JP2010036254A - Method for processing carbon fiber material - Google Patents

Method for processing carbon fiber material Download PDF

Info

Publication number
JP2010036254A
JP2010036254A JP2008197896A JP2008197896A JP2010036254A JP 2010036254 A JP2010036254 A JP 2010036254A JP 2008197896 A JP2008197896 A JP 2008197896A JP 2008197896 A JP2008197896 A JP 2008197896A JP 2010036254 A JP2010036254 A JP 2010036254A
Authority
JP
Japan
Prior art keywords
tool
carbon fiber
processing
workpiece
electrodeposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008197896A
Other languages
Japanese (ja)
Inventor
Koichi Kato
孝一 加藤
Haruhito Sugiyama
晴仁 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shibaura Machine Co Ltd
Original Assignee
Toshiba Machine Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Machine Co Ltd filed Critical Toshiba Machine Co Ltd
Priority to JP2008197896A priority Critical patent/JP2010036254A/en
Publication of JP2010036254A publication Critical patent/JP2010036254A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Milling Processes (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for processing a carbon fiber material for accurately processing a material including the carbon fiber by machining, well performing processing with high processing surface accuracy and improving the service life of a tool. <P>SOLUTION: In the method, a workpiece W of a material including the carbon fiber is processed. A machine tool in which a table 12 mounted with the workpiece W thereon and a rotatable spindle 19 are constituted to be relatively movable in at least one axial direction is prepared. An electroplated tool 30 having a cylindrical tool body, a cutting blade part formed on an outer periphery of the tool body and an abrasive grain layer fixed with abrasive grains fixed by electrodeposition to a surface of the cutting blade part is mounted on the spindle 19 of the machine tool. While rotating the spindle 19 and relatively moving the spindle 19 and the table 12, the workpiece W is processed by the electroplated tool 30. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、炭素繊維素材の加工方法に関する。   The present invention relates to a method for processing a carbon fiber material.

炭素繊維は、耐摩耗性、耐熱性、熱伸縮性、耐酸性、電気伝導性、耐引張力に優れ、また、アルミニウムなどの軽い金属に比べてもさらに軽量であることから、ロケットや航空機などの大型輸送機器からテニスラケットや釣り竿など身近な道具にまで利用されている。
しかし、上述した長所をもつ反面、短所として加工し難さ、つまり、難加工性が挙げられる。
Carbon fiber has excellent wear resistance, heat resistance, thermal stretchability, acid resistance, electrical conductivity, tensile strength, and is lighter than light metals such as aluminum, so it can be used for rockets, aircraft, etc. It is used for everyday tools such as tennis rackets and fishing rods.
However, while having the above-mentioned advantages, it is difficult to process, that is, difficult to process as a disadvantage.

そのため、炭素繊維を用いた製品としては、炭素繊維の表面に熱可塑性樹脂を溶融、被覆したストランドを所定長さに切断して得たペレット、あるいは、炭素繊維を切断したチョップド糸に熱可塑性樹脂を溶融、混練し、所定長さに切断して得たペレットを射出成形して所定形状の成形品を得る方法が採られていることが多い(特許文献1参照)。   Therefore, as a product using carbon fiber, a thermoplastic resin is used as a pellet obtained by melting a thermoplastic resin on the surface of the carbon fiber and cutting the coated strand into a predetermined length, or a chopped yarn obtained by cutting the carbon fiber. In many cases, a method is employed in which pellets obtained by melting, kneading, and cutting into a predetermined length are injection molded to obtain a molded product having a predetermined shape (see Patent Document 1).

特開2005−239806号公報JP-A-2005-239806

上述した炭素繊維を有する素材についても、機械加工によって切削や研磨ができる加工方法が要望されている。
しかし、現状では、上述した短所をもつため、マシニングセンタやターニングセンタなどの一般的な工作機械による加工では、炭素繊維が削り残されてしまうため、ほとんど行われていない。また、工具寿命の点からも実施が困難であった。
There is a demand for a processing method capable of cutting and polishing the above-described material having carbon fibers by machining.
However, at present, because of the above-mentioned disadvantages, the carbon fiber is left uncut in machining by a general machine tool such as a machining center or a turning center, so that it is hardly performed. In addition, it was difficult to implement from the viewpoint of tool life.

本発明の目的は、これらの要望に応え、炭素繊維を含む素材を機械加工によって、精度よく、かつ、加工面精度も良好に加工でき、しかも、工具寿命も増大させることができる炭素繊維素材の加工方法を提供することにある。   The object of the present invention is to meet the demands of carbon fiber materials that can process materials containing carbon fibers with high accuracy and good processing surface accuracy by machining, and that can increase tool life. It is to provide a processing method.

