JP2010040461A - Scanning electron microscope - Google Patents

Scanning electron microscope Download PDF

Info

Publication number
JP2010040461A
JP2010040461A JP2008204978A JP2008204978A JP2010040461A JP 2010040461 A JP2010040461 A JP 2010040461A JP 2008204978 A JP2008204978 A JP 2008204978A JP 2008204978 A JP2008204978 A JP 2008204978A JP 2010040461 A JP2010040461 A JP 2010040461A
Authority
JP
Japan
Prior art keywords
sample
electron microscope
electric field
magnitude
secondary electrons
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008204978A
Other languages
Japanese (ja)
Other versions
JP5097642B2 (en
Inventor
Yasuko Aoki
康子 青木
Tetsuya Sawahata
哲哉 澤畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008204978A priority Critical patent/JP5097642B2/en
Publication of JP2010040461A publication Critical patent/JP2010040461A/en
Application granted granted Critical
Publication of JP5097642B2 publication Critical patent/JP5097642B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning electron microscope efficiently detecting secondary electrons even when varying a retarding voltage. <P>SOLUTION: This scanning electron microscope controlling the magnitude of an electric field includes an electron source, an objective lens to focus a primary electron beam generated from the electron source, a stage for placing a sample, a plurality of detectors to detect secondary electrons and reflected electrons generated from the sample by irradiation of the primary electron beam, and a power supply to impress a voltage on the stage. The electron microscope is also equipped with at least two conversion electrodes, and a deflector to generate an electric field and a magnetic field. In this scanning electron microscope, the magnitude of the negative voltage impressed on the stage is increased, the magnitude of the electric field generated by the deflector is increased, and the magnitude of the electric field is controlled so that the secondary electrons generated from the sample pass through a hole provided in the first conversion electrode close to the sample side, and collide with the second conversion electrode close to the electron source side. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は走査形電子顕微鏡に関し、特に極低照射電圧かつ高分解能観察において信号の弁別機能を有する高効率検出系を有した走査形電子顕微鏡に関する。   The present invention relates to a scanning electron microscope, and more particularly, to a scanning electron microscope having a high-efficiency detection system having a signal discrimination function in ultra-low irradiation voltage and high-resolution observation.

走査形電子顕微鏡は電子源から放出された電子を加速し、静電レンズ、あるいは磁界形レンズで収束させ、細い電子ビーム(一次電子線)とし、この細い一次電子線を走査偏向器を用いて観察する試料上を走査し、照射した一次電子線によって試料から二次的に発生する信号を検出し、信号強度を一次電子ビーム走査と同期して記録することにより二次元の走査像を得る装置である。   A scanning electron microscope accelerates electrons emitted from an electron source and converges them with an electrostatic lens or a magnetic lens to form a thin electron beam (primary electron beam), which is then scanned with a scanning deflector. A device that obtains a two-dimensional scanned image by scanning a sample to be observed, detecting a secondary signal generated from the sample by the irradiated primary electron beam, and recording the signal intensity in synchronization with the primary electron beam scanning. It is.

一次電子線の照射によって試料からは広いエネルギー分布を持つ電子が発生する。試料に入射した一次電子線の一部は試料表面近傍の原子により弾性散乱される。これは反射電子(BSE,Back Scattered Electron)と呼ばれ、一次電子線と同じエネルギーを上限とする高いエネルギーを有する。反射電子は試料の組成により強度や散乱方向が変化するため、組成分布の観察に適している。   Electrons with a wide energy distribution are generated from the sample by irradiation with the primary electron beam. Part of the primary electron beam incident on the sample is elastically scattered by atoms near the sample surface. This is called a backscattered electron (BSE) and has a high energy up to the same energy as the primary electron beam. Reflected electrons are suitable for observing the composition distribution because the intensity and scattering direction vary depending on the composition of the sample.

また、一次電子線の一部は試料内の原子と相互作用し、試料中の電子が運動エネルギーを得て試料から放射される。これは二次電子(SE,Secondary Electron)と呼ばれ、50eV以下、平均的には10eV程度までのエネルギーを有する。二次電子は試料深部からの脱出が困難であるため、試料表面の情報を主に持っていると考えられ、表面形状,試料電位分布の観察に適している。   A part of the primary electron beam interacts with atoms in the sample, and electrons in the sample gain kinetic energy and are emitted from the sample. This is called a secondary electron (SE) and has an energy of 50 eV or less, and on average about 10 eV. Since secondary electrons are difficult to escape from the deep part of the sample, it is considered that they mainly have information on the sample surface, which is suitable for observation of the surface shape and sample potential distribution.

近年、電子線照射による試料へのダメージ低減や最表面情報の取得を目的として、1kV以下の極低加速電圧での観察が重用されるようになってきている。   In recent years, observation at an extremely low acceleration voltage of 1 kV or less has been increasingly used for the purpose of reducing damage to a sample due to electron beam irradiation and acquiring the outermost surface information.

しかし、低加速電圧でレンズを通過する場合、電子線エネルギーのばらつきに起因する色収差によって分解能が低下する。従って磁界レンズに加えて一次電子線を減速する電界を重畳して一次電子線を収束する減速法(リターディング法とも称する)を用いることが多い。   However, when passing through the lens with a low acceleration voltage, the resolution is reduced due to chromatic aberration caused by variations in electron beam energy. Therefore, in many cases, a deceleration method (also referred to as a retarding method) that converges the primary electron beam by superimposing an electric field that decelerates the primary electron beam in addition to the magnetic lens is used.

減速法は、例えば試料を搭載する試料台に負電圧(リターディング電圧)を印加することにより光軸上に静電レンズを作成し、この静電レンズによって一次電子線を減速することで達成される。   The deceleration method is achieved by, for example, creating an electrostatic lens on the optical axis by applying a negative voltage (retarding voltage) to the sample stage on which the sample is mounted, and decelerating the primary electron beam with this electrostatic lens. The

この減速法では、一次電子線の減速に用いる静電レンズによって、試料から放射されるSE,BSEは逆に加速されるという特徴がある。   This decelerating method is characterized in that SE and BSE radiated from the sample are accelerated by the electrostatic lens used for decelerating the primary electron beam.

試料に負電圧を印加する減速法を用いた極低加速観察において、二次電子と反射電子を分離してSEM像を得る手法について、特許文献1,特許文献2に開示されている。   Patent Documents 1 and 2 disclose a technique for obtaining an SEM image by separating secondary electrons and reflected electrons in ultra-low acceleration observation using a deceleration method in which a negative voltage is applied to a sample.

