図っている。陽解法は通常用いられる陰解法に比べ、各時間ステップに要する計算時間は短くなるが、陽解法特有の非物理的な数値振動が現れないように時間ステップを非常に小さくすることが要求される。特許文献2では数値振動を抑えるために減衰項を導入しているが、この手法が、本来得られるべき解に影響しないことを保証するのは容易でない。   In Patent Document 2, calculation time is shortened by using an explicit method for time integration. The explicit method requires less calculation time for each time step than the commonly used implicit method, but it is required to make the time step very small so that non-physical numerical vibration specific to the explicit method does not appear. Although Patent Document 2 introduces a damping term to suppress numerical vibration, it is not easy to ensure that this method does not affect the solution that should be obtained originally.

他にも非定常解析での流体解析の高速化の工夫はあるが、複合型撹拌槽の解析では高速回転型撹拌機に対応して時間ステップの大きさの上限が定まってしまうため、非定常解析を採用する限り計算時間の顕著な改善は望めない。   There are other ways to increase the speed of fluid analysis in unsteady analysis, but the upper limit of the time step size is determined in the combined stirring tank analysis in correspondence with the high-speed rotating stirrer. As long as analysis is adopted, no significant improvement in calculation time can be expected.

一方、実用的には時間平均的な流動場が分かれば十分な場合が多い。実際、非定常に流体解析をした場合であっても、流動場の特徴を理解するために時間平均を取ってデータを整理することも多い。   On the other hand, in practice, it is often sufficient if a time-average flow field is known. In fact, even if the fluid analysis is unsteady, the data is often organized by taking a time average to understand the characteristics of the flow field.

撹拌槽の流体解析を定常解析で行う従来例において、撹拌機が一つだけ組み込まれた撹拌槽を考える場合に、撹拌機を除いた槽の形状が回転対称のときには、撹拌機の回転に合わせた回転座標系で運動方程式を立てることで、回転座標系における定常解として厳密な流動場を得ることができる。この手法は、例えば商用流体解析ソフトであるFLUENTでは単一基準座標モデルと呼ばれている。なお、この手法で得られる解は、静止座標系から見ると撹拌機の回転に伴って時間周期的に変動する解になっている(非特許文献2)。   In the conventional example in which the fluid analysis of the agitation tank is performed by steady analysis, when considering the agitation tank in which only one agitator is incorporated, if the shape of the tank excluding the agitator is rotationally symmetric, it is synchronized with the rotation of the agitator. By establishing the equation of motion in the rotating coordinate system, a strict flow field can be obtained as a steady solution in the rotating coordinate system. This technique is called a single reference coordinate model in, for example, FLUENT, which is commercial fluid analysis software. In addition, the solution obtained by this method is a solution that fluctuates periodically with the rotation of the stirrer when viewed from the stationary coordinate system (Non-Patent Document 2).

しかしながら、撹拌槽に例えばバッフル(邪魔板)などが存在する場合、槽の形状は回転対称でなく、従って単一基準座標モデルを適用することはできない。   However, if a baffle (baffle plate) or the like is present in the agitation tank, the shape of the tank is not rotationally symmetric, and therefore a single reference coordinate model cannot be applied.

これに対し、領域を回転領域と静止領域に分けた場合に、その間で流れが十分混合していると見なせるときには、近似的に時間平均的な流動場を得る手法がある。この手法は、回転領域と静止領域で別々の座標系を定義し、領域間で物理量の連続性を保証して定常解析する手法であり、FLUENTでは複数基準座標モデルと呼ばれている(非特許文献2)。   On the other hand, when the region is divided into a rotating region and a stationary region, there is a method of obtaining an approximately time-averaged flow field when it can be considered that the flow is sufficiently mixed between them. This method is a method of defining a separate coordinate system for a rotation region and a stationary region and guaranteeing continuity of physical quantities between the regions and performing steady state analysis. In FLUENT, this method is called a multiple reference coordinate model (non-patent document). Reference 2).

高速回転型撹拌機と低速回転型撹拌機を備える複合型撹拌槽でも、回転速度の異なる二つの座標系を定義することはできる。そこで、複合型撹拌槽の流体解析においても複数基準座標モデルを適用することが考えられる。しかしながら、複合型撹拌槽では、高速回転型撹拌機に対応する流動場と低速回転型撹拌機に対応する流動場との流れの相互作用が強いため、複数基準座標モデルでは適切な解を得ることができない。   Even in a combined stirring tank having a high-speed rotating stirrer and a low-speed rotating stirrer, two coordinate systems having different rotational speeds can be defined. Therefore, it is conceivable to apply a plurality of reference coordinate models also in the fluid analysis of the composite stirring tank. However, in the combined stirring tank, the flow interaction between the flow field corresponding to the high-speed rotating stirrer and the flow field corresponding to the low-speed rotating stirrer is strong. I can't.

特開平3-229156号公報JP-A-3-229156 特開2001-34605号公報Japanese Patent Laid-Open No. 2001-34605 化学工学会編 最近の化学工学57(化学工業社,2007)Chemical Engineering Society, Recent Chemical Engineering 57 (Chemical Industry, 2007) FLUENT 6.3 User’s Guide (10章)FLUENT 6.3 User ’s Guide (Chapter 10) FLUENT 6.3 User’s Guide (11章)FLUENT 6.3 User ’s Guide (Chapter 11)

上述のように、アヂホモミクサーのような高速回転型撹拌機と低速回転型撹拌機を備える複合型撹拌槽では、短時間に流体解析を行うことが困難であり、流動状態をシミュレーションすることがなされていない。   As described above, it is difficult to perform a fluid analysis in a short time in a composite agitation tank equipped with a high-speed rotating stirrer and a low-speed rotating stirrer such as an azihomomixer, and the flow state is simulated. Absent.

そこで、本発明は、複合型撹拌槽の流体解析を短時間で精度よく実行し、流動状態のシミュレーションを可能とすることを目的とする。   Therefore, an object of the present invention is to perform fluid analysis of a composite stirring tank with high accuracy in a short time and to enable simulation of a flow state.

本発明者は、高速回転型撹拌機と低速回転型撹拌機を備えた複合型撹拌槽では、高速回転型撹拌機の駆動による流体の流動速度は非常に大きく、低速回転型撹拌機の駆動による流動場にほとんど影響されないこと、これに対し、低速回転型撹拌機の駆動による流体の流動速度は高速回転型撹拌機の駆動による流動場に大きく影響されること、したがって、最初に高速回転型撹拌機の駆動による流動場を定常解析し、得られた流動状態を境界条件として低速回転型撹拌機の駆動による流動場を定常解析することにより、複合型撹拌槽全体の時間平均的な流動状態を精度よく短時間に求められることを見出した。   The inventor of the present invention has a very high fluid flow rate by driving a high-speed rotating stirrer in a combined stirring tank equipped with a high-speed rotating stirrer and a low-speed rotating stirrer. In contrast to the fact that the flow field is almost unaffected, the flow rate of the fluid by driving the low-speed rotating stirrer is greatly influenced by the flow field by driving the high-speed rotating stirrer. The steady flow analysis of the flow field due to the drive of the machine, and the steady flow analysis of the flow field due to the drive of the low-speed rotating stirrer using the obtained flow state as a boundary condition, It was found that it is required in a short time with high accuracy.

即ち、本発明は、高速回転型撹拌機と低速回転型撹拌機とを備えた複合型撹拌槽における流体の流動状態の解析方法であって、まず、高速回転型撹拌機の駆動による流動状態を定常解析し、次に、その解析結果を境界条件として、低速回転型撹拌機の駆動による流動状態を定常解析することにより、高速回転型撹拌機と低速回転型撹拌機を同時に駆動させたときの流動状態を解析する方法を提供する。   That is, the present invention is a method for analyzing the flow state of a fluid in a combined stirring tank equipped with a high-speed rotating stirrer and a low-speed rotating stirrer. When the high-speed rotating stirrer and the low-speed rotating stirrer are driven at the same time by performing steady-state analysis and then analyzing the flow state due to the driving of the low-speed rotating stirrer using the analysis result as a boundary condition A method for analyzing the flow state is provided.

本発明によれば、高速回転型撹拌機と低速回転型撹拌機を備えた複合型撹拌槽の流動状態を短時間で精度よく解析することができる。したがって、複合型撹拌槽において流体のパス回数(流体が高速回転型撹拌機を通過する回数)、混合時間、温度分布等を評価する上で必要となる速度分布、圧力分布等を、本発明によれば短時間で算出することが可能となり、流動状態のシミュレーションをすることが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the flow state of the composite stirring tank provided with the high speed rotation type stirrer and the low speed rotation type stirrer can be analyzed accurately in a short time. Therefore, in the present invention, the number of passes of the fluid in the composite agitation tank (the number of times the fluid passes through the high-speed agitator), the mixing time, the temperature distribution, etc. necessary for evaluating the temperature distribution, etc. are included in the present invention. Therefore, it is possible to calculate in a short time, and it is possible to simulate the flow state.

以下、図面を参照しつつ本発明を詳細に説明する。なお、各図中、同一符号は同一又は同等の構成要素を表している。   Hereinafter, the present invention will be described in detail with reference to the drawings. In each figure, the same numerals indicate the same or equivalent components.

図1は、本発明の一実施例で解析対象とする複合型撹拌槽1の模式図である。この複合型撹拌槽1は、プライミクス株式会社のアヂホモミクサーをモデルとしたもので、槽本体2の中央に位置するシャフト3の下部にタービン4が設けられ、その周囲を円筒状の固定部材である固定環5が囲んでいる。この固定環5は、一般的にステーターと称されており、タービン4とステーター5とで、ホモミクサーと称される高速回転型撹拌機6を構成している。また、槽本体2内では回転パドル7がフレーム(図示せず)に取り付けられ、低速回転型撹拌機を構成している。なお、一般に使用されているアヂホモミクサーでは、混合性を向上させる静止パドルあるいは逆回転パドル(回転パドル7と逆方向に回転するパドル)や、伝熱効率を向上させるスクレーパーが存在するが、図1の複合型撹拌槽1では、これらを省略している。   FIG. 1 is a schematic diagram of a composite stirring tank 1 to be analyzed in one embodiment of the present invention. This composite agitation tank 1 is modeled on an ad homomixer manufactured by Primix Co., Ltd., and a turbine 4 is provided at the lower part of the shaft 3 located at the center of the tank body 2, and the periphery thereof is fixed as a cylindrical fixing member. Ring 5 surrounds. The stationary ring 5 is generally called a stator, and the turbine 4 and the stator 5 constitute a high-speed rotating stirrer 6 called a homomixer. Moreover, in the tank main body 2, the rotation paddle 7 is attached to a flame | frame (not shown), and comprises the low speed rotation type stirrer. In general, there are stationary paddles or reverse rotating paddles (paddles rotating in the opposite direction to the rotating paddles 7) that improve mixing properties, and scrapers that improve heat transfer efficiency in the azihomomixers that are generally used. In the mold stirring tank 1, these are omitted.

タービン4は、通常1000rpm以上で高速に回転し、ホモミクサー6内部では強力な剪断力により乳化、分散を促進する。また、タービン4がステーター5で囲まれていることにより、ホモミクサー6の外部に矢印Aのように強い吐出流が生じるので、ホモミクサー6はポンプの機能も併せ持ち、槽内全体の混合に寄与する。   The turbine 4 normally rotates at a high speed of 1000 rpm or more, and promotes emulsification and dispersion inside the homomixer 6 by a strong shearing force. Further, since the turbine 4 is surrounded by the stator 5, a strong discharge flow is generated outside the homomixer 6 as indicated by an arrow A, so that the homomixer 6 also has a function of a pump and contributes to the mixing in the entire tank.

一方、回転パドル7は200rpm以下、通常20〜120rpm程度で回転して矢印Bに示すように周方向下向きの流れを起こし、槽全体の混合に寄与する。   On the other hand, the rotating paddle 7 rotates at 200 rpm or less, usually about 20 to 120 rpm, causes a downward flow in the circumferential direction as indicated by an arrow B, and contributes to the mixing of the entire tank.

この複合型撹拌槽1では、ホモミクサー6(高速回転型撹拌機)で生じる流動の速度は非常に大きく、回転パドル7(低速回転型撹拌機)による流動にほとんど影響されない。即ち、流動への影響は、高速回転型撹拌機から低速回転型撹拌機へ一方向的に及ぶ。   In the composite agitation tank 1, the flow speed generated by the homomixer 6 (high-speed rotary stirrer) is very high and is hardly affected by the flow of the rotary paddle 7 (low-speed rotary stirrer). That is, the influence on the flow is one-way from the high-speed rotating stirrer to the low-speed rotating stirrer.

そこで、本実施例では、図2(a)に示すように、まず、ホモミクサー6で生じる流動場を定常解析し、次に図2(b)に示すように、得られた流動状態を境界条件として回転パドル7を考慮したモデルに適用する。この場合、ホモミクサー6の形状は、その内部構造は無視して単なる円筒形として扱い、円筒の上面6aと下面6bの開口部にあたる位置で境界条件を与える。このように境界条件を与えることにより、回転パドル7で生じる流動場の解析も定常解析とすることができる。   Therefore, in this embodiment, as shown in FIG. 2 (a), first, the flow field generated in the homomixer 6 is first subjected to steady analysis, and then the obtained flow state is converted into boundary conditions as shown in FIG. 2 (b). And applied to a model considering the rotating paddle 7. In this case, the shape of the homomixer 6 is treated as a simple cylinder ignoring its internal structure, and boundary conditions are given at positions corresponding to the openings of the upper surface 6a and the lower surface 6b of the cylinder. By giving the boundary condition in this way, the analysis of the flow field generated in the rotating paddle 7 can be a steady analysis.

図2(b)に適用する境界条件の設定態様としては、流体領域の回転軸と回転速度、および壁面(例えば槽壁など)の回転速度といった撹拌槽の流体解析で通常与える境界条件に加え、槽(即ち、槽本体2からホモミクサー6を除外した部分)への流入境界条件を速度で与え(速度境界条件)、槽からの流出境界条件を圧力で与えること(圧力境界条件)が好ましい。流体解析では多くの場合、圧力は差圧のみが重要であるため、圧力境界条件において与える圧力の値は0としてよい。   In addition to the boundary conditions normally given in the fluid analysis of the stirring tank, such as the rotation axis and rotation speed of the fluid region and the rotation speed of the wall surface (for example, the tank wall), the boundary condition setting mode applied to FIG. It is preferable that the inflow boundary condition to the tank (that is, the portion excluding the homomixer 6 from the tank body 2) is given by speed (speed boundary condition) and the outflow boundary condition from the tank is given by pressure (pressure boundary condition). In many cases, in the fluid analysis, only the differential pressure is important as the pressure. Therefore, the pressure value given in the pressure boundary condition may be zero.

また、図2(a)におけるホモミクサー6で生じる流動場の定常解析と、図2(b)における回転パドル7で生じる流動場の定常解析は、それぞれ従来の定常解析の手法により行うことができ、例えば、単一基準座標モデル、複数基準座標モデル等を使用することができる。   Moreover, the steady analysis of the flow field generated in the homomixer 6 in FIG. 2A and the steady analysis of the flow field generated in the rotating paddle 7 in FIG. 2B can be performed by the conventional steady analysis methods, respectively. For example, a single reference coordinate model, a multiple reference coordinate model, or the like can be used.