本発明の炭素繊維素材の加工方法は、炭素繊維を含む素材のワークを加工する炭素繊維素材の加工方法において、前記ワークを載置するテーブルと回転可能な主軸とが少なくとも1軸方向へ相対移動可能に構成された工作機械を用意し、円柱状の工具本体、この工具本体の外周に形成された切り刃部、および、この切り刃部の表面に砥粒が固着された砥粒層を有する電着工具を、前記工作機械の主軸に取り付け、前記炭素繊維素材を加工するために予め定めれた加工条件で加工を実行する加工プログラムを有する制御装置からの指令に基づき、前記主軸を回転させるとともに、前記テーブルと前記主軸とを相対移動させながら、前記電着工具によって前記ワークを加工する、ことを特徴とする。   The method for processing a carbon fiber material according to the present invention is a method for processing a carbon fiber material for processing a workpiece made of carbon fiber. The table on which the workpiece is placed and the rotatable main shaft are relatively moved in at least one axial direction. A machine tool configured to be capable of being prepared, and having a cylindrical tool body, a cutting blade portion formed on the outer periphery of the tool body, and an abrasive layer in which abrasive grains are fixed to the surface of the cutting blade portion An electrodeposition tool is attached to the spindle of the machine tool, and the spindle is rotated based on a command from a control device having a machining program for performing machining under a predetermined machining condition for machining the carbon fiber material. In addition, the workpiece is machined by the electrodeposition tool while relatively moving the table and the spindle.

この構成によれば、ワークを載置するテーブルと回転可能な主軸とが少なくとも2軸方向へ相対移動可能に構成された工作機械を用意し、この工作機械の主軸に電着工具を取り付け、主軸を回転させた状態において、テーブルと主軸とを相対移動させながら、電着工具によってワークを加工するので、炭素繊維を含む素材のワークを機械加工によって切削または研削加工することができる。
しかも、電着工具は、円柱状の工具本体、この工具本体の外周に形成された切り刃部、および、この切り刃部の表面に砥粒が固着された砥粒層を有する構造であるから、炭素繊維素材を精度よく、かつ、加工面精度も良好に加工でき、しかも、工具寿命も増大させることができる。
According to this configuration, a machine tool is prepared in which a table on which a workpiece is placed and a rotatable spindle are configured to be relatively movable in at least two directions, and an electrodeposition tool is attached to the spindle of the machine tool. Since the work is processed by the electrodeposition tool while relatively moving the table and the main shaft in a state where the table is rotated, the work made of the material containing carbon fiber can be cut or ground by machining.
Moreover, the electrodeposition tool has a structure having a cylindrical tool body, a cutting blade portion formed on the outer periphery of the tool body, and an abrasive layer in which abrasive grains are fixed to the surface of the cutting blade portion. In addition, the carbon fiber material can be processed with high accuracy and excellent processing surface accuracy, and the tool life can be increased.

本発明の炭素繊維素材の加工方法において、前記電着工具の砥粒層は、前記切り刃部の表面にダイヤモンド砥粒またはCBN(立方晶窒化ホウ素)砥粒が固着されて形成されている、ことが好ましい。
この構成によれば、切り刃部の表面にダイヤモンド砥粒またはCBN砥粒が固着された構造であるから、つまり、ダイヤモンド砥粒またはCBN砥粒は、硬度が高く、耐摩耗性に優れているから、切削や研削の加工効率および加工精度を向上させることができ、さらには、工具寿命の向上も期待できる。
In the carbon fiber material processing method of the present invention, the abrasive layer of the electrodeposition tool is formed by adhering diamond abrasive grains or CBN (cubic boron nitride) abrasive grains to the surface of the cutting edge portion, It is preferable.
According to this configuration, since the diamond abrasive grains or the CBN abrasive grains are fixed to the surface of the cutting edge portion, that is, the diamond abrasive grains or the CBN abrasive grains have high hardness and excellent wear resistance. Therefore, the processing efficiency and processing accuracy of cutting and grinding can be improved, and further the improvement of the tool life can be expected.

本発明の炭素繊維素材の加工方法において、前記電着工具の径が4〜10mm、前記電着工具の回転数が粗加工から仕上加工の範囲で15000〜30000回転/分、前記電着工具の前記ワークに対する切り込み量が1〜15mm、前記電着工具と前記ワークとの相対送り速度が100〜4000mm/分の加工条件下で、前記ワークを加工する、ことが好ましい。
ここで、加工条件に関しては、ワーク素材に応じて、上述した範囲内で適宜選択して加工を行うことが好ましい。このような加工条件の下で加工を行えば、加工面精度も良好に仕上げられるとともに、工具寿命のさらなる増大も期待できる。
In the method for processing a carbon fiber material according to the present invention, the diameter of the electrodeposition tool is 4 to 10 mm, and the rotation speed of the electrodeposition tool is 15000 to 30000 rotations / minute in a range from roughing to finishing. It is preferable that the workpiece is machined under a machining condition in which a cutting amount with respect to the workpiece is 1 to 15 mm and a relative feed speed between the electrodeposition tool and the workpiece is 100 to 4000 mm / min.
Here, regarding the processing conditions, it is preferable to perform processing by appropriately selecting within the above-described range according to the workpiece material. If machining is performed under such machining conditions, the machined surface accuracy can be satisfactorily finished and further increase in tool life can be expected.

本発明の炭素繊維素材の加工方法において、前記電着工具は、前記主軸に工具ホルダを介して取り付けられ、前記工具ホルダは、ホルダ本体と、このホルダ本体に回転可能に設けられ前記主軸に装着される装着部と、前記ホルダ本体に設けられ前記装着部を介して前記主軸の回転が伝達され電力を発生する発電機と、前記ホルダ本体に設けられ前記発電機からの電力が供給されて前記電着工具を回転させる電動機とを備える、ことが好ましい。
この構成によれば、電着工具の回転数を任意に設定できるとともに、主軸の回転数より高い回転数に設定できるから、主軸の回転数が低速な工作機械でも適用できる。
In the method for processing a carbon fiber material according to the present invention, the electrodeposition tool is attached to the main shaft via a tool holder, and the tool holder is provided on a holder main body and rotatably provided on the holder main body. A mounting portion, a generator provided in the holder main body and transmitting the rotation of the main shaft through the mounting portion to generate electric power, and an electric power provided from the generator provided in the holder main body and supplied with the electric power It is preferable to include an electric motor that rotates the electrodeposition tool.
According to this configuration, the rotational speed of the electrodeposition tool can be arbitrarily set, and can be set to a rotational speed higher than the rotational speed of the main shaft, so that it can be applied to a machine tool having a low speed of the main shaft.

本発明の炭素繊維素材の加工方法において、前記ワークが、炭素繊維を補強材とした炭素繊維強化樹脂複合材によって形成されている、ことが好ましい。
この構成によれば、例えば、射出成形した炭素繊維強化樹脂複合材を、機械加工によって穴加工したり、所望の形状に形成することができるから、製品設計の自由度を向上させることができる。
In the method for processing a carbon fiber material of the present invention, it is preferable that the workpiece is formed of a carbon fiber reinforced resin composite material using carbon fiber as a reinforcing material.
According to this configuration, for example, since the injection-molded carbon fiber reinforced resin composite material can be drilled or formed into a desired shape by machining, the degree of freedom in product design can be improved.

以下、本発明の一実施形態を図面に基づいて説明する。
<工作機械の説明>
図1は、本発明の一実施形態に係る工作機械の概略構成を示す正面図である。
本実施形態の工作機械は、ワークWを載置するテーブル12と、このテーブル12に対して略垂直にかつ回転可能に支持された主軸19と、テーブル12と主軸19とを三次元方向へ相対移動させる相対移動機構10と、主軸19の先端に工具ホルダ20を交換可能に装着させる工具交換機構40と、これらの駆動を制御する制御装置50とを備える。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
<Description of machine tools>
FIG. 1 is a front view showing a schematic configuration of a machine tool according to an embodiment of the present invention.
The machine tool of the present embodiment includes a table 12 on which a workpiece W is placed, a main shaft 19 that is supported substantially vertically and rotatably with respect to the table 12, and the table 12 and the main shaft 19 relative to each other in a three-dimensional direction. A relative movement mechanism 10 for movement, a tool exchange mechanism 40 for attaching the tool holder 20 to the tip of the main shaft 19 in a replaceable manner, and a control device 50 for controlling the driving of the tool holder 20 are provided.

相対移動機構10は、テーブル12を前後方向(X方向)へ移動可能に支持したベース11と、このベース11に設けられテーブル12をX方向へ移動させるX駆動機構13と、ベース11の両側にテーブル12を跨いで設けられた門形フレーム14と、この門形フレーム14の水平ビーム14Aに左右方向(Y方向)へ移動可能に設けられたサドル15と、このサドル15をY方向へ移動させるY駆動機構16と、サドル15に上下方向(Z方向)へ移動可能に設けられ内部に主軸19を有するラム17と、このラム17をZ方向へ移動させるZ駆動機構18とから構成されている。
なお、これらのX駆動機構13、Y駆動機構16およびZ駆動機構18については、リニアモータなどで構成することができるほか、送りねじ軸にスライダを螺合させた構成などを利用できる。
The relative movement mechanism 10 includes a base 11 that supports the table 12 so as to be movable in the front-rear direction (X direction), an X drive mechanism 13 that is provided on the base 11 and moves the table 12 in the X direction, and both sides of the base 11. A portal frame 14 provided across the table 12, a saddle 15 provided on the horizontal beam 14A of the portal frame 14 so as to be movable in the left-right direction (Y direction), and the saddle 15 are moved in the Y direction. The Y drive mechanism 16 is composed of a ram 17 provided on the saddle 15 so as to be movable in the vertical direction (Z direction) and having a main shaft 19 inside, and a Z drive mechanism 18 for moving the ram 17 in the Z direction. .
The X drive mechanism 13, the Y drive mechanism 16, and the Z drive mechanism 18 can be configured by a linear motor or the like, and a configuration in which a slider is screwed onto a feed screw shaft can be used.

主軸19の先端には、工具交換機構40によって、指定の工具ホルダが着脱可能に装着される。つまり、制御装置50からの指令に基づいて、サドル15が図1中右端に移動された状態において、主軸19と工具交換機構40との間で工具交換動作が実行され、主軸19の先端に指定の工具ホルダが装着されるようになっている。
例えば、炭素繊維を含む素材の加工では、先端に電着工具30を装着した工具ホルダ20が主軸19に装着される。
A specified tool holder is detachably attached to the tip of the main shaft 19 by a tool changing mechanism 40. That is, on the basis of a command from the control device 50, in a state where the saddle 15 is moved to the right end in FIG. 1, a tool changing operation is executed between the spindle 19 and the tool changing mechanism 40, and designated at the tip of the spindle 19 The tool holder is mounted.
For example, in processing a material including carbon fiber, a tool holder 20 having an electrodeposition tool 30 attached to the tip is attached to the main shaft 19.

<工具ホルダの説明>
図2は、工具ホルダ20を示している。工具ホルダ20は、ホルダ本体21と、このホルダ本体21にベアリング22を介して回転可能に設けられ主軸19の工具ホルダ嵌合穴19Aに装着される装着部としてのテーパシャンク部23と、ホルダ本体21に設けられテーパシャンク部23を介して主軸19の回転が伝達されて電力を発生する発電機24と、ホルダ本体21に設けられ発電機24からの電力が供給されて回転される電動機25と、この電動機25の出力軸25Aに設けられ電着工具30を保持する工具保持部26とを備える。なお、図示していなが、ホルダ本体21には、工具ホルダ20が主軸19に装着された状態において、ラム17に形成された穴に係合する回り止めピンが設けられている。
<Description of tool holder>
FIG. 2 shows the tool holder 20. The tool holder 20 includes a holder main body 21, a taper shank portion 23 as a mounting portion that is rotatably provided to the holder main body 21 via a bearing 22, and is attached to the tool holder fitting hole 19A of the main shaft 19, and the holder main body. A generator 24 that is provided in the motor 21 and generates power by transmitting the rotation of the main shaft 19 via the taper shank portion 23; and an electric motor 25 that is provided in the holder body 21 and is rotated by the power supplied from the generator 24. And a tool holding portion 26 that is provided on the output shaft 25 </ b> A of the electric motor 25 and holds the electrodeposition tool 30. Although not shown, the holder body 21 is provided with a detent pin that engages with a hole formed in the ram 17 in a state where the tool holder 20 is mounted on the main shaft 19.

いま、工具ホルダ20が工作機械の主軸19に装着された状態において、主軸19を回転数Nで回転させると、工具ホルダ20のテーパシャンク部23が回転し、主軸19の回転が発電機24に伝達される。このとき、回り止めピンはラムなどの非回転部に形成された嵌合穴に挿入されているため、工具ホルダ20のテーパシャンク部23のみが回転される。これにより、発電機24は発電する。
発電機24に三相同期発電機を用いた場合には、三相交流を発電する。発電機24の発生する三相交流の周波数fは、発電機24の極数をPとし、主軸19の回転数をN[rpm]とすると、次式(1)によって表される。
f=P×N/120[Hz]……(1)
Now, in a state where the tool holder 20 is mounted on the main shaft 19 of the machine tool, when the main shaft 19 is rotated at the rotation speed N 0 , the taper shank portion 23 of the tool holder 20 rotates, and the rotation of the main shaft 19 causes the generator 24 to rotate. Is transmitted to. At this time, since the non-rotating pin is inserted into a fitting hole formed in a non-rotating portion such as a ram, only the tapered shank portion 23 of the tool holder 20 is rotated. Thereby, the generator 24 generates electric power.
When a three-phase synchronous generator is used as the generator 24, three-phase alternating current is generated. Frequency f of the three-phase alternating current generated by the generator 24, the number of poles of the generator 24 and P 1, when the rotational speed of the spindle 19 and N 0 [rpm], represented by the following formula (1).
f = P 1 × N 0/ 120 [Hz] ...... (1)

従って、主軸19を回転数Nで回転させると、上記(1)式で表される周波数fの三相交流電力が電動機25に供給される。ここで、電動機25に三相誘導電動機を用いた場合、電動機25の極数がPであるすると、電動機25は3相交流の1サイクルで2/P回転するから、電動機25の同期速度Nは、次式(2)で表される。
=120×f/P[rpm]……(2)
従って、主軸19の回転数Nに対する電着工具30の回転数Nは次式(3)で表される。
=N×P/P[rpm]……(3)
Therefore, when the main shaft 19 is rotated at the rotation speed N 0 , three-phase AC power having a frequency f expressed by the above equation (1) is supplied to the motor 25. In the case of using the three-phase induction motor to the motor 25, whereupon the number of poles of the electric motor 25 is P 2, the motor 25 because to 2 / P 2 rotate in one cycle of 3-phase AC synchronous speed of the motor 25 N 1 is represented by the following formula (2).
N 1 = 120 × f / P 2 [rpm] (2)
Thus, the rotational speed N 1 of electroplated tools 30 with respect to the rotational speed N 0 of the spindle 19 is represented by the following formula (3).
N 1 = N 0 × P 1 / P 2 [rpm] (3)

上記(3)式から判るように、主軸19の回転数Nは、上記(3)式で表される回転数Nに変速される。(3)式で示すように、発電機24の極数Pと電動機25の極数Pとの比を適宜設定することにより、主軸19の回転数Nに対する電着工具30の回転数Nの変速比を任意に設定できることがわかる。
すなわち、主軸19の回転数Nを増速したい場合には、極数比P/Pを1より大きくし、減速したい場合には、極数比P/Pを1より小さくなるように、発電機24の極数Pと電動機25の極数Pを予め選択すればよい。
As can be seen from the above equation (3), the rotational speed N 0 of the main shaft 19 is shifted to the rotational speed N 1 represented by the above formula (3). As shown by the equation (3), by appropriately setting the ratio of the number of poles P 1 of the generator 24 and the number of poles P 2 of the electric motor 25, the rotational speed of the electrodeposition tool 30 with respect to the rotational speed N 0 of the main shaft 19. It can be seen that the gear ratio of N 1 can be set arbitrarily.
That is, when it is desired to increase the rotational speed N 0 of the main shaft 19, the pole number ratio P 1 / P 2 is made larger than 1, and when it is desired to decelerate, the pole number ratio P 1 / P 2 becomes smaller than 1. Thus, the number of poles P 1 of the generator 24 and the number of poles P 2 of the electric motor 25 may be selected in advance.

<電着工具の説明>
図3は電着工具30を示している。電着工具30は、円柱状の工具本体31と、この工具本体31の長手方向所定長さ(約半分の長さ)に渡って形成された切り刃部32と、この切り刃部32の表面にダイヤモンド砥粒が固着処理された砥粒層33とを備える。切り刃部32は、工具本体31の所定角度位置にV字溝条34が工具本体31の軸方向に沿って所定長さ形成され、このV字溝条34の間に形成されている。
ちなみに、電着工具30を製造するには、例えば、工具本体31に切り刃部32を切削加工したのち、この切り刃部32の表面に接着剤を塗布し、この接着剤の上にダイヤモンド砥粒を均一に仮接着し、ついで、これらのダイヤモンド砥粒をメッキにより固着することにより製造される。
<Description of electrodeposition tool>
FIG. 3 shows the electrodeposition tool 30. The electrodeposition tool 30 includes a cylindrical tool body 31, a cutting blade portion 32 formed over a predetermined length in the longitudinal direction of the tool body 31 (about half length), and the surface of the cutting blade portion 32. And an abrasive grain layer 33 to which diamond abrasive grains are fixed. In the cutting blade portion 32, a V-shaped groove 34 is formed at a predetermined angle position on the tool body 31 along the axial direction of the tool body 31, and is formed between the V-shaped grooves 34.
Incidentally, in order to manufacture the electrodeposition tool 30, for example, after cutting the cutting blade portion 32 on the tool body 31, an adhesive is applied to the surface of the cutting blade portion 32, and diamond grinding is applied on the adhesive. It is produced by uniformly temporarily bonding the grains and then fixing these diamond abrasive grains by plating.

<加工方法の説明>
炭素繊維を含む素材のワークW、例えば、炭素繊維を補強材とした炭素繊維強化樹脂複合材を加工するには、ワークWをテーブル12上に固定するとともに、工作機械の主軸19に、電着工具30を装着した工具ホルダ20を取り付ける。
この状態において、炭素繊維素材を加工するために予め定めれた加工条件で加工を実行する加工プログラムを有する制御装置50からの指令により、主軸19を回転させるとともに、主軸19をY方向およびZ方向へ、また、テーブル12をX方向へ選択的に移動させながら、電着工具30によりワークWに所望の加工を施す。
<Description of processing method>
In order to process a workpiece W including carbon fiber, for example, a carbon fiber reinforced resin composite material using carbon fiber as a reinforcing material, the workpiece W is fixed on the table 12 and electrodeposition is applied to the spindle 19 of the machine tool. The tool holder 20 equipped with the tool 30 is attached.
In this state, the spindle 19 is rotated by a command from the control device 50 having a machining program for executing machining under a predetermined machining condition for machining the carbon fiber material, and the spindle 19 is rotated in the Y and Z directions. In addition, while the table 12 is selectively moved in the X direction, the electrodeposition tool 30 performs a desired process on the workpiece W.

<変形例>
本発明は、前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
前記実施形態では、ワークWとして、炭素繊維を補強材とした炭素繊維強化樹脂複合材を用いた例を説明したが、炭素繊維を含む素材であれば、これに限られない。
例えば、長短繊維化された炭素繊維とアルミニウムなどの金属との複合材でもよく、あるいは、ゴムや木粉などとの複合材でもよい。また、平坦状にシート化して積層したものであってもよい。
<Modification>
The present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
In the embodiment, the carbon fiber reinforced resin composite material using carbon fiber as the reinforcing material has been described as the workpiece W. However, the material is not limited to this as long as the material includes carbon fiber.
For example, it may be a composite material of carbon fibers made into long and short fibers and a metal such as aluminum, or a composite material of rubber or wood powder. Further, it may be a flat sheet laminated.

前記実施形態では、電着工具30は、工具本体31の所定角度位置にV字溝条34が形成され、このV字溝条34の間に切り刃部32が形成された構造の電着工具30、つまり、切り刃部32が工具本体31の軸方向に平行となった構造の電着工具30を用いたが、これに限られない。
例えば、切り刃部32が工具本体31の外周面に螺旋状に形成された構造の電着工具30であってもよい。
In the embodiment, the electrodeposition tool 30 has an electrodeposition tool having a structure in which a V-shaped groove 34 is formed at a predetermined angular position of the tool body 31 and a cutting edge portion 32 is formed between the V-shaped grooves 34. 30, that is, the electrodeposition tool 30 having a structure in which the cutting blade portion 32 is parallel to the axial direction of the tool body 31 is used, but is not limited thereto.
For example, the electrodeposition tool 30 having a structure in which the cutting blade portion 32 is spirally formed on the outer peripheral surface of the tool main body 31 may be used.

前記実施形態では、電着工具30として、工具本体31の切り刃部32にダイヤモンド砥粒を固着した、ダイヤモンド電着工具を用いたが、これに限られない。
例えば、ダイヤモンド砥粒に代えてCBN(立方晶窒化ホウ素)を用い、このCBN(立方晶窒化ホウ素)を工具本体31の切り刃部32に固着した、CBN電着工具であってもよい。CBN電着工具でも、上述したダイヤモンド電着工具と同様な効果が期待できる。
In the said embodiment, although the diamond electrodeposition tool which fixed the diamond abrasive grain to the cutting blade part 32 of the tool main body 31 was used as the electrodeposition tool 30, it is not restricted to this.
For example, a CBN electrodeposition tool may be used in which CBN (cubic boron nitride) is used instead of diamond abrasive grains, and the CBN (cubic boron nitride) is fixed to the cutting edge portion 32 of the tool body 31. Even with a CBN electrodeposition tool, the same effect as the diamond electrodeposition tool described above can be expected.

前記実施形態では、主軸19がX方向およびY方向へ移動可能に構成され、ワークWを載置するテーブル12がX方向へ移動可能に構成された工作装置を例に説明したが、これに限られない。
例えば、主軸19がX,Y,Z方向へ移動可能に構成されたものでもよく、または、ワークWが載置されるテーブル12がX,Y,Z方向へ移動可能に構成されたものでもよい。また、移動軸については、主軸19およびテーブル12のいずれか一方が、X,Y,Z方向のうちの少なくとも1つの軸方向へ移動可能であればよい。
In the above-described embodiment, the description has been given of the machining apparatus in which the main shaft 19 is configured to be movable in the X direction and the Y direction, and the table 12 on which the workpiece W is placed is configured to be movable in the X direction. I can't.
For example, the main shaft 19 may be configured to be movable in the X, Y, and Z directions, or the table 12 on which the workpiece W is placed may be configured to be movable in the X, Y, and Z directions. . As for the movement axis, any one of the main shaft 19 and the table 12 may be movable in at least one of the X, Y, and Z directions.

その他、本発明の実施の際の具体的な構造は、本発明の目的を達成できる範囲で他の構造などに適宜変更できる。   In addition, the specific structure for carrying out the present invention can be appropriately changed to another structure or the like within a range in which the object of the present invention can be achieved.

以下の実施例は、工作機械として東芝機械(株)製の加工機MPF−2114DSを、また、制御装置として東芝機械(株)製のTOSNUC−888形を使用した実施例である。   In the following examples, a processing machine MPF-2114DS manufactured by Toshiba Machine Co., Ltd. is used as a machine tool, and a TOSNUC-888 model manufactured by Toshiba Machine Co., Ltd. is used as a control device.

<第1実施例>
第1実施例では、図4に示すように、ワークWに溝条(幅8mmの溝条)を切削加工した例である。加工条件は、次の通りである。
ワークの素材 :炭素繊維プレート
電着工具の径 :8mm
電着工具の回転数:25000rpm
電着工具のワークに対する切り込み量:8mm(Z方向切り込み量)
電着工具の送り速度:100mm/min
加工後の加工面について見ると、補強材として用いられた素繊維が切断され、加工面精度が良好であった。
<First embodiment>
In the first embodiment, as shown in FIG. 4, a groove (groove with a width of 8 mm) is cut into the workpiece W. The processing conditions are as follows.
Workpiece material: Carbon fiber plate Diameter of electrodeposition tool: 8mm
Rotation speed of electrodeposition tool: 25000rpm
Cutting depth of electrodeposition tool for workpiece: 8mm (Z-direction cutting depth)
Feed rate of electrodeposition tool: 100mm / min
Looking at the processed surface after processing, the raw fibers used as the reinforcing material were cut, and the processed surface accuracy was good.

<第2実施例>
第2実施例では、図5に示すように、ワークWの端面を研削加工した例である。加工条件は、次の通りである。
ワークの素材 :炭素繊維プレート
電着工具の径 :8mm
電着工具の回転数:30000rpm
電着工具のワークに対する切り込み量:0.02mm(Y方向切り込み量)
電着工具の送り速度:1000mm/min
加工後の加工面について見ると、補強材として用いられた炭素繊維が切断され、加工面精度が良好であった。
<Second embodiment>
In the second embodiment, as shown in FIG. 5, the end face of the workpiece W is ground. The processing conditions are as follows.
Workpiece material: Carbon fiber plate Diameter of electrodeposition tool: 8mm
Number of rotations of electrodeposition tool: 30000 rpm
Cutting depth of electrodeposition tool with respect to workpiece: 0.02 mm (Y-direction cutting depth)
Feed rate of electrodeposition tool: 1000mm / min
Looking at the processed surface after processing, the carbon fiber used as the reinforcing material was cut, and the processed surface accuracy was good.

本発明は、炭素繊維を含む素材、例えば、炭素繊維強化樹脂複合材料などの加工に利用できる。   The present invention can be used for processing a material containing carbon fiber, for example, a carbon fiber reinforced resin composite material.

本発明の一実施形態に係る工作機械の概略構成を示す正面図。1 is a front view showing a schematic configuration of a machine tool according to an embodiment of the present invention. 上記工作機械に用いられる工具ホルダを示す断面図。Sectional drawing which shows the tool holder used for the said machine tool. 上記工作機械に用いられる電着工具を示す斜視図。The perspective view which shows the electrodeposition tool used for the said machine tool. 第1実施例の加工状態を示す斜視図。The perspective view which shows the processing state of 1st Example. 第2実施例の加工状態を示す斜視図。The perspective view which shows the processing state of 2nd Example.

符号の説明Explanation of symbols

10…相対移動機構、
12…テーブル、
19…主軸、
20…工具ホルダ、
21…ホルダ本体、
23…テーパシャンク部(装着部)、
24…発電機、
25…電動機、
26…工具保持部、
30…電着工具、
31…工具本体、
32…切り刃部、
33…砥粒層、
W…ワーク。
10 ... Relative movement mechanism,
12 ... table,
19 ... Spindle,
20 ... Tool holder,
21 ... Holder body,
23 ... Taper shank part (mounting part),
24 ... Generator,
25 ... Electric motor,
26: Tool holding part,
30 ... Electrodeposition tool,
31 ... Tool body,
32 ... cutting blade part,
33 ... abrasive layer,
W ... Work.

Claims (5)

炭素繊維を含む素材のワークを加工する炭素繊維素材の加工方法において、
前記ワークを載置するテーブルと回転可能な主軸とが少なくとも1軸方向へ相対移動可能に構成された工作機械を用意し、
円柱状の工具本体、この工具本体の外周に形成された切り刃部、および、この切り刃部の表面に砥粒が固着された砥粒層を有する電着工具を、前記工作機械の主軸に取り付け、
前記炭素繊維素材を加工するために予め定めれた加工条件で加工を実行する加工プログラムを有する制御装置からの指令に基づき、前記主軸を回転させるとともに、前記テーブルと前記主軸とを相対移動させながら、前記電着工具によって前記ワークを加工する、ことを特徴とする炭素繊維素材の加工方法。
In the processing method of the carbon fiber material that processes the workpiece of the material containing carbon fiber,
Preparing a machine tool configured such that a table on which the workpiece is placed and a rotatable main shaft are relatively movable in at least one axial direction;
A cylindrical tool main body, a cutting edge portion formed on the outer periphery of the tool main body, and an electrodeposition tool having an abrasive layer in which abrasive grains are fixed to the surface of the cutting blade portion are used as the spindle of the machine tool. attachment,
While rotating the main shaft and relatively moving the table and the main shaft based on a command from a control device having a processing program that executes processing under a predetermined processing condition for processing the carbon fiber material A method for processing a carbon fiber material, wherein the workpiece is processed by the electrodeposition tool.
請求項1に記載の炭素繊維素材の加工方法において、
前記電着工具の砥粒層は、前記切り刃部の表面にダイヤモンド砥粒またはCBN(立方晶窒化ホウ素)砥粒が固着されて形成されている、ことを特徴とする炭素繊維素材の加工方法。
In the processing method of the carbon fiber raw material of Claim 1,
The abrasive layer of the electrodeposition tool is formed by fixing diamond abrasive grains or CBN (cubic boron nitride) abrasive grains on the surface of the cutting edge portion, and a method for processing a carbon fiber material, .
請求項1または請求項2に記載の炭素繊維素材の加工方法において、
前記電着工具の径が4〜10mm、前記電着工具の回転数が粗加工から仕上加工の範囲で15000〜30000回転/分、前記電着工具の前記ワークに対する切り込み量が1〜15mm、前記電着工具と前記ワークとの相対送り速度が100〜4000mm/分の加工条件下で、前記ワークを加工する、ことを特徴とする炭素繊維素材の加工方法。
In the processing method of the carbon fiber raw material of Claim 1 or Claim 2,
The diameter of the electrodeposition tool is 4 to 10 mm, the rotation speed of the electrodeposition tool is 15000 to 30000 rotations / minute in the range of roughing to finishing, the cutting amount of the electrodeposition tool with respect to the workpiece is 1 to 15 mm, A method of processing a carbon fiber material, wherein the workpiece is processed under a processing condition in which a relative feed rate between the electrodeposition tool and the workpiece is 100 to 4000 mm / min.
請求項1〜請求項3のいずれかに記載の炭素繊維素材の加工方法において、
前記電着工具は、前記主軸に工具ホルダを介して取り付けられ、
前記工具ホルダは、ホルダ本体と、このホルダ本体に回転可能に設けられ前記主軸に装着される装着部と、前記ホルダ本体に設けられ前記装着部を介して前記主軸の回転が伝達され電力を発生する発電機と、前記ホルダ本体に設けられ前記発電機からの電力が供給されて前記電着工具を回転させる電動機とを備える、ことを特徴とする炭素繊維素材の加工方法。
In the processing method of the carbon fiber raw material in any one of Claims 1-3,
The electrodeposition tool is attached to the spindle via a tool holder,
The tool holder generates a power by transmitting a rotation of the main shaft through the mounting portion provided in the holder main body, a mounting portion rotatably mounted on the holder main body and mounted on the main shaft, and provided on the holder main body. A carbon fiber material processing method, comprising: a generator that performs rotation, and an electric motor that is provided in the holder body and that is supplied with electric power from the generator and rotates the electrodeposition tool.
請求項1〜請求項4のいずれかに記載の炭素繊維素材の加工方法において、
前記ワークが、炭素繊維を補強材とした炭素繊維強化樹脂複合材によって形成されている、ことを特徴とする炭素繊維素材の加工方法。
In the processing method of the carbon fiber raw material in any one of Claims 1-4,
The method for processing a carbon fiber material, wherein the workpiece is formed of a carbon fiber reinforced resin composite material using carbon fiber as a reinforcing material.
JP2008197896A 2008-07-31 2008-07-31 Method for processing carbon fiber material Pending JP2010036254A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197896A JP2010036254A (en) 2008-07-31 2008-07-31 Method for processing carbon fiber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197896A JP2010036254A (en) 2008-07-31 2008-07-31 Method for processing carbon fiber material

Publications (1)

Publication Number Publication Date
JP2010036254A true JP2010036254A (en) 2010-02-18

Family

ID=42009333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197896A Pending JP2010036254A (en) 2008-07-31 2008-07-31 Method for processing carbon fiber material

Country Status (1)

Country Link
JP (1) JP2010036254A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066980A (en) * 2011-09-22 2013-04-18 Nantsune:Kk Power generation device using automatically rotating blade
KR101616740B1 (en) * 2015-09-24 2016-04-29 한국생산기술연구원 Controlling method of machine tool considering material directionality
WO2016195358A1 (en) * 2015-05-29 2016-12-08 한국생산기술연구원 Method for processing carbon fiber reinforced plastic stack by using monitoring sensor
KR101797668B1 (en) * 2015-05-29 2017-12-13 한국생산기술연구원 Method of machininig carbon fiber reinforced plastics using computer aided machining

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265207A (en) * 1985-05-18 1986-11-25 Hitachi Metals Ltd Electrodeposited milling tool
JPS63193613U (en) * 1987-05-29 1988-12-13
JPH0282461U (en) * 1988-12-16 1990-06-26
JPH0319616U (en) * 1989-07-03 1991-02-26
JPH04210315A (en) * 1990-08-10 1992-07-31 Nachi Fujikoshi Corp Rotary cutting tool
JPH0740140A (en) * 1993-07-23 1995-02-10 Brother Ind Ltd Electrodeposited reamer
JPH07299631A (en) * 1994-04-28 1995-11-14 Nippondenso Co Ltd Scroll member forming method
JP2001157969A (en) * 1999-09-20 2001-06-12 Kyocera Corp Grinding tool, and grinding using same
JP2003170327A (en) * 2001-11-30 2003-06-17 Toshiba Mach Co Ltd Tool, tool holder, and machine tool
JP2007136556A (en) * 2005-11-14 2007-06-07 Inoac Corp Machining method for scheduled rupture portion in air bag door

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61265207A (en) * 1985-05-18 1986-11-25 Hitachi Metals Ltd Electrodeposited milling tool
JPS63193613U (en) * 1987-05-29 1988-12-13
JPH0282461U (en) * 1988-12-16 1990-06-26
JPH0319616U (en) * 1989-07-03 1991-02-26
JPH04210315A (en) * 1990-08-10 1992-07-31 Nachi Fujikoshi Corp Rotary cutting tool
JPH0740140A (en) * 1993-07-23 1995-02-10 Brother Ind Ltd Electrodeposited reamer
JPH07299631A (en) * 1994-04-28 1995-11-14 Nippondenso Co Ltd Scroll member forming method
JP2001157969A (en) * 1999-09-20 2001-06-12 Kyocera Corp Grinding tool, and grinding using same
JP2003170327A (en) * 2001-11-30 2003-06-17 Toshiba Mach Co Ltd Tool, tool holder, and machine tool
JP2007136556A (en) * 2005-11-14 2007-06-07 Inoac Corp Machining method for scheduled rupture portion in air bag door

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013066980A (en) * 2011-09-22 2013-04-18 Nantsune:Kk Power generation device using automatically rotating blade
WO2016195358A1 (en) * 2015-05-29 2016-12-08 한국생산기술연구원 Method for processing carbon fiber reinforced plastic stack by using monitoring sensor
KR101797668B1 (en) * 2015-05-29 2017-12-13 한국생산기술연구원 Method of machininig carbon fiber reinforced plastics using computer aided machining
KR101616740B1 (en) * 2015-09-24 2016-04-29 한국생산기술연구원 Controlling method of machine tool considering material directionality

Similar Documents

Publication Publication Date Title
JP5135614B2 (en) Drill for composite material and machining method and machining apparatus using the same
JP2011000667A (en) Machining apparatus and machining method for high hardness material
TW201634177A (en) Machine tool and control device for said machine tool
US9312066B2 (en) Magnetic shape optimization
JP2010036254A (en) Method for processing carbon fiber material
CN201211566Y (en) Numerically controlled machine cutting tool on-line grinding device
WO2021117526A1 (en) Processing device, processing method, and cutting tool
CN103909288A (en) Electrophoretic assisted ultrasonic mechanical composite micro-drilling machining device
JP2014012302A (en) Drill for composite material, and method and apparatus for machine work using the drill
CN203765470U (en) Special equipment for molding and grinding abrasive wheel
CN204658719U (en) A kind of stone material cnc profiling machine
CN213732715U (en) Flexible buddha&#39;s warrior attendant wire cut electrical discharge machining tool bit of robot
JP6517060B2 (en) Machine tool and control device for the machine tool
KR101846134B1 (en) A saw blade grinding machine capable of various machining
CN106216954A (en) A kind of processing is hardened after deep cooling the method for martensitic steel alloys cold roll completely
CN111823422A (en) Flexible buddha&#39;s warrior attendant wire-electrode cutting system of robot
JP2011240376A (en) Electrode polishing device
GB2456357A (en) Router cutter with first and second oppositely angled cutting edges
JP5352892B2 (en) Grinding method and grinding apparatus
CN110640192A (en) Transverse cutting milling machine
CN216680546U (en) Composite reamer
CN212684365U (en) Flexible buddha&#39;s warrior attendant wire-electrode cutting system of robot
CN211105115U (en) Injection molding product chamfering machining mechanism
CN211071961U (en) Mirror finishing equipment
CN213914443U (en) High-quality cutter nano coating processing device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120522

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20121002