JP2010043813A - Heat exchanging device - Google Patents

Heat exchanging device Download PDF

Info

Publication number
JP2010043813A
JP2010043813A JP2008209991A JP2008209991A JP2010043813A JP 2010043813 A JP2010043813 A JP 2010043813A JP 2008209991 A JP2008209991 A JP 2008209991A JP 2008209991 A JP2008209991 A JP 2008209991A JP 2010043813 A JP2010043813 A JP 2010043813A
Authority
JP
Japan
Prior art keywords
hollow fiber
air
fiber membrane
heat exchange
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008209991A
Other languages
Japanese (ja)
Inventor
Kensuke Watanabe
健祐 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2008209991A priority Critical patent/JP2010043813A/en
Publication of JP2010043813A publication Critical patent/JP2010043813A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanging device capable of preventing contamination while keeping steam permeability, with high heat-exchanging efficiency per volume, and capable of being miniaturized. <P>SOLUTION: The heat exchanging device is composed of an air supply blower for supplying outdoor air into a room, an exhaust blower for exhausting indoor air out of the room, and a heat exchanger for heat-exchanging between the outdoor air supplied to the inside of the room and the indoor air exhausted to the outside of the room. The heat exchanging device is characterized by the heat exchanger which is a humidification membrane module comprising a hollow fiber membrane bundle formed of a plurality of hollow fiber membranes, a case for storing the hollow fiber membranes, a first flow passage through which either the supplied air or the exhaust air passes inside a hollow of the hollow fiber membrane, and a second flow passage through which the other of the supplied air and the exhaust air passes on an outer wall surface side of the hollow fiber membrane. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱交換装置に関する。
また、本発明は、エアコンディショナーに供給される空気の温度を排気ガスとの熱交換することで、エアコンディショナーの消費電力の省電力化が可能となる熱交換装置に関する。
更に、室外空気と室内空気との間で水分の授受も可能な熱交換装置に関する。
The present invention relates to a heat exchange device.
The present invention also relates to a heat exchange device that can reduce the power consumption of the air conditioner by exchanging the temperature of the air supplied to the air conditioner with the exhaust gas.
Furthermore, the present invention relates to a heat exchange device capable of transferring moisture between outdoor air and room air.

現在、地球環境の温暖化や燃料価格の高騰により、各種装置の省電力化が進められている。エアコンディショナーは、夏場の冷却や冬場の暖房に、自動車や屋内で多く使用されている装置である。
この装置についても、近年、かなり省電力化は進んでいるが、依然として消費電力は大きいものであり、特に夏場における自動車のガソリン使用量の増加や家庭内の消費電力の増加が問題となっている。
Currently, power saving of various devices is being promoted due to global warming and soaring fuel prices. Air conditioners are devices that are often used in cars and indoors for cooling in summer and heating in winter.
In recent years, the power consumption of this device has been considerably increased, but the power consumption is still large. Especially, the increase of gasoline consumption of automobiles and the increase of household power consumption are particularly problematic in summer. .

特に、図4に示すフロー図の従来技術においては、外気が給気ブロア100を通してエアコンディショナー400に供給されるので、冷房時においては外気温度が高い場合、暖房時においては外気温度が低い場合により多くの電力が必要となる。
このエアコンディショナーの消費電力はエアコンディショナーに供給される空気の温度と自動車内や屋内の温度設定の差に依存することから、この差を小さくすることができれば、省電力化が可能となる。
In particular, in the prior art of the flow chart shown in FIG. 4, since the outside air is supplied to the air conditioner 400 through the supply air blower 100, the outside air temperature is high during cooling and the outside air temperature is low during heating. A lot of power is required.
Since the power consumption of this air conditioner depends on the difference between the temperature of the air supplied to the air conditioner and the temperature setting inside the car or indoors, it is possible to save power if this difference can be reduced.

この様な観点から、エアコンディショナーにより冷却および暖房を行う場合に、自動車用では車内と車外、家庭用については室内と室外に温度や温度差があるため、温度や湿度を交換する熱交換器をエアコンディショナーの前段に介し、車内や室内の空気で熱交換させることで、単に車外および室外の空気を処理するよりも温度差の小さい空気をエアコンディショナーに供給することが可能となるとの発想が生まれた。   From this point of view, when cooling and heating with an air conditioner, there is a temperature and temperature difference between the inside and outside of the vehicle for automobiles and indoor and outdoor for home use, so a heat exchanger that exchanges temperature and humidity is used. The idea that heat exchange between the air inside and inside the air conditioner through the front stage of the air conditioner makes it possible to supply the air conditioner with air having a smaller temperature difference than simply treating the air outside and outside the car. It was.

そして、この様な発想の下に、図1に示す様に、エアコンディショナー4の前段に熱交換器3を設置するものが提案された。(特許文献1)
しかし、この種従来品は、平板部材と波板部材を組み合わせたような熱交換器であるが、構造が複雑であるという問題があった。
また、部材の材質が紙であるため、孔径の制御が難しく、水蒸気透過性を維持しつつ、コンタミを阻止することが困難であった。
And based on such an idea, as shown in FIG. 1, what installed the heat exchanger 3 in the front | former stage of the air conditioner 4 was proposed. (Patent Document 1)
However, this type of conventional product is a heat exchanger in which a flat plate member and a corrugated plate member are combined, but has a problem that the structure is complicated.
Further, since the material of the member is paper, it is difficult to control the hole diameter, and it is difficult to prevent contamination while maintaining water vapor permeability.

特開2007−285584号公報JP 2007-285584 A

本発明は、このような課題に鑑みてなされたものであり、水蒸気透過性を維持しつつ、コンタミを阻止出来ると共に、容積あたりの熱交換効率が高く、小型化が可能な熱交換装置を提供することを目的とする。   The present invention has been made in view of such problems, and provides a heat exchange device that can prevent contamination while maintaining water vapor permeability, has high heat exchange efficiency per volume, and can be downsized. The purpose is to do.

本発明の熱交換装置は、室外空気を室内に供給するための給気ブロアと、室内空気を室外へ排気するための排気ブロアと、室内へ供給される室外空気と室外へ排気される室内空気とを熱交換させる熱交換器とよりなる熱交換装置において、
前記熱交換器が、複数本の中空糸膜により形成された中空糸膜束と、前記中空糸膜束を収容するケースと、前記中空糸膜の中空内部を前記給気若しくは排気の何れか一方が通る第1流路と、前記中空糸膜の外壁面側を前記給気若しくは排気の何れか他方が通る第2流路とを備えた加湿膜モジュールであることを特徴とする構成としている。
The heat exchange device of the present invention includes an air supply blower for supplying outdoor air to the room, an exhaust blower for exhausting the room air to the outside, the outdoor air supplied to the room, and the room air exhausted to the outside In a heat exchange device comprising a heat exchanger that exchanges heat with
The heat exchanger includes a hollow fiber membrane bundle formed by a plurality of hollow fiber membranes, a case for housing the hollow fiber membrane bundle, and a hollow interior of the hollow fiber membrane, either the air supply or the exhaust. The humidification membrane module includes a first flow path through which the air flows and a second flow path through which either the air supply or the exhaust passes through the outer wall surface of the hollow fiber membrane.

本発明は、以下に記載されるような効果を奏する。
請求項1記載の発明の熱交換装置によれば、水蒸気透過性を維持しつつ、コンタミを阻止出来ると共に、容積あたりの熱交換効率が高く、小型化が可能である。
The present invention has the following effects.
According to the heat exchange device of the first aspect of the present invention, contamination can be prevented while maintaining water vapor permeability, heat exchange efficiency per volume is high, and miniaturization is possible.

また、請求項2記載の発明の熱交換装置によれば、高い熱交換効率を維持しつつ、コンタミを阻止出来る。   In addition, according to the heat exchange device of the second aspect of the present invention, contamination can be prevented while maintaining high heat exchange efficiency.

更に、請求項3記載の発明の熱交換装置によれば、水蒸気透過性を維持しつつ、コンタミを阻止出来る。
更に又、請求項4記載の発明の熱交換装置によれば、高い熱交換効率を維持出来る。
Furthermore, according to the heat exchange device of the invention described in claim 3, contamination can be prevented while maintaining water vapor permeability.
Furthermore, according to the heat exchange device of the invention of claim 4, high heat exchange efficiency can be maintained.

更に、請求項5記載の発明の熱交換装置によれば、より高い熱交換効率が発揮出来る。
更に、請求項6記載の発明の熱交換装置によれば、エアコンディショナーの省電力化が可能となる。
Furthermore, according to the heat exchange device of the invention described in claim 5, higher heat exchange efficiency can be exhibited.
Furthermore, according to the heat exchanging device of the invention described in claim 6, it is possible to save power in the air conditioner.

以下、本発明を実施するための最良の形態について、図1乃至図3に基づき説明する。
図1は、本発明の熱交換装置が適用されるフロー図である。
図2は、本発明の熱交換装置が適用される他のフロー図である。
図3は、本発明の熱交換装置を示す断面図である。
Hereinafter, the best mode for carrying out the present invention will be described with reference to FIGS.
FIG. 1 is a flow diagram to which the heat exchange apparatus of the present invention is applied.
FIG. 2 is another flowchart to which the heat exchange device of the present invention is applied.
FIG. 3 is a cross-sectional view showing the heat exchange device of the present invention.

本発明の熱交換装置は、図1及び図2のフロー図に示す態様で使用される。
すなわち、図1に示す様に、外気を給気ブロア1で取り込み、本発明に係る熱交換器3を介して、エアコンディショナー4に供給される。
ついで、エアコンディショナー4より自動車若しくは家屋の室内に供給された空気は、排気ブロア2により、熱交換器3を介して、室外に排出される。
The heat exchange apparatus of the present invention is used in the mode shown in the flow charts of FIGS.
That is, as shown in FIG. 1, outside air is taken in by an air supply blower 1 and supplied to an air conditioner 4 via a heat exchanger 3 according to the present invention.
Next, the air supplied from the air conditioner 4 to the interior of the car or house is exhausted to the outside by the exhaust blower 2 through the heat exchanger 3.

また、図2に示すフロー図は、熱交換器3を通過した給気が、流量調整バルブ5、5を介して、一部がエアコンディショナー4に供給され、一部が直接自動車若しくは家屋の室内に供給される構成となっている点で、図1に示した態様のものと相違している。
この流量調整バルブ5、5を設けることにより、室内に供給された空気の温度及び湿度を制御し易くなる。
Further, in the flowchart shown in FIG. 2, a part of the supply air that has passed through the heat exchanger 3 is supplied to the air conditioner 4 via the flow rate adjusting valves 5, 5, and a part thereof is directly in the interior of the car or house. 1 is different from that of the embodiment shown in FIG.
By providing the flow rate adjusting valves 5 and 5, it becomes easy to control the temperature and humidity of the air supplied to the room.

ついで、本発明に使用される熱交換器について図1及び図3に基づき説明する。
本発明に係る熱交換装置は、室外空気を室内に供給するための給気ブロア1と、室内空気を室外へ排気するための排気ブロア2と、室内へ供給される室外空気と室外へ排気される室内空気とを熱交換させる熱交換器3とより構成されている。
そして、本発明に係る熱交換器3は、複数本の中空糸膜により形成された中空糸膜束31と、この中空糸膜束31を収容するケース32と、中空糸膜の中空内部を給気若しくは排気の何れか一方が通る第1流路33と、中空糸膜の外壁面側を給気若しくは排気の何れか他方が通る第2流路34とを備えた構成となっている。
Subsequently, the heat exchanger used for this invention is demonstrated based on FIG.1 and FIG.3.
The heat exchange device according to the present invention includes an air supply blower 1 for supplying outdoor air to the room, an exhaust blower 2 for exhausting the room air to the outside, the outdoor air supplied to the room, and the outside air. And a heat exchanger 3 for exchanging heat with indoor air.
The heat exchanger 3 according to the present invention supplies a hollow fiber membrane bundle 31 formed of a plurality of hollow fiber membranes, a case 32 that accommodates the hollow fiber membrane bundle 31, and a hollow interior of the hollow fiber membrane. The first flow path 33 through which either air or exhaust passes and the second flow path 34 through which either the air supply or exhaust passes through the outer wall surface of the hollow fiber membrane are provided.

この中空糸膜束31は、接着剤層5により、ケース5側に固着され、第1流路33と第2流路34との間を仕切っている。
図3では、中空糸膜束31の中空糸の管内側の第2流路34を自動車内および屋内からの排気が通り、中空糸膜束31の中空糸の外周側の第1流路33を給気が通る構成としている。
The hollow fiber membrane bundle 31 is fixed to the case 5 side by the adhesive layer 5 and partitions the first flow path 33 and the second flow path 34.
In FIG. 3, exhaust from inside and inside the vehicle passes through the second flow path 34 inside the hollow fiber tube of the hollow fiber membrane bundle 31, and the first flow path 33 on the outer peripheral side of the hollow fiber of the hollow fiber membrane bundle 31 passes through the second flow path 34. The air supply is configured to pass.

この結果、図1及び図2に示す様に、本願発明においては、車内および屋内の排気を行うための排気ブロア2が必要となるものの、この排気を熱交換器3に流すことによって、外気が熱交換され外気温度と車内および屋内の設定温度差を小さくできるために、エアコンディショナー4の電力を従来より小さくでき、省電力化が可能となる。   As a result, as shown in FIGS. 1 and 2, the present invention requires an exhaust blower 2 for exhausting the interior and interior of the vehicle. However, by flowing this exhaust through the heat exchanger 3, the outside air is discharged. Since the heat exchange is performed and the difference between the outside air temperature and the set temperature in the vehicle and indoors can be reduced, the power of the air conditioner 4 can be reduced as compared with the prior art, and the power can be saved.

本発明に使用される中空糸膜としては、乾燥雰囲気で空気を適度に遮断し、熱および水蒸気のみを十分に伝達するもめが好ましいことから、空気透過性としては透過係数0.0003〜2ml・min-1・cm-2・100kPa-1で、水蒸気透過性としては0.1〜0.3g・min-1・cm-2・MPa-1のものが好ましい。 The hollow fiber membrane used in the present invention is preferably a gai which appropriately blocks air in a dry atmosphere and sufficiently transmits only heat and water vapor, so that the air permeability has a permeability coefficient of 0.0003 to 2 ml · min −. The water vapor permeability is preferably 0.1 to 0.3 g · min −1 · cm −2 · MPa −1 at 1 · cm −2 · 100 kPa −1 .

また、中空糸膜の素材としては、価格、信頼性及び耐久性の観点からポリエーテルイミド・ポリスルホンやポリフェニルスルホンが好ましく、出願人が先に出願したポリフェニルスルホン膜(特開2004−290751および特開2006−255502)、ポリエーテルイミド膜(特開2004−261765)、親水性高分子をコーティングしたポリエーテルイミド膜(特開2002−2573885)等に記載した膜も適用できる。   The material of the hollow fiber membrane is preferably polyetherimide / polysulfone or polyphenylsulfone from the viewpoint of price, reliability and durability, and the polyphenylsulfone membrane (Japanese Patent Application Laid-Open No. 2004-290751 The films described in JP-A-2006-255502), polyetherimide film (JP-A-2004-261765), polyetherimide film coated with a hydrophilic polymer (JP-A-2002-2573885), and the like can also be applied.

また、中空糸の熱伝達性を高めるために、膜中に、熱伝達性の優れた、金属性または炭素性の粉末やフアイバーを混入することも有効である。
また、加湿器としては、中空糸の有効内面積が少ないと十分な熱交換能を有さないことから、通常0.1m2より大きいことが望ましい。
ついで、実施例に基づき本発明を説明する。
In order to increase the heat transfer property of the hollow fiber, it is also effective to mix a metal or carbon powder or fiber having excellent heat transfer property into the membrane.
Further, as a humidifier, if the effective inner area of the hollow fiber is small, it does not have sufficient heat exchange capacity, and therefore it is usually desirable that the humidifier is larger than 0.1 m 2 .
Next, the present invention will be described based on examples.

<実施例1>
内径750ミクロン、外径1050ミクロンのPPSU製中空糸(空気透過性0.0003ml・min-1・cm-2・100kPa-1、水蒸気透過性としては0.2g・min-1・cm-2・MPa-1)を開口断面積が13.3cm2の箇体に1000本充填した、全長が180mmの中空糸の有効長さが140mmの熱交換器(中空糸の有効内面積0.33m2)を作製した。
この中空糸膜束31の管内側である第2流路34側(Swp側)に25℃の空気を毎分50NLで導入すると同時に、中空糸膜束31の外周側である第1流路33側(Off側)に40℃の空気を毎分50NLで流した。
ついで、各々の出口の温度と圧力を測定した。
結果を表1に示すが、外側の温度は40℃から29℃に低下し、この熱交換器を通すことで温度低下が可能だった。
また、この熱交換器の第2流路34側に0.1μmの粒子を分散させた気体を差圧100kPagで流した場合に、第1流路33側には、粒子の透過は見られず100%阻止していた。
<Example 1>
Internal diameter 750 microns, outer diameter 1050 microns PPSU hollow yarn (air permeability 0.0003ml · min -1 · cm -2 · 100kPa -1, 0.2g · min -1 · cm -2 · MPa as water vapor permeability - A heat exchanger (effective inner area of hollow fiber 0.33 m 2 ) with an effective length of 140 mm of hollow fibers with a total length of 180 mm was prepared by filling 1 ) 1 ) into 13.3 cm 2 bodies.
Air at 25 ° C. is introduced at 50 NL / min into the second flow path 34 side (Swp side) that is the inside of the hollow fiber membrane bundle 31 at the same time, and at the same time, the first flow path 33 that is the outer peripheral side of the hollow fiber membrane bundle 31. On the side (Off side), air at 40 ° C. was flowed at 50 NL per minute.
Next, the temperature and pressure at each outlet were measured.
The results are shown in Table 1. The outside temperature decreased from 40 ° C to 29 ° C, and the temperature could be decreased by passing through this heat exchanger.
Further, when a gas in which 0.1 μm particles are dispersed is allowed to flow at a differential pressure of 100 kPag on the second flow path 34 side of the heat exchanger, no permeation of particles is observed on the first flow path 33 side. % Was blocking.

<実施例2>
内径125ミクロン、外径175ミクロンのPPSU製中空糸(空気透過性0.0003ml・min-1・cm-2・100kPa-1、水蒸気透過性としては0.2g・min-1・cm-2・MPa-1)を間口断面積が13.3cm2の箇体に30000本充填した、全長が180mmの中空糸の有効長さが140mmの熱交換器(中空糸の有効内面積1.64m2)を作製した。
この中空糸膜束31の管内側である第2流路34側(Swp側)に25℃の空気を毎分60NLで導入すると同時に、中空糸膜束31の外周側である第1流路33側(Off側)に40℃の空気を毎分50NLで流した。
各々の出口の温度と圧力を測定した。
結果を表1に示すが、外側の温度は40℃から30℃に低下し、この熱交換器を通すことで温度低下が可能だった。
また、この熱交換器の第2流路34側に0.1μmの粒子を分散させた気体を差圧100kPagで流した場合に、第1流路33側には、粒子の透過は見られず100%阻止していた。
<Example 2>
PPSU hollow fiber with an inner diameter of 125 microns and an outer diameter of 175 microns (air permeability: 0.0003ml ・ min −1・ cm −2・ 100kPa −1 , and water vapor permeability of 0.2g ・ min −1・ cm −2・ MPa − 1) is a frontage sectional area filled 30000 present in箇体of 13.3 cm 2, the total length is the effective length of the hollow yarn 180mm was fabricated heat exchanger 140 mm (within the effective area of the hollow fiber 1.64 m 2).
Air at 25 ° C. is introduced at 60 NL / min into the second flow path 34 side (Swp side) inside the hollow fiber membrane bundle 31 at the same time, and at the same time, the first flow path 33 is located on the outer peripheral side of the hollow fiber membrane bundle 31. On the side (Off side), air at 40 ° C. was flowed at 50 NL per minute.
The temperature and pressure at each outlet were measured.
The results are shown in Table 1. The outside temperature decreased from 40 ° C to 30 ° C, and the temperature could be lowered by passing through this heat exchanger.
Further, when a gas in which 0.1 μm particles are dispersed is allowed to flow at a differential pressure of 100 kPag on the second flow path 34 side of the heat exchanger, no permeation of particles is observed on the first flow path 33 side. % Was blocking.

<比較例1>
内径750ミクロン、外径1050ミクロンのPPSU製中空糸(空気透過性5ml・min-1・cm-2・100kPa-1、水蒸気透過性としては0.3g・min-1・cm-2・MPa-1)を開口断面積が13.3cm2の箇体に1000本充填した、全長が180mm中空糸の有効長さが140mmの熱交換器(中空糸の有効内面積0.33m2)を作製した。
この中空糸膜束31の管内側である第2流路34側(Swp側)に25℃の空気を毎分50NLで導入すると同時に、中空糸膜束31の外周側である第1流路33側(Off側)に40℃の空気を毎分50NLで流した。
各々の出口の温度と圧力を測定した。
結果を表1に示すが、外側の温度は40℃から34℃に低下し、この熱交換器を通すことで温度低下が可能だった。
しかしながら、この熱交換器の第2流路34側に0.1μmの粒子を分散させた気体を差圧100kPagで流した場合に、第1流路33側には、粒子の透過は見られ、阻止率は30%であり、この熱交換器を使用すると排気中のコンタミがエアコンディショナーに混入する可能性がある。
<Comparative Example 1>
PPSU hollow fiber with an inner diameter of 750 microns and an outer diameter of 1050 microns (air permeability 5ml · min -1 · cm -2 · 100kPa -1 and water vapor permeability 0.3g · min -1 · cm -2 · MPa -1 ) Was packed in a box having an opening cross-sectional area of 13.3 cm 2 , and a heat exchanger (effective inner area of the hollow fiber 0.33 m 2 ) having a total length of 180 mm and a hollow fiber effective length of 140 mm was produced.
Air at 25 ° C. is introduced at 50 NL / min into the second flow path 34 side (Swp side) that is the inside of the hollow fiber membrane bundle 31 at the same time, and at the same time, the first flow path 33 that is the outer peripheral side of the hollow fiber membrane bundle 31. On the side (Off side), air at 40 ° C. was flowed at 50 NL per minute.
The temperature and pressure at each outlet were measured.
The results are shown in Table 1. The outside temperature decreased from 40 ° C to 34 ° C, and the temperature could be lowered by passing through this heat exchanger.
However, when a gas in which 0.1 μm particles are dispersed is flowed at a differential pressure of 100 kPag on the second flow path 34 side of this heat exchanger, the permeation of particles is observed on the first flow path 33 side, and is blocked. The rate is 30%, and if this heat exchanger is used, there is a possibility that contamination in the exhaust will enter the air conditioner.

<比較例2>
内径750ミクロン、外径1050ミクロンのPPSU製中空糸(空気透過性0.00001ml・min-1・cm-2・100kPa-1、水蒸気透過性としては0.05g・min-1・cm-2・MPa-1)を開口断面積が13.3cm2の箇体に1000本充填した、全長が180mm中空糸の有効長さが140mmの熱交換器(中空糸の有効内面積0.33m2)を作製した。
この中空糸膜束31の管内側である第2流路34側(Swp側)に25℃の空気を毎分50NLで導入すると同時に、中空糸膜束31の外周側である第1流路33側(Off側)に40℃の空気を毎分50NLで流した。
各々の出口の温度と圧力を測定した。
結果を表1に示すが、外側の温度は40℃から36℃に低下するに留まった。
<Comparative Example 2>
PPSU hollow fiber with an inner diameter of 750 microns and an outer diameter of 1050 microns (air permeability of 0.00001ml · min −1 · cm −2 · 100kPa −1 , and water vapor permeability of 0.05g · min −1 · cm −2 · MPa A heat exchanger (effective inner area of hollow fiber 0.33 m 2 ) with a total length of 180 mm hollow fiber and 140 mm effective length was prepared by filling 1 ) 1 ) into a body having an opening cross-sectional area of 13.3 cm 2 .
Air at 25 ° C. is introduced at 50 NL / min into the second flow path 34 side (Swp side) that is the inside of the hollow fiber membrane bundle 31 at the same time, and at the same time, the first flow path 33 that is the outer peripheral side of the hollow fiber membrane bundle 31. On the side (Off side), air at 40 ° C. was flowed at 50 NL per minute.
The temperature and pressure at each outlet were measured.
The results are shown in Table 1, but the outside temperature only dropped from 40 ° C to 36 ° C.

<比較例3>
内径750ミクロン、外径1050ミクロンのPPSU製中空糸(空気透過性0.0003ml・min-1・cm-2・100kPa-1、水蒸気透過性としては0.2g・min-1・cm-2・MPa-1)を開口断面積が13.3cm2の箇体に200本充填した、全長が180mm中空糸の有効長さが140mmの熱交換器(中空糸の有効内面積0.07m2)を作製した。
この中空糸膜束31の管内側である第2流路34側(Swp側)に25℃の空気を毎分50NLで導入すると同時に、中空糸膜束31の外周側である第1流路33側(Off側)に40℃の空気を毎分50NLで流した。
各々の出口の温度と圧力を測定した。
結果を表1に示すが、外側の温度は40℃から38℃に低下するに留まった。
<Comparative Example 3>
PPSU hollow fiber with an inner diameter of 750 microns and an outer diameter of 1050 microns (air permeability of 0.0003ml · min −1 · cm −2 · 100kPa −1 , and water vapor permeability of 0.2g · min −1 · cm −2 · MPa A heat exchanger (effective inner area of hollow fiber 0.07 m 2 ) with a total length of 180 mm and a hollow fiber of 140 mm was prepared by filling 200 pieces into a 13.3 cm 2 body with an opening cross-sectional area of 1 ).
Air at 25 ° C. is introduced at 50 NL / min into the second flow path 34 side (Swp side) that is the inside of the hollow fiber membrane bundle 31 at the same time, and at the same time, the first flow path 33 that is the outer peripheral side of the hollow fiber membrane bundle 31. On the side (Off side), air at 40 ° C. was flowed at 50 NL per minute.
The temperature and pressure at each outlet were measured.
The results are shown in Table 1, but the outside temperature only dropped from 40 ° C to 38 ° C.

<表1>
空気透過係数 水蒸気透過係数 中空糸有効面積
(ml・min-1・cm-2・100kPa-1) (g・min-1・cm-2・MPa-1) (m2
実施例1 0.0003 0.2 0.33
実施例2 0.0003 0.2 1.64
比較例1 5 0.2 0.33
比較例2 0.00001 0.2 0.33
比較例3 0.0003 0.2 0.07

第1流路33側(Off側) 第2流路34側(Swp側) コンタミ阻止率
温度変化 温度変化 (%)
IN OUT IN OUT
実施例1 40 29 25 34 100
実施例2 40 30 25 32 100
比較例1 40 34 25 30 30
比較例2 40 36 25 27 100
比較例3 40 38 25 29 100
<Table 1>
Air permeability coefficient Water vapor permeability coefficient Hollow fiber effective area (ml ・ min −1・ cm -2・ 100kPa -1 ) (g ・ min -1・ cm -2・ MPa -1 ) (m 2 )
Example 1 0.0003 0.2 0.33
Example 2 0.0003 0.2 1.64
Comparative Example 1 5 0.2 0.33
Comparative Example 2 0.00001 0.2 0.33
Comparative Example 3 0.0003 0.2 0.07

1st flow path 33 side (Off side) 2nd flow path 34 side (Swp side) Contamination prevention rate
Temperature change Temperature change (%)
IN OUT IN OUT
Example 1 40 29 25 34 100
Example 2 40 30 25 32 100
Comparative Example 1 40 34 25 30 30
Comparative Example 2 40 36 25 27 100
Comparative Example 3 40 38 25 29 100

また、本発明は上述の考案を実施するための最良の形態に限らず本発明の要旨を逸脱することなくその他種々の構成を採り得ることはもちろんである。   Further, the present invention is not limited to the best mode for carrying out the above-described invention, and various other configurations can be adopted without departing from the gist of the present invention.

本発明の熱交換装置が適用されるフロー図である。It is a flowchart with which the heat exchange apparatus of this invention is applied. 本発明の熱交換装置が適用される他のフロー図である。It is another flowchart with which the heat exchange apparatus of this invention is applied. 本発明の熱交換装置を示す断面図である。It is sectional drawing which shows the heat exchange apparatus of this invention. 従来技術の熱交換装置が適用されるフロー図である。It is a flowchart with which the heat exchange apparatus of a prior art is applied.

符号の説明Explanation of symbols

1 給気ブロア
2 排気ブロア
3 熱交換器
4 エアコンディショナー
5 接着剤層
1 Air supply blower 2 Exhaust blower 3 Heat exchanger 4 Air conditioner 5 Adhesive layer

Claims (6)

室外空気を室内に供給するための給気ブロア(1)と、室内空気を室外へ排気するための排気ブロア(2)と、室内へ供給される室外空気と室外へ排気される室内空気とを熱交換させる熱交換器(3)とよりなる熱交換装置において、
前記熱交換器(3)が、複数本の中空糸膜により形成された中空糸膜束(31)と、前記中空糸膜束(31)を収容するケース(32)と、前記中空糸膜の中空内部を前記給気若しくは排気の何れか一方が通る第1流路(33)と、前記中空糸膜の外壁面側を前記給気若しくは排気の何れか他方が通る第2流路(34)とを備えた加湿膜モジュールであることを特徴とする熱交換装置。
An air supply blower (1) for supplying outdoor air to the room, an exhaust blower (2) for exhausting the room air to the outside, and the outdoor air supplied to the room and the room air exhausted to the outside. In the heat exchange device comprising the heat exchanger (3) for heat exchange,
The heat exchanger (3) includes a hollow fiber membrane bundle (31) formed by a plurality of hollow fiber membranes, a case (32) for housing the hollow fiber membrane bundle (31), and the hollow fiber membranes. A first flow path (33) through which either the air supply or exhaust passes through the hollow interior, and a second flow path (34) through which either the air supply or exhaust passes through the outer wall surface of the hollow fiber membrane. And a humidifying membrane module.
前記中空糸膜の空気透過性としての透過係数が0.0003〜2ml・min-1・cm-2・100kPa-1であることを特徴とする請求項1記載の熱交換装置。 The heat exchange apparatus according to claim 1, wherein the hollow fiber membrane has a permeability coefficient as air permeability of 0.0003 to 2 ml · min -1 · cm -2 · 100 kPa -1 . 前記中空糸膜の水蒸気透過性としての透過係数が0.1〜0.3g・min-1・cm-2・MPa-1であることを特徴とする請求項1または2記載の熱交換装置。 The heat exchange apparatus according to claim 1 or 2, wherein the hollow fiber membrane has a permeability coefficient of 0.1 to 0.3 g · min -1 · cm -2 · MPa -1 as water vapor permeability. 前記中空糸膜束(31)の有効内面積が0.1m2以上であることを特徴とする請求項1〜3のいずれか一項に記載の熱交換装置。 The heat exchange device according to any one of claims 1 to 3, wherein an effective inner area of the hollow fiber membrane bundle (31) is 0.1 m 2 or more. 前記中空糸膜が金属若しくは炭素の粒子又は繊維を含むことを特徴とする請求項1〜4のいずれか一項に記載の熱交換装置。   The heat exchange apparatus according to any one of claims 1 to 4, wherein the hollow fiber membrane includes metal or carbon particles or fibers. 前記熱交換器(3)を通過した給気がエアコンディショナー(4)に提供されることを特徴とする請求項1〜5のいずれか一項に記載の熱交換装置。   The heat exchange device according to any one of claims 1 to 5, wherein the air supply that has passed through the heat exchanger (3) is provided to an air conditioner (4).
JP2008209991A 2008-08-18 2008-08-18 Heat exchanging device Pending JP2010043813A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008209991A JP2010043813A (en) 2008-08-18 2008-08-18 Heat exchanging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008209991A JP2010043813A (en) 2008-08-18 2008-08-18 Heat exchanging device

Publications (1)

Publication Number Publication Date
JP2010043813A true JP2010043813A (en) 2010-02-25

Family

ID=42015337

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008209991A Pending JP2010043813A (en) 2008-08-18 2008-08-18 Heat exchanging device

Country Status (1)

Country Link
JP (1) JP2010043813A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080140A1 (en) * 2020-10-12 2022-04-21 Agc株式会社 Temperature adjustment device for vehicle and air conditioning device for vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100522A (en) * 1990-08-14 1992-04-02 Nok Corp Preparation of polyvinylidene fluoride porous hollow yarn membrane
JPH09206570A (en) * 1996-02-05 1997-08-12 Toray Ind Inc Separation membrane and its production
JPH11294805A (en) * 1998-04-07 1999-10-29 Matsushita Electric Ind Co Ltd Humidifier
JP2002289228A (en) * 2001-03-22 2002-10-04 Nok Corp Humidifier and its use
JP2005326047A (en) * 2004-05-12 2005-11-24 Mitsubishi Electric Corp Ventilation air conditioner
JP2007285584A (en) * 2006-04-14 2007-11-01 Daikin Ind Ltd Ventilation device
JP2008030697A (en) * 2006-07-31 2008-02-14 Denso Corp Air-conditioning system for vehicle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04100522A (en) * 1990-08-14 1992-04-02 Nok Corp Preparation of polyvinylidene fluoride porous hollow yarn membrane
JPH09206570A (en) * 1996-02-05 1997-08-12 Toray Ind Inc Separation membrane and its production
JPH11294805A (en) * 1998-04-07 1999-10-29 Matsushita Electric Ind Co Ltd Humidifier
JP2002289228A (en) * 2001-03-22 2002-10-04 Nok Corp Humidifier and its use
JP2005326047A (en) * 2004-05-12 2005-11-24 Mitsubishi Electric Corp Ventilation air conditioner
JP2007285584A (en) * 2006-04-14 2007-11-01 Daikin Ind Ltd Ventilation device
JP2008030697A (en) * 2006-07-31 2008-02-14 Denso Corp Air-conditioning system for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022080140A1 (en) * 2020-10-12 2022-04-21 Agc株式会社 Temperature adjustment device for vehicle and air conditioning device for vehicle
WO2022080029A1 (en) * 2020-10-12 2022-04-21 Agc株式会社 Humidity adjustment device for vehicle and air conditioner for vehicle

Similar Documents

Publication Publication Date Title
US20140262125A1 (en) Energy exchange assembly with microporous membrane
TWI311636B (en)
EP2767771B1 (en) Air temperature and humidity control device
EP2770266B1 (en) Regeneration air mixing for a membrane based hygroscopic material dehumidification system
JP2017506736A (en) Heat / mass transfer device and system including the same
CN107036224B (en) Fresh air unit with humidity adjusting function
JP2006308246A (en) Air conditioner
CN105594042B (en) Fluid communication membrane module
Bui et al. Studying the characteristics and energy performance of a composite hollow membrane for air dehumidification
CN105757853A (en) Heating, cooling and dehumidification integrated dehumidification loop and heating, cooling and dehumidification integrated dehumidifier adopting same
JP2013064549A (en) Air conditioning system
JP2009150632A (en) Structure and shape of indirect vaporization type cooler
JP5608050B2 (en) Air conditioning system
JP2010043813A (en) Heat exchanging device
JP2022551471A (en) Membrane based air conditioning system
JP2020038023A (en) Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body
JP6387191B2 (en) Ventilation device and air conditioner
JP6262445B2 (en) Total heat exchanger using water vapor permselective membrane
JP6352915B2 (en) Device with hygroscopic membrane and water vapor separator and heat exchanger with device with hygroscopic membrane
JP2011174629A (en) Air conditioner
WO2016076267A1 (en) Humidity exchanger and air-conditioner
JP2020038024A (en) Sheet for total heat exchange element, total heat exchange element, total heat exchanger, and steam separation body
CN206846977U (en) Humidify component and Fresh air handling units
JP2006305482A (en) Adsorption element
JPH07332716A (en) Humidifier

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130829

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131021

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140130