単一基準座標モデルによる流体解析の手法を、図3を用いて説明する。図3は、図2(b)の複合型撹拌槽1のモデルのホモミクサー6の位置での横断面の模式図である。図中、中央の円がホモミクサー6を表し、ホモミクサー6を中心に2枚の回転パドル7が設けられている。いま、ホモミクサー6内のタービンは考えず、すなわち、ホモミクサー6は内部構造のない単なる静止した円筒とする。外側の円は槽本体2の槽壁2aで内部の格子は模式的に計算メッシュを表したものである。   A fluid analysis method using a single reference coordinate model will be described with reference to FIG. FIG. 3 is a schematic diagram of a cross section at the position of the homomixer 6 of the model of the composite stirring tank 1 of FIG. In the figure, the center circle represents the homomixer 6, and two rotating paddles 7 are provided around the homomixer 6. Now, the turbine in the homomixer 6 is not considered, that is, the homomixer 6 is a mere stationary cylinder having no internal structure. The outer circle is the tank wall 2a of the tank body 2, and the inner lattice schematically represents a calculation mesh.

流体解析の基本方程式は連続方程式とナビエ−ストークス方程式であり、静止座標系ではそれぞれ、   The basic equations for fluid analysis are the continuity equation and the Navier-Stokes equation.

と表される。ここで、t は時間、ρは流体の密度、v は速度ベクトル、p は圧力、F は重力などの体積力ベクトルである。また、τは粘性応力テンソルで、粘度μを用いて It is expressed. Where t is the time, ρ is the density of the fluid, v is the velocity vector, p is the pressure, and F is the volume force vector such as gravity. Also, τ is the viscous stress tensor, using viscosity μ

と表される。 It is expressed.

いま、回転パドル7による流体の矢印方向の回転に合わせて回転する座標系(回転座標系)を考える。回転座標系から見ると回転パドル7は静止しており、槽壁2aが逆方向に回転することになる。静止座標系から見た速度 v に対し、回転座標系から見た速度 vrConsider a coordinate system (rotating coordinate system) that rotates in accordance with the rotation of the fluid in the arrow direction by the rotating paddle 7. When viewed from the rotating coordinate system, the rotating paddle 7 is stationary, and the tank wall 2a rotates in the opposite direction. The speed v r seen from the rotating coordinate system is

と表される。ここで、Ωは角速度ベクトルで、r は位置ベクトルである。角速度ベクトルΩの向きは、図3のような回転の向きの場合、シャフト3に沿って下向き、大きさは回転座標系の角速度(すなわち静止座標系から見た回転パドル7の角速度)である。 It is expressed. Here, Ω is an angular velocity vector, and r is a position vector. The direction of the angular velocity vector Ω is downward along the shaft 3 in the case of the rotational direction as shown in FIG. 3, and the magnitude is the angular velocity of the rotating coordinate system (that is, the angular velocity of the rotating paddle 7 as viewed from the stationary coordinate system).

回転座標系では、連続方程式とナビエ−ストークス方程式は、   In the rotating coordinate system, the continuity equation and the Navier-Stokes equation are

となる。 It becomes.

図3では回転座標系に対して相対運動するのは槽壁2aとホモミクサー6だけで、回転対称形状である。このような場合、流動場は回転座標系から見て厳密に定常状態となる。従って、式(4)、(5)において左辺第1項の時間微分項を落とすことができ、時間定常解として一組の収束解 p, vr が得られればよい。このため計算時間は大幅に短縮される。 In FIG. 3, only the tank wall 2a and the homomixer 6 move relative to the rotating coordinate system, and have a rotationally symmetric shape. In such a case, the flow field is strictly steady as viewed from the rotating coordinate system. Thus, equation (4), (5) you can drop the time derivative term of the left-hand side the first term, a set of converged solution p as the time stationary solution, v r is only to be obtained. For this reason, the calculation time is greatly reduced.

図4は、上述の複合型撹拌槽1を複数基準座標モデルで定常解析を行う場合の概念図である。同図の槽壁2a内にもホモミクサー6と回転パドル7が表されているが、今度はホモミクサー6内にタービンがあり、タービンの回転も考慮した解析を行うとする(図4の模式図ではタービンの形状とホモミクサー内のメッシュの記載を省略)。回転パドル7は、ホモミクサー6内のタービンとともに回転する座標系から見ると異なる速度で回転し、なおかつ回転パドル7は回転対称形状ではない。従って、単一基準座標モデルで解くことができない。そこで、領域をホモミクサー6周りと回転パドル7周りの二つに分け、領域1を高速に回転する座標系で、領域2を低速に回転する座標系で記述し、領域間で物理量の連続性を保証することで近似的に定常解を得る。この方法は、二つの領域の間で流れの相互作用が弱いことが前提となる。しかしながら、ホモミクサー6(あるいはタービン)と回転パドル7との相互作用は強いので、この方法では適切な定常解を得ることは困難である。したがって、本発明の複合型撹拌槽1の解析方法では、厳密な手法で、得られる解の信頼性が高い点から、通常は複合型撹拌槽の形状の特徴を損なわない程度に簡略化して単一基準座標モデルを使用することが好ましく、必要に応じて非定常解析を用いる。   FIG. 4 is a conceptual diagram in the case where the above-described composite stirring tank 1 is subjected to steady analysis using a plurality of reference coordinate models. The homomixer 6 and the rotating paddle 7 are also shown in the tank wall 2a in the same figure, but this time there is a turbine in the homomixer 6 and it is assumed that analysis is performed in consideration of the rotation of the turbine (in the schematic diagram of FIG. 4). The description of the shape of the turbine and the mesh in the homomixer is omitted). The rotating paddle 7 rotates at a different speed when viewed from a coordinate system rotating with the turbine in the homomixer 6, and the rotating paddle 7 is not rotationally symmetric. Therefore, it cannot be solved with a single reference coordinate model. Therefore, the area is divided into two around the homomixer 6 and the rotating paddle 7, and the area 1 is described with a coordinate system that rotates at high speed and the area 2 is described with a coordinate system that rotates at low speed. A steady solution is obtained approximately by guaranteeing. This method assumes that the flow interaction between the two regions is weak. However, since the interaction between the homomixer 6 (or the turbine) and the rotating paddle 7 is strong, it is difficult to obtain an appropriate steady solution by this method. Therefore, in the analysis method of the composite agitation tank 1 of the present invention, since it is a rigorous technique and the reliability of the obtained solution is high, it is usually simplified to the extent that the characteristics of the shape of the composite agitation tank are not impaired. Preferably, a single reference coordinate model is used, and non-stationary analysis is used as needed.