特許文献1には、試料と走査装置の間に偏向器を設け、二次電子と反射電子の軌道の分離位置に開口を設けるなどして両者を分離してSEM像を得る方法が開示されている。   Patent Document 1 discloses a method of obtaining a SEM image by providing a deflector between a sample and a scanning device, and providing an opening at a separation position of the trajectory of secondary electrons and reflected electrons, for example. Yes.

特許文献2には、一次電子線の減速電界で加速された二次電子,反射電子を再度減速した上で、光軸と垂直方向に印加した電磁界で分離検出する方法が開示されている。   Patent Document 2 discloses a method of separately detecting secondary electrons and reflected electrons accelerated by a decelerating electric field of a primary electron beam and then decelerating with an electromagnetic field applied in a direction perpendicular to the optical axis.

特開平11−67139号公報JP-A-11-67139 WO99/46798号公報WO99 / 46798

上記文献に開示された技術によれば、試料に負電圧を印加する減速法を用いた極低加速観察においてSE/BSEを弁別して検出することが可能であるが以下のような問題がある。   According to the technique disclosed in the above-mentioned document, it is possible to discriminate and detect SE / BSE in ultra-low acceleration observation using a deceleration method in which a negative voltage is applied to a sample, but there are the following problems.

特許文献1は半導体製造時のプロセス管理に用いる走査形電子顕微鏡を想定しており、コンタクトホールの観察やラインアンドスペースの線幅測長に関するものである。従って、試料からの二次電子,反射電子は半導体加工の形状に制限されるため、光軸方向の一定範囲(実施例では20度以内の例を図示)で試料から放射されると想定している。したがって、高アスペクト比の半導体の試料観察用途以外に使用する際には二次電子と反射電子の軌道が当該特許に記載されているように分離しないという問題がある。   Patent Document 1 assumes a scanning electron microscope used for process management during semiconductor manufacturing, and relates to contact hole observation and line-and-space line width measurement. Therefore, since secondary electrons and reflected electrons from the sample are limited to the shape of the semiconductor processing, it is assumed that they are emitted from the sample in a certain range in the optical axis direction (in the embodiment, an example within 20 degrees is shown). Yes. Accordingly, when used for purposes other than the sample observation of a semiconductor having a high aspect ratio, there is a problem that orbits of secondary electrons and reflected electrons are not separated as described in the patent.

また、特許文献2においてエネルギー差の少ない信号電子を弁別するためにはメッシュ使用が不可欠で、検出効率を犠牲にせざるを得ないという問題がある。   Further, in Patent Document 2, the use of a mesh is indispensable for discriminating signal electrons having a small energy difference, and there is a problem that the detection efficiency must be sacrificed.

さらに近年では、減速法を用いた極低加速観察において、一次電子線の減速に用いる静電レンズの強度を強める、即ち試料台に印加する負電圧の大きさを大きくして観察したいというニーズがある。このような場合、光学条件の変更により、二次電子の軌道が変わり、検出器に入射しないという問題がある。上記特許文献1,2でもこの問題を解決できない。   In recent years, there has been a need to increase the strength of the electrostatic lens used for decelerating the primary electron beam, that is, to increase the magnitude of the negative voltage applied to the sample stage in ultra-low acceleration observation using the deceleration method. is there. In such a case, there is a problem that the trajectory of the secondary electrons changes due to the change of the optical conditions and does not enter the detector. The above Patent Documents 1 and 2 cannot solve this problem.

本願発明は、上記問題に鑑み、リターディング電圧を変化させた場合でも、効率よく二次電子を検出することができる走査電子顕微鏡を提供することにある。   In view of the above problems, the present invention is to provide a scanning electron microscope capable of efficiently detecting secondary electrons even when the retarding voltage is changed.

上記の課題を達成するために、電子源と、該電子源から発生した一次電子線を試料上に集束する対物レンズと、前記試料を搭載するステージと、一次電子線の照射により試料から発生した二次電子及び反射電子を検出する複数の検出器と、前記ステージに電圧を印加する電源と、を有する走査形電子顕微鏡において、当該電子顕微鏡は、少なくとも2つの変換電極、及び電界及び磁界を発生させる偏向器を備え、前記ステージに印加する負の電圧の大きさを大きくするとともに、前記偏向器が発生する電界の大きさを大きくし、前記試料から発生した二次電子が、前記変換電極のうち、試料側に近い第1の変換電極に設けられた穴を通過し、前記変換電極のうち、電子源側に近い第2の変換電極に衝突するように、前記電界の大きさを制御する走査電子顕微鏡を提供する。   In order to achieve the above-mentioned problems, an electron source, an objective lens that focuses the primary electron beam generated from the electron source onto the sample, a stage on which the sample is mounted, and generated from the sample by irradiation with the primary electron beam In a scanning electron microscope having a plurality of detectors for detecting secondary electrons and reflected electrons and a power source for applying a voltage to the stage, the electron microscope generates at least two conversion electrodes, and an electric field and a magnetic field. A deflector for increasing the magnitude of the negative voltage applied to the stage, and increasing the magnitude of the electric field generated by the deflector. Among these, the magnitude of the electric field is controlled so as to pass through a hole provided in the first conversion electrode close to the sample side and collide with the second conversion electrode close to the electron source side among the conversion electrodes. To provide a scanning electron microscope.

また、電子源と、該電子源から発生した一次電子線を試料上に集束する対物レンズと、前記試料を搭載するステージと、一次電子線の照射により試料から発生した二次電子及び反射電子を検出する複数の検出器と、前記ステージに電圧を印加する電源と、を有する走査形電子顕微鏡において、当該電子顕微鏡は、少なくとも2つの変換電極、及び電界及び磁界を発生させる偏向器を備え、前記変換電極のうち、試料側に近い第1の変換電極に設けられた穴の大きさが、一次電子線の開き角より大きく、前記変換電極のうち、電子源側に近い第2の変換電極に設けられた穴が、前記偏向器により偏向された二次電子の離軸量より小さいことを特徴とする走査電子顕微鏡を提供する。   In addition, an electron source, an objective lens that focuses the primary electron beam generated from the electron source on the sample, a stage on which the sample is mounted, and secondary electrons and reflected electrons generated from the sample by irradiation of the primary electron beam In a scanning electron microscope having a plurality of detectors for detection and a power source for applying a voltage to the stage, the electron microscope includes at least two conversion electrodes, and a deflector for generating an electric field and a magnetic field, Of the conversion electrodes, the size of the hole provided in the first conversion electrode close to the sample side is larger than the opening angle of the primary electron beam, and among the conversion electrodes, the second conversion electrode close to the electron source side The scanning electron microscope is characterized in that the provided hole is smaller than the off-axis amount of the secondary electrons deflected by the deflector.

上記構成によれば、リターディング電圧を変化させた場合でも二次電子を効率よく検出することができる。   According to the above configuration, secondary electrons can be efficiently detected even when the retarding voltage is changed.

また、極低照射電圧かつ高分解能で試料を観察する際、一次電子線の照射によって発生する二次信号のうち、二次電子と反射電子を分離して検出することが可能になる。   Further, when observing a sample with an extremely low irradiation voltage and high resolution, it becomes possible to separately detect secondary electrons and reflected electrons among secondary signals generated by irradiation with a primary electron beam.

図1に本発明の一実施例の概略図を示す。対物レンズ4のレンズギャップが下方に向かって開放されている対物レンズ(セミインレンズ)を採用し、試料に負電圧を印加して対物レンズ−試料間で一次電子線を減速する減速法を併用した走査形電子顕微鏡において本発明の説明をする。   FIG. 1 shows a schematic diagram of an embodiment of the present invention. Uses an objective lens (semi-in lens) in which the lens gap of the objective lens 4 is opened downward, and uses a deceleration method that applies a negative voltage to the sample to decelerate the primary electron beam between the objective lens and the sample. The present invention will be described with reference to a scanning electron microscope.

本例ではセミインレンズ型の対物レンズで構成された例を示したが、レンズの形状はセミインレンズ型に限らず発明の効果は同じである。   In this example, an example of a semi-in-lens type objective lens is shown, but the shape of the lens is not limited to the semi-in-lens type, and the effects of the invention are the same.

電子源1より発生した一次電子線2は、二段に配置された偏向器3a,3bによって走査され、対物レンズ4,減速電圧印加機構5によって試料6上に収束される。対物レンズは接地電位になっているため、一次電子線2は減速電圧印加機構5によって対物レンズと試料の間に発生した電界により減速されるため、試料に照射されるときには対物レンズを通過したときよりも低速になっている。一次電子線2の照射によって試料6からは二次電子20および反射電子21が発生する。   The primary electron beam 2 generated from the electron source 1 is scanned by deflectors 3 a and 3 b arranged in two stages, and converged on the sample 6 by the objective lens 4 and the deceleration voltage application mechanism 5. Since the objective lens is at the ground potential, the primary electron beam 2 is decelerated by the electric field generated between the objective lens and the sample by the deceleration voltage application mechanism 5, so that when the sample is irradiated, it passes through the objective lens. It is slower than. By irradiation with the primary electron beam 2, secondary electrons 20 and reflected electrons 21 are generated from the sample 6.

反射電子21は一次電子線が試料に照射される時のエネルギーとほぼ等しい。   The reflected electrons 21 are substantially equal to the energy when the sample is irradiated with the primary electron beam.

本実施例では、照射電圧(Vi)を100eV、減速電圧印加機構5によって試料に印加する電圧(Vr、以下リターディング電圧と略する)を−1500Vとおいた場合について説明するが、照射電圧,リターディング電圧を変更しても発明の効果は同じである。   In the present embodiment, the case where the irradiation voltage (Vi) is set to 100 eV and the voltage (Vr, hereinafter referred to as retarding voltage) applied to the sample by the deceleration voltage applying mechanism 5 is set to −1500 V will be described. The effect of the invention is the same even if the ding voltage is changed.

反射電子21は対物レンズと試料の間に発生した電界により加速されるため、対物レンズより上を通過する際は1600eVのエネルギーを持っていることになる。このとき、反射電子21の速度は、対物レンズと試料の間に発生した電界での加速によるビーム光軸方向の速度と、試料上で発生した時の速度との加算である。従って、ビーム光軸と垂直方向の速度成分は試料上で発生した時の速度のうちビーム光軸と垂直方向の速度成分を維持しているのみで、その最大値は100eV相当の速度である。   Since the reflected electrons 21 are accelerated by the electric field generated between the objective lens and the sample, the reflected electrons 21 have energy of 1600 eV when passing above the objective lens. At this time, the speed of the reflected electrons 21 is the sum of the speed in the beam optical axis direction due to acceleration by the electric field generated between the objective lens and the sample and the speed when generated on the sample. Accordingly, the velocity component in the direction perpendicular to the beam optical axis only maintains the velocity component in the direction perpendicular to the beam optical axis among the velocities generated on the sample, and its maximum value is a velocity equivalent to 100 eV.

一方、そのときのビーム光軸と平行方向の速度成分はリターディング電圧に相当する速度であるので、速度加算による最大の開き角は本例では100/1500=0.067rad(3.8°程度)となる。反射電子21は電子源1方向に進行し、下部検出電極7に到達する。   On the other hand, the velocity component in the direction parallel to the optical axis of the beam at that time is a velocity corresponding to the retarding voltage. Therefore, the maximum opening angle by the velocity addition is 100/1500 = 0.067 rad (about 3.8 ° in this example). ) The reflected electrons 21 travel in the direction of the electron source 1 and reach the lower detection electrode 7.

反射電子21の一部は下部検出電極7に衝突する。反射電子衝突のエネルギーによって、下部検出電極7の表面からは再発生した二次電子22が放出される。再発生した二次電子22は磁界偏向コイル10a,10bによってもたらされる磁界、及び静電偏向電極である多孔電極11aと対向電極11bによってもたらされる電界が重畳された電磁界により多孔電極11aの側に導かれる。多孔電極11aの外側に配した二次電子検出器12は前面に正の高電圧を印加してある。再発生した二次電子22は二次電子検出器12前面に印加した電圧に起因する電界によって多孔電極11aの穴を通過して加速され、二次電子検出器12に捕捉される。   A part of the reflected electrons 21 collides with the lower detection electrode 7. Regenerated secondary electrons 22 are emitted from the surface of the lower detection electrode 7 by the energy of the reflected electron collision. The regenerated secondary electrons 22 are moved to the porous electrode 11a side by the magnetic field generated by the magnetic field deflection coils 10a and 10b and the electromagnetic field in which the electric field generated by the porous electrode 11a and the counter electrode 11b which are electrostatic deflection electrodes is superimposed. Led. The secondary electron detector 12 disposed outside the porous electrode 11a has a positive high voltage applied to the front surface. The regenerated secondary electrons 22 are accelerated through the hole of the porous electrode 11 a by the electric field caused by the voltage applied to the front surface of the secondary electron detector 12, and are captured by the secondary electron detector 12.

このようにして、二次電子検出器12で反射電子21に起因する信号を検出する。二次電子検出器12で検出した信号や図示していないその他の検出器からの信号を信号処理手段13によって選択したり合成したりした上で表示装置15に表示する。   In this way, the secondary electron detector 12 detects a signal caused by the reflected electrons 21. Signals detected by the secondary electron detector 12 and signals from other detectors (not shown) are selected or synthesized by the signal processing means 13 and displayed on the display device 15.

磁界偏向コイル10a,10b,多孔電極11aと対向電極11bでは一次電子線2の軌道に影響を与えずに再発生した二次電子22を検出器方向に導くよう、電界と磁界を直交して印加する(この直交電磁界による偏向器を以下ExBと略する)。一次電子線2軌道に影響を与えない直交電磁界の印加手法についてはたとえば前記引用文献1に詳細に記載されている。   In the magnetic field deflection coils 10a and 10b, the porous electrode 11a and the counter electrode 11b, an electric field and a magnetic field are applied orthogonally so as to guide the regenerated secondary electrons 22 without affecting the trajectory of the primary electron beam 2 in the direction of the detector. (This deflector using the orthogonal electromagnetic field is hereinafter abbreviated as ExB). The application method of the orthogonal electromagnetic field that does not affect the primary electron beam 2 trajectory is described in detail, for example, in the cited document 1.

多孔電極11aと対向電極11bとの間に±Ve(V)の電位差を与えて電界Exを発生させると、加速電圧Vaccにより速度Vzをもつ電子線104は静電気力およびローレンツ力F1=−e(Ex+Vz・By)を受ける。F1=0を満足するように電圧VeあるいはBy(電界Exと直交する磁界)を発生するコイル電流量を調節する。   When an electric field Ex is generated by applying a potential difference of ± Ve (V) between the porous electrode 11a and the counter electrode 11b, the electron beam 104 having a velocity Vz by the acceleration voltage Vacc causes the electrostatic force and the Lorentz force F1 = −e ( Ex + Vz · By). The coil current amount for generating the voltage Ve or By (a magnetic field orthogonal to the electric field Ex) is adjusted so as to satisfy F1 = 0.

このとき、反射電子21および二次電子20は、それぞれ角度
θb=Ex・L/Vacc (式1)
および
θs=Ex・L(1+√(Vr/Vacc))/(2Vr) (式2)
だけ偏向される。ここで、Lは電極長である。
At this time, the reflected electrons 21 and the secondary electrons 20 have angles θb = Ex · L / Vacc (Equation 1)
And θs = Ex · L (1 + √ (Vr / Vacc)) / (2Vr) (Formula 2)
Only deflected. Here, L is the electrode length.

一方、F1=0となるように静電気力とローレンツ力をバランスさせて制御するので、一次電子線2は偏向作用を受けずに直進する。すなわち、
F1=−e(Ex+Vz・By)=0 (式3)
を満たして制御すれば、一次電子線に影響を与えずにExBを動作させることができる。
On the other hand, since the electrostatic force and the Lorentz force are balanced and controlled so that F1 = 0, the primary electron beam 2 goes straight without receiving a deflection action. That is,
F1 = −e (Ex + Vz · By) = 0 (Formula 3)
ExB can be operated without affecting the primary electron beam if the control is satisfied.

本実施例における偏向角度を具体的な数値を代入して検討してみる。Vr=1500V,Vacc=Vr+Vi=1600V,Ex=500V/m,L=20mmとおくと、θb=0.063rad(3.6°程度),θs=0.0066rad(0.37°程度)である。   Consider the deflection angle in this embodiment by substituting specific numerical values. When Vr = 1500V, Vacc = Vr + Vi = 1600V, Ex = 500V / m, L = 20 mm, θb = 0.063 rad (about 3.6 °) and θs = 0.0066 rad (about 0.37 °). .

二次電子20のエネルギーは50eV以下で平均的には3eV程度といわれている。散乱強度分布はcosθに比例するとされている。θは試料表面と垂直となる線となす角である。二次電子20は対物レンズと試料の間に発生した電界により加速される。二次電子20は対物レンズより上方では1500eVから1550eV、平均的には1503eV程度のエネルギーである。このときの二次電子20の開き角は3/1500=0.002rad(0.11°程度)である。開き角0.002radは一次電子線2の開き角と同等以下であり、下部検出電極7の中央部に設けた一次電子線2通過用の穴は二次電子20の分布径より大きく設計される。従って、二次電子20は下部検出電極7に衝突することなく、さらに上方に進行する。   The energy of the secondary electrons 20 is 50 eV or less and is said to be about 3 eV on average. The scattering intensity distribution is assumed to be proportional to cos θ. θ is an angle formed with a line perpendicular to the sample surface. The secondary electrons 20 are accelerated by the electric field generated between the objective lens and the sample. The secondary electrons 20 have an energy of 1500 eV to 1550 eV above the objective lens, and on average about 1503 eV. At this time, the opening angle of the secondary electrons 20 is 3/1500 = 0.002 rad (about 0.11 °). The opening angle 0.002 rad is equal to or less than the opening angle of the primary electron beam 2, and the hole for passing the primary electron beam 2 provided in the center of the lower detection electrode 7 is designed to be larger than the distribution diameter of the secondary electrons 20. . Accordingly, the secondary electrons 20 travel further upward without colliding with the lower detection electrode 7.

この際、ExBにより二次電子20は偏向される。偏向角は(式2)で計算でき、本例では0.0066radである。軌道中心がExBによって0.0066rad偏向された後、二次電子20は電子源1方向へと導かれる。二次電子20の大半は上部検出電極8に衝突する。   At this time, the secondary electrons 20 are deflected by ExB. The deflection angle can be calculated by (Equation 2), and is 0.0063 rad in this example. After the orbital center is deflected by 0.0063 rad by ExB, the secondary electrons 20 are guided toward the electron source 1. Most of the secondary electrons 20 collide with the upper detection electrode 8.

二次電子20は一次電子を減速した電界によって加速されており、上部検出電極8に衝突するときは1503eV程度のエネルギーを有している。従って、二次電子20衝突のエネルギーによって、上部検出電極8の表面からは再発生した二次電子23が放出される。二次電子検出器14は前面に正の高電圧を印加してある。再発生した二次電子23は二次電子検出器14前面に印加した電圧に起因する電界によって加速され、二次電子検出器14に捕捉される。このようにして、二次電子検出器14で二次電子20に起因する信号を検出する。   The secondary electrons 20 are accelerated by an electric field obtained by decelerating the primary electrons, and have an energy of about 1503 eV when colliding with the upper detection electrode 8. Therefore, the regenerated secondary electrons 23 are emitted from the surface of the upper detection electrode 8 due to the energy of the secondary electron 20 collision. The secondary electron detector 14 has a positive high voltage applied to the front surface. The regenerated secondary electrons 23 are accelerated by the electric field caused by the voltage applied to the front surface of the secondary electron detector 14 and captured by the secondary electron detector 14. In this way, the secondary electron detector 14 detects a signal caused by the secondary electrons 20.

本実施例において二次電子20が上部検出電極8に衝突する割合について、具体的な数値を代入して検討してみる。先に偏向角を算出したときの前提に加えて、試料6から下部検出電極7までの距離を50mm,下部検出電極7から上部検出電極8までの距離を100mmとする。また、上部検出電極8の中央にあけた一次電子線2通過用の穴径を直径1mmとする。二次電子20の中心位置は、偏向角θ=0.0066radと、ExBの中心位置から上部検出電極8までの距離との積で与えられる距離だけ一次電子線2の光軸から離れている。すなわち本例においては一次電子線2の光軸から0.72mm離れている。また、二次電子20の分布範囲の半径は開き角0.002radと試料6から上部検出電極8までの距離150mmの積で計算される。すなわち、二次電子20は半径0.3mmの範囲内に分布するのみである。 In this embodiment, the ratio of the secondary electrons 20 colliding with the upper detection electrode 8 will be examined by substituting specific numerical values. In addition to the premise of calculating the deflection angle first, the distance from the sample 6 to the lower detection electrode 7 is 50 mm, and the distance from the lower detection electrode 7 to the upper detection electrode 8 is 100 mm. The diameter of the hole for passing the primary electron beam 2 formed in the center of the upper detection electrode 8 is 1 mm. The center position of the secondary electrons 20 is separated from the optical axis of the primary electron beam 2 by a distance given by the product of the deflection angle θ S = 0.0066 rad and the distance from the center position of ExB to the upper detection electrode 8. . That is, in this example, it is 0.72 mm away from the optical axis of the primary electron beam 2. The radius of the distribution range of the secondary electrons 20 is calculated by the product of the opening angle 0.002 rad and the distance from the sample 6 to the upper detection electrode 8 of 150 mm. That is, the secondary electrons 20 are only distributed within a radius of 0.3 mm.

上部検出電極8への二次電子20の衝突位置と一次電子線2通過用の穴の位置関係を図3に示す。二次電子の大半は、図3の3eV程度に収まるので、二次電子20はその大半が上部検出電極8へ衝突しており、電極上で二次電子23を再発生させ、二次電子20に起因する信号は二次電子検出器14で高効率に検出される。このように上部検出電極8の中央部に設けた一次電子線2通過用の穴径を二次電子の離軸量より小さく設計することで高効率な二次電子検出が可能となる。   FIG. 3 shows the positional relationship between the collision position of the secondary electrons 20 to the upper detection electrode 8 and the holes for passing the primary electron beam 2. Since most of the secondary electrons fall within about 3 eV in FIG. 3, most of the secondary electrons 20 collide with the upper detection electrode 8, and the secondary electrons 23 are regenerated on the electrodes, and the secondary electrons 20. The secondary electron detector 14 detects the signal resulting from the above with high efficiency. In this way, by designing the hole diameter for passing the primary electron beam 2 provided in the central portion of the upper detection electrode 8 to be smaller than the off-axis amount of the secondary electrons, highly efficient secondary electron detection can be performed.

反射電子21の一部も上部検出電極8に衝突し、同様に二次電子検出器14で反射電子21に起因する信号が検出されるが、その大半は二次電子20に起因する信号である。その理由として次の2点が挙げられる。   A part of the reflected electrons 21 also collides with the upper detection electrode 8, and similarly, a signal caused by the reflected electrons 21 is detected by the secondary electron detector 14. Most of the signals are signals caused by the secondary electrons 20. . There are two reasons for this.

1点目は、二次電子20の発生量は反射電子21に比べて多いことである。   The first point is that the generation amount of the secondary electrons 20 is larger than that of the reflected electrons 21.

2点目は、反射電子21が上部検出電極8に到達した時点での反射電子21ビームの径は二次電子20ビームの径と比べて大きいため、到達前に下部検出電極7や鏡筒の内部構造物(図示せず)と衝突し、上部検出電極8まで届く割合は多くないことである。本例における数値代入では反射電子21の下部検出電極7上での分布の半径は3.3mm,上部検出電極8上での分布範囲の半径は10mmとなる。   The second point is that the diameter of the reflected electron 21 beam when the reflected electron 21 reaches the upper detection electrode 8 is larger than the diameter of the secondary electron 20 beam. The rate of collision with an internal structure (not shown) and reaching the upper detection electrode 8 is not high. In the numerical substitution in this example, the radius of the distribution of the reflected electrons 21 on the lower detection electrode 7 is 3.3 mm, and the radius of the distribution range on the upper detection electrode 8 is 10 mm.

二次電子検出器14で検出した信号や図示していないその他の検出器からの信号を信号処理手段13によって選択したり合成したりした上で表示装置15に表示する。   Signals detected by the secondary electron detector 14 and signals from other detectors (not shown) are selected or synthesized by the signal processing means 13 and displayed on the display device 15.

すなわち、上下二段に反射電極を設け、試料と上部反射電極との間に偏向器を設けることにより、二次電子と反射電子を弁別検出し、なおかつ高効率な二次電子検出ができる走査形電子顕微鏡を構成できる。   That is, a scanning type that can detect secondary electrons and reflected electrons in a discriminating manner by providing a reflective electrode in two upper and lower stages and a deflector between the sample and the upper reflective electrode, and can detect secondary electrons with high efficiency. An electron microscope can be constructed.

本実施例では反射電極と二次電子検出器の組み合わせで信号電子の情報を検出する例を示したが、この組み合わせに代えて、反射電極位置にシンチレータを設け、シンチレータ内の発光をライトガイドで光電増倍管に導く構成に変更しても同様の効果が期待できる。また、反射電極と二次電子検出器の組み合わせに代えて表面障壁の薄い半導体検出器によって信号電子を直接検出する構成に変更しても同様の効果が期待できる。   In this embodiment, an example of detecting signal electron information using a combination of a reflective electrode and a secondary electron detector is shown. Instead of this combination, a scintillator is provided at the position of the reflective electrode, and light emission in the scintillator is performed with a light guide. The same effect can be expected even when the structure is changed to a photomultiplier tube. The same effect can be expected even if the configuration is such that the signal electrons are directly detected by a semiconductor detector having a thin surface barrier instead of the combination of the reflective electrode and the secondary electron detector.

また、ExB検出器を下部検出電極7上で再発生した二次電子22の牽引用の偏向器としても用いたが、設置位置は試料6と上部検出電極8の間にあれば本発明を構成可能である。   The ExB detector is also used as a deflector for pulling the secondary electrons 22 regenerated on the lower detection electrode 7, but the present invention is configured if the installation position is between the sample 6 and the upper detection electrode 8. Is possible.

図4はリターディング電圧に伴ってExBで発生させる電界を増加させる実施例に関する図である。   FIG. 4 is a diagram related to an embodiment in which the electric field generated in ExB is increased with the retarding voltage.

図1に示した実施例と同じ配置の電子顕微鏡において、リターディング電圧だけ−2500Vに変更すると、二次電子20は、一次電子線2の光軸から0.43mm離れた位置を中心とした半径0.18mmの範囲内に分布する。これは上部検出電極8の中央にあけた一次電子線2通過用の穴(直径1mm)の中にほとんど位置するため、二次電子20はほとんど上部検出電極8へ衝突しない。   In the electron microscope having the same arrangement as the embodiment shown in FIG. 1, when the retarding voltage is changed to −2500 V, the secondary electrons 20 have a radius centered at a position 0.43 mm away from the optical axis of the primary electron beam 2. It is distributed within the range of 0.18 mm. Since this is almost located in the hole (diameter 1 mm) for passing through the primary electron beam 2 in the center of the upper detection electrode 8, the secondary electrons 20 hardly collide with the upper detection electrode 8.

図4左のカラム上図には、現行の制御方法に関する偏向電界と偏向磁界との関係が示されている。当該図では、リターディング電圧を大きくしたときに、ExBの偏向電極に印加される電圧を一定に維持した状態にて、偏向コイルによってもたらされる磁場と変化させた状態を示している。このとき、二次電子及び反射電子の変更角度を図4左のカラム下図に示す。この図からわかるように、偏向角度がリターディング電圧の上昇とともに変化している。つまり、二次電子が一次電子線通過用の穴を通過してしまい、上部検出電極に衝突しないこととなる。   4 shows the relationship between the deflection electric field and the deflection magnetic field for the current control method. In the figure, when the retarding voltage is increased, the magnetic field generated by the deflection coil is changed while the voltage applied to the ExB deflection electrode is kept constant. At this time, the change angle of the secondary electrons and the reflected electrons is shown in the lower column of the left column in FIG. As can be seen from this figure, the deflection angle changes as the retarding voltage increases. That is, the secondary electrons pass through the primary electron beam passage hole and do not collide with the upper detection electrode.

すなわち、図1に示した実施例ではリターディング電圧を増大させる場合、二次電子検出効率の維持のために内部構造の寸法を見直す必要がある。本例は内部構造の寸法を見直すことなく、リターディング電圧を増大させても二次電子検出効率を維持するものである。   That is, in the embodiment shown in FIG. 1, when the retarding voltage is increased, it is necessary to review the dimensions of the internal structure in order to maintain the secondary electron detection efficiency. In this example, the secondary electron detection efficiency is maintained even when the retarding voltage is increased without reexamining the dimensions of the internal structure.

本例では、リターディング電圧の増大に対し二次電子20のExBによる偏向角θsを維持するようにExBを制御する。また同時に、一次電子線2の軌道に影響を与えない条件(式3)も満たすようにする制御条件を(式4,5)に示す。   In this example, ExB is controlled so as to maintain the deflection angle θs due to ExB of the secondary electrons 20 with respect to an increase in the retarding voltage. At the same time, the control conditions for satisfying the condition that does not affect the trajectory of the primary electron beam 2 (Expression 3) are shown in (Expressions 4 and 5).

Ex=θs・Vr/L (式4)
By=Ex/Vz (式5)
この制御条件に基づき、図1に示した実施例と同じ配置の電子顕微鏡を制御した場合のExBの電界強度と磁界強度を図4中央のカラム上図に示す。
Ex = θs · Vr / L (Formula 4)
By = Ex / Vz (Formula 5)
Based on this control condition, the electric field strength and magnetic field strength of ExB when the electron microscope having the same arrangement as in the embodiment shown in FIG. 1 is controlled are shown in the upper column of FIG.

本実施例では、図4中央のカラム下図に示されるように、リターディング電圧を増大させても二次電子の偏向角度はほぼ一定であるため、二次電子検出効率を高いまま維持できる。図3ではリターディング電圧に比例して電界強度を制御する例を示したが、本偏向角度を下回らないよう、段階的にExBの電界強度を制御しても良い。さらに、図1に示した実施例に追記した変更についても同様の効果が期待できる。   In this embodiment, as shown in the lower diagram of the center column in FIG. 4, even if the retarding voltage is increased, the deflection angle of the secondary electrons is substantially constant, so that the secondary electron detection efficiency can be kept high. Although FIG. 3 shows an example in which the electric field strength is controlled in proportion to the retarding voltage, the electric field strength of ExB may be controlled step by step so as not to fall below this deflection angle. Furthermore, the same effect can be expected for the changes added to the embodiment shown in FIG.

図4右のカラム上図は一定以上のリターディング電圧の場合にExBで発生させる電界を増加させる実施例に関する図である。図4中央のカラム上図に示した実施例では、リターディング電圧が小さい場合、下部検出電極7で再発生した二次電子22を二次電子検出器12に導く電界強度が充分でない。従って、リターディング電圧があらかじめ決めた電圧以下の場合はExBの電界強度を一定に制御し、それ以上の場合は図4中央のカラム上図に示す実施例と同様に制御するものである。この制御条件に基づき、図1に示した実施例と同じ配置の電子顕微鏡を制御した場合のExBの電界強度と磁界強度を図4右のカラム上図に示す。   The upper diagram in the column on the right side of FIG. 4 is a diagram relating to an embodiment in which the electric field generated by ExB is increased when the retarding voltage is a certain level or higher. In the embodiment shown in the upper diagram of the center column in FIG. 4, when the retarding voltage is small, the electric field strength for guiding the secondary electrons 22 regenerated at the lower detection electrode 7 to the secondary electron detector 12 is not sufficient. Therefore, when the retarding voltage is equal to or lower than a predetermined voltage, the electric field intensity of ExB is controlled to be constant, and when it is higher than that, the same control as in the embodiment shown in the upper column of FIG. 4 is performed. Based on this control condition, the electric field strength and magnetic field strength of ExB when the electron microscope having the same arrangement as in the embodiment shown in FIG. 1 is controlled are shown in the upper column of FIG.

本実施例では、図4右のカラム下図に示されるように、電圧を変化させた領域では、リターディング電圧を増大させても二次電子の偏向角度はほぼ一定であるため、二次電子検出効率を高いまま維持できる。またリターディング電圧が低い場合でも、反射電子検出効率が低下しない利点がある。ExB電界強度の段階的な制御,検出器の構成など、図1に示した実施例に追記した変更例についても同様の効果が期待できる。   In this embodiment, as shown in the lower diagram in the right column of FIG. 4, in the region where the voltage is changed, the secondary electron deflection angle is almost constant even if the retarding voltage is increased. High efficiency can be maintained. Further, even when the retarding voltage is low, there is an advantage that the backscattered electron detection efficiency does not decrease. Similar effects can be expected for the modified examples added to the embodiment shown in FIG. 1 such as stepwise control of the ExB electric field intensity and the configuration of the detector.

以上のように、本発明の実施例装置によれば、減速法を用いた極低照射電圧条件においても、信号の弁別機能を有する高効率検出系を持った走査形電子顕微鏡が構成できる。   As described above, according to the embodiment apparatus of the present invention, a scanning electron microscope having a high-efficiency detection system having a signal discrimination function can be configured even under extremely low irradiation voltage conditions using the deceleration method.

本発明に係る走査形電子顕微鏡の構成例。1 is a configuration example of a scanning electron microscope according to the present invention. ExBによる二次電子20の偏向動作を示した図。The figure which showed the deflection | deviation operation | movement of the secondary electron 20 by ExB. 二次電子20の上部検出電極8への衝突範囲を示した図。The figure which showed the collision range of the secondary electron 20 to the upper detection electrode 8. FIG. リターディング電圧に伴ってExBで発生させる電界を変化させる実施例。An embodiment in which the electric field generated in ExB is changed in accordance with the retarding voltage.

符号の説明Explanation of symbols

1 電子源
2 一次電子線
3a,3b 偏向器
4 対物レンズ
5 減速電圧印加機構
6 試料
7 下部検出電極
8 上部検出電極
10a,10b 磁界偏向コイル
11a 多孔電極
11b 対向電極
12,14 二次電子検出器
13 信号処理手段
15 表示装置
20 二次電子
21 反射電子
22 試料からの反射電子起因で再発生した二次電子
23 試料からの二次電子起因で再発生した二次電子
DESCRIPTION OF SYMBOLS 1 Electron source 2 Primary electron beam 3a, 3b Deflector 4 Objective lens 5 Deceleration voltage application mechanism 6 Sample 7 Lower detection electrode 8 Upper detection electrode 10a, 10b Magnetic field deflection coil 11a Porous electrode 11b Counter electrode 12, 14 Secondary electron detector 13 Signal Processing Unit 15 Display Device 20 Secondary Electron 21 Reflected Electron 22 Secondary Electron Regenerated due to Reflected Electron from Sample 23 Secondary Electron Regenerated due to Secondary Electron from Sample

Claims (5)

電子源と、
該電子源から発生した一次電子線を試料上に集束する対物レンズと、
前記試料を搭載するステージと、
一次電子線の照射により試料から発生した二次電子及び反射電子を検出する複数の検出器と、
前記ステージに電圧を印加する電源と、
を有する走査形電子顕微鏡において、
当該電子顕微鏡は、少なくとも2つの変換電極、及び電界及び磁界を発生させる偏向器を備え、
前記ステージに印加する負の電圧の大きさを大きくするとともに、前記偏向器が発生する電界の大きさを大きくし、
前記試料から発生した二次電子が、前記変換電極のうち、試料側に近い第1の変換電極に設けられた穴を通過し、前記変換電極のうち、電子源側に近い第2の変換電極に衝突するように、前記電界の大きさを制御すること
を特徴とする走査電子顕微鏡。
An electron source,
An objective lens for focusing the primary electron beam generated from the electron source on the sample;
A stage on which the sample is mounted;
A plurality of detectors for detecting secondary electrons and reflected electrons generated from the sample by irradiation of the primary electron beam;
A power supply for applying a voltage to the stage;
In a scanning electron microscope having
The electron microscope includes at least two conversion electrodes and a deflector that generates an electric field and a magnetic field,
While increasing the magnitude of the negative voltage applied to the stage, increasing the magnitude of the electric field generated by the deflector,
Secondary electrons generated from the sample pass through holes provided in the first conversion electrode close to the sample side among the conversion electrodes, and the second conversion electrode close to the electron source side among the conversion electrodes. A scanning electron microscope characterized by controlling the magnitude of the electric field so as to collide with the electron beam.
請求項1の走査電子顕微鏡において、
前記ステージに印加する負の電圧の大きさに応じて、前記偏向器が発生する電界の大きさを変化させない領域と変化させる領域を設けること
を特徴とする走査電子顕微鏡。
The scanning electron microscope of claim 1,
A scanning electron microscope comprising: a region where the magnitude of an electric field generated by the deflector is not changed and a region where the magnitude is changed according to the magnitude of a negative voltage applied to the stage.
請求項1又は2の走査電子顕微鏡において、
前記偏向器は、前記第2の変換電極より試料側に配置されていることを特徴とする走査電子顕微鏡。
The scanning electron microscope according to claim 1 or 2,
The scanning electron microscope according to claim 1, wherein the deflector is arranged closer to the sample side than the second conversion electrode.
請求項1において、
前記偏向器が発生する磁場の大きさは、電場の大きさと所定の関係を保って変化されること
を特徴とする走査電子顕微鏡。
In claim 1,
The scanning electron microscope characterized in that the magnitude of the magnetic field generated by the deflector is changed in a predetermined relationship with the magnitude of the electric field.
電子源と、
該電子源から発生した一次電子線を試料上に集束する対物レンズと、
前記試料を搭載するステージと、
一次電子線の照射により試料から発生した二次電子及び反射電子を検出する複数の検出器と、
前記ステージに電圧を印加する電源と、
を有する走査形電子顕微鏡において、
当該電子顕微鏡は、少なくとも2つの変換電極、及び電界及び磁界を発生させる偏向器を備え、
前記変換電極のうち、試料側に近い第1の変換電極に設けられた穴の大きさが、一次電子線の開き角より大きく、
前記変換電極のうち、電子源側に近い第2の変換電極に設けられた穴が、前記偏向器により偏向された二次電子の離軸量より小さいこと
を特徴とする走査電子顕微鏡。
An electron source,
An objective lens for focusing the primary electron beam generated from the electron source on the sample;
A stage on which the sample is mounted;
A plurality of detectors for detecting secondary electrons and reflected electrons generated from the sample by irradiation of the primary electron beam;
A power supply for applying a voltage to the stage;
In a scanning electron microscope having
The electron microscope includes at least two conversion electrodes and a deflector that generates an electric field and a magnetic field,
Of the conversion electrodes, the size of the hole provided in the first conversion electrode close to the sample side is larger than the opening angle of the primary electron beam,
A scanning electron microscope characterized in that a hole provided in a second conversion electrode close to the electron source side among the conversion electrodes is smaller than an off-axis amount of secondary electrons deflected by the deflector.
JP2008204978A 2008-08-08 2008-08-08 Scanning electron microscope Expired - Fee Related JP5097642B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008204978A JP5097642B2 (en) 2008-08-08 2008-08-08 Scanning electron microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008204978A JP5097642B2 (en) 2008-08-08 2008-08-08 Scanning electron microscope

Publications (2)

Publication Number Publication Date
JP2010040461A true JP2010040461A (en) 2010-02-18
JP5097642B2 JP5097642B2 (en) 2012-12-12

Family

ID=42012767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008204978A Expired - Fee Related JP5097642B2 (en) 2008-08-08 2008-08-08 Scanning electron microscope

Country Status (1)

Country Link
JP (1) JP5097642B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003909A (en) * 2010-06-16 2012-01-05 Hitachi High-Technologies Corp Charged particle beam device
WO2012023354A1 (en) * 2010-08-18 2012-02-23 株式会社日立ハイテクノロジーズ Electron beam apparatus
WO2014115741A1 (en) * 2013-01-23 2014-07-31 株式会社 日立ハイテクノロジーズ Charged particle beam apparatus
CN105340051B (en) * 2013-08-02 2017-03-08 株式会社日立高新技术 Scanning electron microscope
JP2021044193A (en) * 2019-09-13 2021-03-18 日本電子株式会社 Charged particle beam device and analysis method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011939A (en) * 1998-06-19 2000-01-14 Hitachi Ltd Charged particle beam apparatus and inspection method for semiconductor device
JP2006332038A (en) * 2005-04-28 2006-12-07 Hitachi High-Technologies Corp Inspection method and inspection system using charged particle beam

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000011939A (en) * 1998-06-19 2000-01-14 Hitachi Ltd Charged particle beam apparatus and inspection method for semiconductor device
JP2006332038A (en) * 2005-04-28 2006-12-07 Hitachi High-Technologies Corp Inspection method and inspection system using charged particle beam

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012003909A (en) * 2010-06-16 2012-01-05 Hitachi High-Technologies Corp Charged particle beam device
WO2012023354A1 (en) * 2010-08-18 2012-02-23 株式会社日立ハイテクノロジーズ Electron beam apparatus
JP5676617B2 (en) * 2010-08-18 2015-02-25 株式会社日立ハイテクノロジーズ Electron beam equipment
US9208994B2 (en) 2010-08-18 2015-12-08 Hitachi High-Technologies Corporation Electron beam apparatus for visualizing a displacement of an electric field
WO2014115741A1 (en) * 2013-01-23 2014-07-31 株式会社 日立ハイテクノロジーズ Charged particle beam apparatus
JP2014143035A (en) * 2013-01-23 2014-08-07 Hitachi High-Technologies Corp Charged particle beam device
US9502212B2 (en) 2013-01-23 2016-11-22 Hitachi High-Technologies Corporation Charged particle beam apparatus
CN105340051B (en) * 2013-08-02 2017-03-08 株式会社日立高新技术 Scanning electron microscope
JP2021044193A (en) * 2019-09-13 2021-03-18 日本電子株式会社 Charged particle beam device and analysis method
JP7008671B2 (en) 2019-09-13 2022-01-25 日本電子株式会社 Charged particle beam device and analysis method

Also Published As

Publication number Publication date
JP5097642B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP6728498B2 (en) Method for inspecting a test piece and charged particle multi-beam apparatus
JP6099113B2 (en) Twin beam charged particle beam column and operation method thereof
JP5054990B2 (en) Scanning electron microscope
TWI737197B (en) Method, system, and device of imaging a secondary charged particle beam emanating from a sample by impingement of a primary charged particle beam
JP4920385B2 (en) Charged particle beam apparatus, scanning electron microscope, and sample observation method
JP4300710B2 (en) Scanning electron microscope
JP6856987B2 (en) Charged particle beam devices and methods for inspecting and / or imaging samples
KR20200130315A (en) Multiple beam electron microscope
US8759761B2 (en) Charged corpuscular particle beam irradiating method, and charged corpuscular particle beam apparatus
JP5791028B2 (en) Apparatus and method for improving contrast of charged particle beam apparatus for inspecting sample
US20150228452A1 (en) Secondary electron optics and detection device
JP5948083B2 (en) Scanning electron microscope
JP2006278329A (en) Charged particle beam device for high spatial resolution and multi-viewpoint image formation
US20140367586A1 (en) Charged particle beam system and method of operating thereof
JP5097642B2 (en) Scanning electron microscope
JP4874780B2 (en) Scanning electron microscope
US20110139978A1 (en) Charged particle beam device, method of operating a charged particle beam device
JP2012230919A (en) Method of irradiation of charged particle beam, and charged particle beam apparatus
JP4596061B2 (en) Scanning electron microscope
JP5822614B2 (en) Inspection device
JP2000011939A (en) Charged particle beam apparatus and inspection method for semiconductor device
JP2006284592A (en) Inspection apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120924

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150928

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees