JP2010040978A - Film forming apparatus and film forming method - Google Patents

Film forming apparatus and film forming method Download PDF

Info

Publication number
JP2010040978A
JP2010040978A JP2008205364A JP2008205364A JP2010040978A JP 2010040978 A JP2010040978 A JP 2010040978A JP 2008205364 A JP2008205364 A JP 2008205364A JP 2008205364 A JP2008205364 A JP 2008205364A JP 2010040978 A JP2010040978 A JP 2010040978A
Authority
JP
Japan
Prior art keywords
hollow cathode
anode electrode
chamber
film
cathode electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008205364A
Other languages
Japanese (ja)
Other versions
JP5018688B2 (en
Inventor
Tetsuya Saruwatari
哲也 猿渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2008205364A priority Critical patent/JP5018688B2/en
Publication of JP2010040978A publication Critical patent/JP2010040978A/en
Application granted granted Critical
Publication of JP5018688B2 publication Critical patent/JP5018688B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film forming apparatus capable of obtaining high hydrogen passivation effect while improving a film forming speed of formation of an antireflective film of a solar cell. <P>SOLUTION: The film forming apparatus includes a chamber 101, an anode electrode 106 disposed in the chamber 101 and holding a workpiece 100 provided with a base layer containing silicon (Si), a cylindrical hollow cathode electrode 102 disposed opposite to the anode electrode 106 in the chamber, a gas supply pipe 109 for supplying a material gas containing hydrogen (H<SB>2</SB>), nitrogen (N) and silicon (Si) to the hollow cathode electrode 102, and a power supply 105 for applying a low frequency between the hollow cathode electrode 102 and anode electrode 106 to generate plasma P by hollow cathode discharge. A silicon nitride film is formed by supplying the material gas induced by the plasma P to the base layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、太陽電池の反射防止膜を成膜する成膜装置及び成膜方法に関する。   The present invention relates to a film forming apparatus and a film forming method for forming an antireflection film for a solar cell.

太陽電池は、太陽光を効率よく吸収するために、通常、太陽電池の受光面を反射防止膜で被覆している。反射防止膜の形成方法の一つとして、プラズマ化学気相成長(CVD)法によりシリコン窒化膜(Si34膜)を形成する技術が知られている(例えば、特許文献1参照。)。又、物理気相成長(PVD)法、蒸着法、スピンオン法、スプレー法及びディップ法等によりシリコン酸化膜(SiO2膜)等の反射防止膜を形成する手法が知られている。 In solar cells, in order to efficiently absorb sunlight, the light receiving surface of the solar cell is usually covered with an antireflection film. As one method for forming an antireflection film, a technique of forming a silicon nitride film (Si 3 N 4 film) by plasma chemical vapor deposition (CVD) is known (see, for example, Patent Document 1). Also known is a method of forming an antireflection film such as a silicon oxide film (SiO 2 film) by physical vapor deposition (PVD) method, vapor deposition method, spin-on method, spray method, dipping method or the like.

又、太陽電池には高い光電変換効率が要求されるが、シリコン基板にpn接合を形成する場合、シリコン基板の表面には未結合手(ダングリングボンド)が存在する。ダングリングボンドが多く存在すると、受光したときに発生するキャリアがダングリングボンドに捕捉されて光電変換効率が低下する。この光電変換効率の低下を抑制するものとして、反射防止膜であるシリコン窒化膜(Si34膜)中の水素(H2)によりシリコン基板中のダングリングボンドを終端する「水素パッシベーション効果」が知られている(例えば、特許文献2参照。)。 In addition, although high photoelectric conversion efficiency is required for a solar cell, when a pn junction is formed on a silicon substrate, dangling bonds exist on the surface of the silicon substrate. When there are many dangling bonds, carriers generated when receiving light are captured by the dangling bonds, and the photoelectric conversion efficiency is lowered. “Hydrogen passivation effect” that terminates dangling bonds in the silicon substrate by hydrogen (H 2 ) in the silicon nitride film (Si 3 N 4 film), which is an antireflection film, as a means of suppressing this decrease in photoelectric conversion efficiency. (For example, refer to Patent Document 2).