例えば、図2(b)の解析において回転パドル7に加えて静止パドル(あるいは逆回転パドル)を解析形状に含め、回転パドル7と静止パドル(あるいは逆回転パドル)との間の相互作用を知りたい場合、複数基準座標モデルを使用することができる。さらに、その相互作用について、より詳細に非定常の状態を知りたい場合には、定常解析の代わりに、以下に説明する非定常解析を用いても良い。   For example, in the analysis of FIG. 2B, in addition to the rotating paddle 7, a stationary paddle (or reverse rotating paddle) is included in the analysis shape, and the interaction between the rotating paddle 7 and the stationary paddle (or reverse rotating paddle) is known. If desired, a multi-reference coordinate model can be used. Furthermore, when it is desired to know the unsteady state in more detail with respect to the interaction, the unsteady analysis described below may be used instead of the steady analysis.

図5は、高速回転領域と低速回転領域を分けた非定常解析の概念図である。ホモミクサー6周りの領域の計算メッシュはホモミクサー6内のタービンと共に移動する高速回転領域であり、回転パドル7周りの領域の計算メッシュは回転パドル7と共に移動する低速回転領域である。この例では高速回転領域と低速回転領域の計算メッシュは、領域間で不連続である。そこで、商用流体解析ソフトのFLUENT等に従って領域間にインターフェース面を定義することで、流速や圧力といった物理量をやり取りする。   FIG. 5 is a conceptual diagram of unsteady analysis in which a high-speed rotation region and a low-speed rotation region are separated. The calculation mesh in the region around the homomixer 6 is a high-speed rotation region that moves with the turbine in the homomixer 6, and the calculation mesh in the region around the rotation paddle 7 is a low-speed rotation region that moves with the rotation paddle 7. In this example, the calculation meshes in the high speed rotation area and the low speed rotation area are discontinuous between the areas. Therefore, physical quantities such as flow velocity and pressure are exchanged by defining interface surfaces between regions in accordance with commercial fluid analysis software FLUENT or the like.

本発明の解析方法は、高速回転型撹拌機としてホモミクサー(ホモミキサー)、ディスパーミキサー等を使用し、低速回転型撹拌機としてパドル翼、アンカー翼等を使用する場合に適用することができ、これらを任意の個数で組み合わせた複合型撹拌槽における流体解析に広く適用することができる。特に、本発明は、流動の相互作用が主に高速回転型撹拌機による流動から低速回転型撹拌機による流動へ一方向的であることを利用する観点から、高速回転型撹拌機の回転数は1000rpm以上、低速回転型撹拌機の回転数は200rpm以下のものに好ましく適用することができる。   The analysis method of the present invention can be applied to a case where a homomixer (homomixer), a disperser mixer or the like is used as a high-speed rotation type agitator, and a paddle blade, an anchor blade or the like is used as a low-speed rotation type agitator. Can be widely applied to fluid analysis in a composite stirring tank in which an arbitrary number is combined. In particular, the present invention is based on the fact that the flow interaction is unidirectional from the flow by the high-speed rotating stirrer to the flow by the low-speed rotating stirrer. It can be preferably applied to those having a rotation speed of 1000 rpm or more and a low-speed rotating stirrer of 200 rpm or less.

高速回転型撹拌機がホモミクサーのようにステーターで囲われている場合、ホモミクサー内部の流動は外から影響を受けにくいため、さらに好適に本発明を適用できる。また、ホモミクサーでは流体の吐出部、流入部がステーターの開口部の形状で決まるため、境界条件が設定しやすいという利点も有する。   When the high-speed rotating stirrer is surrounded by a stator like a homomixer, the flow inside the homomixer is hardly affected from the outside, and therefore the present invention can be applied more suitably. Further, the homomixer has an advantage that the boundary condition can be easily set because the fluid discharge portion and the inflow portion are determined by the shape of the opening of the stator.

以下、典型的な計算例により本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with typical calculation examples.

図1の複合型撹拌槽のモデルにおいて、流体として粘度1Pa・s、密度1000kg/mのニュートン流体を想定し、以下の操作条件のもと、実施例の解析方法及び比較例の移動メッシュによる非定常解析方法にしたがい、次の(1)〜(3)の解析を行った。 In the composite agitation tank model of FIG. 1, assuming a Newtonian fluid with a viscosity of 1 Pa · s and a density of 1000 kg / m 3 as a fluid, using the analysis method of the example and the moving mesh of the comparative example under the following operating conditions: According to the unsteady analysis method, the following analyzes (1) to (3) were performed.

この場合、実施例の解析方法では、回転パドルによる流動場の解析の境界条件として、槽への流入条件(すなわちホモミクサーからの流出条件)では速度境界条件を使用し、槽からの流出条件(すなわちホモミクサーへの流入条件)では圧力0の圧力境界条件とした。また、これらの解析には、定常解析、非定常解析、共にANSYS社のFLUENTを使用した。   In this case, in the analysis method of the embodiment, as the boundary condition of the flow field analysis by the rotating paddle, the velocity boundary condition is used in the inflow condition to the tank (that is, the outflow condition from the homomixer), and the outflow condition from the tank (that is, In the condition of inflow to the homomixer, the pressure boundary condition was zero pressure. For these analyses, both the steady analysis and the non-steady analysis were used by ANSYS FLUENT.

[操作条件]
ホモミクサーの回転数:6000rpm
ホモミクサーのタービン径(最大値):25mm
回転パドルの回転数:60rpm
回転パドルの先端間距離の最大値:108mm
槽の直径:150mm
流体の体積:2L
[Operation conditions]
Homomixer speed: 6000rpm
Homomixer turbine diameter (maximum value): 25 mm
Rotation paddle speed: 60rpm
Maximum distance between rotating paddle tips: 108 mm
Tank diameter: 150mm
Fluid volume: 2L

(1)ホモミクサーからの吐出部分S1での速度分布
回転パドルによる影響がほとんど無いと考えられるホモミクサーからの吐出部分S1での速度分布を、実施例の解析方法で最初に行うホモミクサーでの定常解析と、比較例の移動メッシュによる非定常解析とで比較した(非定常解析は回転開始後2秒時点のもの)。図6にこの吐出部分S1の位置を示し、図7に結果を示す。なお、図7は、吐出部分S1 における流速をr,θ,z成分についてプロットしたものであり、zは鉛直方向(軸方向)で、zと垂直な断面の半径方向がr,周方向がθである。
(1) Velocity distribution at the discharge portion S1 from the homomixer The velocity distribution at the discharge portion S1 from the homomixer, which is considered to be hardly affected by the rotating paddle, is a steady analysis in the homomixer that is first performed by the analysis method of the embodiment. The comparison was made with the unsteady analysis using the moving mesh of the comparative example (the unsteady analysis was at 2 seconds after the start of rotation). FIG. 6 shows the position of the discharge portion S1, and FIG. 7 shows the result. FIG. 7 is a plot of the flow velocity at the discharge portion S1 with respect to the r, θ, and z components, where z is the vertical direction (axial direction), the radial direction of the cross section perpendicular to z is r, and the circumferential direction is θ. It is.

図7から、実施例による解析結果と比較例による解析結果が非常によく一致していることが確認できる。これにより、ホモミクサーによる吐出流は、回転パドルによる影響をほとんど受けないという本発明の仮定が成り立つことが分かる。   From FIG. 7, it can be confirmed that the analysis result by the example and the analysis result by the comparative example are in good agreement. Thus, it can be seen that the assumption of the present invention holds that the discharge flow by the homomixer is hardly affected by the rotating paddle.

(2)槽内の三箇所S2、S3、S4 での速度分布
ホモミクサーと回転パドルの両方の影響があると考えられる槽内の三箇所S2、S3、S4 での速度分布を、実施例の解析方法と比較例の移動メッシュによる非定常解析とで比較した(非定常解析は回転開始後2秒時点のもの)。この場合、実施例の解析においては、図7で得られた速度分布を、槽への流入条件(すなわちホモミクサーからの流出条件)を構成する速度境界条件として使用した。
(2) Velocity distribution at three locations S2, S3, and S4 in the tank Velocity distribution at three locations S2, S3, and S4 in the tank, which are considered to be affected by both the homomixer and rotating paddle. Comparison was made between the method and the unsteady analysis using the moving mesh of the comparative example (the unsteady analysis was at 2 seconds after the start of rotation). In this case, in the analysis of the example, the velocity distribution obtained in FIG. 7 was used as the velocity boundary condition constituting the inflow condition to the tank (that is, the outflow condition from the homomixer).

図8に解析対象とする位置S2、S3、S4 を示し、図9に解析結果を示す。図9から、槽内全体として、実施例による解析結果と比較例による解析結果が一致することが分かる。なお、比較例の方法では、位置S2、S3の解析結果においてr=24(mm)、r=54(mm)あたりでプロットに飛びあがりがあるが、これは回転領域や静止領域の間のメッシュが不連続になるためで、本来は滑らかにつながるべきものである。   FIG. 8 shows the positions S2, S3, and S4 to be analyzed, and FIG. 9 shows the analysis results. From FIG. 9, it can be seen that the analysis result by the example and the analysis result by the comparative example coincide with each other in the entire tank. In the method of the comparative example, there is a jump in the plot around r = 24 (mm) and r = 54 (mm) in the analysis results of the positions S2 and S3. This is a mesh between the rotation region and the stationary region. Is supposed to be smoothly connected.

(3)槽内の速度分布の解析
図10(a)に、比較例の非定常解析による回転開始後2秒の時点での槽内の速度分布の解析結果を示し、同図(b)に実施例の解析方法による槽内の速度分布の解析結果を示す。
(3) Analysis of velocity distribution in tank FIG. 10 (a) shows the analysis result of the velocity distribution in the tank at 2 seconds after the start of rotation by the unsteady analysis of the comparative example, and FIG. The analysis result of the velocity distribution in a tank by the analysis method of an Example is shown.

図10(a)、(b)から、比較例の非定常解析でもt=2(s)でほぼ流れが安定して定常状態になり、実施例の定常解析による結果と同様の速度分布になっていることがわかる。   10 (a) and 10 (b), even in the unsteady analysis of the comparative example, the flow is almost stable at t = 2 (s) and becomes a steady state, and the velocity distribution is the same as the result of the steady analysis of the embodiment. You can see that

一方、実施例では、この解析結果を得るために計算時間として約4時間を要し、比較例では約2.5日を要した。使用したコンピュータは、CPUとしてCore2Duo 2.66GHzを備えたWindows(登録商標)PCである。   On the other hand, in the example, it took about 4 hours as the calculation time to obtain this analysis result, and about 2.5 days in the comparative example. The computer used was a Windows (registered trademark) PC with Core2Duo 2.66 GHz as the CPU.

なお、本実施例及び比較例では、粘度1Pa・sのニュートン流体を想定したが、粘度がせん断速度に依存する非ニュートン流体では、一般に流れが安定するまでに時間がかかり、非定常解析ではさらに計算時間を要することになる。   In this example and the comparative example, a Newtonian fluid having a viscosity of 1 Pa · s is assumed. However, in a non-Newtonian fluid whose viscosity depends on the shear rate, it generally takes time until the flow becomes stable. Calculation time is required.

以上により、本発明によれば、従来の比較例の方法に比して極めて短時間で精度よく流動状態を解析できることがわかる。   As described above, according to the present invention, it is understood that the flow state can be analyzed with high accuracy in a very short time as compared with the method of the conventional comparative example.

本発明の解析方法は、高速回転型撹拌機と低速回転型撹拌機とを備えた複合型撹拌槽における流体解析として有用であり、パス回数、混合時間、温度分布等の解析の基礎としても有用である。   The analysis method of the present invention is useful as a fluid analysis in a combined stirring tank equipped with a high-speed rotating stirrer and a low-speed rotating stirrer, and is also useful as a basis for analyzing the number of passes, mixing time, temperature distribution, etc. It is.

複合型撹拌槽の模式図である。It is a schematic diagram of a composite stirring tank. ホモミクサー(高速回転型撹拌機)による流動場を解析し、次に回転パドル(低速回転型撹拌機)による流動場を解析する解析手法の模式図である。It is a schematic diagram of the analysis method which analyzes the flow field by a homomixer (high-speed rotating stirrer) and then analyzes the flow field by a rotating paddle (low-speed rotating stirrer). 単一基準座標モデルによる流体解析の概念図である。It is a conceptual diagram of the fluid analysis by a single reference coordinate model. 複数基準座標モデルによる流体解析の概念図である。It is a conceptual diagram of the fluid analysis by a multiple reference coordinate model. 非定常解析の概念図である。It is a conceptual diagram of unsteady analysis. 実施例及び比較例での速度分布の比較位置を示した図である。It is the figure which showed the comparison position of the velocity distribution in an Example and a comparative example. 実施例及び比較例による、ホモミクサーからの吐出部分での流体の速度分布図である。It is a velocity distribution map of the fluid in the discharge part from a homomixer by an Example and a comparative example. 実施例及び比較例での速度分布の解析位置を示した図である。It is the figure which showed the analysis position of the velocity distribution in an Example and a comparative example. 実施例及び比較例による流体の速度分布図である。It is a velocity distribution map of the fluid by an Example and a comparative example. 実施例及び比較例による槽内の流体の速度分布の解析図である。It is an analysis figure of the velocity distribution of the fluid in the tank by an Example and a comparative example.

符号の説明Explanation of symbols

1 複合型撹拌槽
2 槽本体
2a 槽壁
3 シャフト
4 タービン
5 固定環(ステーター)
6 高速回転型撹拌機(ホモミクサー)
6a 上面
6b 下面
7 回転パドル
DESCRIPTION OF SYMBOLS 1 Composite type | mold stirring tank 2 Tank main body 2a Tank wall 3 Shaft 4 Turbine 5 Fixed ring (stator)
6 High-speed rotating stirrer (Homomixer)
6a Upper surface 6b Lower surface 7 Rotating paddle

Claims (3)

高速回転型撹拌機と低速回転型撹拌機とを備えた複合型撹拌槽における流体の流動状態の解析方法であって、まず、高速回転型撹拌機の駆動による流動状態を定常解析し、次に、その解析結果を境界条件として、低速回転型撹拌機の駆動による流動状態を定常解析することにより、高速回転型撹拌機と低速回転型撹拌機を同時に駆動させたときの流動状態を解析する方法。   A method for analyzing the flow state of a fluid in a combined stirring tank equipped with a high-speed rotating stirrer and a low-speed rotating stirrer. , Analyzing the flow state when a high-speed rotating stirrer and a low-speed rotating stirrer are driven simultaneously by steady-state analysis of the flow state due to the driving of the low-speed rotating stirrer using the analysis result as a boundary condition . 前記境界条件として、槽への流入境界条件に速度境界条件を使用し、槽からの流出境界条件に圧力境界条件を使用する請求項1記載の解析方法。   The analysis method according to claim 1, wherein a velocity boundary condition is used as an inflow boundary condition to the tank and a pressure boundary condition is used as an outflow boundary condition from the tank as the boundary condition. 高速回転型撹拌機が固定環で囲われている請求項1又は2記載の解析方法。   The analysis method according to claim 1 or 2, wherein the high-speed rotating stirrer is surrounded by a stationary ring.
JP2008208488A 2008-08-13 2008-08-13 Analytical method of fluid flow state in combined stirred tank Expired - Fee Related JP5212630B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008208488A JP5212630B2 (en) 2008-08-13 2008-08-13 Analytical method of fluid flow state in combined stirred tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008208488A JP5212630B2 (en) 2008-08-13 2008-08-13 Analytical method of fluid flow state in combined stirred tank

Publications (2)

Publication Number Publication Date
JP2010044611A true JP2010044611A (en) 2010-02-25
JP5212630B2 JP5212630B2 (en) 2013-06-19

Family

ID=42015940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008208488A Expired - Fee Related JP5212630B2 (en) 2008-08-13 2008-08-13 Analytical method of fluid flow state in combined stirred tank

Country Status (1)

Country Link
JP (1) JP5212630B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363793A2 (en) 2010-03-01 2011-09-07 Sony Corporation Information processing apparatus, information processing method, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418458A (en) * 1990-05-10 1992-01-22 Fujitsu Ltd Production of conductive paste for forming printed circuit pattern
JPH11209476A (en) * 1998-01-22 1999-08-03 Konica Corp Method for dissolving powdery polymer compound

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0418458A (en) * 1990-05-10 1992-01-22 Fujitsu Ltd Production of conductive paste for forming printed circuit pattern
JPH11209476A (en) * 1998-01-22 1999-08-03 Konica Corp Method for dissolving powdery polymer compound

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6012041089; 上ノ山周 他: 'タービン翼付撹拌槽における擬塑性流体の流動状態の三次元数値解析' 化学工学論文集 第14巻,第6号, 1988, p.786-793 *
JPN6012041093; 岡本幸彦 他: '旋回機構付きプロペラ式水中撹拌機の矩形反応槽における撹拌性能シミュレーション' NKK技報 第177号, 200206, p.15-20 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2363793A2 (en) 2010-03-01 2011-09-07 Sony Corporation Information processing apparatus, information processing method, and program

Also Published As

Publication number Publication date
JP5212630B2 (en) 2013-06-19

Similar Documents

Publication Publication Date Title
Hartmann et al. Mixing times in a turbulent stirred tank by means of LES
Sontti et al. Numerical insights on controlled droplet formation in a microfluidic flow-focusing device
Lan et al. Numerical and experimental investigation of dripping and jetting flow in a coaxial micro-channel
CN105069184B (en) A kind of stirred autoclave analogy method based on immersed Boundary Method
Hörmann et al. Mixing and dissolution processes of pharmaceutical bulk materials in stirred tanks: experimental and numerical investigations
D’Avino et al. Migration of a sphere suspended in viscoelastic liquids in Couette flow: experiments and simulations
Ameur et al. 3D hydrodynamics and shear rates’ variability in the United States pharmacopeia paddle dissolution apparatus
JP5212630B2 (en) Analytical method of fluid flow state in combined stirred tank
Ng et al. Lagrangian simulation of steady and unsteady laminar mixing by plate impeller in a cylindrical vessel
Barnett et al. A multi-view framework for generating mobile apps
Santra et al. Surfactant-induced retardation in lateral migration of droplets in a microfluidic confinement
Sontti et al. Regulation of droplet size and flow regime by geometrical confinement in a microfluidic flow-focusing device
Lian et al. Coupled smoothed particle hydrodynamics and discrete element method for simulating coarse food particles in a non-Newtonian conveying fluid
JP5134468B2 (en) Stirrer
Leung et al. Scale-up on mixing in rotating microchannel under subcritical and supercritical operating modes
Ringkai et al. Evolution of water-in-oil droplets in T-junction microchannel by micro-PIV
Torubarov et al. Apparatus with intracyclic variation of the velocity of the anchor agitator
Campolo et al. Appraisal of fluid dynamic efficiency of retreated-blade and turbofoil impellers in industrial-size CSTRs
Sanjuan‐Galindo et al. CFD investigation of new helical ribbon mixers bottom shapes to improve pumping
Derksen Direct flow simulations of thixotropic liquids in agitated tanks
Derksen Agitation and mobilization of thixotropic liquids
JP6075039B2 (en) Prediction method and reduction method of self-excited vibration of centrifuge and calculation device
Campolo et al. Numerical evaluation of mixing time in a tank reactor stirred by a magnetically driven impeller
Zhu et al. Analysis of hollow wall effect on the fluid dynamics in the orbitally shaken bioreactors
JP6593009B2 (en) Analysis method of kneading state of viscous fluid

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R151 Written notification of patent or utility model registration

Ref document number: 5212630

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees