JP2010041880A - Excitation controller of self-excited ac generator in private power-generating facility - Google Patents

Excitation controller of self-excited ac generator in private power-generating facility Download PDF

Info

Publication number
JP2010041880A
JP2010041880A JP2008204391A JP2008204391A JP2010041880A JP 2010041880 A JP2010041880 A JP 2010041880A JP 2008204391 A JP2008204391 A JP 2008204391A JP 2008204391 A JP2008204391 A JP 2008204391A JP 2010041880 A JP2010041880 A JP 2010041880A
Authority
JP
Japan
Prior art keywords
generator
excitation
output
current
self
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008204391A
Other languages
Japanese (ja)
Inventor
Atsushi Mizuta
淳 水田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2008204391A priority Critical patent/JP2010041880A/en
Publication of JP2010041880A publication Critical patent/JP2010041880A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reliably trip a load breaker when a short-circuit failure occurs while power is supplied to a load from a private power-generating facility. <P>SOLUTION: An excitation controller is equipped with: a feedback circuit 171 for feeding back an excitation current of an excitation machine 5 to the output of an automatic voltage controller 4; a first addition and subtraction means 45 which outputs a difference between the excitation current fed back by the feedback circuit 171 and the output of the automatic voltage controller 4; a current transformer 15 for excitation which inputs the output current of a generator 2 and outputs it via a rectification element 16; and a second addition and subtraction means 15ad which adds the output of the first addition and subtraction means 45 and the output of the current transformer 15 for excitation. By compensating a reduction of excitation current of the excitation machine 5 caused by a reduction in output of the automatic voltage controller 4 due to a short-circuit failure within a protection range by a protection relay 132 of a load 122 supplied with power from the generator 2, with the output of the current transformer 15 for excitation. The output voltage of the generator 2 is kept at nearly a predetermined value even during the short-circuit failure, to prevent the protection relay 132 from being disabled during the short-circuit failure. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、自動電圧調整器により出力電圧が所定電圧に自動的に調整される自家発電設備における自励交流発電機の励磁制御装置に関するものである。   The present invention relates to an excitation control device for a self-excited AC generator in a private power generation facility in which an output voltage is automatically adjusted to a predetermined voltage by an automatic voltage regulator.

従来の自家発電設備における自励交流発電機の励磁制御装置は図8に示すように、駆動機1によって回転駆動される交流発電機2の出力端に接続された励磁用変圧器3の出力を電源とする自動電圧調整器(AVR)4の直流出力を、交流発電機2に直結された回転形の励磁機5の励磁機界磁巻線6に界磁遮断器7を介して供給し、励磁機5の出力は整流器8を介して交流発電機2の発電機界磁巻線9に供給されるように構成されている。自動電圧調整器4は、交流発電機2の出力電圧を計器用変圧器10を介して入力し交流発電機2の出力電圧が所定の電圧となるように励磁機界磁巻線6への給電量を制御する。(特許文献1参照)   As shown in FIG. 8, the excitation control device for a self-excited AC generator in a conventional private power generation facility outputs the output of the excitation transformer 3 connected to the output end of the AC generator 2 that is rotationally driven by the driver 1. A DC output of an automatic voltage regulator (AVR) 4 serving as a power source is supplied to an exciter field winding 6 of a rotary exciter 5 directly connected to the AC generator 2 via a field breaker 7. The output of the exciter 5 is configured to be supplied to the generator field winding 9 of the AC generator 2 via the rectifier 8. The automatic voltage regulator 4 inputs the output voltage of the AC generator 2 via the instrument transformer 10 and supplies power to the exciter field winding 6 so that the output voltage of the AC generator 2 becomes a predetermined voltage. Control the amount. (See Patent Document 1)

負荷121,122は交流発電機2から給電線11を介して給電される。例えば負荷122側に短絡事故が発生した場合は、負荷122は、過電流リレー132の動作により負荷遮断器142がトリップすることにより短絡電流から保護される。   The loads 121 and 122 are fed from the AC generator 2 through the feeder line 11. For example, when a short circuit accident occurs on the load 122 side, the load 122 is protected from the short circuit current by tripping the load circuit breaker 142 by the operation of the overcurrent relay 132.

特開平4−285458号公報(図5及びその説明)Japanese Patent Laid-Open No. 4-285458 (FIG. 5 and description thereof)

図8に示す自家発電設備における自励交流発電機の励磁制御装置においては、例えば負荷122側に短絡事故が発生した場合、発電機2の出力電圧が急激に低下することにより自動電圧調整器4の電源電圧(励磁用変圧器3の出力電圧)も急激に低下し、その結果、自動電圧調整器4から給電される励磁機励磁巻線6の励磁電流も急減し、発電機励磁巻線9の励磁電流も急減するため、過電流リレー132の動作電流不足により負荷遮断器142がトリップしない場合が生じる可能性があり、その場合は、発電機2の出力が急減することから、負荷121も動作できなくなる。従って、短絡事故発生時には対応負荷遮断器142のトリップが確実に行われるようにする必要がある。   In the excitation control device for a self-excited AC generator in the private power generation facility shown in FIG. 8, for example, when a short-circuit accident occurs on the load 122 side, the output voltage of the generator 2 is suddenly reduced, so that the automatic voltage regulator 4 As a result, the excitation current of the exciter excitation winding 6 fed from the automatic voltage regulator 4 also decreases abruptly, and the generator excitation winding 9 Since the exciting current of the generator also decreases rapidly, there is a possibility that the load breaker 142 will not trip due to insufficient operating current of the overcurrent relay 132. In this case, the output of the generator 2 rapidly decreases, and the load 121 also It becomes impossible to operate. Therefore, it is necessary to ensure that the corresponding load circuit breaker 142 is tripped when a short circuit accident occurs.

この発明は、前述のような実情に鑑みてなされたもので、自家発電設備による負荷への給電時に短絡事故が発生した場合に負荷遮断器のトリップが確実に行われるようにすることを目的とするものである。   The present invention has been made in view of the above-described circumstances, and an object thereof is to ensure that a trip of a load circuit breaker is performed when a short-circuit accident occurs when power is supplied to a load by a private power generation facility. To do.

この発明に係る自家発電設備における自励交流発電機の励磁制御装置は、励磁用変圧器を介して発電機の出力から電源をとり計器用変圧器を介して入力した前記発電機の出力電圧に応動して可変の内部設定値に基づいて出力する自動電圧調整器、前記発電機の励磁機の励磁電流を前記自動電圧調整器の出力にフィードバックするフィードバック回路、このフィードバック回路によってフィードバックされた前記励磁電流と前記自動電圧調整器の出力との差を出力する第1の加減算手段、前記発電機の出力電流を入力し整流要素を介して出力する励磁用変流器、および前記第1の加減算手段の出力と前記励磁用変流器の出力とを加算する第2の加減算手段を備え、前記発電機から給電される負荷の保護リレーによる保護範囲で生じた短絡事故による前記自動電圧調整器の出力低下による前記励磁機の励磁電流の減少を前記励磁用変流器の出力で補償して前記発電機の前記出力電圧を前記短絡事故時でもほぼ所定値に維持して前記保護リレーの前記短絡時の不動作を防止するものである。   The excitation control device for the self-excited AC generator in the private power generation facility according to the present invention takes the power from the output of the generator via the excitation transformer and converts it into the output voltage of the generator input via the instrument transformer. An automatic voltage regulator that responds and outputs an output based on a variable internal set value, a feedback circuit that feeds back an excitation current of the exciter of the generator to an output of the automatic voltage regulator, and the excitation that is fed back by the feedback circuit First addition / subtraction means for outputting the difference between the current and the output of the automatic voltage regulator, an excitation current transformer for inputting the output current of the generator and outputting it via a rectifying element, and the first addition / subtraction means And a second adder / subtracter that adds the output of the current transformer for excitation to a short-circuit accident that occurs in the protection range of the protection relay of the load fed from the generator The decrease in the excitation current of the exciter due to the decrease in the output of the automatic voltage regulator is compensated by the output of the excitation current transformer, and the output voltage of the generator is maintained at a substantially predetermined value even in the case of the short-circuit accident. This prevents the protective relay from malfunctioning during the short circuit.

この発明は、励磁用変圧器を介して発電機の出力から電源をとり計器用変圧器を介して入力した前記発電機の出力電圧に応動して可変の内部設定値に基づいて出力する自動電圧調整器、前記発電機の励磁機の励磁電流を前記自動電圧調整器の出力にフィードバックするフィードバック回路、このフィードバック回路によってフィードバックされた前記励磁電流と前記自動電圧調整器の出力との差を出力する第1の加減算手段、前記発電機の出力電流を入力し整流要素を介して出力する励磁用変流器、および前記第1の加減算手段の出力と前記励磁用変流器の出力とを加算する第2の加減算手段を備え、前記発電機から給電される負荷の保護リレーによる保護範囲で生じた短絡事故による前記自動電圧調整器の出力低下による前記励磁機の励磁電流の減少を前記励磁用変流器の出力で補償して前記発電機の前記出力電圧を前記短絡事故時でもほぼ所定値に維持して前記保護リレーの前記短絡時の不動作を防止するようにしたので、自家発電設備による負荷への給電時に短絡事故が発生した場合に負荷遮断器のトリップが確実に行われる効果がある。   The present invention relates to an automatic voltage output from a generator output via an excitation transformer and output based on a variable internal set value in response to an output voltage of the generator input via an instrument transformer. A regulator, a feedback circuit that feeds back an excitation current of an exciter of the generator to an output of the automatic voltage regulator, and outputs a difference between the excitation current fed back by the feedback circuit and an output of the automatic voltage regulator First addition / subtraction means, an excitation current transformer that inputs the output current of the generator and outputs it via a rectifier element, and adds the output of the first addition / subtraction means and the output of the excitation current transformer. Excitation of the exciter due to a decrease in output of the automatic voltage regulator due to a short circuit accident caused by a short circuit accident caused by a protective relay of a load fed from the generator, comprising second addition / subtraction means The decrease in the current is compensated by the output of the current transformer for excitation, and the output voltage of the generator is maintained at a substantially predetermined value even in the case of the short circuit accident so as to prevent the protection relay from malfunctioning at the time of the short circuit. Therefore, there is an effect that the trip of the load circuit breaker is reliably performed when a short-circuit accident occurs when power is supplied to the load by the private power generation facility.

実施の形態1.
以下この発明の実施の形態1を図1〜図3により説明する。図1は自家発電設備およびその給電系統の一例を示す接続図、図2は図1における励磁制御装置の励磁制御系を各部の伝達関数を含めて例示するブロック図、図3は図1の機能および動作を説明する図である。
Embodiment 1 FIG.
Embodiment 1 of the present invention will be described below with reference to FIGS. FIG. 1 is a connection diagram showing an example of a private power generation facility and its power supply system, FIG. 2 is a block diagram illustrating the excitation control system of the excitation control device in FIG. 1 including the transfer functions of each part, and FIG. 3 is a function of FIG. It is a figure explaining operation | movement.

図1において、駆動機1によって回転駆動される交流発電機2の出力端に接続された励磁用変圧器3の出力を電源とする自動電圧調整器(AVR)4の直流出力を、交流発電機2に直結された回転形の励磁機5の励磁機界磁巻線6に界磁遮断器7を介して供給し、励磁機5の出力は整流器8を介して交流発電機2の発電機界磁巻線9に供給されるように構成されている。自動電圧調整器4は、交流発電機2の出力電圧を計器用変圧器10を介して入力し交流発電機2の出力電圧が所定の電圧となるように励磁機界磁巻線6への給電量を制御する。なお、交流発電機2の起動は、初期駆動電源18から励磁機5の励磁機界磁巻線6に給電し、他励式の励磁方式で行われ、起動後は初期駆動電源18がその内蔵遮断器により切り離され、それ以降は、前記自励磁方式で発電機2の運転が行われる。   In FIG. 1, the direct current output of an automatic voltage regulator (AVR) 4 that uses the output of an excitation transformer 3 connected to the output terminal of an alternating current generator 2 that is rotationally driven by a drive 1 as a power source is represented by an alternating current generator. 2 is supplied to an exciter field winding 6 of a rotary exciter 5 directly connected to 2 via a field breaker 7, and the output of the exciter 5 is supplied to a generator field of the AC generator 2 via a rectifier 8. It is configured to be supplied to the magnetic winding 9. The automatic voltage regulator 4 inputs the output voltage of the AC generator 2 via the instrument transformer 10 and supplies power to the exciter field winding 6 so that the output voltage of the AC generator 2 becomes a predetermined voltage. Control the amount. The AC generator 2 is started by supplying power from the initial drive power supply 18 to the exciter field winding 6 of the exciter 5 and using the separately excited excitation method. After the start-up, the initial drive power supply 18 is turned off. After that, the generator 2 is operated by the self-excitation method.

交流発電機2の出力は給電線11を介して、自家発電設備の負荷121,122に供給される。負荷121は、対応する過電流リレー131が当該負荷121側での短絡事故の発生により作動すると、対応する負荷遮断器141がトリップし、交流発電機2から切り離される。同様に、負荷122は、対応する過電流リレー132が当該負荷122側での短絡事故の発生により作動すると、対応する負荷遮断器142がトリップし、交流発電機2から切り離される。   The output of the AC generator 2 is supplied to the loads 121 and 122 of the private power generation facility via the feeder line 11. When the corresponding overcurrent relay 131 is activated due to the occurrence of a short circuit accident on the load 121 side, the corresponding load breaker 141 trips and the load 121 is disconnected from the AC generator 2. Similarly, when the corresponding overcurrent relay 132 is activated due to the occurrence of a short circuit accident on the load 122 side, the corresponding load breaker 142 trips and the load 122 is disconnected from the AC generator 2.

多数のタップが設けられた励磁用変流器15は整流器16を介して、励磁機5の励磁機界磁巻線6と自動電圧調整器4との間に接続点15adで接続され、接続点15adは加減算手段となり励磁用変流器15の出力と自動電圧調整器4の出力とを加算する。この加算により、後述のように、発電機2から給電される負荷の過電流リレー(保護リレー)による保護範囲で生じた短絡事故による自動電圧調整器4の出力低下による励磁機5の励磁電流の減少を補償して発電機の出力電圧を短絡事故時でもほぼ所定値に維持して保護リレーの短絡時の不動作を防止し、また、健全な他の負荷への発電機2からの給電が維持される。なお、励磁機5の励磁電流はシャント(分流器)17で検出され伝送路171を介して自動電圧調整器4の入力端17inから自動電圧調整器4にフィードバックされ、自動電圧調整器4は励磁機5の実励磁電流が所定値になるような出力をその出力端4outから出す。   The excitation current transformer 15 provided with a large number of taps is connected via a rectifier 16 between the exciter field winding 6 of the exciter 5 and the automatic voltage regulator 4 at a connection point 15ad. 15ad serves as an addition / subtraction means for adding the output of the exciting current transformer 15 and the output of the automatic voltage regulator 4. As a result of this addition, as will be described later, the excitation current of the exciter 5 due to a decrease in the output of the automatic voltage regulator 4 due to a short circuit accident caused by a short circuit accident caused by an overcurrent relay (protection relay) of the load fed from the generator 2 Compensating for the decrease, the output voltage of the generator is maintained at a predetermined value even in the event of a short-circuit accident to prevent malfunction of the protective relay when it is short-circuited. Maintained. The exciting current of the exciter 5 is detected by a shunt (divider) 17 and fed back to the automatic voltage regulator 4 from the input terminal 17in of the automatic voltage regulator 4 via the transmission line 171. The automatic voltage regulator 4 is excited. An output is output from the output terminal 4out so that the actual excitation current of the machine 5 becomes a predetermined value.

負荷121,122は交流発電機2から給電線11を介して給電され、例えば負荷122側に短絡事故が発生した場合は、負荷122は、過電流リレー132の動作により負荷遮断器142がト
リップすることにより短絡電流から保護される。
The loads 121 and 122 are supplied with power from the AC generator 2 through the power supply line 11. For example, when a short circuit accident occurs on the load 122 side, the load breaker 142 trips due to the operation of the overcurrent relay 132. This protects against short-circuit current.

次に図1における励磁制御装置の励磁制御系を各部の伝達関数を含めて図2によって説明する。   Next, the excitation control system of the excitation control device in FIG. 1 will be described with reference to FIG.

図2において、自動電圧調整器4内では、計器用変圧器10を含む伝送路101を介して入力端101inで入力した発電機2の出力電圧と制御目標値とを加算手段41で加算し、発電機2の出力電圧と制御目標値との差の信号が加算手段41から出力される。   In FIG. 2, in the automatic voltage regulator 4, the adding means 41 adds the output voltage of the generator 2 and the control target value input at the input terminal 101 in via the transmission line 101 including the instrument transformer 10, A signal indicating the difference between the output voltage of the generator 2 and the control target value is output from the adding means 41.

加算手段41の出力はゲインK1の増幅部A42で増幅され、増幅部A42の出力は可変の伝達関数((1+Tlead・S)/(1+Tlag・S))の位相補償部43を経て次段のゲインK2の増幅部B44で増幅されて第1の加減算手段45の一方の入力側に入力される。   The output of the adding means 41 is amplified by the amplifying unit A42 having a gain K1, and the output of the amplifying unit A42 is passed through the phase compensation unit 43 having a variable transfer function ((1 + Tlead · S) / (1 + Tlag · S)). Amplified by the amplification unit B44 of K2 and inputted to one input side of the first addition / subtraction means 45.

第1の加減算手段45の他方の入力側には、固定の伝達関数(KE/(1+TE・S))の励磁機5の実励磁電流がシャント17を含むフィードバック信号路171を介して自動電圧調整器4の入力端17eから入力される。   On the other input side of the first addition / subtraction means 45, the actual excitation current of the exciter 5 having a fixed transfer function (KE / (1 + TE · S)) is automatically adjusted via the feedback signal path 171 including the shunt 17. Input from the input end 17e of the device 4.

第1の加減算手段45における一方の入力側の前記入力と他方の入力側の前記入力との差の信号が、自動電圧調整器4の出力として自動電圧調整器4の出力端4outから出力され、次段の第2の加減算手段(前記接続点)15adの一方の入力側に入力される。   A signal of a difference between the input on one input side and the input on the other input side in the first addition / subtraction means 45 is output from the output terminal 4out of the automatic voltage regulator 4 as an output of the automatic voltage regulator 4; The signal is input to one input side of the second addition / subtraction means (the connection point) 15ad in the next stage.

第2の加減算手段(前記接続点)15adの他方の入力側には、可変の伝達関数(KEXCT/(1+TEXCT・S))の励磁用変流器15で検出された発電機2の実出力電流が、励磁用変流器15を含む伝送路161を介して入力される。   On the other input side of the second addition / subtraction means (the connection point) 15ad, the actual output current of the generator 2 detected by the exciting current transformer 15 having a variable transfer function (KEXCT / (1 + TEXCT · S)). Is input via the transmission line 161 including the current transformer 15 for excitation.

第2の加減算手段(前記接続点)15adにおける一方の入力側の前記入力に他方の入力側の前記入力を加えたトータルのとの和(電流の和)が励磁機5の界磁巻線6に励磁電流として流れる。   The sum (current sum) obtained by adding the input on the other input side to the input on one input side in the second addition / subtraction means (the connection point) 15ad is the field winding 6 of the exciter 5. Flows as an excitation current.

前述の段落0015〜0020に記載の制御系により制御された励磁電流の励磁機5の出力により発電機2の出力制御が行われ、図3に例示の機能および動作をする。   The output control of the generator 2 is performed by the output of the exciter 5 of the exciting current controlled by the control system described in the above paragraphs 0015 to 0020, and the functions and operations illustrated in FIG. 3 are performed.

図3において、発電機2は、前述の可変の各伝達関数の設定、励磁用変流器15のタップの選定に基づき、前述の段落0015〜0020に記載の伝送系による制御により、定常運転時には負荷121,122に見合った所定の電圧2out、所定の出力の運転が行われる。   In FIG. 3, the generator 2 is controlled during the steady operation by the control by the transmission system described in the above paragraphs 0015 to 0020 based on the setting of each variable transfer function described above and the selection of the tap of the current transformer 15 for excitation. An operation with a predetermined voltage 2out and a predetermined output corresponding to the loads 121 and 122 is performed.

図8に例示の例示制御装置では、定常運転状態において、例えば、時刻t1で負荷122
側で短絡事故が発生した場合は、短絡電流の発生に伴い発電機2の出力電圧2outは一点差線(28out(図8))に示すように急減し、正常動作できなくなった自動電圧調整器(AVR)4の出力4outも一点差線(158out(図8)))に示すように急減し、励磁機界磁巻線6の励磁電流も一点差線(6018 励磁電流(図8))に示すように急減し、発電機2以外に他から電力補給がない状態では短絡電流も急減するため、動作時間Tの過電流リレー132は不動作状態となり時刻t2で遮断器142はトリップすることができず負荷122側の短絡事故区間の切り離しができない上、健全な負荷121への発電機2からの給電も行われなくなる可能性が残る。
In the exemplary control apparatus illustrated in FIG. 8, in a steady operation state, for example, at time t1, the load 122
When a short circuit accident occurs on the side, the output voltage 2out of the generator 2 suddenly decreases as shown by the one-dotted line (28out (Fig. 8)) due to the occurrence of the short circuit current, and the automatic voltage regulator that cannot operate normally The output 4out of (AVR) 4 also decreases sharply as shown by the one-point difference line (158out (FIG. 8)), and the excitation current of the exciter field winding 6 also changes to the one-point difference line (6018 excitation current (FIG. 8)). As shown in the figure, the current suddenly decreases and the short-circuit current also decreases rapidly when there is no power supply other than the generator 2, so that the overcurrent relay 132 at the operation time T becomes inactive and the circuit breaker 142 may trip at time t2. In addition, the short circuit accident section on the load 122 side cannot be separated, and there is a possibility that the power supply from the generator 2 to the healthy load 121 will not be performed.

これに対し、図1および図2に例示の本実施の形態によれば、前述の可変の各伝達関数の設定、励磁用変流器15のタップの選定に基づき、前述の段落0015〜0020に記載の伝送系による制御により、定常運転時には負荷121,122に見合った所定の電圧2out、所定の出力の定常運転が行われている状態において、例えば、時刻t1で負荷122側で短絡事故が発生した場合は、短絡電流の発生に伴い発電機2の出力電圧2outは急減しようとし、自動電圧調整器(AVR)4の出力4outも急減しようとし、励磁機界磁巻線6の励磁電流も急減しようとするが、励磁用変流器15の出力が短絡電流により増加しこの増加した出力15outが前記第2の加減算手段(接続点)15adで、減少しようとする自動電圧調整器(AVR)4の出力4outに依存して減少しようとする励磁電流に加算され、この短絡時に加算されたトータル励磁電流(4out+15out)が図3に太い実線で示されているように定常運転時のトータル励磁電流(4out+15out)と同じほぼ同じであれば、つまりほぼ同じになるように前述の可変の各伝達関数の設定、励磁用変流器15のタップの選定を行ってあれば、短絡電流は所定期間持続し過電流リレー132が動作し、時刻t2で遮断器142がトリップして負荷122側の短絡事故区間の切り離しが行われ、自動電圧調整器4の出力4outも図3に太い実線で示されているように大幅に急減することなく、発電機2の出力も図3に太い実線で示されているように大幅に急減することなく、他の健全負荷121への給電が継続して行われる。   On the other hand, according to the present embodiment illustrated in FIGS. 1 and 2, the above paragraphs 0015 to 0020 are based on the setting of each variable transfer function described above and the selection of the tap of the current transformer 15 for excitation. By the control by the described transmission system, for example, a short-circuit accident occurs at the load 122 side at the time t1 in a state where the steady operation of the predetermined voltage 2out and the predetermined output corresponding to the loads 121 and 122 is performed during the steady operation. In this case, the output voltage 2out of the generator 2 tries to suddenly decrease with the occurrence of the short circuit current, the output 4out of the automatic voltage regulator (AVR) 4 also tries to suddenly decrease, and the excitation current of the exciter field winding 6 also suddenly decreases. The output of the current transformer 15 for excitation increases due to a short-circuit current, and the increased output 15out is reduced by the second addition / subtraction means (connection point) 15ad by the automatic voltage regulator (AVR) 4 to be decreased. Decrease depending on the output of 4out If the total excitation current (4out + 15out) added at the time of short circuit is almost the same as the total excitation current (4out + 15out) during steady operation as shown by the thick solid line in FIG. In other words, if the above-described variable transfer functions are set so as to be substantially the same, and the tap of the excitation current transformer 15 is selected, the short-circuit current lasts for a predetermined period and the overcurrent relay 132 operates. At t2, the circuit breaker 142 trips and the short circuit accident section on the load 122 side is disconnected, and the output 4out of the automatic voltage regulator 4 does not drastically decrease as shown by the thick solid line in FIG. As shown by the thick solid line in FIG. 3, the output of the generator 2 is not drastically reduced, but power is supplied to the other healthy loads 121 continuously.

このように、励磁用変圧器3を介して発電機2の出力から電源をとり計器用変圧器10を介して入力した前記発電機2の出力電圧に応動して可変の内部設定値に基づいて出力する自動電圧調整器4、前記発電機2の励磁機5の励磁電流を前記自動電圧調整器4の出力にフィードバックするフィードバック回路171、このフィードバック回路171によってフィードバックされた前記励磁電流と前記自動電圧調整器4の出力との差を出力する第1の加減算手段45、前記発電機2の出力電流を入力し整流要素16を介して出力する励磁用変流器15、および前記第1の加減算手段45の出力と前記励磁用変流器15の出力とを加算する第2の加減算手段15adを備え、前記発電機2から給電される負荷122の保護リレー132による保護範囲で生じた短絡事故による前記自動電圧調整器4の出力低下による前記励磁機5の励磁電流の減少を前記励磁用変流器15の出力で補償して前記発電機2の前記出力電圧を前記短絡事故時でもほぼ所定値に維持して前記保護リレー132の前記短絡時の不動作を防止することにより、自家発電設備による給電時に負荷122側で短絡事故が発生した場合に負荷遮断器142のトリップが確実に行われる。また、他の健全負荷121への給電が継続して行われる。   Thus, based on the variable internal setting value in response to the output voltage of the generator 2 input from the output of the generator 2 through the excitation transformer 3 and input through the instrument transformer 10. The automatic voltage regulator 4 to be output, the feedback circuit 171 for feeding back the excitation current of the exciter 5 of the generator 2 to the output of the automatic voltage regulator 4, the excitation current and the automatic voltage fed back by the feedback circuit 171 A first addition / subtraction means 45 that outputs a difference from the output of the regulator 4, an excitation current transformer 15 that inputs the output current of the generator 2 and outputs it via the rectifier element 16, and the first addition / subtraction means The second adder / subtractor 15ad for adding the output of 45 and the output of the excitation current transformer 15 is provided, and a short-circuit accident occurred in the protection range by the protection relay 132 of the load 122 fed from the generator 2 Therefore, the decrease in the excitation current of the exciter 5 due to the decrease in the output of the automatic voltage regulator 4 is compensated by the output of the current transformer 15 for excitation, and the output voltage of the generator 2 is almost predetermined even at the time of the short circuit accident. By maintaining the value to prevent malfunction of the protective relay 132 during the short circuit, the trip of the load circuit breaker 142 is reliably performed when a short circuit accident occurs on the load 122 side during power feeding by the private power generation facility . In addition, power supply to other healthy loads 121 is continuously performed.

また、前述とは異なる観点で、前述の短絡時に加算されたトータル励磁電流(4out+15out)が図3に太い実線で示されているように定常運転時のトータル励磁電流(4out+15out)と同じほぼ同じになるように前述の可変の各伝達関数の設定、励磁用変流器15のタップの選定等の設定、調整作業は、これまでの一般通念からすれば、発電設備の現地据付時の調整試験作業で行うことになるが、本実施の形態によれば、現地据付時の調整試験作業で行わずに設計段階での設定、励磁用変流器15のタップの選定などを行うことが可能となる。   Also, from a different point of view, the total excitation current (4out + 15out) added at the time of the short circuit is almost the same as the total excitation current (4out + 15out) during steady operation as shown by the thick solid line in FIG. As described above, according to conventional general wisdom, the above-described variable transfer function settings, tap selection of the excitation current transformer 15, etc., and adjustment work are adjustment test work at the time of on-site installation of power generation equipment. However, according to the present embodiment, setting at the design stage, selection of the tap of the current transformer 15 for excitation, and the like can be performed without performing the adjustment test work at the time of field installation. .

例えば、励磁用変流器15のタップの選定に当たっては、持続短絡電流を流すために大きくしすぎると、負荷遮断時に電圧変動が大きくなるなどの問題が生じるので、これまでの一般通念からすれば、発電設備の現地据付時の調整試験作業で励磁用変流器15のタップを変更したり、自動電圧調整器(AVR)4の制御定数を再調整することになるが、本実施の形態によれば、現地据付時の調整試験作業で行わずに設計段階で励磁用変流器15のタップの適正選定、自動電圧調整器(AVR)4の制御定数の調整などを行うことが可能となる。   For example, when selecting the tap of the current transformer 15 for excitation, if it is made too large to pass a continuous short-circuit current, a problem such as a large voltage fluctuation occurs when the load is interrupted. In the present embodiment, the tap of the exciting current transformer 15 is changed or the control constant of the automatic voltage regulator (AVR) 4 is readjusted in the adjustment test work at the time of installation of the power generation equipment. According to this, it is possible to appropriately select the tap of the excitation current transformer 15 and adjust the control constant of the automatic voltage regulator (AVR) 4 at the design stage, without performing the adjustment test work at the time of field installation. .

以下、前記設計段階での設定調整、励磁用変流器15のタップの選定などをどのようにして行うか、その事例を簡明に説明する。
励磁用変流器のタップ選定については、発電機定格電流、三相短絡時の界磁電流から励磁用変流器の一次電流、二次電流、容量を計算ツールで別途計算し、最適なタップを選定する。
またAVRの制御定数は発電機、励磁機および励磁機用変流器の定格や定数のデータを自動計算ツールに入力することで設定値が自動計算される。
Hereinafter, examples of how to perform setting adjustment and selection of taps of the current transformer 15 for excitation in the design stage will be briefly described.
For the selection of the excitation current transformer tap, calculate the primary current, secondary current, and capacity of the current transformer for excitation separately from the rated current of the generator and the field current at the time of three-phase short circuit. Is selected.
The AVR control constants are automatically calculated by inputting the rating and constant data of the generator, exciter and current transformer for the exciter into the automatic calculation tool.

実施の形態2.
本実施の形態2は、図4および図5に例示してあるように、励磁機5として静止形励磁機を使用する場合の事例である。図4は自家発電設備およびその給電系統の一例を示す接続図、図5は図4における励磁制御装置の励磁制御系を各部の伝達関数を含めて例示するブロック図である。
図5では、励磁機5の伝達関数が(KE/(1+TE・S))となる点が前述の実施の形態1の図2と異なる。
Embodiment 2. FIG.
The second embodiment is a case where a static exciter is used as the exciter 5 as illustrated in FIGS. 4 and 5. FIG. 4 is a connection diagram showing an example of the private power generation facility and its power supply system, and FIG. 5 is a block diagram illustrating the excitation control system of the excitation control device in FIG. 4 including the transfer functions of each part.
5 is different from FIG. 2 of the first embodiment described above in that the transfer function of the exciter 5 is (KE / (1 + TE · S) 3 ).

本実施の形態2も、前述の実施の形態1と同様の機能で同様な効果を奏する。   The second embodiment also has the same functions and functions as those of the first embodiment.

実施の形態3.
以下、本実施の形態3を、励磁制御装置の励磁制御系を各部の伝達関数を含めて例示するブロック図である図6により説明する。
Embodiment 3 FIG.
Hereinafter, the third embodiment will be described with reference to FIG. 6 which is a block diagram illustrating the excitation control system of the excitation control device including the transfer functions of each part.

従来の自励交流発電機の励磁制御装置は、過励磁制限機能を設ける場合は外部に界磁を減ずる装置を設置する必要があったが、本実施の形態3では、前述の実施の形態1の図2における伝達関数ブロック図に、過励磁制限ブロック46を追加することより、励磁用変流器15からの電流を加味した界磁電流制御が可能となるため、自動電圧調整器(AVR)4で過界磁を制限することができる。   In the conventional self-excited AC generator excitation control device, when the overexcitation limiting function is provided, it is necessary to install an external device for reducing the field. In the third embodiment, the first embodiment described above is used. By adding an overexcitation limit block 46 to the transfer function block diagram of FIG. 2, field current control can be performed in consideration of the current from the current transformer 15 for excitation, so that an automatic voltage regulator (AVR) 4 can limit the overfield.

なお、本実施の形態3では、過励磁制限ブロック46は、伝達関数(KF461)、伝達関数(1/(TF・S))、および加算手段463を有しているものを例示してある。
また、本実施の形態3も、前述の実施の形態1と同様の機能で同様な効果を奏する。
In the third embodiment, the overexcitation limiting block 46 is illustrated as having the transfer function (KF461), the transfer function (1 / (TF · S)), and the adding means 463.
In addition, the third embodiment also has the same function and the same effect as the first embodiment.

実施の形態4.
以下、本実施の形態4を、励磁制御装置の励磁制御系を各部の伝達関数を含めて例示するブロック図である図7により説明する。
Embodiment 4 FIG.
Hereinafter, the fourth embodiment will be described with reference to FIG. 7, which is a block diagram illustrating the excitation control system of the excitation control device including the transfer functions of each part.

本実施の形態4では、前述の実施の形態2の図5における伝達関数ブロック図に、過励磁制限ブロック46を追加することより、励磁機5として静止形励磁機を使用する場合においても、励磁用変流器15からの電流を加味した界磁電流制御が可能となるため、自動電圧調整器(AVR)4で過界磁を制限することができる。
また、本実施の形態4も、前述の実施の形態1と同様の機能で同様な効果を奏する。
In the fourth embodiment, by adding an overexcitation limit block 46 to the transfer function block diagram in FIG. 5 of the above-described second embodiment, even when a static exciter is used as the exciter 5, excitation is performed. The field current can be controlled in consideration of the current from the current transformer 15, so that the overvoltage can be limited by the automatic voltage regulator (AVR) 4.
The fourth embodiment also has the same function and the same effect as the first embodiment.

なお、図1〜図8において、同一符合は同一または相当部分を示す。   1 to 8, the same reference numerals indicate the same or corresponding parts.

この発明の実施の形態1を示す図で、自家発電設備およびその給電系統の一例を示す接続図である。It is a figure which shows Embodiment 1 of this invention, and is a connection diagram which shows an example of private power generation equipment and its electric power feeding system. この発明の実施の形態1を示す図で、図1における励磁制御装置の励磁制御系を各部の伝達関数を含めて例示するブロック図である。FIG. 2 is a diagram illustrating the first embodiment of the present invention, and is a block diagram illustrating an excitation control system of the excitation control device in FIG. 1 including a transfer function of each part. この発明の実施の形態1を示す図で、図1の機能および動作を説明する図である。It is a figure which shows Embodiment 1 of this invention, and is a figure explaining the function and operation | movement of FIG. この発明の実施の形態2を示す図で、自家発電設備およびその給電系統の一例を示す接続図である。It is a figure which shows Embodiment 2 of this invention, and is a connection diagram which shows an example of private power generation equipment and its electric power feeding system. この発明の実施の形態2を示す図で、図4における励磁制御装置の励磁制御系を各部の伝達関数を含めて例示するブロック図である。FIG. 5 is a diagram illustrating a second embodiment of the present invention, and is a block diagram illustrating an excitation control system of the excitation control device in FIG. 4 including transfer functions of respective parts. この発明の実施の形態3を示す図で、励磁制御装置の励磁制御系を各部の伝達関数を含めて例示するブロック図である。It is a figure which shows Embodiment 3 of this invention, and is a block diagram which illustrates the excitation control system of an excitation control apparatus including the transfer function of each part. この発明の実施の形態4を示す図で、励磁制御装置の励磁制御系を各部の伝達関数を含めて例示するブロック図である。It is a figure which shows Embodiment 4 of this invention, and is a block diagram which illustrates the excitation control system of an excitation control apparatus including the transfer function of each part. 従来の自家発電設備およびその給電系統の例を示す接続図である。It is a connection diagram which shows the example of the conventional private power generation equipment and its electric power feeding system.

符号の説明Explanation of symbols

1 駆動機、
2 交流発電機、
3 励磁用変圧器、
4 自動電圧調整器(AVR)、
401 伝送路、
4out 出力端、
45 第1の加減算手段、
5 励磁機、
6 励磁機界磁巻線、
7 界磁遮断器、
8 整流器、
9 発電機界磁巻線、
10 計器用変圧器、
101 伝送路、
10in 入力端、
11 給電線、
121,122 負荷、
131,132 過電流リレー、
141,142 負荷遮断器、
15 励磁用変流器、
151 伝送路、
15ad 第2の加減算手段、
16 整流器、
17 シャント(分流器)、
171 伝送路、
17in 入力端、
18 初期駆動電源。
1 drive,
2 AC generator,
3 Excitation transformer,
4 Automatic voltage regulator (AVR),
401 transmission line,
4out output end,
45 First addition / subtraction means,
5 Exciter,
6 Exciter field winding,
7 Field breaker,
8 Rectifier,
9 Generator field winding,
10 Instrument transformer,
101 transmission line,
10in input end,
11 Feed line,
121, 122 load,
131,132 Overcurrent relay,
141, 142 load circuit breakers,
15 Current transformer for excitation,
151 transmission line,
15ad Second addition / subtraction means,
16 Rectifier,
17 shunt,
171 transmission line,
17in input end,
18 Initial drive power supply.

Claims (6)

励磁用変圧器を介して発電機の出力から電源をとり計器用変圧器を介して入力した前記発電機の出力電圧に応動して可変の内部設定値に基づいて出力する自動電圧調整器、前記発電機の励磁機の励磁電流を前記自動電圧調整器の出力にフィードバックするフィードバック回路、このフィードバック回路によってフィードバックされた前記励磁電流と前記自動電圧調整器の出力との差を出力する第1の加減算手段、前記発電機の出力電流を入力し整流要素を介して出力する励磁用変流器、および前記第1の加減算手段の出力と前記励磁用変流器の出力とを加算する第2の加減算手段を備え、前記発電機から給電される負荷の保護リレーによる保護範囲で生じた短絡事故による前記自動電圧調整器の出力低下による前記励磁機の励磁電流の減少を前記励磁用変流器の出力で補償して前記発電機の前記出力電圧を前記短絡事故時でもほぼ所定値に維持して前記保護リレーの前記短絡時の不動作を防止する自家発電設備における自励交流発電機の励磁制御装置。   An automatic voltage regulator that outputs power based on a variable internal set value in response to an output voltage of the generator that takes power from an output of the generator via an excitation transformer and is input via an instrument transformer, A feedback circuit that feeds back the excitation current of the generator exciter to the output of the automatic voltage regulator, and a first addition / subtraction that outputs the difference between the excitation current fed back by the feedback circuit and the output of the automatic voltage regulator. Means, an excitation current transformer that inputs the output current of the generator and outputs it through a rectifying element, and a second addition / subtraction that adds the output of the first addition / subtraction means and the output of the excitation current transformer A reduction in the excitation current of the exciter due to a decrease in the output of the automatic voltage regulator due to a short circuit accident caused by a short circuit accident caused by a protection relay of a load fed from the generator. Compensating with the output of the current transformer for excitation, maintaining the output voltage of the generator at a substantially predetermined value even in the event of a short circuit accident, and preventing the malfunction of the protective relay at the time of the short circuit. Excitation control device for excitation AC generator. 請求項1に記載の自家発電設備における自励交流発電機の励磁制御装置において、前記第1の加減算手段が前記自動電圧調整器に内蔵されていることを特徴とする自家発電設備における自励交流発電機の励磁制御装置。   2. The self-excited alternating current in the self-generated power facility according to claim 1, wherein the first adder / subtracter is built in the automatic voltage regulator. Generator excitation control device. 請求項2に記載の自家発電設備における自励交流発電機の励磁制御装置において、前記第1の加減算手段と前記第2の加減算手段との間に過励磁制限機能部が介挿されていることを特徴とする自家発電設備における自励交流発電機の励磁制御装置。   3. An excitation control device for a self-excited AC generator in a private power generation facility according to claim 2, wherein an overexcitation limiting function section is interposed between the first addition / subtraction means and the second addition / subtraction means. An excitation control device for a self-excited AC generator in a private power generation facility. 請求項3に記載の自家発電設備における自励交流発電機の励磁制御装置において、前記過励磁制限機能部が前記自動電圧調整器に内蔵されていることを特徴とする自家発電設備における自励交流発電機の励磁制御装置。   4. The self-excited alternating current generator for self-excited alternating current generator according to claim 3, wherein the overexcitation limiting function part is built in the automatic voltage regulator. Generator excitation control device. 請求項1〜請求項4の何れか一に記載の自家発電設備における自励交流発電機の励磁制御装置において、前記励磁機が回転形励磁機であることを特徴とする自家発電設備における自励交流発電機の励磁制御装置。   5. The self-excitation control device for a self-excited AC generator in a private power generation facility according to any one of claims 1 to 4, wherein the exciter is a rotary exciter. AC generator excitation control device. 請求項1〜請求項4の何れか一に記載の自家発電設備における自励交流発電機の励磁制御装置において、前記励磁機が静止形励磁機であることを特徴とする自家発電設備における自励交流発電機の励磁制御装置。   5. The self-excited AC generator excitation control apparatus for a self-generating apparatus according to claim 1, wherein the exciter is a static exciter. AC generator excitation control device.
JP2008204391A 2008-08-07 2008-08-07 Excitation controller of self-excited ac generator in private power-generating facility Pending JP2010041880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204391A JP2010041880A (en) 2008-08-07 2008-08-07 Excitation controller of self-excited ac generator in private power-generating facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204391A JP2010041880A (en) 2008-08-07 2008-08-07 Excitation controller of self-excited ac generator in private power-generating facility

Publications (1)

Publication Number Publication Date
JP2010041880A true JP2010041880A (en) 2010-02-18

Family

ID=42013838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204391A Pending JP2010041880A (en) 2008-08-07 2008-08-07 Excitation controller of self-excited ac generator in private power-generating facility

Country Status (1)

Country Link
JP (1) JP2010041880A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157237A (en) * 2011-01-27 2012-08-16 General Electric Co <Ge> Reduction in generator-sourced fault current contribution

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012157237A (en) * 2011-01-27 2012-08-16 General Electric Co <Ge> Reduction in generator-sourced fault current contribution

Similar Documents

Publication Publication Date Title
JP5207985B2 (en) Control method and control system for double-fed asynchronous wind generator converter
US7746038B2 (en) System and method for suppressing DC link voltage buildup due to generator armature reaction
JP4053890B2 (en) Wind turbine operating method
JP2007215365A (en) Ac motor system, method of controlling the same, and electric power conversion equipment associated therewith
JP2010041880A (en) Excitation controller of self-excited ac generator in private power-generating facility
JP4900818B2 (en) Overload prevention device for static reactive power compensator
JP6029993B2 (en) Static frequency conversion power supply
JP4073776B2 (en) Excitation control device
US8576522B2 (en) Shunt regulator at excitation output of generator control unit for overvoltage protection
JP4889355B2 (en) Field current control system
JP6834804B2 (en) Automatic voltage regulator for generator
JP4530365B2 (en) Distributed power supply
JP2009303339A (en) Generator exciter
JP4679418B2 (en) Field current control system
JP4800677B2 (en) Exciter for synchronous machine
JP5128883B2 (en) Excitation control device
JP4062704B2 (en) Control method and control device for private power generation auxiliary generator
JP4757082B2 (en) Field current control system
JP2007104848A (en) Emergency diesel generator exciting device
JP2010119248A (en) Power generating system
JP3137139B2 (en) Generator protection methods
JP2008099494A (en) Individual operation detecting system for induction generator
JP2019072685A (en) Rotary machine controller of shredder
JP2005269816A (en) Nonutility generator facility
JP2007318927A (en) Power supply unit and circuit protection method used therefor