又、太陽電池の製造プロセスにおいて、反射防止膜の成膜速度の向上が要求されている。そこで、ホローカソード放電により生成した高密度プラズマを利用する場合には、通常の平行平板型プラズマCVD装置と比較して解離能力が高いので、成膜速度を向上することはできる。しかしながら、高密度プラズマを利用する場合、高いH2パッシベーション効果を得ることが困難である。
特開2000−299482号公報 特開2003−273382号公報
Further, in the solar cell manufacturing process, an improvement in the deposition rate of the antireflection film is required. Therefore, when using high density plasma generated by hollow cathode discharge, the dissociation ability is higher than that of a normal parallel plate type plasma CVD apparatus, so that the film formation rate can be improved. However, when using high-density plasma, it is difficult to obtain a high H 2 passivation effect.
JP 2000-299482 A JP 2003-273382 A

本発明の目的は、太陽電池の反射防止膜の成膜において成膜速度を向上しつつ高い水素パッシベーション効果を得ることができる成膜装置及び成膜方法を提供することである。   The objective of this invention is providing the film-forming apparatus and film-forming method which can acquire the high hydrogen passivation effect, improving the film-forming speed | rate in film-forming of the antireflection film of a solar cell.

本発明の一態様によれば、(イ)チャンバと、(ロ)チャンバ内に配置され、シリコンを含む下地層が設けられた被処理体を保持するアノード電極と、(ハ)チャンバ内にアノード電極と対向して配置された筒状のホローカソード電極と、(ニ)ホローカソード電極に水素、窒素及びシリコンを含む材料ガスを供給するガス供給管と、(ホ)ホローカソード電極とアノード電極との間に低周波を印加し、ホローカソード放電によるプラズマを生成させる電源とを備え、プラズマで励起された材料ガスを下地層上に供給してシリコン窒化膜を成膜する成膜装置が提供される。   According to one embodiment of the present invention, (a) a chamber, (b) an anode electrode that is disposed in the chamber and holds an object to be processed provided with a base layer containing silicon, and (c) an anode in the chamber A cylindrical hollow cathode electrode disposed opposite the electrode; (d) a gas supply pipe for supplying a material gas containing hydrogen, nitrogen and silicon to the hollow cathode electrode; (e) a hollow cathode electrode and an anode electrode; And a power source for generating a plasma by hollow cathode discharge, and supplying a material gas excited by the plasma onto the underlying layer to form a silicon nitride film. The

本発明の他の態様によれば、(イ)チャンバ内に配置されたアノード電極に、シリコンを含む下地層が設けられた被処理体を載置するステップと、(ロ)チャンバ内にアノード電極と対向して配置された筒状のホローカソード電極に、水素、窒素及びシリコンを含む材料ガスを供給するステップと、(ハ)ホローカソード電極とアノード電極との間に低周波を印加し、ホローカソード放電によるプラズマを生成させるステップと、(ニ)プラズマで励起された材料ガスを下地層上に供給してシリコン窒化膜を成膜するステップとを含む成膜方法が提供される。   According to another aspect of the present invention, (b) a step of placing an object to be processed on which an underlayer containing silicon is provided on an anode electrode disposed in the chamber; and (b) an anode electrode in the chamber Supplying a material gas containing hydrogen, nitrogen and silicon to a cylindrical hollow cathode electrode disposed opposite to the hollow cathode electrode, and (c) applying a low frequency between the hollow cathode electrode and the anode electrode, There is provided a film forming method including a step of generating plasma by cathode discharge, and (d) supplying a material gas excited by the plasma onto the underlayer to form a silicon nitride film.

本発明によれば、太陽電池の反射防止膜の成膜において成膜速度を向上しつつ高い水素パッシベーション効果を得ることができる成膜装置及び成膜方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the film-forming apparatus and film-forming method which can acquire the high hydrogen passivation effect can be provided, improving the film-forming speed | rate in film-forming of the antireflection film of a solar cell.

次に、図面を参照して、本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものである。また、以下に示す実施の形態は、この発明の技術的思想を具体化するための装置や方法を例示するものであって、この発明の技術的思想は、構成部品の材質、形状、構造、配置等を下記のものに特定するものでない。この発明の技術的思想は、特許請求の範囲において、種々の変更を加えることができる。   Next, embodiments of the present invention will be described with reference to the drawings. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Further, the embodiments described below exemplify apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention includes the material, shape, structure, The layout is not specified as follows. The technical idea of the present invention can be variously modified within the scope of the claims.

(成膜装置)
チャンバ101と、チャンバ101内に配置され、シリコン(Si)を含む下地層が設けられた被処理体100を保持するアノード電極106と、チャンバ内にアノード電極106と対向して配置された筒状のホローカソード電極102と、ホローカソード電極102に水素(H2)、窒素(N)及びシリコン(Si)を含む材料ガスを供給するガス供給管109と、ホローカソード電極102とアノード電極106との間に低周波を印加し、ホローカソード放電によるプラズマPを生成させる電源105とを備え、プラズマPで励起された材料ガスを下地層上に供給してシリコン窒化膜を成膜する。本発明の実施の形態において、「低周波」とは、450kHz以下の交流信号と定義する。
(Deposition system)
A chamber 101, an anode electrode 106 that is disposed in the chamber 101 and holds the target object 100 provided with a base layer containing silicon (Si), and a cylindrical shape that is disposed in the chamber so as to face the anode electrode 106. A hollow cathode electrode 102, a gas supply pipe 109 for supplying a material gas containing hydrogen (H 2 ), nitrogen (N) and silicon (Si) to the hollow cathode electrode 102, and the hollow cathode electrode 102 and the anode electrode 106. A power source 105 for generating a plasma P by hollow cathode discharge by applying a low frequency therebetween is provided, and a material gas excited by the plasma P is supplied onto the underlying layer to form a silicon nitride film. In the embodiment of the present invention, “low frequency” is defined as an AC signal of 450 kHz or less.

被処理体100としては、太陽電池のpn接合を構成するシリコン(Si)を含む半導体層が下地層として形成されたシリコン基板等が使用可能である。チャンバ101は、被処理体100の表面(下地層)に成膜するための密閉容器である。   As the object to be processed 100, a silicon substrate or the like in which a semiconductor layer containing silicon (Si) constituting a pn junction of a solar cell is formed as an underlayer can be used. The chamber 101 is a sealed container for forming a film on the surface (underlayer) of the workpiece 100.

アノード電極106はプラズマPを発生させるための電極であり、基板ステージの機能も兼ねている。アノード電極106は図示を省略した昇降機構により上下方向の移動と回転が可能であり、必要に応じて、被処理体100の加熱や冷却等も可能なように構成されている。   The anode electrode 106 is an electrode for generating plasma P, and also functions as a substrate stage. The anode electrode 106 can be moved and rotated in the vertical direction by an elevating mechanism (not shown), and is configured to be able to heat and cool the workpiece 100 as necessary.

ホローカソード電極102にはガス供給管109が接続されている。ガス供給管109は、窒素(N2)ガス、アンモニア(NH3)ガス及びシラン(SiH4)ガス等の材料ガスを供給する。本発明の実施の形態における「材料ガス」とは、成膜される膜の材料となるガスの他に、希ガスや反応性活性種となるガスを含むものを意味する。 A gas supply pipe 109 is connected to the hollow cathode electrode 102. The gas supply pipe 109 supplies material gases such as nitrogen (N 2 ) gas, ammonia (NH 3 ) gas, and silane (SiH 4 ) gas. The “material gas” in the embodiment of the present invention means a gas containing a rare gas or a gas that becomes a reactive active species in addition to a gas that becomes a material of a film to be formed.

ホローカソード電極102は、ガス供給管109から材料ガスが供給される筒状の中空部110と、アノード電極106側に設けられ、ホローカソード放電を発生させる凹部104と、凹部104に設けられ、中空部110と凹部104を貫通し、材料ガスを中空部110側から凹部104側へ放出する開口部103を有する。凹部104は、円筒形状、ストライプの溝部等の種々の形状が採用可能であり、ホローカソード放電を発生し得る形状であれば特に限定されない。   The hollow cathode electrode 102 is provided in a cylindrical hollow portion 110 to which a material gas is supplied from a gas supply pipe 109, a concave portion 104 that is provided on the anode electrode 106 side and generates a hollow cathode discharge, and is provided in the concave portion 104. It has an opening 103 that passes through the portion 110 and the recess 104 and discharges the material gas from the hollow portion 110 side to the recess 104 side. The concave portion 104 can adopt various shapes such as a cylindrical shape and a groove portion of a stripe, and is not particularly limited as long as it can generate a hollow cathode discharge.

アノード電極106は接地電位とされ、ホローカソード電極102には電源105が接続されている。電源105は、反射防止膜としてのシリコン窒化膜(Si34膜)の成膜時には、ホローカソード電極102とアノード電極106との間に低周波を印加する。チャンバ101の底部には、図示を省略した真空排気ポンプに接続される真空排気管108が設けられている。 The anode electrode 106 is at a ground potential, and a power source 105 is connected to the hollow cathode electrode 102. The power source 105 applies a low frequency between the hollow cathode electrode 102 and the anode electrode 106 when forming a silicon nitride film (Si 3 N 4 film) as an antireflection film. A vacuum exhaust pipe 108 connected to a vacuum exhaust pump (not shown) is provided at the bottom of the chamber 101.

(太陽電池の反射防止膜の成膜方法)
次に、本発明の実施の形態に係る太陽電池の反射防止膜の成膜方法の一例を、図1を用いて説明する。
(Method of forming an antireflection film for a solar cell)
Next, an example of a method for forming an antireflection film for a solar cell according to an embodiment of the present invention will be described with reference to FIG.

まず、アノード電極106に被処理体100を載置し、チャンバ101を密閉後、真空状態にする。ガス供給管109からホローカソード電極102内の中空部110へSiH4ガスを3.04×10-2Pa・m3/s程度、NH3ガスを3.38×10-2Pa・m3/s程度、N2ガスを1.35×10-1Pa・m3/s程度で供給する。材料ガスは開口部103を介してチャンバ101内に供給される。そして、真空排気管108から排気を行いチャンバ101内の圧力を66.66Pa程度に保持する。図示を省略したヒータにより加熱し、成膜温度を450℃程度とする。 First, the workpiece 100 is placed on the anode electrode 106, the chamber 101 is sealed, and then the vacuum state is set. SiH 4 gas is about 3.04 × 10 −2 Pa · m 3 / s and NH 3 gas is about 3.38 × 10 −2 Pa · m 3 / s from the gas supply pipe 109 to the hollow portion 110 in the hollow cathode electrode 102. N 2 gas is supplied at about 1.35 × 10 −1 Pa · m 3 / s for about s. The material gas is supplied into the chamber 101 through the opening 103. Then, the vacuum exhaust pipe 108 is evacuated to keep the pressure in the chamber 101 at about 66.66 Pa. Heating is performed by a heater (not shown), and the film forming temperature is set to about 450 ° C.

電源105によりパワー700W程度で、250kHz程度の低周波をホローカソード電極102とアノード電極106との間に印加する。これにより負電位に保たれた凹部104においては電子が閉じ込められ電離・イオン化が促進されてホローカソード放電による高密度のプラズマPが生成される。この高密度のプラズマPのラジカルにより、開口部103を介して放出されたSiH4、NH3、N2を解離させ、被処理体100のシリコンを含む下地層上に屈折率2.00〜2.20程度、膜厚80nm程度のシリコン窒化膜(Si34膜)からなる反射防止膜を成膜する。 The power source 105 applies a low frequency of about 250 kHz at a power of about 700 W between the hollow cathode electrode 102 and the anode electrode 106. As a result, in the concave portion 104 maintained at a negative potential, electrons are confined and ionization / ionization is promoted, and a high-density plasma P is generated by hollow cathode discharge. The radicals of this high-density plasma P dissociate SiH 4 , NH 3 , and N 2 emitted through the opening 103, and have a refractive index of 2.00 to 2 on the base layer containing silicon of the object 100 to be processed. An antireflection film made of a silicon nitride film (Si 3 N 4 film) having a thickness of about 20 and a thickness of about 80 nm is formed.

本発明の実施の形態においては、高密度のプラズマPを用いて成膜を行うので、通常の平行平板型プラズマCVD装置と比して成膜速度を向上させることができる。更に、ホローカソード電極102とアノード電極106との間に低周波を印加することにより、イオン照射率を高めてH+イオンを被処理体100の下地層に照射し、下地層に拡散させ、粒界パッシベーションを促進させることができる。よって成膜速度を向上しつつ、下地層において高い水素パッシベーション効果を得ることができる。なお、低周波は、50〜450kHzの範囲であることが好ましい。50kHzよりも小さいと放電が不安定であり、450kHzよりも大きいと水素パッシベーション効果が少なくなる。 In the embodiment of the present invention, since the film formation is performed using the high-density plasma P, the film formation speed can be improved as compared with a normal parallel plate type plasma CVD apparatus. Furthermore, by applying a low frequency between the hollow cathode electrode 102 and the anode electrode 106, the ion irradiation rate is increased, and the H + ions are irradiated to the base layer of the object 100 to be diffused into the base layer. It is possible to promote field passivation. Therefore, it is possible to obtain a high hydrogen passivation effect in the underlayer while improving the film formation rate. The low frequency is preferably in the range of 50 to 450 kHz. When the frequency is lower than 50 kHz, the discharge is unstable, and when the frequency is higher than 450 kHz, the hydrogen passivation effect is reduced.

(太陽電池)
次に、本発明の実施の形態に係る成膜装置を用いて反射防止膜が形成される太陽電池の一例を説明する。
(Solar cell)
Next, an example of a solar cell in which an antireflection film is formed using the film forming apparatus according to the embodiment of the present invention will be described.

本発明の実施の形態に係る太陽電池は、図2に示すように、p型半導体層11と、p型半導体層11上に配置されたn型拡散層12と、n型拡散層12上に配置された反射防止膜14と、n型拡散層12上に配置された表面電極15a,15bと、p型半導体層11の裏面に配置されたp型拡散層13と、p型拡散層13の裏面に配置された裏面電極16a,16bとを備える。表面電極15a,15bの表面には半田層17a,17bが配置され、裏面電極16a,16bの裏面には半田層18a,18bが配置されている。 As shown in FIG. 2, the solar cell according to the embodiment of the present invention includes a p-type semiconductor layer 11, an n-type diffusion layer 12 disposed on the p-type semiconductor layer 11, and an n-type diffusion layer 12. The antireflection film 14 disposed, the surface electrodes 15 a and 15 b disposed on the n-type diffusion layer 12, the p + -type diffusion layer 13 disposed on the back surface of the p-type semiconductor layer 11, and the p + -type diffusion layer 13 are provided with backside electrodes 16a and 16b arranged on the backside. Solder layers 17a and 17b are disposed on the surfaces of the front electrodes 15a and 15b, and solder layers 18a and 18b are disposed on the back surfaces of the back electrodes 16a and 16b.

p型半導体層11とn型拡散層12によりpn接合を構成している。反射防止膜14としてはシリコン窒化膜(Si34膜)が使用可能であり、本発明の実施の形態に係る成膜装置を用いて形成される。表面電極15a,15b及び裏面電極16a,16bとしては銀(Ag)やアルミニウム(Al)等が使用可能である。 The p-type semiconductor layer 11 and the n-type diffusion layer 12 form a pn junction. As the antireflection film 14, a silicon nitride film (Si 3 N 4 film) can be used, and is formed using the film forming apparatus according to the embodiment of the present invention. Silver (Ag), aluminum (Al), or the like can be used as the front surface electrodes 15a and 15b and the back surface electrodes 16a and 16b.

(太陽電池の製造方法)
次に、本発明の実施の形態に係る太陽電池の製造方法について、図3のフローチャートを参照しながら説明する。
(Method for manufacturing solar cell)
Next, a method for manufacturing a solar cell according to an embodiment of the present invention will be described with reference to the flowchart of FIG.

(イ)ステップS1で、p型シリコン基板を用意する。アルカリ水溶液によるエッチングや反応性イオンエッチング(RIE)法等により表面処理を行い、p型シリコン基板の表面に微細凹凸構造を形成する。これにより、p型シリコン基板表面の光の反射を抑えることができる。   (A) In step S1, a p-type silicon substrate is prepared. Surface treatment is performed by etching with an alkaline aqueous solution, reactive ion etching (RIE) method, or the like to form a fine relief structure on the surface of the p-type silicon substrate. Thereby, reflection of light on the surface of the p-type silicon substrate can be suppressed.

(ロ)ステップS2で、オキシ塩化リン(POCl3)を用いた気相拡散法、燐酸(P25)を用いた塗布拡散法、リン(P)イオンを直接拡散させるイオン注入法等により、リン(P)をn型ドーパントとしてp型シリコン基板の表面から拡散させ、n型拡散層12を形成する。ステップS3で、n型ドーパントを拡散したp型シリコン基板の一方の面のn型拡散層をエッチング処理を行い除去する。 (B) In step S2, by a vapor phase diffusion method using phosphorus oxychloride (POCl 3 ), a coating diffusion method using phosphoric acid (P 2 O 5 ), an ion implantation method for directly diffusing phosphorus (P) ions, or the like. Phosphorus (P) is diffused from the surface of the p-type silicon substrate as an n-type dopant to form the n-type diffusion layer 12. In step S3, the n-type diffusion layer on one surface of the p-type silicon substrate diffused with the n-type dopant is removed by etching.

(ハ)ステップS4で、エッチングしたp型シリコン基板の表面にAlペーストを塗布し、熱処理することによって、エッチングしたp型シリコン基板の表面からアルミニウム(Al)等のp型ドーパントを拡散させ、p型拡散層13を形成する。 (C) In step S4, an Al paste is applied to the surface of the etched p-type silicon substrate, and heat treatment is performed to diffuse a p-type dopant such as aluminum (Al) from the surface of the etched p-type silicon substrate. A + type diffusion layer 13 is formed.

(ニ)ステップS5で、図1に示した本発明の実施の形態に係る成膜装置を用いて、ホローカソード電極102とアノード電極106との間に250kHz程度の低周波を印加しながら、ホローカソード放電による高密度のプラズマPを生成し、n型拡散層12の表面にシリコン窒化膜(Si34膜)を反射防止膜14として成膜する。低周波を印加することにより、イオン照射率を高めてH+イオンをn型拡散層12、p型半導体層11及びp型拡散層13に照射することにより、粒界パッシベーションを促進させることができる。 (D) In step S5, while applying a low frequency of about 250 kHz between the hollow cathode electrode 102 and the anode electrode 106 using the film forming apparatus according to the embodiment of the present invention shown in FIG. A high-density plasma P is generated by cathode discharge, and a silicon nitride film (Si 3 N 4 film) is formed as an antireflection film 14 on the surface of the n-type diffusion layer 12. By applying a low frequency, the ion irradiation rate is increased and H + ions are irradiated to the n-type diffusion layer 12, the p-type semiconductor layer 11, and the p + -type diffusion layer 13 to promote grain boundary passivation. it can.

(ホ)ステップS6で、Ag粉、バインダ、フリットからなるAgペーストをスクリーン印刷することにより、Agペーストのパターニングを行う。Agペーストは、太陽電池の効率を高めるために例えば櫛型パターンに形成される。ステップS7で、印刷されたAgペーストが焼成され、表面電極15a,15b及び裏面電極16a,16bがそれぞれ形成される。ステップS8で、半田ディップ法により表面電極15a,15bの表面に半田層17a,17bを形成し、裏面電極16a,16bの裏面に半田層18a,18bを形成する。   (E) In step S6, the Ag paste is patterned by screen-printing Ag paste made of Ag powder, a binder, and a frit. The Ag paste is formed, for example, in a comb pattern in order to increase the efficiency of the solar cell. In step S7, the printed Ag paste is baked to form front surface electrodes 15a and 15b and back surface electrodes 16a and 16b, respectively. In step S8, solder layers 17a and 17b are formed on the surfaces of the surface electrodes 15a and 15b by a solder dipping method, and solder layers 18a and 18b are formed on the back surfaces of the back electrodes 16a and 16b.

本発明の実施の形態に係る太陽電池の製造方法によれば、反射防止膜の成膜プロセスにおいて成膜速度を向上しつつ、高いH2パッシベーション効果を得ることができる。よって、太陽電池の製造工程全体としても生産性が向上し、高い光電変換効率の太陽電池を製造可能となる。 According to the method for manufacturing a solar cell according to the embodiment of the present invention, it is possible to obtain a high H 2 passivation effect while improving the film formation rate in the film formation process of the antireflection film. Therefore, productivity improves as a whole manufacturing process of the solar cell, and a solar cell with high photoelectric conversion efficiency can be manufactured.

上記のように、本発明は実施の形態によって記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。本発明はここでは記載していない様々な実施の形態等を含むことは勿論である。したがって、本発明の技術的範囲は上記の説明から妥当な特許請求の範囲に係る発明特定事項によってのみ定められるものである。   As described above, the present invention has been described according to the embodiments. However, it should not be understood that the description and drawings constituting a part of this disclosure limit the present invention. From this disclosure, various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art. It goes without saying that the present invention includes various embodiments not described herein. Therefore, the technical scope of the present invention is defined only by the invention specifying matters according to the scope of claims reasonable from the above description.

本発明の実施の形態に係る成膜装置の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the film-forming apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る太陽電池の一例を示す概略断面図である。It is a schematic sectional drawing which shows an example of the solar cell which concerns on embodiment of this invention. 本発明の実施の形態に係る太陽電池の製造方法の一例を説明するためのフローチャートである。It is a flowchart for demonstrating an example of the manufacturing method of the solar cell which concerns on embodiment of this invention.

符号の説明Explanation of symbols

11…p型半導体層
12…n型拡散層
13…i型拡散層
14…反射防止膜(シリコン窒化膜)
15a,15b…表面電極
16a,16b…裏面電極
17a,17b,18a,18b…半田層
100…被処理体
101…チャンバ
102…ホローカソード電極
103…開口部
104…凹部
105…電源
106…アノード電極
108…真空排気管
109…ガス供給管
110…中空部
DESCRIPTION OF SYMBOLS 11 ... p-type semiconductor layer 12 ... n-type diffusion layer 13 ... i-type diffusion layer 14 ... Antireflection film (silicon nitride film)
15a, 15b ... front electrode 16a, 16b ... back electrode 17a, 17b, 18a, 18b ... solder layer 100 ... object 101 ... chamber 102 ... hollow cathode electrode 103 ... opening 104 ... recess 105 ... power supply 106 ... anode electrode 108 ... Vacuum exhaust pipe 109 ... Gas supply pipe 110 ... Hollow part

Claims (4)

チャンバと、
前記チャンバ内に配置され、シリコンを含む下地層が設けられた被処理体を保持するアノード電極と、
前記チャンバ内に前記アノード電極と対向して配置された筒状のホローカソード電極と、
前記ホローカソード電極に水素、窒素及びシリコンを含む材料ガスを供給するガス供給管と、
前記ホローカソード電極と前記アノード電極との間に低周波を印加し、ホローカソード放電によるプラズマを生成させる電源
とを備え、前記プラズマで励起された前記材料ガスを、前記下地層上に供給してシリコン窒化膜を成膜することを特徴とする成膜装置。
A chamber;
An anode electrode disposed in the chamber and holding an object to be processed provided with a base layer containing silicon;
A cylindrical hollow cathode electrode disposed in the chamber so as to face the anode electrode;
A gas supply pipe for supplying a material gas containing hydrogen, nitrogen and silicon to the hollow cathode electrode;
A power source for applying a low frequency between the hollow cathode electrode and the anode electrode to generate plasma by hollow cathode discharge, and supplying the material gas excited by the plasma onto the underlayer A film forming apparatus for forming a silicon nitride film.
前記電源が、50〜450kHzの低周波を前記ホローカソード電極と前記アノード電極との間に印加することを特徴とする請求項1に記載の成膜装置。   The film forming apparatus according to claim 1, wherein the power source applies a low frequency of 50 to 450 kHz between the hollow cathode electrode and the anode electrode. 前記ホローカソード電極が、
前記材料ガスが供給される筒状の中空部と、
前記アノード電極側に設けられた凹部と、
前記中空部と前記凹部を貫通し、前記材料ガスを前記中空部側から前記凹部側へ放出する開口部
とを備えることを特徴とする請求項1又は2に記載の成膜装置。
The hollow cathode electrode is
A cylindrical hollow portion to which the material gas is supplied;
A recess provided on the anode electrode side;
The film forming apparatus according to claim 1, further comprising: an opening that passes through the hollow portion and the concave portion and discharges the material gas from the hollow portion side to the concave portion side.
チャンバ内に配置されたアノード電極に、シリコンを含む下地層が設けられた被処理体を載置するステップと、
前記チャンバ内に前記アノード電極と対向して配置された筒状のホローカソード電極に、水素、窒素及びシリコンを含む材料ガスを供給するステップと、
前記ホローカソード電極と前記アノード電極との間に低周波を印加し、ホローカソード放電によるプラズマを生成させるステップと、
前記プラズマで励起された前記材料ガスを前記下地層上に供給してシリコン窒化膜を成膜するステップ
とを含むことを特徴とする成膜方法。
Placing an object to be processed provided with an underlayer containing silicon on an anode electrode disposed in the chamber;
Supplying a material gas containing hydrogen, nitrogen, and silicon to a cylindrical hollow cathode electrode disposed in the chamber so as to face the anode electrode;
Applying a low frequency between the hollow cathode electrode and the anode electrode to generate plasma by hollow cathode discharge;
Supplying the material gas excited by the plasma onto the underlying layer to form a silicon nitride film.
JP2008205364A 2008-08-08 2008-08-08 Film forming apparatus and film forming method Expired - Fee Related JP5018688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205364A JP5018688B2 (en) 2008-08-08 2008-08-08 Film forming apparatus and film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205364A JP5018688B2 (en) 2008-08-08 2008-08-08 Film forming apparatus and film forming method

Publications (2)

Publication Number Publication Date
JP2010040978A true JP2010040978A (en) 2010-02-18
JP5018688B2 JP5018688B2 (en) 2012-09-05

Family

ID=42013165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205364A Expired - Fee Related JP5018688B2 (en) 2008-08-08 2008-08-08 Film forming apparatus and film forming method

Country Status (1)

Country Link
JP (1) JP5018688B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160718A1 (en) * 2011-05-20 2012-11-29 株式会社島津製作所 Thin film forming device
JP2013128095A (en) * 2011-12-16 2013-06-27 Lg Electronics Inc Solar cell and method for manufacturing the same
JP2013251367A (en) * 2012-05-31 2013-12-12 Shimadzu Corp Plasma cvd deposition apparatus
WO2015045066A1 (en) * 2013-09-26 2015-04-02 株式会社島津製作所 Thin film forming apparatus
JP2015220418A (en) * 2014-05-21 2015-12-07 株式会社島津製作所 Thin film deposition device
CN111647879A (en) * 2020-04-20 2020-09-11 中国科学技术大学 Chemical vapor deposition device and method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216078A (en) * 1992-08-31 1994-08-05 Texas Instr Inc <Ti> Equipment and method for capacitive coupling discharge processing of wafer
JP2000299482A (en) * 1999-04-12 2000-10-24 Sanyo Electric Co Ltd Solar battery module
JP2001135626A (en) * 1999-11-02 2001-05-18 Hitachi Kokusai Electric Inc Plasma cvd device, and plasma cvd film formation method
JP2003273382A (en) * 2002-03-12 2003-09-26 Kyocera Corp Solar cell element
JP2004158839A (en) * 2002-10-16 2004-06-03 Sharp Corp Electronic device, its manufacturing method, and plasma process unit
JP2005072102A (en) * 2003-08-20 2005-03-17 Mitsubishi Heavy Ind Ltd Cvd equipment, plasma formation method and solar cell
JP2006032720A (en) * 2004-07-16 2006-02-02 Mitsubishi Heavy Ind Ltd Plasma treatment device and solar cell
JP2006041443A (en) * 2004-07-30 2006-02-09 Sharp Corp Plasma processor, and manufacturing method of electronic device
JP2007214296A (en) * 2006-02-08 2007-08-23 National Institute For Materials Science Plasma treatment apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216078A (en) * 1992-08-31 1994-08-05 Texas Instr Inc <Ti> Equipment and method for capacitive coupling discharge processing of wafer
JP2000299482A (en) * 1999-04-12 2000-10-24 Sanyo Electric Co Ltd Solar battery module
JP2001135626A (en) * 1999-11-02 2001-05-18 Hitachi Kokusai Electric Inc Plasma cvd device, and plasma cvd film formation method
JP2003273382A (en) * 2002-03-12 2003-09-26 Kyocera Corp Solar cell element
JP2004158839A (en) * 2002-10-16 2004-06-03 Sharp Corp Electronic device, its manufacturing method, and plasma process unit
JP2005072102A (en) * 2003-08-20 2005-03-17 Mitsubishi Heavy Ind Ltd Cvd equipment, plasma formation method and solar cell
JP2006032720A (en) * 2004-07-16 2006-02-02 Mitsubishi Heavy Ind Ltd Plasma treatment device and solar cell
JP2006041443A (en) * 2004-07-30 2006-02-09 Sharp Corp Plasma processor, and manufacturing method of electronic device
JP2007214296A (en) * 2006-02-08 2007-08-23 National Institute For Materials Science Plasma treatment apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160718A1 (en) * 2011-05-20 2012-11-29 株式会社島津製作所 Thin film forming device
CN103534383A (en) * 2011-05-20 2014-01-22 株式会社岛津制作所 Thin film forming device
JPWO2012160718A1 (en) * 2011-05-20 2014-07-31 株式会社島津製作所 Thin film forming equipment
KR101535582B1 (en) * 2011-05-20 2015-07-09 시마쯔 코포레이션 Thin film forming device
JP2013128095A (en) * 2011-12-16 2013-06-27 Lg Electronics Inc Solar cell and method for manufacturing the same
JP2013251367A (en) * 2012-05-31 2013-12-12 Shimadzu Corp Plasma cvd deposition apparatus
WO2015045066A1 (en) * 2013-09-26 2015-04-02 株式会社島津製作所 Thin film forming apparatus
JP2015220418A (en) * 2014-05-21 2015-12-07 株式会社島津製作所 Thin film deposition device
CN111647879A (en) * 2020-04-20 2020-09-11 中国科学技术大学 Chemical vapor deposition device and method

Also Published As

Publication number Publication date
JP5018688B2 (en) 2012-09-05

Similar Documents

Publication Publication Date Title
TWI743663B (en) Solar cell emitter region fabrication using ion implantation
US7838400B2 (en) Rapid thermal oxide passivated solar cell with improved junction
JP5018688B2 (en) Film forming apparatus and film forming method
US11081617B2 (en) Solar battery device and method for manufacturing solar battery device
JP2010520629A (en) Solar cell manufacturing method and generated solar cell
JP2007281448A (en) Solar cell and manufacturing method thereof
US20170133545A1 (en) Passivated contacts for photovoltaic cells
US11049982B2 (en) Solar cell element
US20160118510A1 (en) Solar cell and method for manufacturing the same
JP5410714B2 (en) Antireflection film forming method and antireflection film forming apparatus
US20100210060A1 (en) Double anneal process for an improved rapid thermal oxide passivated solar cell
JP5520834B2 (en) Method for forming passivation film and method for manufacturing solar cell element
JP2017506826A (en) Solar cell and manufacturing method thereof
TW201312779A (en) Method for producing a solar cell and solar cell
JP4657630B2 (en) SOLAR CELL, MANUFACTURING METHOD THEREOF, AND ANTI-REFLECTION FILM DEPOSITION DEVICE
JP2007150143A (en) Method of depositing anti-reflective coating for solar cell, solar cell, and deposition device
KR20190057413A (en) Solar cell manufacturing method
JP6224513B2 (en) Method for manufacturing solar cell element
KR20090132541A (en) Method for manufacturing wafer type solar cell
JP2009272428A (en) Antireflective film coating method and antireflective film coating apparatus
JP2016197651A (en) Thin film and forming method of the same
JP5769668B2 (en) Solar cell manufacturing method and solar cell manufacturing apparatus
KR101415320B1 (en) Method for manufacturing Wafer type Solar Cell
KR20110078638A (en) Method for surface treatment of solar cell with h2 plasma
JP2014229850A (en) Method for manufacturing solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101022

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120528

R151 Written notification of patent or utility model registration

Ref document number: 5018688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees