JP2010035431A - Method for saccharifying rice - Google Patents

Method for saccharifying rice Download PDF

Info

Publication number
JP2010035431A
JP2010035431A JP2008198418A JP2008198418A JP2010035431A JP 2010035431 A JP2010035431 A JP 2010035431A JP 2008198418 A JP2008198418 A JP 2008198418A JP 2008198418 A JP2008198418 A JP 2008198418A JP 2010035431 A JP2010035431 A JP 2010035431A
Authority
JP
Japan
Prior art keywords
saccharification
rice
rate
straw
leaves
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008198418A
Other languages
Japanese (ja)
Other versions
JP5311548B2 (en
Inventor
Takeshi Tokuyasu
健 徳安
Masaichi Boku
正一 朴
Mitsuhiro Aragane
光弘 荒金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Agriculture and Food Research Organization
Original Assignee
National Agriculture and Food Research Organization
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Agriculture and Food Research Organization filed Critical National Agriculture and Food Research Organization
Priority to JP2008198418A priority Critical patent/JP5311548B2/en
Publication of JP2010035431A publication Critical patent/JP2010035431A/en
Application granted granted Critical
Publication of JP5311548B2 publication Critical patent/JP5311548B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for efficiently and stably recovering saccharides in a rice straw by considering saccharification ability and crushing ability of each position of the rice straw. <P>SOLUTION: The method for saccharifying rice includes cutting the stem and leaf parts of the rice so that the fragments of 70% or more of the whole by weight may have a length of not more than 10 cm, separating culms, and stem and leaf parts except the culms from the cut stem and leaf parts, and enzymically saccharifying the fraction in which the culms are concentrated in a condition containing at least one of an enzyme selected from a cellulase, an amylase, a β-(1-3) or (1-4) glucanase, and a hemicellulase. The method for producing ethanol uses the method. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、稲を原料とした糖の回収方法に関するものである。   The present invention relates to a method for recovering sugar from rice.

バイオ燃料への世界的ニーズの高まりに対応して、糖質系バイオマス由来のバイオエタノール製造技術開発競争が世界的規模で繰り広げられている。特に、食料資源と競合しないリグノセルロース系バイオマスの利用技術開発が、欧米のみならず我が国においても最も重要なブレイクスルーとなりうると考えられている。   In response to the growing global needs for biofuels, competition for the development of bioethanol production technology derived from carbohydrate-based biomass is taking place on a global scale. In particular, it is considered that the development of utilization technology of lignocellulosic biomass that does not compete with food resources can be the most important breakthrough not only in Europe and the United States but also in Japan.

リグノセルロース系バイオマスの糖化技術開発は200年の歴史を有しているが、現在、再び活発化している。特に、酸糖化を中心に展開した糖化技術に代わり、セルラーゼを中心とした酵素糖化技術が高い期待を集めている。しかしながら、一般的に、リグノセルロース系バイオマス中の糖質は複雑な構造をとる細胞壁中に埋め込まれており、糖化に先立ち、苛酷な条件による前処理によって糖質を分離する必要がある。そのため、変換コストが大きくなり、細胞壁中の糖質を糖化して加工原料とするプロセスは、現時点で経済的に独立していない。   The development of saccharification technology for lignocellulosic biomass has a history of 200 years, but is now active again. In particular, enzyme saccharification technology centered on cellulase is attracting high expectations instead of saccharification technology centered on acid saccharification. However, in general, carbohydrates in lignocellulosic biomass are embedded in cell walls having a complex structure, and it is necessary to separate carbohydrates by pretreatment under severe conditions prior to saccharification. For this reason, the conversion cost is increased, and the process of saccharifying the sugar in the cell wall into a raw material for processing is not economically independent at the present time.

農産廃棄物としての主要な草本系バイオマス原料として、稲わらが挙げられる。稲わらを原料とした効率的糖化技術の開発については、我が国や米国、中国、韓国、ベトナム、タイなどで、農業政策とバイオマス政策とを一体的に考慮することが可能であり、現在、高い期待を集めているところである。我が国でも、農産廃棄物資源として最も豊富な稲わらを原料とした、国産バイオ燃料製造技術の開発は喫緊の課題となっている。また、ホールプラント原料としての稲植物体全体の糖化技術が完成した場合、農業構造改革上の高い有効性を発揮することが期待される。   Rice straw is a major herbaceous biomass raw material for agricultural waste. With regard to the development of efficient saccharification technology using rice straw as raw material, it is possible to consider agricultural policy and biomass policy in Japan, the United States, China, South Korea, Vietnam, Thailand, etc. We are gathering expectations. In Japan, the development of domestic biofuel production technology using rice straw, the most abundant agricultural waste resource, has become an urgent issue. Moreover, when the saccharification technology of the whole rice plant body as a whole plant raw material is completed, it is expected to exhibit high effectiveness in agricultural structural reform.

稲を糖化する際には、圃場から収穫したものを原料として用いるが、一般的には、植物体地上部を回収後、適宜、脱穀したり、さらに回収時・梱包時の嵩を抑えるために裁断したものを前処理・変換に供することとなる。   When saccharifying rice, what is harvested from the field is used as a raw material, but in general, after harvesting the above-ground part of the plant body, it is threshed appropriately, and further to reduce the bulk during collection and packing The cut material is used for preprocessing and conversion.

稲わらをはじめとする草本系植物細胞壁の回収に用いる農業機械としては、ノッタ(結束装置)がある。これは稲用コンバインに付随するもので、稲わらの後利用向けに、切断なしに結束して後方に落下させる装置がついている。また、トラクターで牽引しながら、コンパクトベーラで稲わらをすくい上げ角型に成型し、ロールベーラ紐を巻付けて放出するタイプの方式も知られている。同様に、ロールベーラと称する円柱状に成型・梱包する機械も存在し、最後にベールラッパでロールベールをラップするフィルムで密封する作業機も使用されている(非特許文献1参照)。また、コメの収穫後、藁部分または稲の地上部全体を回収・保存するために、藁を束にした後に行う天日干し、ロールベール処理、アンモニア処理、尿素処理、乾燥処理などの方法が開発・検討されている。   As an agricultural machine used for recovering herbaceous plant cell walls such as rice straw, there is a knotter (binding device). This is attached to the rice combine, and it has a device that binds without cutting and drops it backwards for later use of rice straw. Also known is a type of system in which rice straw is scooped up with a compact baler and formed into a square shape while being pulled by a tractor, and a roll baler string is wound around and released. Similarly, there is a machine called a roll baler which is molded and packed into a cylindrical shape, and a work machine that is sealed with a film that wraps the roll bale with a bale wrapper is used (see Non-Patent Document 1). In addition, after harvesting rice, methods such as sun-drying, roll bale treatment, ammonia treatment, urea treatment, and drying treatment, which are performed after bundling the straw, have been developed in order to collect and preserve the straw part or the whole above-ground part of rice.・ It is being considered.

草本系植物細胞壁の粉砕装置としては、ハンマシュレッダ、植繊機、2軸式低速破砕機、KDS Micronex技術、振動ミル、カッターミルならびにリファイナーなどが挙げられる。ハンマシュレッダは長物の木質廃材などを大型ハンマーが回転することで破砕する装置である(非特許文献2参照)。植繊機とは膨潤破砕機械であり、爆砕に近い性状を持ちながら容易に強固な木質構造を変えて柔らかな素材を得る装置である(非特許文献3参照)。2軸式低速破砕機とは2軸の歯が噛み合った構造となっており、回転刃の外周側面に発生する強力なせん断力によって切断する装置である(非特許文献4参照)。KDS Micronex技術とはカナダFASC社から技術導入を行ったものであり、バイオマスを粉砕するとともに、粉砕物が乾燥される技術である。振動ミルはロッドやボールの衝撃力、カッターミルは装置内部にあるカッターによる切断力、リファイナーは摩擦力を利用した粉砕装置である(非特許文献5参照)。   Examples of the herbaceous plant cell wall crusher include a hammer shredder, a planter, a two-shaft low-speed crusher, a KDS Micronex technology, a vibration mill, a cutter mill, and a refiner. A hammer shredder is a device that crushes long wood wastes and the like by rotating a large hammer (see Non-Patent Document 2). A planting machine is a swelling crushing machine, and is an apparatus that easily changes a strong woody structure and obtains a soft material while having properties close to blasting (see Non-Patent Document 3). The biaxial low-speed crusher has a structure in which biaxial teeth mesh with each other, and is a device that cuts by a strong shear force generated on the outer peripheral side surface of the rotary blade (see Non-Patent Document 4). KDS Micronex technology is a technology introduced from Canada FASC, and is a technology that crushes biomass and dries the pulverized product. A vibration mill is an impact force of a rod or a ball, a cutter mill is a cutting force by a cutter inside the device, and a refiner is a grinding device that uses frictional force (see Non-Patent Document 5).

しかしながら、これらの技術は、稲茎葉中の易分解性糖質、例えば澱粉、遊離糖(シュークロース、フラクトース、グルコース)、β-(1→3), (1→4)-グルカンなどの安定的回収を全く考慮していない方法であり、これらの物質を効率的に回収するための技術は全く検討されていない。また、稲わら等の稲茎葉を粉砕し、前処理・糖化を行う際には、稲茎葉全体を粉砕して一纏めにしているのが現状であり、粉砕性の高い部位や低い部位が混在する稲茎葉部の構造を考慮して、分画・粉砕工程を加えて糖化する技術の開発は行われていない。易分解性糖質の安定的回収を考慮した場合、常温で含水率が高い条件下に放置した際の損耗が激しいことが懸念されるが、逆に、稲茎葉部全体を乾燥すると乾燥コストが高価なものになる。   However, these technologies are stable for easily degradable carbohydrates in rice stalks and leaves such as starch, free sugar (sucrose, fructose, glucose), β- (1 → 3), (1 → 4) -glucan. This is a method that does not take recovery into consideration at all, and a technique for efficiently recovering these substances has not been studied at all. In addition, when the rice stalks and leaves such as rice straw are crushed and pre-treated and saccharified, the whole rice stalks and leaves are crushed and combined, and there are both highly pulverizable and low pulverized parts. In consideration of the structure of rice shoots and leaves, no technology has been developed for saccharification by adding a fractionation and grinding process. Considering the stable recovery of readily degradable carbohydrates, there is a concern that the wear and tear will be severe when left under conditions of high moisture content at room temperature. It becomes expensive.

重田一人:稲わら収集・梱包機の現状と今後の開発方向について、第18号、pp.23-28、2006Hitoshi Shigeta: Current situation of rice straw collection and packing machine and future development direction, No. 18, pp.23-28, 2006 津村信弘:木材破砕機紹介「ハンマシュレッダ」リサイクル破砕機の紹介、環境浄化技術、第3巻、第6号、pp.51-53,73、2004Nobuhiro Tsumura: Introduction of Wood Crusher “Hama Shredder” Introduction of Recycling Crusher, Environmental Purification Technology, Vol. 3, No. 6, pp.51-53,73, 2004 平田和男:植繊機でのバイオマスの利活用-夢の素材ふわふわ君-、建設の施工企画、第667号、pp.27-31、2005Kazuo Hirata: Utilization of Biomass in Textile Machines-Dream Material Fluffy-, Construction Planning, 667, pp.27-31, 2005 矢野正二郎:バイオマスの利用と固体の取り扱いバイオマスの破砕・粉砕技術、粉体と工業、第38巻、第12号、pp.47-54、2006Shojiro Yano: Biomass utilization and solid handling Biomass crushing and grinding technology, powder and industry, Vol. 38, No. 12, pp. 47-54, 2006 小林信介ら:日本エネルギー学会誌、第86巻、第9号、pp.730-735、2007Shinsuke Kobayashi et al .: Journal of the Japan Institute of Energy, Vol. 86, No. 9, pp.730-735, 2007

稈内の易分解性糖質量を安定的に高く保つことや、稈とその他の部位の分離技術を稲わらの品種系統差や栽培条件差を考慮して微修正しつつ、フレキシブルに対応・最適化が可能な分離技術とすることが重要である。また、稈の酵素糖化を効率化し、セルロースやヘミセルロースの糖化効率を向上すること、糖化効率が向上するメカニズムを解明し、酵素糖化効率を最適化させることが重要である。   Optimum flexibility and adaptability while keeping the easily degradable sugar mass in the straw stable and finely modifying the separation technology of straw and other parts taking into account the variety of rice straw varieties and cultivation conditions It is important to make the separation technology possible. It is also important to optimize the enzymatic saccharification efficiency by improving the enzymatic saccharification efficiency of koji, improving the saccharification efficiency of cellulose and hemicellulose, and elucidating the mechanism of improving the saccharification efficiency.

本発明者は、稲茎葉中の易分解性糖質の蓄積部位を詳細に解析した結果、これらが稈の部分を中心に存在することを確認した。また、稈の部分が茎葉中の他の部位より機械的強度が高く、これを除くことにより残り部分の破砕効率が向上することを見出した。これらの知見をもとに本発明の完成に至った。   As a result of detailed analysis of the accumulation sites of readily degradable carbohydrates in rice stalks and leaves, the present inventor has confirmed that these exist mainly in the cocoon part. In addition, the cocoon part has higher mechanical strength than the other parts in the foliage, and it has been found that the crushing efficiency of the remaining part is improved by removing this part. Based on these findings, the present invention has been completed.

すなわち、請求項1に係る本発明は、稲茎葉部を、重量比で全体の7割以上の断片が10cm以下の長さになるように裁断した後、その裁断物中の稈とそれ以外の茎葉部との結合を分断し、稈とそれ以外の茎葉部とを分離した後に、稈が濃縮された画分を酵素糖化することを特徴とする、稲の糖化法である。
請求項2に係る本発明は、「稈が濃縮された画分」を、粉砕処理及び/または80℃以上130℃以下の加熱処理を行った後、セルロース分解酵素、澱粉分解酵素、β-(1→3), (1→4)グルカン分解酵素及びヘミセルロース分解酵素からなる群より選ばれた少なくとも一種類の酵素を含む条件において酵素糖化することを特徴とする、請求項1に記載の稲の糖化法である。
請求項3に係る本発明は、稈とそれ以外の茎葉部とを分離することにより得られた「稈が濃縮された画分」以外の画分を、粉砕処理を行った後、酸処理、アルカリ処理及び水熱処理からなる群より選ばれた少なくとも一種類の前処理を行い、酵素糖化することを特徴とする、請求項1または2に記載の稲の糖化法である。
請求項4に係る本発明は、稲茎葉部が、稲の地上部を刈り取り、籾を分離した後の植物体地上部またはその切断物であることを特徴とする、請求項1〜3のいずれかに記載の稲の糖化法である。
請求項5に係る本発明は、「稈が濃縮された画分」を、含水率を20%(w/w)以下に下げた状態で貯蔵した後に、酵素糖化することを特徴とする、請求項1〜4のいずれかに記載の稲の糖化法である。
請求項6に係る本発明は、稈とそれ以外の茎葉部との結合部を分断する方法が、磨砕による方法であることを特徴とする、請求項1〜5のいずれかに記載の稲の糖化法である。
請求項7に係る本発明は、稈とそれ以外の茎葉部とを分離する方法が、稈とそれ以外の茎葉部の比重差により分離する方法であることを特徴とする、請求項1〜6のいずれかに記載の稲の糖化法である。
請求項8に係る本発明は、稈とそれ以外の茎葉部とを分離する工程の前に、稈を加圧して潰すことにより稈の空隙サイズを低下させることを特徴とする、請求項1〜7のいずれかに記載の稲の糖化法である。
請求項9に係る本発明は、稈とそれ以外の茎葉部とを分離する方法が、風に飛ばされる際の挙動差により両者を分離する方法であることを特徴とする、請求項1〜8のいずれかに記載の稲の糖化法である。
請求項10に係る本発明は、請求項1〜9のいずれかに記載の稲の糖化法を用いることを特徴とする、エタノールの製造法である。
That is, the present invention according to claim 1, after cutting the rice shoots and leaves so that 70% or more of the whole fragments have a length of 10 cm or less by weight ratio, A rice saccharification method characterized by enzymatically saccharifying a fraction enriched with cocoons after separating the shoots from the shoots and leaves and separating the shoots and other shoots and leaves.
The present invention according to claim 2, after subjecting “the fraction enriched with koji” to pulverization and / or heat treatment at 80 ° C. to 130 ° C., cellulolytic enzyme, starch degrading enzyme, β- ( 2. The rice saccharification according to claim 1, wherein enzymatic saccharification is performed under conditions containing at least one kind of enzyme selected from the group consisting of 1 → 3), (1 → 4) glucan-degrading enzyme and hemicellulose-degrading enzyme. Saccharification method.
In the present invention according to claim 3, the fraction other than the “fraction enriched with cocoons” obtained by separating the cocoon and other stems and leaves is pulverized, then acid-treated, The rice saccharification method according to claim 1 or 2, wherein at least one kind of pretreatment selected from the group consisting of alkali treatment and hydrothermal treatment is performed, and enzymatic saccharification is performed.
The present invention according to claim 4 is characterized in that the rice shoots and leaves are the above-ground part of the plant body after cutting the above-ground part of rice and separating the straw or a cut product thereof. This is a method for saccharification of rice.
The present invention according to claim 5 is characterized in that enzymatic saccharification is carried out after storing “the fraction enriched with koji” in a state where the water content is lowered to 20% (w / w) or less. Item 5. The method for saccharification of rice according to any one of Items 1 to 4.
The present invention according to claim 6 is the rice according to any one of claims 1 to 5, characterized in that the method of dividing the binding portion between the straw and the other foliage is a method by grinding. This is a saccharification method.
The present invention according to claim 7 is characterized in that the method for separating the cocoon and the other foliage part is a method of separating by the specific gravity difference between the cocoon and the other foliage part. The saccharification method for rice according to any one of the above.
The present invention according to claim 8 is characterized in that, before the step of separating the cocoon and the other stem and leaves, the cocoon is pressed and crushed to reduce the void size of the cocoon. 7. The method for saccharification of rice according to any one of 7 above.
The present invention according to claim 9 is characterized in that the method for separating the cocoon and the other foliage part is a method for separating the two by the difference in behavior when being blown by the wind. The saccharification method for rice according to any one of the above.
The present invention according to claim 10 is a method for producing ethanol, characterized in that the rice saccharification method according to any one of claims 1 to 9 is used.

本発明は、稲から発酵源として有用な糖質を取り出すための糖化工程を効率化する技術に関する。
発酵源として有用な糖質は、主に、稲の茎葉部(稈、葉鞘および葉(身)を主体とする。)、籾(玄米部および籾殻を主体とする。)および根部に存在する。米を収穫するための通常の稲作では、収穫工程において地上部を刈り取り、脱穀後に稲茎葉部(いわゆる「稲わら」。)を適宜、切断して束ねて分離する。この操作で、稲は圃場に残される根部および僅かな稲茎葉部、収穫物としての籾、そして稲茎葉部に分離されることとなる。茎葉部は、圃場に鍬込まれる場合もあるが、適宜、束ねられたり、ロールべーラー等により回収されたりした後、サイレージとして高湿・嫌気条件下で保存されたり、敷き藁等として供給するため、天日乾燥や室内での自然乾燥などの方法で乾燥されたりする。多くの場合、糖化原料として期待が高い「稲わら」とは、このように敷き藁等として供給するために回収された稲茎葉部に近い形で供給されるものと考えられる。
The present invention relates to a technique for improving the efficiency of a saccharification process for extracting a saccharide useful as a fermentation source from rice.
Carbohydrates useful as a fermentation source are mainly present in rice stems and leaves (mainly cocoons, leaf sheaths and leaves (body)), cocoons (mainly brown rice and rice husks), and roots. In normal rice cultivation for harvesting rice, the above-ground part is cut in the harvesting process, and after threshing, the rice foliage part (so-called “rice straw”) is appropriately cut and bundled for separation. By this operation, the rice is separated into the root and a few rice leaves and leaves, the straw as a harvest, and the rice leaves and leaves. The foliage may be trapped in the field, but after being appropriately bundled or collected by a roll baler or the like, it is stored as silage under high-humidity / anaerobic conditions or supplied as litter. Therefore, it is dried by a method such as sun drying or indoor natural drying. In many cases, “rice straw”, which is highly expected as a raw material for saccharification, is considered to be supplied in a form close to the rice shoots and leaves collected to be supplied as litter.

稲の地上部全体(ホールプラントまたはホールクロップと呼ばれる。)をバイオマスとして取り扱うための収穫工程は、主にホールクロップサイレージ調製を目的として検討されている。ホールクロップの収穫方法は、フォレージハーベスタもしくはロールベーラを用いる方法に大別される。フォレージハーベスタではトウモロコシの収穫と同様に、直接、刈り取り・細断して固定サイロに詰めてサイレージ調製を行う。ロールベーラは、主として予乾サイレージ調製に用いられている。(沢村篤:水田作秋作業の改善 飼料イネの収穫作業技術飼料作機械(フォレージハーベスタ)による収穫 大規模作での低コスト化に期待、機械化農業、第3039号、pp.8-12、2004)。   The harvesting process for handling the whole above-ground part of rice (called whole plant or whole crop) as biomass is being studied mainly for the purpose of preparing whole crop silage. Whole crop harvesting methods are roughly classified into methods using a forage harvester or a roll baler. Forage harvesters, just like corn harvesting, are harvested and shredded directly and packed into stationary silos to prepare silage. Roll balers are mainly used for pre-drying silage preparation. (Atsushi Sawamura: Improvement of paddy cultivation autumn harvesting technology for forage rice harvesting with forage harvester) Expected to reduce costs in large-scale crops, mechanized agriculture, No. 3039, pp.8-12, 2004).

稲茎葉部の糖化技術については複数の報告がある。稲わらの糖化を目的とした研究の殆どは、細胞壁の主要成分であるセルロースやヘミセルロースを糖化し、グルコースやキシロースなどを得ることを目的として行われている。現在、各所で検討が進められている主要な糖化方法は、硫酸法または酵素法の二種類である。硫酸法は、適宜、希硫酸でヘミセルロースやアモルファスなグルカンなどを分解した後、濃硫酸で全グルカンを抽出し、希釈後に加水分解して単糖にまで分解するものである。また、酵素法は、稲わらを適宜、酸、アルカリ、高温水や生物学的処理法などを用いて前処理した後、セルラーゼやキシラナーゼなどの細胞壁分解酵素を加えて糖化する方法である。   There have been several reports on saccharification technology for rice shoots. Most studies aimed at saccharification of rice straw are carried out for the purpose of saccharifying cellulose and hemicellulose, which are the main components of cell walls, to obtain glucose, xylose and the like. Currently, there are two main saccharification methods being investigated in various places: the sulfuric acid method or the enzymatic method. In the sulfuric acid method, hemicellulose or amorphous glucan is appropriately decomposed with dilute sulfuric acid, and then all glucan is extracted with concentrated sulfuric acid, and after dilution, it is hydrolyzed to decompose into monosaccharides. The enzyme method is a method in which rice straw is appropriately pretreated with acid, alkali, high-temperature water, biological treatment, or the like, and then saccharified by adding cell wall degrading enzymes such as cellulase and xylanase.

本発明者らは、稲茎葉部の詳細な検討を行った結果、稲わらにでん粉、シュークロース、フラクトース、グルコース、β-(1→3), (1→4)-グルカンなどが存在し、これらを考慮した前処理・糖化工程を開発する必要性を見出した(特願2008-045766号明細書参照)。これらの糖質は、適宜、加水分解を行うことによりグルコースとフラクトースに分解し、Saccharomyces属酵母をはじめとする多くの微生物の発酵糖源となるため、その回収は極めて重要である。
しかしながら、これらの糖は易分解性であることから、収穫後に屋外雨ざらし条件のように、高湿度条件下・常温で放置することにより、容易に微生物分解を受けることとなる。また、前処理工程に高温処理を用いる場合、これらの易分解性糖質は溶出してしまうことから、前処理反応後の不溶画分を洗浄回収することにより、これらの糖質は流亡することとなる。それだけでなく、フラクトースは、酸加水分解工程において過分解を受けやすいことから、酸を用いて前処理・糖化を行う前に分離する必要がある。フラクトースやグルコースなどの還元糖はアルカリ存在下でメイラード反応を起こすことから、アンモニア水やアンモニア処理を行う前に分離する必要がある。
このように、本発明者は、草本系原料からの易分解糖質回収を含む糖化工程を開発するために、多くの要因を考慮する必要があることを発見した。
As a result of detailed investigation of the rice stem and leaves, the present inventors have found rice straw starch, sucrose, fructose, glucose, β- (1 → 3), (1 → 4) -glucan, etc. The need to develop a pretreatment / saccharification process that takes these into consideration was found (see Japanese Patent Application No. 2008-045766). These carbohydrates are appropriately hydrolyzed into glucose and fructose, and become a source of fermented sugar for many microorganisms including Saccharomyces yeasts, and their recovery is extremely important.
However, since these sugars are easily degradable, they are easily subjected to microbial degradation by leaving them under high humidity conditions at room temperature, such as outdoor rain conditions after harvesting. In addition, when high-temperature treatment is used in the pretreatment process, these easily degradable carbohydrates are eluted, so that these carbohydrates are washed away by washing and collecting the insoluble fraction after the pretreatment reaction. It becomes. In addition, since fructose is susceptible to excessive decomposition in the acid hydrolysis step, it must be separated before pretreatment and saccharification using an acid. Since reducing sugars such as fructose and glucose cause Maillard reaction in the presence of alkali, it is necessary to separate them before carrying out ammonia water or ammonia treatment.
Thus, the present inventor has discovered that many factors need to be taken into consideration in order to develop a saccharification process that includes easy-degradable carbohydrate recovery from herbaceous raw materials.

稲茎葉部を回収後、高湿度条件下・常温で放置することにより、易分解性糖質の微生物分解が起こる危険性については先述したが、収穫後、束ねられた稲わらは圃場で雨ざらしにされることも多く、後に天日乾燥を行った時点で、易分解性糖質の相当部分は分解されてしまうと考えられる。また、サイレージ化する際にも、易分解性糖質の相当量は資化されてしまうものと考えられる。
この問題を解決するためには、稲茎葉部を乾燥した後に保存することが極めて有効である。しかしながら、稲茎葉部全体を乾燥処理すると、乾燥コストが極めて高くなり、糖化原料として供給する際のコストを押し上げる原因となる。
Although the risk of microbial degradation of readily degradable carbohydrates by collecting rice shoots and leaving them at room temperature under high humidity conditions at room temperature has been described above, the rice straw bundled after harvesting is exposed to rain in the field. In many cases, it is considered that a considerable part of the easily degradable carbohydrate is decomposed when the sun is dried later. In addition, it is considered that a considerable amount of easily degradable carbohydrate is assimilated when silaged.
In order to solve this problem, it is extremely effective to store the rice stem leaves after drying. However, if the entire rice shoots and leaves are dried, the drying cost becomes extremely high, which increases the cost of supplying the saccharified raw material.

このような中で、本発明者らは、さらに検討を重ねた結果、これらの易分解性糖質の殆どが稈の部分に偏在し葉鞘や葉には殆ど存在しないことを見出し、易分解性糖質を豊富に含む稈のみを他の部分と分離することにより、易分解性糖質の殆どを回収・糖化する方法の完成に至った。
稲わらでは、稈とそれ以外の部分の重量比は大体1:2程度であり、稈は全体の1/3前後の重量となる。易分解性糖質を豊富に含む稈の部分だけを分離すれば、雨ざらしなどの高湿度条件での放置を避けるべき画分の量を1/3前後に減少させることができ、乾燥コストを低減することができる。稈以外の部分は、易分解性糖質が少なく、雨ざらしなどの高湿度条件下でもグルカンやキシランなどの消失が少ないことから、分離後にはその回収や乾燥に時間的余裕ができる。
Under such circumstances, as a result of further studies, the present inventors have found that most of these easily degradable carbohydrates are unevenly distributed in the cocoon part and hardly exist in the leaf sheath and leaves. By separating only sugar-rich cocoons from other parts, a method for recovering and saccharifying most readily degradable carbohydrates has been completed.
In rice straw, the weight ratio of straw and other parts is about 1: 2, and the weight of the straw is about 1/3 of the whole. Separating only the portion of the cocoon that contains abundantly degradable carbohydrates reduces the amount of fractions that should not be left under high humidity conditions such as raindrops to around 1/3, thus reducing drying costs. can do. Parts other than cocoons have less easily degradable carbohydrates and less loss of glucan, xylan, etc. even under high humidity conditions such as raindrops, so that time can be taken for recovery and drying after separation.

本発明によれば、稲茎葉部の稈とその他(葉鞘や葉を中心とする部分)を分別することにより、バイオマスを糖化する際の粉砕効率や糖化効率を向上できる。この技術は、稲わらや稲のホールプラントを原料とした、低コスト・低環境負荷の糖化技術の開発に繋がる。特に、我が国のみならず世界中で喫緊の課題となっている、国産バイオエタノール生産技術開発に新機軸を提供するものとして重要性が高い。   According to the present invention, pulverization efficiency and saccharification efficiency when saccharifying biomass can be improved by separating rice straws from rice shoots and others (parts centering on leaf sheaths and leaves). This technology will lead to the development of low-cost, low-environmental saccharification technology using rice straw and rice plant. In particular, it is highly important as a new innovation in the development of domestic bioethanol production technology, which has become an urgent issue not only in Japan but around the world.

以下、本発明を詳細に説明する。
本発明は、稲茎葉部を構成する稈とそれ以外の部分を分離した後に、各々を別々に処理することを特徴とするものである。
稲茎葉部とは、成熟期に稲を収穫した地上部から籾を除去したものまたはその切断物(いわゆる「稲わら」と言われるもの。)や、成熟期より前の稲植物体を収穫した際の地上部全体またはその切断物を示す。また、稲植物体全体をホールプラントとして利用する際に、収穫後に籾が付着した状態の稲植物体地上部のうち、籾以外の、稈、葉鞘および葉(身)を主体とする部分も稲茎葉部と定義する。稲の機械収穫を行う際には、通常、地際より数cm〜十数cm高い部分から刈り取るが、本発明における稲茎葉部は、地際近くで地上部を刈り取る場合の茎葉部も含まれる。また、コンバインにより稲を収穫する際には、適宜、脱穀を行った後、残った稲茎葉部(いわゆる「稲わら」)を収穫時の長さのものとして排出したり、数cmの長さに切断した後に排出したりすることができる。
Hereinafter, the present invention will be described in detail.
The present invention is characterized in that after separating the straw and other parts constituting the rice foliage part, each is separately treated.
Rice shoots and leaves are harvested from the above-ground part from which rice was harvested at the maturity stage or from its cuts (so-called "rice straw"), and from rice plants before the maturity stage. The entire above-ground part or the cut piece is shown. In addition, when the whole rice plant body is used as a whole plant, the portion of the rice plant body above the vine that is attached after harvest is mainly composed of cocoons, leaf sheaths and leaves (body) other than the cocoon. It is defined as the foliage. When performing mechanical harvesting of rice, it is usually cut from a portion several cm to several tens of cm higher than the ground, but the rice stem and leaf portion in the present invention includes the leaf and leaf portion when cutting the above-ground portion near the ground. . In addition, when harvesting rice with a combine, after appropriate threshing, the remaining rice foliage (so-called “rice straw”) can be discharged as harvested length, or several cm long. It can be discharged after cutting.

本発明における稲(Orizae sativa)については特に制限はなく、ジャポニカ種、インディカ種または両者を交雑した品種系統などを用いることができる。例えば、「コシヒカリ」、「ミルキークィーン」、「夢あおば」などの品種系統を用いることが可能であるが、これに限定されない。また、稲植物体の採取時期としては、稲茎葉と籾の両方が回収できる成熟期に限定されず、茎葉部へのでん粉蓄積性が高くなる出穂期かそれ以降が望ましい。   The rice (Orizae sativa) in the present invention is not particularly limited, and japonica varieties, indica varieties, or cultivar lines obtained by crossing both can be used. For example, cultivar lines such as “Koshihikari”, “Milky Queen”, “Dream Aoba” can be used, but are not limited thereto. In addition, the harvesting time of the rice plant body is not limited to the maturity period in which both rice foliage and straw can be collected, and the heading period when starch accumulation in the foliage becomes high or after is desirable.

本発明に用いる稲茎葉部は、圃場から収穫した直後〜収穫後24時間以内の収穫物、または収穫後の稲植物体または稲茎葉部を湿度20%以下あるいは温度60℃以上の条件下で保管し、植物体や微生物による易分解性糖質の分解を抑制したものが望ましい。温度条件にもよるが、収穫後24時間以上経つことにより、切断面などから侵入した微生物が増殖し、易分解性糖質の消失が顕著になる危険性が増大すると考えられる。また、収穫後の稲茎葉部の微生物汚染を抑制するためには、含水率を低く抑えることが有効となる。先述したとおり、易分解性糖質の殆どは稈の部分に存在する。常温保存を考える場合、稈とその他の部分を分離していない稲茎葉部においては、稈部分の含水率を20%(w/w)以下、好適には10%(w/w)以下に抑制することが望ましい。   The rice shoots and leaves used in the present invention are stored under conditions of a humidity of 20% or less or a temperature of 60 ° C. or more immediately after harvesting from the field to within 24 hours after harvesting, or after harvesting rice plants or rice shoots and leaves. However, it is desirable to suppress the degradation of easily degradable carbohydrates by plants and microorganisms. Although it depends on temperature conditions, it is considered that the risk that the loss of easily degradable carbohydrates increases due to the proliferation of microorganisms that have invaded from the cut surface or the like will occur after 24 hours have passed since harvesting. Moreover, in order to suppress the microbial contamination of the rice stem and leaves after harvesting, it is effective to keep the water content low. As mentioned above, most readily degradable carbohydrates are present in the cocoon. When considering room temperature storage, the water content of the rice bran part is not less than 20% (w / w), preferably less than 10% (w / w) in rice shoots and leaves that are not separated from other parts. It is desirable to do.

稲茎葉部から、稈とそれ以外の画分に分離する際には、まず、稈と葉鞘や葉を切り離し、その後、両者を分離・回収することが必要となる。本発明で定義する、稈には、節間部分の稈の間に存在する「節」も含まれることとする。稈と葉鞘は節ごとに結合しているが、両者を含む茎葉部を長軸と垂直方向に近い方向(茎をぶつ切りにする方向)で裁断することにより、茎葉部裁断物の長さを短くすることができる。このことにより、節の間に切れ目が入り、裁断物中の稈とそれ以外の茎葉部と結合が分断され、稈と葉鞘が離れた部分が露出し、その後の機械的切り離しが容易になる。茎の切断は、節間に切れ目が入ることが重要となり、その目安として、重量比で全体の7割以上の断片長が1mm〜10cm、望ましくは5mm〜4cm、より望ましくは2cm程度とすべきである。断片長が小さい程、稈と葉鞘の切り離しが容易になり、稈と葉の切り離しも促されるが、粗粉砕コストが向上することから注意が必要である。   When separating the rice shoots and leaves into straw and other fractions, it is first necessary to separate the straw from the leaf sheath and leaves, and then to separate and collect them. As defined in the present invention, the heel includes a “section” that exists between the ridges of the inter-node portion. The pods and leaf sheaths are connected to each node, but by cutting the stem and leaves containing both in a direction that is close to the long axis and in the direction perpendicular to the long axis (the direction in which the stem is shredded), the length of the cut leaves and leaves is shortened. can do. As a result, a break is made between the nodes, the connection between the cocoon in the cut material and the other foliage part is cut off, the part where the cocoon and the leaf sheath are separated is exposed, and the subsequent mechanical separation becomes easy. When cutting the stem, it is important that there is a break between the nodes. As a guideline, the length of the fragment should be 70% or more by weight, 1mm-10cm, preferably 5mm-4cm, more preferably about 2cm. It is. The smaller the fragment length, the easier the separation of the cocoon and the leaf sheath and the separation of the cocoon and the leaf are promoted, but care is required since the cost for coarse grinding increases.

稲茎葉部の裁断により稈の断面が露出された後は、貯蔵時を含め、稈の含水率を上昇させないことが重要となる。ネギの皮むき機などの中には、水圧を利用して皮とネギとの切り離しを行うものがあるが、湿度管理の面から、本発明では稈とその他の部分との切り離しに用いるべきではない。稈と稲茎葉部のその他の部分の切り離しや分離には、風圧を用いることが可能であるが、これに制限されない。しかしながら、その際にも、稈の断面からでん粉粒が落下し、易分解性糖質の回収率に影響を及ぼす危険性に注意する必要がある。分離工程において副生する、でん粉粒を含む粒子を回収して、稈画分の一部として糖化することができる。   It is important not to increase the moisture content of the straw after storage, after the cross-section of the straw is exposed by cutting the rice stover. Some leek peelers, etc., use water pressure to separate the skin from the leek. From the aspect of humidity control, the present invention should not be used to separate the cocoon from other parts. Absent. Wind pressure can be used to separate or separate the other parts of the straw and rice shoots, but is not limited thereto. However, even at that time, it is necessary to pay attention to the risk that the starch granules fall from the cross section of the cocoon and affect the recovery rate of easily degradable carbohydrates. Particles containing starch granules produced as a by-product in the separation step can be recovered and saccharified as a part of the koji fraction.

稈とその他の部分との切り離しを行う方法は特に限定されず、手で磨り潰す方法もあるが、鋭利な刃物を用いて切断する方法や、臼状のグラインダー(磨砕機)を用いて磨り潰しながら切り離す方法などが特に有効である。稈は葉鞘や葉に比べて機械的強度が高く、磨砕によって稈は殆ど粉砕されないのに対して、葉鞘や葉は磨砕によって容易に粉砕される。特に、葉鞘は、軸と垂直方向の力により分離しやすく、稈とそれ以外の部位は切断・磨砕後のサイズにより粗く分離することができる。また、稈はワックスの沈着が観察されることもあり、その他の部分よりも密度(比重)が高い。ただし、中空の構造が高度に維持されているような稈では、空隙率が高いために見かけ上の密度が低くなる。そのため、密度差(比重差)を利用して両者を分離することを考えた場合には、加圧して稈の中空構造を押し潰し、稈の空隙サイズを低下させることにより、見かけ上の密度を増加させることが重要となる。この操作により、風圧などを利用して両者を分離する際に、風を受けやすい稈の空隙構造に起因する分離効率低下のみならず、稈空隙部における風の侵入によるでん粉の落下を防ぐことができる。   There is no particular limitation on the method of separating the scissors from other parts, and there is a method of grinding by hand, but there is also a method of cutting with a sharp blade or grinding with a mortar grinder (grinding machine). It is particularly effective to use a method that separates them. The cocoons have higher mechanical strength than the leaf sheaths and leaves, and the cocoons are hardly crushed by grinding, whereas the leaf sheaths and leaves are easily crushed by grinding. In particular, the leaf sheath can be easily separated by a force perpendicular to the axis, and the cocoon and other parts can be roughly separated by the size after cutting and grinding. In addition, wax may be observed to deposit wax, and has a higher density (specific gravity) than other parts. However, in the case where the hollow structure is highly maintained, the apparent density is low due to the high porosity. For this reason, when separating the two using a density difference (specific gravity difference), the apparent density is reduced by compressing and crushing the hollow structure of the ridge and reducing the void size of the ridge. It is important to increase it. This operation not only reduces the separation efficiency due to the air gap structure that is susceptible to wind, but also prevents the starch from falling due to the intrusion of wind in the air gap when using wind pressure to separate the two. it can.

切り離した稈とその他の部分は、目視や機械的センサーを用いた機械的振り分け、サイズ差や振動時の挙動差を用いた分画法などのほか、密度差を利用した風力分離法を用いて分けることができるが、その手段は特に限定されない。風力による分離では、密度の高い稈画分よりも他の部分の方が遠くに飛ばされたり、迅速に飛ばされたりといった、風に飛ばされる際の挙動差を利用して、稈とその他の茎葉部とを分離する。円筒中に試料を入れて、下からブロアーを用いて吹き上げて選別する方法など、様々な風力選別機が開発されている。また、密度差を利用した振動式の選別機では、少し傾けた台の上に試料を載せ、振動させることにより、両者が分離する機械などが開発されている。   In addition to visual separation and mechanical sorting using mechanical sensors, fractionation using size differences and behavioral differences during vibration, etc. Although it can be divided, the means is not particularly limited. In the separation by wind force, the difference in behavior when being blown by the wind, such as when the other part is blown away farther than the dense cocoon fraction, or when it is quickly blown, makes use of the difference in behavior. Separate parts. Various wind sorters have been developed, such as a method in which a sample is placed in a cylinder and blown up from below using a blower. In addition, in the vibration type sorter using the density difference, a machine has been developed in which a sample is separated from each other by placing the sample on a slightly tilted table and vibrating it.

稈とその他の部位との分離効率は、易分解性糖質の濃度を用いて評価することができる。ここで易分解性糖質とは、グルコース、フラクトース、シュークロース、澱粉およびβ-(1→3), (1→4)-グルカンを指す。両者を分離せずに粉砕し、その粉末中の易分解性糖質の含有率を評価し、その値と分離試料のデータとを比較することにより、易分解性糖質の回収率として計算できる。稈から落下したでん粉粒の回収が可能な場合、この画分も稈画分として計算することが望ましい。   The separation efficiency between sputum and other sites can be evaluated using the concentration of readily degradable carbohydrates. Here, the easily degradable saccharide refers to glucose, fructose, sucrose, starch, and β- (1 → 3), (1 → 4) -glucan. It can be calculated as the recovery rate of easily degradable carbohydrates by grinding both without separation, evaluating the content of easily degradable carbohydrates in the powder, and comparing the value with the data of the separated samples. . If it is possible to collect the starch granules falling from the straw, it is desirable to calculate this fraction as the straw fraction.

上記により稲茎葉部から分離された稈は、酵素糖化する前に、適宜貯蔵しておくことができる。このとき、貯蔵中に易分解性糖質が分解するのを避けるため、稈部分の含水率を20%(w/w)以下、好適には10%(w/w)以下とすることが好ましい。   The cocoons separated from the rice shoots and leaves can be stored as appropriate before enzymatic saccharification. At this time, in order to avoid degradation of easily degradable carbohydrates during storage, the moisture content of the heel portion is preferably 20% (w / w) or less, preferably 10% (w / w) or less. .

分離した稈画分(稈が濃縮された画分、すなわち稈の比率が分離前の稲茎葉部全体と比較して向上した部分であり、稈から落下したでん粉粒を合わせた画分を指す。)については、易分解性糖質の大部分が存在しており、その中には希酸分解や濃酸分解に対して過分解が懸念されるフラクトースやシュークロースも含まれ、アンモニア水処理などにより変質する還元糖も含まれている。加熱処理により可溶化するでん粉やβ-(1→3), (1→4)-グルカンや低分子糖質が多いことから、加熱処理後に不溶分を洗浄し、薬液を除去するような、アルカリパルプ処理や希硫酸爆砕処理などのような前処理を行うことは避ける必要がある。本発明の稈画分については、先行発明(特願2008-045766号明細書参照)に示されるように、必要に応じて粉砕処理および80℃以上130℃以下の加熱処理のうち少なくともいずれか一つの処理を行った後、酵素糖化する方法が有効である。   Separated rice cake fraction (the fraction in which rice cake is concentrated, that is, the portion in which the ratio of rice cake is improved as compared to the whole rice stalk and leaf portion before separation, and refers to the fraction in which the starch grains dropped from the rice cake are combined. ), Most of the readily degradable carbohydrates exist, including fructose and sucrose, which may be excessively decomposed due to dilute acid decomposition or concentrated acid decomposition. It also contains reducing sugars that are altered by. Starch solubilized by heat treatment, β- (1 → 3), (1 → 4) -glucan and low-molecular-weight carbohydrates are high. It is necessary to avoid pretreatment such as pulp treatment or dilute sulfuric acid explosion treatment. With respect to the koji fraction of the present invention, as shown in the prior invention (see Japanese Patent Application No. 2008-045766), at least one of pulverization and heat treatment at 80 ° C. or higher and 130 ° C. or lower as necessary. An enzyme saccharification method after one treatment is effective.

本発明における酵素糖化は、アミログルコシダーゼ、α-アミラーゼなどの澱粉分解酵素、セルラーゼ、β-グルコシダーゼなどのセルロース分解酵素、キシラナーゼ、β-D-キシロシダーゼ、アセチルキシランエステラーゼ、α-L-アラビノフラノシダーゼ、フェルロイルエステラーゼなどのヘミセルロース分解酵素、リケナーゼなどのβ-(1→3),(1→4)グルカン分解酵素などのうち、少なくとも一つを用いることができる。稈画分の酵素分解性を向上し、易分解性糖質以外の難分解性β-グルカンなどの分解効率を向上するためには、弱酸、弱アルカリ条件、オゾンなどの酸化剤処理、有機溶媒処理などの少なくとも一つの簡易かつ穏和な前処理を行うことが可能である。アルカリパルプ処理や希硫酸爆砕処理、強酸、強アルカリ、130℃超の条件での水熱処理、硫酸処理、アンモニア水処理などの苛酷な前処理を行っていないことから、このようにして得られた稈画分の酵素糖化残渣としての不溶性画分には、セルロースやヘミセルロースが部分的に分解されずに残存していると考えられる。稲茎葉部から稈画分と分離した、葉鞘や葉などの部分を、稈画分に対する方法とは異なる前処理・糖化工程に供する際に、稈画分の糖化残渣としての不溶性画分を加えて処理することができるほか、適宜、発酵残渣と混合して飼料やメタン発酵原料などとして用いたり、ボイラー燃料として利用したりすることが可能である。   Enzymatic saccharification in the present invention includes starch-degrading enzymes such as amyloglucosidase and α-amylase, cellulolytic enzymes such as cellulase and β-glucosidase, xylanase, β-D-xylosidase, acetyl xylan esterase, α-L-arabinofuranosidase At least one of hemicellulose degrading enzymes such as feruloyl esterase and β- (1 → 3), (1 → 4) glucan degrading enzymes such as lichenase can be used. In order to improve the enzymatic degradability of the koji fraction and improve the degradation efficiency of non-degradable β-glucan other than easily degradable carbohydrates, weak acid, weak alkaline conditions, oxidant treatment such as ozone, organic solvent It is possible to perform at least one simple and gentle pretreatment such as treatment. It was obtained in this way because it was not subjected to severe pretreatment such as alkaline pulp treatment, dilute sulfuric acid explosion treatment, strong acid, strong alkali, hydrothermal treatment under conditions above 130 ° C, sulfuric acid treatment, ammonia water treatment, etc. It is considered that cellulose and hemicellulose remain in the insoluble fraction as the enzyme saccharification residue of the koji fraction without being partially decomposed. When the portion of the leaf sheath and leaves separated from the rice bran fraction from the rice stalk leaves is subjected to a pretreatment and saccharification process different from the method for the rice cake fraction, an insoluble fraction is added as a saccharification residue of the koji fraction. In addition, it can be appropriately mixed with fermentation residue and used as feed or methane fermentation raw material, or used as boiler fuel.

稲茎葉部から稈画分と分離した、葉鞘や葉などを中心とする画分については、易分解性糖質が少なく、セルロースを中心とする難分解性β-グルカンやヘミセルロースが糖化可能な成分となる。その際には、直接糖化効率は高くないことから、厳しい湿度管理を行わずとも糖化原料の量は殆ど減少しないと考えられる。このようなリグノセルロース系原料については、公知の方法にならい、pH1以下での強酸処理、pH11以上での強アルカリ処理、130℃超の条件での水熱処理、希硫酸爆砕処理などの苛酷な処理を行った後、酵素糖化することが有効である。その際には、稈画分では適用できないような、硫酸処理、アンモニア水処理やアルカリパルプ化処理、希硫酸爆砕処理などを用いることが可能となる。   In the fraction mainly from leaf sheath and leaves, separated from the straw fraction from rice shoots and leaves, there are few easily degradable carbohydrates, and components that can be saccharified by β-glucan and hemicellulose, mainly cellulose. It becomes. In that case, since the direct saccharification efficiency is not high, it is considered that the amount of the saccharification raw material hardly decreases even if strict humidity control is not performed. For such lignocellulosic raw materials, in accordance with known methods, harsh treatments such as strong acid treatment at pH 1 or lower, strong alkali treatment at pH 11 or higher, hydrothermal treatment at conditions above 130 ° C., dilute sulfuric acid explosion treatment, etc. It is effective to carry out enzymatic saccharification after performing. In that case, it is possible to use sulfuric acid treatment, aqueous ammonia treatment, alkaline pulping treatment, dilute sulfuric acid explosion treatment, etc., which cannot be applied to the koji fraction.

稲茎葉部の稈画分は、相対的に強度が高く、稲茎葉部全体を破砕する際に、稈が破砕室内に長く残存して破砕効率を低下させるのみならず、破砕機の処理条件によっては、刃の隙間等に挟まり機械停止や故障の原因となる。本発明は、このような問題の解決を行い、糖化のための粉砕工程を効率化させるものである。稲茎葉部の稈とその他の部分を分離することにより、破砕特性に差をもつ二種類の画分を調製し、それぞれの最適条件を用いて別々に破砕を行うことが可能となる。粉砕性の低い部分は、その部分に特化した条件で迅速に粉砕し、粉砕性が高い部分は低いエネルギー投入量で粉砕を行うことができる。また、稲茎葉部から稈画分と分離された画分については、稈画分の糖化に使用する酵素全種類を用いて糖化する必要がないことから、酵素使用種類や量を抑えた効率的な糖化工程を構築することが可能となる。   The rice bran fraction has a relatively high strength, and when crushing the whole rice foliage part, not only does the koji remain in the crushing chamber, reducing the crushing efficiency, but also depending on the processing conditions of the crusher. May get stuck in the gap of the blade and cause machine stoppage or failure. The present invention solves such problems and makes the grinding process for saccharification more efficient. By separating the straw and other parts of the rice shoots and leaves, it is possible to prepare two types of fractions having a difference in crushing characteristics, and to perform crushing separately using the respective optimum conditions. The portion having low grindability can be pulverized quickly under conditions specific to the portion, and the portion having high grindability can be pulverized with a low energy input. In addition, it is not necessary to saccharify the fraction separated from the rice bran fraction from the rice stalk and leaves using all types of enzymes used for saccharification of the rice straw fraction. It is possible to construct a simple saccharification process.

このようにして本発明の糖化法により回収された稲の糖化液は、そのまま又は濃縮・精製物として、エタノール製造における発酵原料として用いることができる。
また、本発明の糖化法をエタノールの製造法に応用するにあたっては、前記のように糖化液を得てからそれを原料としてエタノール発酵を行う方法だけでなく、糖化工程が終了する前にエタノール発酵を行う微生物を添加して糖化工程とエタノール発酵工程を並行して進行させる「並行複発酵」方式を採ることもできる。
Thus, the rice saccharified solution recovered by the saccharification method of the present invention can be used as a fermentation raw material in ethanol production as it is or as a concentrated / purified product.
In addition, in applying the saccharification method of the present invention to a method for producing ethanol, not only a method of performing ethanol fermentation using a saccharified solution as a raw material as described above, but also ethanol fermentation before the saccharification step is completed. It is also possible to adopt a “parallel multi-fermentation” system in which a saccharifying step and an ethanol fermentation step are performed in parallel by adding microorganisms that perform the above.

本発明の糖化法で得られた糖化液を用いたエタノール発酵は、酵母、ザイモモナス属細菌など、低重合度の糖類、特にはグルコース、を資化してエタノール発酵を行う微生物を用いて行うことができる。具体的には、酵母であるSaccharomyces cerevisiae (NBRC 0224)を用いて行うことができる。
なお、組換え大腸菌などの遺伝子組換え技術によってエタノール発酵効率を向上させた微生物などを用いて行うことができるが、グルコースやフラクトースなどの六炭糖のみに注目し、酵母やザイモモナス属細菌などの非組換え微生物を用いることにより、遺伝子組換え微生物の拡散防止措置のための設備コストや管理コストを抑えることが可能となる。
Ethanol fermentation using the saccharified solution obtained by the saccharification method of the present invention can be performed using a microorganism that performs ethanol fermentation by assimilating saccharides having a low polymerization degree, particularly glucose, such as yeast and Zymomonas bacteria. it can. Specifically, it can be performed using yeast Saccharomyces cerevisiae (NBRC 0224).
Although it can be performed using microorganisms that have improved ethanol fermentation efficiency by genetic recombination technology such as recombinant Escherichia coli, focusing only on hexoses such as glucose and fructose, such as yeast and Zymomonas bacteria By using non-recombinant microorganisms, it is possible to reduce facility costs and management costs for measures for preventing the spread of genetically modified microorganisms.

本発明の糖化法で得られた糖化液を用いたエタノール発酵は、公知の発酵方法を用いて行うことができる。
本発明においては、糖化処理工程と発酵工程を分離し、得られた糖液をバッチ式または連続式発酵槽に移すことも可能であるが、糖化処理工程と発酵工程を同時に行うという、いわゆる「並行複発酵」を行うことは、省スペース化かつ処理時間短縮などの効果の点から特に望ましい。
Ethanol fermentation using the saccharified solution obtained by the saccharification method of the present invention can be performed using a known fermentation method.
In the present invention, the saccharification treatment step and the fermentation step can be separated, and the obtained sugar solution can be transferred to a batch-type or continuous fermentation tank. “Parallel double fermentation” is particularly desirable in terms of effects such as space saving and shortening of processing time.

当該エタノール発酵に用いる糖化液の糖類の濃度は、0.5%〜30%程度の範囲、望ましくは5%〜30%の範囲である。
糖化液の糖類の濃度が高い方が、発酵効率や蒸留効率が向上するが、操作性を考慮した場合、前記範囲であることが好ましい。例えば、リグノセルロース系原料を懸濁させる際には、かさ高くなり、撹拌等の操作性が低下する。
また、糖化液の糖類の濃度が0.5%程度(好ましくは5%)より低い場合、十分なエタノール量を生産することができず望ましくない。
なお、糖化反応とエタノール発酵を同時に行う並行複発酵を行う際には、生成されることが期待される糖類の濃度が、上記所定の範囲内に入るよう、原料である稲わらの量を調整すべきである。例えば、本発明における糖化法により、乾燥原料(乾燥稲わら)1グラムから0.25グラムのグルコースの生成が期待できる場合、並行複発酵を行う反応液に対して2%以上の前記乾燥原料(乾燥稲わら)を用いることで、0.5%以上のグルコースが生成されることが期待される。
The concentration of saccharides in the saccharified solution used for the ethanol fermentation is in the range of about 0.5% to 30%, preferably in the range of 5% to 30%.
The higher the saccharide concentration of the saccharified solution, the better the fermentation efficiency and the distillation efficiency, but when the operability is taken into consideration, the above range is preferable. For example, when a lignocellulosic raw material is suspended, it becomes bulky and the operability such as stirring is lowered.
Moreover, when the saccharide | sugar density | concentration of a saccharified liquid is lower than about 0.5% (preferably 5%), sufficient ethanol amount cannot be produced and it is not desirable.
In addition, when performing parallel double fermentation in which saccharification reaction and ethanol fermentation are performed simultaneously, the amount of rice straw as a raw material is adjusted so that the concentration of sugars expected to be produced falls within the predetermined range. Should. For example, when production of 0.25 gram of glucose from 1 gram of dry raw material (dry rice straw) can be expected by the saccharification method in the present invention, 2% or more of the dry raw material (2% or more with respect to the reaction solution for parallel double fermentation By using dried rice straw, it is expected that 0.5% or more of glucose is produced.

当該エタノール発酵における反応温度は、用いる微生物によって異なるが、酵母の場合には25℃〜50℃の範囲、細菌では25℃〜60℃の範囲内である。反応時間は、酵母の菌体濃度や糖化酵素量、反応温度や撹拌速度などに大きく依存するが、バッチ法では10時間以上48時間以下程度が適当である。
また、糖化反応とエタノール発酵を同時に行う並行複発酵を行った場合、発酵後に、並行複発酵に用いた液を次の原料を含む発酵槽に移動させることにより、液に含まれる糖化酵素と酵母をそのまま次の原料に対して再度作用させることができる。
Although the reaction temperature in the said ethanol fermentation changes with microorganisms to be used, in the case of yeast, it is the range of 25 to 50 degreeC, and in the range of 25 to 60 degreeC in bacteria. The reaction time largely depends on the yeast cell concentration, the amount of saccharifying enzyme, the reaction temperature, the stirring speed, etc., but in the batch method, about 10 to 48 hours is appropriate.
Moreover, when parallel double fermentation which performs saccharification reaction and ethanol fermentation simultaneously is performed, the saccharification enzyme and yeast contained in a liquid are moved by moving the liquid used for parallel double fermentation to the fermentor containing the following raw material after fermentation. Can be made to act again on the next raw material as it is.

以下に実施例、および試験例を挙げて本発明を具体的に説明する。   The present invention will be specifically described below with reference to examples and test examples.

試験例1[ミルキークィーンの粉砕データ]
(1)稈と葉鞘・葉身の物理的強度テスト
稲わら20 g[品種名:ミルキークィーン、成熟期の稲わら(水分含量10%以下)を刈り取ってすぐ4℃の低温室に保管したもの]の各節から3 mm上及び3 mm下を切断し、稈とそれ以外の茎葉部(葉鞘と葉身)を手作業で分離した。分離された稈と葉鞘・葉身部をさらに長さ1 cmになるように切断して各2gを量り取り、ニューパワーミル PM−2002(大阪ケミカル社)を用いて最大回転条件下で1分間粉砕を行った。10分間静置した後、メッシュサイズ4 mm、2 mm、1 mm、500 μm、250 μm、125 μm、63 μm、20 μmの篩(東京スクリーン社)を用いて破砕粒子サイズ分布を調べた。
Test Example 1 [Milky Queen grinding data]
(1) Physical strength test of straw, leaf sheath and leaf blades 20 g of rice straw [Cultivar name: Milky Queen, mature rice straw (moisture content of 10% or less) was cut and stored in a low-temperature room at 4 ° C. ], 3 mm above and 3 mm below were cut from each node, and the wrinkles and other stems and leaves (leaf sheath and leaf blades) were separated manually. The separated cocoon, leaf sheath and leaf blades are further cut to a length of 1 cm and each 2 g is weighed and used for 1 minute under maximum rotation conditions using New Power Mill PM-2002 (Osaka Chemical Co., Ltd.). Grinding was performed. After standing for 10 minutes, the crushed particle size distribution was examined using sieves (Tokyo Screen) with mesh sizes of 4 mm, 2 mm, 1 mm, 500 μm, 250 μm, 125 μm, 63 μm, and 20 μm.

結果を図1に示す。葉鞘・葉身部(図1中の●)の平均破砕粒子サイズは約100μmである事に比べ、稈部(図1中の○)は物理的強度が強くその2倍の200μmの平均破砕粒子サイズを示した。   The results are shown in FIG. Compared to the fact that the average crushed particle size of the leaf sheath / leaf blade (● in Fig. 1) is about 100 µm, the buttocks (○ in Fig. 1) has a strong physical strength and doubles the average crushed particle of 200 µm. Shown the size.

(2)稈部粉砕物の糖質含量測定
稈部(平均粒子サイズ200 μm)の全粉砕物を上記メッシュサイズ250 μmの篩で分け、粒子サイズ250 μm以下と以上の粉砕物をそれぞれ100 mg量り取った。これを2段階硫酸処理(72%硫酸、1 ml、30℃で1時間処理後、硫酸濃度9%になるようにメスアップし、100℃で2時間処理)を行い、一部サンプリングして10% NaOH水溶液で中和した後、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いてグルコース量を測定した。
(2) Carbohydrate content measurement of the pulverized groin The whole pulverized product of the buttock (average particle size 200 μm) is separated with the above mesh size 250 μm sieve, and each pulverized product with a particle size of 250 μm or less is 100 mg each. Weighed out. This was subjected to two-step sulfuric acid treatment (72% sulfuric acid, 1 ml, treated at 30 ° C for 1 hour, then diluted to a sulfuric acid concentration of 9% and treated at 100 ° C for 2 hours). After neutralization with an aqueous NaOH solution, the amount of glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.).

その結果、粒子サイズにかかわらず、稈部乾重当たりグルコース率として55%(粒子サイズ250 μm以上)と54%(粒子サイズ250 μm以下)(w/w)を示した。このように、粉砕過程では、易分解性糖質、特に、澱粉の消失は起こらなかった。   As a result, the glucose rate per buttock dry weight was 55% (particle size 250 μm or more) and 54% (particle size 250 μm or less) (w / w) regardless of the particle size. Thus, in the pulverization process, loss of easily degradable carbohydrates, particularly starch, did not occur.

実施例1[コシヒカリ原料の成分データと、手で分けた際の稈とそれ以外(葉鞘・葉身)の成分データ]
(1)稈部と葉鞘・葉身部からの粉砕物の調製
稲わら10 g [品種名:コシヒカリ、成熟期の稲わらを刈り取って天日干ししたものを室温で保管したもの(水分含量10%以下)]を、長さ1 cm間隔で切断して5 gずつ量り取り、ニューパワーミル PM−2002(大阪ケミカル社)を用いて、粉砕物が500 μmの篩を全量通過するまで粉砕を繰り返し行った。これを稲わら全体の成分データ取得のために用いた。
Example 1 [Composition data of Koshihikari raw material and ingredient data of cocoon and other (leaf sheath / leaf blade) when separated by hand]
(1) Preparation of crushed material from buttocks, leaf sheath and leaf blades 10 g of rice straw [Cultivar name: Koshihikari, harvested rice straw harvested and sun-dried and stored at room temperature (water content 10% Below)] is cut at 1 cm intervals and weighed in increments of 5 g, and repeated using New Power Mill PM-2002 (Osaka Chemical Co., Ltd.) until the pulverized product passes through the 500 μm sieve. went. This was used to acquire component data for the whole rice straw.

また、上記の稲わら30 g [品種名:コシヒカリ]の各節から3 mm上及び3 mm下を切断し、稈とそれ以外の茎葉部(葉鞘と葉身)を手作業で分離した。分離された稈と葉鞘・葉身部の重さを量り、稲わら全体の重さに対する量率を計算した(表1の「乾重」)。その後、稈と葉鞘・葉身部のみをそれぞれ長さ1 cm間隔で切断して、ニューパワーミルを用いて上記粉砕を行った。これを、稈部と葉鞘・葉身部の各画分における成分データ取得のために用いた。   In addition, 3 mm above and 3 mm below were cut from each node of 30 g of the above-mentioned rice straw [variety name: Koshihikari], and the stems and other stems and leaves (leaf sheath and leaf blades) were separated manually. The separated straws, leaf sheaths and leaf blades were weighed, and the weight ratio relative to the total weight of the rice straw was calculated ("dry weight" in Table 1). Thereafter, only the cocoon, leaf sheath, and leaf blade were cut at 1 cm intervals, and the above-mentioned pulverization was performed using a new power mill. This was used for component data acquisition in each fraction of the hip and leaf sheath / leaf blade.

以上のように粉砕して得られた稲わら粉末と各画分試料(粒子サイズ500 μm以下、水分含量10%以下)の乾重あたりの易分解性糖質(グルコース、フラクトース、シュークロース、澱粉及びβ-(1→3), (1→4)-グルカン)の含有率を、以下に示す方法で測定した。ここにおいて易分解性糖質の糖化法としては、グルコース、フラクトースは水抽出法で、シュークロースは水抽出後インベルターゼ反応で、澱粉はα−アミラーゼとアミログルコシダーゼ反応で、β-(1→3), (1→4)-グルカンはリケナーゼとβ−グルコシダーゼ反応で行った。   Easily degradable carbohydrates (glucose, fructose, sucrose, starch) per dry weight of rice straw powder and each fraction sample (particle size 500 μm or less, water content 10% or less) obtained by grinding as described above And β- (1 → 3), (1 → 4) -glucan) were measured by the following method. Here, saccharification of easily degradable carbohydrates is performed by water extraction for glucose and fructose, sucrose for invertase reaction after water extraction, starch for α-amylase and amyloglucosidase reaction, β- (1 → 3) , (1 → 4) -glucan was obtained by the reaction of lichenase and β-glucosidase.

(2)稲わらと各画分試料の乾重あたりの澱粉率の計算
稲わらと各画分試料(粒子サイズ500 μm以下、水分含量10%以下)の乾重あたりの澱粉率の計算はTotal starch kit(メガザイム社)で行った。
(2) Calculation of starch rate per dry weight of rice straw and each fraction sample Starch rate per dry weight of rice straw and each fraction sample (particle size 500 μm or less, water content 10% or less) It was performed with a starch kit (Megazyme).

すなわち、稲わらと各画分試料をそれぞれ10 mg量り取り、1.5 ml容のプラスチックチューブに入れたものを2本用意した。そのうち1本は水(0.02% NaNを含む。)を0.5 ml加え、10分間激しく撹拌した。攪拌後、サンプルを速やかに4 ℃に冷却し、遠心分離(15,000 g、3分)して上清一部分をサンプリングした。これを水で希釈した後、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いて遊離グルコース量を測定し、乾重あたりの遊離グルコース値を計算し、Gとした(表1の「Glc.」)。 In other words, 10 mg each of rice straw and each fraction sample were weighed and prepared in a 1.5 ml plastic tube. One of them was added with 0.5 ml of water (containing 0.02% NaN 3 ) and stirred vigorously for 10 minutes. After stirring, the sample was immediately cooled to 4 ° C., centrifuged (15,000 g, 3 minutes), and a part of the supernatant was sampled. After diluting this with water, the amount of free glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.), and the free glucose value per dry weight was calculated as G (Table 1). "Glc.")

他1本は熱安定性のα-アミラーゼ (50 mM MOPS 緩衝液、0.02% NaN、5 mM CaCl、pH 7.0)酵素液を300 μl (30 U)添加し、100℃のヒートブロック中で10分間処理した(2分ごとに激しく撹拌)。その後、サンプルを50℃に冷却し、酢酸ナトリウム緩衝液 400 μl(200 mM、0.02 % NaN、pH 4.5)とアミログルコシダーゼ 10 μl(2 U)を添加して、50℃のヒートブロック中で回転させながら糖化反応を30分間行った。反応後、サンプルは速やかに4℃に冷却し、遠心分離(15,000 g、3分)して上清一部分をサンプリングした。これを水で希釈した後、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いてグルコース量を測定して乾重あたりの酵素反応後のグルコース値を計算し、StaGとした。 The other is a thermostable α-amylase (50 mM MOPS buffer, 0.02% NaN 3 , 5 mM CaCl 2 , pH 7.0) with 300 μl (30 U) of enzyme solution and heated in a 100 ° C heat block. Treated for 10 minutes (violent stirring every 2 minutes). The sample is then cooled to 50 ° C., 400 μl sodium acetate buffer (200 mM, 0.02% NaN 3 , pH 4.5) and 10 μl (2 U) amyloglucosidase are added and rotated in a 50 ° C. heat block. The saccharification reaction was performed for 30 minutes. After the reaction, the sample was immediately cooled to 4 ° C., centrifuged (15,000 g, 3 minutes), and a part of the supernatant was sampled. After diluting this with water, the amount of glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.), and the glucose value after the enzyme reaction per dry weight was calculated to be StaG.

乾重あたりの澱粉率はStaG値からG値を差し引き、澱粉量に換算して計算した(表1の「Starch」)。   The starch ratio per dry weight was calculated by subtracting the G value from the StaG value and converting it to the amount of starch (“Starch” in Table 1).

(3)稲わらと各画分試料の乾重あたりのβ-(1→3),(1→4)-グルカン率の計算
稲わらと各画分試料(粒子サイズ500 μm以下、水分含量10%以下)の乾重あたりのβ-(1→3), (1→4)-グルカン率の計算はMixed-linkage Beta-glucan kit(メガザイム社)で行った。
(3) Calculation of β- (1 → 3), (1 → 4) -glucan ratio per dry weight of rice straw and each fraction sample Rice straw and each fraction sample (particle size 500 μm or less, water content 10 %-Or less) was calculated using the Mixed-linkage Beta-glucan kit (Megazyme). The β- (1 → 3), (1 → 4) -glucan ratio per dry weight was calculated.

すなわち、稲わらと各画分試料をそれぞれ10 mg量り取り、1.5 ml容のプラスチックチューブに入れたものを2本用意した。そのうち1本は水(0.02% NaNを含む。)を0.5 ml加え、10分間激しく撹拌した。攪拌後、サンプルを速やかに4℃に冷却し、遠心分離(15,000 g、3分)して上清一部分をサンプリングした。これを水で希釈した後、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いて遊離グルコース量を測定し、乾重あたりの遊離グルコース値を計算し、Gとした。 In other words, 10 mg each of rice straw and each fraction sample were weighed and prepared in a 1.5 ml plastic tube. One of them was added with 0.5 ml of water (containing 0.02% NaN 3 ) and stirred vigorously for 10 minutes. After stirring, the sample was quickly cooled to 4 ° C., centrifuged (15,000 g, 3 minutes), and a part of the supernatant was sampled. After diluting this with water, the amount of free glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.), and the free glucose value per dry weight was calculated as G.

他1本は酢酸ナトリウム緩衝液(20 mM、pH 5.0)を480 μl 添加して100℃のヒートブロック中で10分間処理した(2分ごとに激しく撹拌)。その後、サンプルを40℃に冷却し、リケナーゼ20 μl(1 U)を添加して、40℃ヒートブロック中で回転させながら糖化反応を60分間行った。反応後、サンプルは速やかに4℃に冷却し、遠心分離(15,000 g、3分)して上清100 μlをサンプリングした。これにβ-グルコシダーゼ(0.2 U, 50 mM 酢酸ナトリウム緩衝液, pH 4.0) 酵素液 100 ulを添加して40℃のヒートブロック中で、回転させながら糖化反応を30分間行った。反応後、サンプルは速やかに4℃に冷却し、遠心分離(15,000 g、3分)して上清一部分をサンプリングした。これを水で希釈した後、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いてグルコース量を測定して乾重あたりの酵素反応後のグルコース値を計算し、BetaGとした。   The other was added with 480 μl of sodium acetate buffer (20 mM, pH 5.0) and treated for 10 minutes in a heat block at 100 ° C. (violent stirring every 2 minutes). Thereafter, the sample was cooled to 40 ° C., 20 μl (1 U) of lichenase was added, and the saccharification reaction was performed for 60 minutes while rotating in a 40 ° C. heat block. After the reaction, the sample was immediately cooled to 4 ° C., centrifuged (15,000 g, 3 minutes), and 100 μl of the supernatant was sampled. Β-Glucosidase (0.2 U, 50 mM sodium acetate buffer, pH 4.0) enzyme solution (100 ul) was added thereto, and the saccharification reaction was performed for 30 minutes while rotating in a 40 ° C. heat block. After the reaction, the sample was immediately cooled to 4 ° C., centrifuged (15,000 g, 3 minutes), and a part of the supernatant was sampled. After diluting this with water, the amount of glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.), and the glucose value after the enzyme reaction per dry weight was calculated as BetaG.

乾重あたりのβ-(1→3), (1→4)-グルカン率はBetaG値からG値を差し引き、β-(1→3), (1→4)-グルカン量に換算して計算した(表1の「B-1,3-1,4-Glucan」)。   Β- (1 → 3), (1 → 4) -glucan ratio per dry weight is calculated by subtracting G value from BetaG value and converting to β- (1 → 3), (1 → 4) -glucan amount ("B-1,3-1,4-Glucan" in Table 1).

(4)稲わらと各画分試料の乾重あたりのシュークロース率の計算
稲わらと各画分試料(粒子サイズ500 μm以下、水分含量10%以下)の乾重あたりのシュークロース率の計算はSucrose, D-fructose and D-glucose kit(メガザイム社)で行った。
(4) Calculation of sucrose ratio per dry weight of rice straw and each fraction sample Calculation of sucrose ratio per dry weight of rice straw and each fraction sample (particle size 500 μm or less, moisture content 10% or less) Was performed with Sucrose, D-fructose and D-glucose kit (Megazyme).

すなわち、稲わらと各画分試料をそれぞれ20 mg量り取り、1.5 ml容のプラスチックチューブに入れ、水(0.02% NaNを含む。)を1 ml加え、10分間激しく撹拌した。攪拌後、サンプルを速やかに4 ℃に冷却し、遠心分離(15,000 g、3分)して上清10 μlをサンプリングして、96 プレートの2ヶ所のウェルに入れた。そのうち1ウェルはグルコースC-IIテストワコー(和光純薬工業株式会社)を用いて遊離グルコース量を測定し、乾重あたりの遊離グルコース値を計算し、Gとした。 Specifically, 20 mg each of rice straw and each fraction sample was weighed, placed in a 1.5 ml plastic tube, 1 ml of water (containing 0.02% NaN 3 ) was added, and the mixture was vigorously stirred for 10 minutes. After stirring, the sample was immediately cooled to 4 ° C., centrifuged (15,000 g, 3 minutes), 10 μl of the supernatant was sampled, and placed in two wells of 96 plates. Of these, 1 well measured the amount of free glucose using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.) and calculated the free glucose value per dry weight as G.

他1ウェルはインベルターゼ酵素液(クエン酸ナトリウム緩衝液、pH 4.6)を20 μl (4 U)添加して30℃で10分間反応し、一部分をサンプリングした。これを水で希釈した後、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いてグルコース量を測定して乾重あたりの遊離グルコース値を計算し、SucGとした。   In another well, 20 μl (4 U) of invertase enzyme solution (sodium citrate buffer, pH 4.6) was added, reacted at 30 ° C. for 10 minutes, and a part was sampled. After diluting this with water, the amount of glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.), and the free glucose value per dry weight was calculated as SucG.

乾重あたりのシュークロース率はSucG値からG値を差し引き、シュークロース量に換算して計算した(表1の「Suc.」)。   The sucrose ratio per dry weight was calculated by subtracting the G value from the SucG value and converting it to the amount of sucrose ("Suc." In Table 1).

(5)稲わらと各画分試料乾重あたりのフラクトース率の計算
稲わらと各画分試料(粒子サイズ500 μm以下、水分含量10%以下)の乾重あたりのフラクトース率の計算はSucrose, D-fructose and D-glucose kit(メガザイム社)で行った。
(5) Calculation of fructose rate per dry weight of rice straw and each fraction sample Calculate the fructose rate per dry weight of rice straw and each fraction sample (particle size 500 μm or less, water content 10% or less). D-fructose and D-glucose kit (Megazyme) was used.

すなわち、稲わらと各画分試料をそれぞれ20 mg量り取り、1.5 ml容のプラスチックチューブに入れ、水(0.02% NaNを含む。)を1 ml加えて10分間激しく撹拌した。攪拌後、サンプルを速やかに4℃に冷却し、遠心分離(15,000 g、3分)して上清10 μlをサンプリングして、96 プレートのウェルに入れた。このウェルに水200 μlとimidazol緩衝液(2 M 、pH7.6)10 μl及びNADP・ATP(12.5 mg/ml・36.7 mg/ml)水溶液10 μlを添加して30℃で3分間反応した。その後、340 nmでの吸光度を測定してA1とした。A1測定後、ヘキソキナーゼ(0.85 U)とGlucose-6-phosphate dehydrogenase(0.42 U)の混合酵素液を10 μl入れて30℃で10分間反応を行い、340 nmでの吸光度を測定してA2とした(2分間隔で吸光度を測定しながら吸光度安定を確認してから次の反応を行った)。A2測定後、 Phosphoglucose isomerase 10 μl(2U)を添加して30℃で10分間反応を行い、340 nmでの吸光度を測定してA3とした。A3からA2を引いた値と各濃度のフラクトース検量線を作成し、乾重あたりのフラクトース率を計算した(表1の「Fru.」)。 Specifically, 20 mg each of rice straw and each fraction sample was weighed, placed in a 1.5 ml plastic tube, 1 ml of water (containing 0.02% NaN 3 ) was added, and the mixture was vigorously stirred for 10 minutes. After stirring, the sample was immediately cooled to 4 ° C., centrifuged (15,000 g, 3 minutes), 10 μl of supernatant was sampled, and placed in a well of 96 plates. To this well, 200 μl of water, 10 μl of imidazole buffer (2 M, pH 7.6) and 10 μl of NADP + • ATP (12.5 mg / ml, 36.7 mg / ml) aqueous solution were added and reacted at 30 ° C. for 3 minutes. . Thereafter, the absorbance at 340 nm was measured and designated as A1. After measuring A1, add 10 μl of mixed enzyme solution of hexokinase (0.85 U) and Glucose-6-phosphate dehydrogenase (0.42 U), react at 30 ° C for 10 minutes, and measure the absorbance at 340 nm to obtain A2. (The following reaction was carried out after confirming stable absorbance while measuring absorbance at 2-minute intervals). After A2 measurement, 10 μl (2 U) of Phosphoglucose isomerase was added and reacted at 30 ° C. for 10 minutes, and the absorbance at 340 nm was measured to be A3. A value obtained by subtracting A2 from A3 and a fructose calibration curve for each concentration were prepared, and the fructose rate per dry weight was calculated ("Fru." In Table 1).

(6)結果
以上の測定結果を表1に示す。コシヒカリは全粉末に対する乾重あたりの澱粉率は2.18%を示していた。また、稈部と葉鞘・葉身部の間では澱粉率に顕著な差がみられ、全易分解性糖質含有率は稈部が1.78%で葉鞘・葉身部(0.54%)より高い値を示した。
(6) Results Table 1 shows the above measurement results. Koshihikari had a starch ratio of 2.18% per dry weight based on the total powder. In addition, there is a marked difference in starch content between the buttocks and the leaf sheaths and leaf blades, and the total easily degradable carbohydrate content is 1.78% in the buttocks, which is higher than the leaf sheath and leaf blades (0.54%). showed that.

Figure 2010035431

Glc.:Glucose、Fru.:Fructose、Suc.:Sucrose
全含有量:各試料30 g当たりの全易分解性糖質量(g)
量率:易分解性糖質量率(%)=[各試料中の全易分解性糖質量(g)/稈と葉鞘・葉身の全易分解性糖質量の合計(g)]×100
Figure 2010035431

Glc .: Glucose, Fru .: Fructose, Suc .: Sucrose
Total content 1 : Total easily degradable sugar mass (g) per 30 g of each sample
Quantity ratio 2 : Mass ratio of readily degradable sugar (%) = [total mass of easily degradable sugar in each sample (g) / total of all easily degradable sugar masses of cocoons, leaf sheaths and leaf blades (g)] × 100

実施例2[コシヒカリを手分けした際の稈とそれ以外(葉鞘・葉身)のセルラーゼ・キシラナーゼ製剤を用いた糖化データ]
稲わらには、易分解性糖質以外にも、グルコースを単位とするセルロースやキシロースなどを単位とするヘミセルロースが含まれている。これらのセルロースとヘミセルロースは、その結晶構造・化学修飾・位置関係などからセルラーゼ製剤とヘミセルラーゼ製剤などによる酵素分解を受けにくくなっている。そこで、未分離稲わらと、手で分離した稈と葉鞘・葉身部位と、機械的に分離した当該部位のそれぞれの易分解性糖質を含み、セルロースとヘミセルロースの糖化実験を行った。
Example 2 [Glucidation data using cellulase and xylanase preparations of koji and other (leaf sheath / leaf blade) when Koshihikari was hand-sorted]
In addition to easily degradable sugars, rice straw contains cellulose with glucose as a unit, hemicellulose with units of xylose and the like. These celluloses and hemicelluloses are less susceptible to enzymatic degradation by cellulase preparations and hemicellulase preparations due to their crystal structures, chemical modifications, and positional relationships. Therefore, saccharification experiments of cellulose and hemicellulose were carried out, including unseparated rice straw, hand-separated cocoons and leaf sheath / leaf blade parts, and mechanically degradable carbohydrates of each part.

稲わらと各画分試料[品種名:コシヒカリ、実施例1で粉砕を行ったもの、全体(未分離稲わら)と稈及び葉鞘・葉身]50 mgをそれぞれ量り、1.5 ml容のプラスチックチューブに入れたものにクエン酸ナトリウム緩衝液(50 mM、pH 4.8、NaN 0.01 %)を958 μl添加し、100℃のヒートブロック中で10分間処理した(2分ごとに激しく撹拌)。その後、サンプルを50℃に冷却し、セルラーゼ製剤(12 μl、 Celluclast 1.5 L、ノボザイムズ・ジャパン社)、ヘミセルラーゼ製剤(6 μl、 Viscozyme L、ノボザイムズ・ジャパン社)、β-グルコシダーゼ製剤(4 μl、 Novozyme 188、シグマ社)、アミログルコシダーゼ(10 μl(2 U)、メガザイム社)及びインベルターゼ酵素液(10 μl (4 U)、TOYOBO社)を加えて1 mlにメスアップして反応液とした。その後、50℃のヒートブロック中で、回転させながら24時間糖化反応を行った。反応後、一部分をサンプリングして、水で希釈した後、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いて糖化後のグルコース量を測定した。 Rice straw and each fraction sample [variety name: Koshihikari, crushed in Example 1, whole (unseparated rice straw) and straw, leaf sheath, leaf blades] 50 mg each, 1.5 ml plastic tube 958 μl of sodium citrate buffer solution (50 mM, pH 4.8, NaN 3 0.01%) was added to the mixture and treated in a heat block at 100 ° C. for 10 minutes (violent stirring every 2 minutes). The sample was then cooled to 50 ° C., and cellulase preparation (12 μl, Celluclast 1.5 L, Novozymes Japan), hemicellulase preparation (6 μl, Viscozyme L, Novozymes Japan), β-glucosidase preparation (4 μl, Novozyme 188 (Sigma)), amyloglucosidase (10 μl (2 U), Megazyme) and invertase enzyme solution (10 μl (4 U), TOYOBO) were added to make up to 1 ml to prepare a reaction solution. Thereafter, the saccharification reaction was carried out for 24 hours while rotating in a heat block at 50 ° C. After the reaction, a part was sampled and diluted with water, and then the amount of glucose after saccharification was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.).

糖化後のグリカンの糖化率の計算は、上記の糖化後のグルコース量と各試料の総グルコース量[試験例1(2)に従い2段階硫酸処理後に測定]から、以下の式で計算した(表2の「グリカン糖化率」)。なお、各試料の乾重あたりに対する総グルコース量から総グルコース率(%)を計算した(表2の「総Glc.率」)。
グリカン糖化率(%)=(酵素糖化後の遊離グルコース量/各試料の総グルコース量)×100
The saccharification rate of the glycan after saccharification was calculated by the following formula from the glucose amount after saccharification and the total glucose amount of each sample [measured after two-step sulfuric acid treatment according to Test Example 1 (2)] (Table 2 "glycan saccharification rate"). The total glucose rate (%) was calculated from the total glucose amount per dry weight of each sample ("Total Glc. Rate" in Table 2).
Glycan saccharification rate (%) = (free glucose amount after enzyme saccharification / total glucose amount of each sample) × 100

セルロースの糖化率は、上記の酵素糖化後の遊離グルコース量から実施例1で求めた易分解性糖質由来のグルコース量を引いたグルコース量と、上記の2段階硫酸処理後の総グルコース量から実施例1で求めた易分解性糖質由来のグルコース量を引いたグルコース量から、以下の式で計算した(表2の「セルロース糖化率」)。
セルロース糖化率(%)=[(酵素糖化後の遊離グルコース量−易分解性糖質由来のグルコース量)/(総グルコース量−易分解性糖質由来のグルコース量)]×100
The saccharification rate of cellulose is determined from the amount of glucose obtained by subtracting the amount of glucose derived from easily degradable carbohydrates obtained in Example 1 from the amount of free glucose after enzymatic saccharification and the total amount of glucose after the above two-stage sulfuric acid treatment. From the amount of glucose obtained by subtracting the amount of glucose derived from the easily degradable carbohydrate determined in Example 1, the calculation was performed according to the following formula (“cellulose saccharification rate” in Table 2).
Cellulose saccharification rate (%) = [(free glucose amount after enzymatic saccharification−glucose amount derived from easily degradable carbohydrate) / (total glucose amount−glucose amount derived from easily degradable carbohydrate)] × 100

なお、稲わらと各画分試料の乾重あたりのセルロース率は、上記の2段階硫酸処理後の総グルコース量から実施例1で求めた易分解性糖質由来のグルコース量を引いたグルコース量を、セルロース量に換算して求めた(表2の「セルロース率」)。   In addition, the cellulose ratio per dry weight of rice straw and each fraction sample is the amount of glucose obtained by subtracting the amount of glucose derived from the easily degradable carbohydrates obtained in Example 1 from the total amount of glucose after the above two-stage sulfuric acid treatment. Was calculated in terms of cellulose content ("cellulose ratio" in Table 2).

糖化後のヘミセルロースの糖化率の計算は、糖化後のキシロース量(D-キシロースキット(メガザイム社))で測定から換算したキシラン量と、稲わらと各画分試料の総キシラン量(2段階硫酸処理後のキシロース量をD-キシロースキット(メガザイム社)で測定し、キシランとして換算)から、以下の式で計算した(表2の「ヘミセルロース糖化率」)。なお、表2の「総キシラン率」は、上記の総キシラン量の稲わらと各画分試料の乾重あたりの値である。
ヘミセルロース糖化率(%)=(酵素糖化後の分解キシラン量/各試料の総キシラン量)×100
The saccharification rate of hemicellulose after saccharification is calculated by measuring the amount of xylose after saccharification (D-xylose kit (Megazyme)), the amount of xylan in rice straw and each fraction sample (two-stage sulfuric acid). The amount of xylose after the treatment was measured with a D-xylose kit (Megazyme Co., Ltd. and converted as xylan) and calculated according to the following formula (“hemicellulose saccharification rate” in Table 2). The “total xylan ratio” in Table 2 is a value per dry weight of rice straw and each fraction sample of the above total xylan amount.
Hemicellulose saccharification rate (%) = (decomposed xylan amount after enzymatic saccharification / total xylan amount of each sample) × 100

その結果を表2に示す。コシヒカリの稲わら全体のグリカン糖化率は27.91%、セルロース糖化率は22.82%で、ヘミセルロース糖化率は3.65%であった。部位別のグリカン糖化率、セルロースの糖化率及びヘミセルロースの糖化率は全て稈部が高くそれぞれ30.16、30.25及び4.54%を示した。なお、稈部のグリカン糖化率、セルロースの糖化率は共に葉鞘・葉身部に比べて2倍以上の糖化性を示した。   The results are shown in Table 2. The overall glycan saccharification rate of Koshihikari rice straw was 27.91%, the cellulose saccharification rate was 22.82%, and the hemicellulose saccharification rate was 3.65%. The glycan saccharification rate, the saccharification rate of cellulose, and the saccharification rate of hemicellulose were all high in the buttocks, showing 30.16, 30.25, and 4.54%, respectively. In addition, the glycan saccharification rate in the buttocks and the saccharification rate of cellulose both showed saccharification more than twice that of the leaf sheath and leaf blades.

Figure 2010035431

Glc.:Glucose
総Glc.率1、総キシラン率1:2段階硫酸処理で測定(各試料の乾重あたり対する率)
Figure 2010035431

Glc .: Glucose
Total Glc. Rate 1 , Total xylan rate 1 : Measured by two-step sulfuric acid treatment (rate per dry weight of each sample)

実施例3[コシヒカリを手分けした際の稈以外(葉鞘・葉身)をアルカリ処理した後のセルラーゼ・キシラナーゼ製剤を用いた糖化データ]
コシヒカリの葉鞘・葉身[実施例1、2]部位は易分解性糖質率(0.54%)と総糖化率(13.16%)が最も低く、糖化反応には化学または物理的前処理が必要とされる。そこで、易分解性糖質率と総糖化率が低いコシヒカリの葉鞘・葉身部位の全糖化率を上げるために以下の検討を行った。
Example 3 [Saccharification data using a cellulase / xylanase preparation after alkali treatment of leaves (leaf sheath / leaf blade) other than cocoon when Koshihikari was hand-sorted]
Koshihikari's leaf sheath and leaf blades [Examples 1 and 2] have the lowest easily degradable carbohydrate rate (0.54%) and total saccharification rate (13.16%), and chemical or physical pretreatment is required for the saccharification reaction Is done. Therefore, in order to increase the total saccharification rate of the leaf sheath / leaf blade part of Koshihikari, which has a low rate of easily degradable carbohydrates and a low total saccharification rate, the following examination was conducted.

画分試料[品種名:コシヒカリ、実施例1で粉砕を行った葉鞘・葉身部位]50 mgを量り、それぞれ2本の1.5 ml容のプラスチックチューブに入れ、そのうち1本にはクエン酸ナトリウム緩衝液(200 mM、pH 4.8、NaN 0.01 %)0.25 mlとNaOH水溶液(50 mM、0.5 ml)とHCl水溶液(100 mM、0.25 ml)を入れた。他1本にはNaOH水溶液(50 mM、0.5 ml)のみを入れて121℃で15分間、アルカリ処理を行った後、クエン酸ナトリウム緩衝液(200 mM、pH 4.8、NaN 0.01 %)0.25 mlとHCl水溶液(100 mM、0.25 ml)を入れた。 Weigh 50 mg of the fraction sample [variety name: Koshihikari, leaf sheath / leaf body part crushed in Example 1], put each in two 1.5 ml plastic tubes, one of which is sodium citrate buffered 0.25 ml of a liquid (200 mM, pH 4.8, NaN 3 0.01%), an aqueous NaOH solution (50 mM, 0.5 ml), and an aqueous HCl solution (100 mM, 0.25 ml) were added. In the other one, only NaOH aqueous solution (50 mM, 0.5 ml) was added, and after alkali treatment at 121 ° C for 15 minutes, sodium citrate buffer (200 mM, pH 4.8, NaN 3 0.01%) 0.25 ml And HCl aqueous solution (100 mM, 0.25 ml) were added.

次に、それぞれのチューブについて酵素反応による全糖化実験を行った。すなわち、各チューブにセルラーゼ製剤(12 μl、 Celluclast 1.5 L、ノボザイムズ・ジャパン社)、ヘミセルラーゼ製剤(6 μl、 Viscozyme L、ノボザイムズ・ジャパン社)及びβ-グルコシダーゼ製剤(4 μl、 Novozyme188、シグマ社)を添加して50℃のヒートブロック中、回転させながら12、24、91時間糖化反応を行い、各時間に一部分をサンプリングした。これを水で希釈した後、グルコースC-IIテストワコー(和光純薬工業株式会社)を用いて遊離グルコース量を測定した。グリカン糖化率とヘミセルロースの糖化率の計算は実施例2に従い行った。   Next, a total saccharification experiment was performed on each tube by enzymatic reaction. Cellulase preparation (12 μl, Celluclast 1.5 L, Novozymes Japan), hemicellulase preparation (6 μl, Viscozyme L, Novozymes Japan) and β-glucosidase preparation (4 μl, Novozyme188, Sigma) Was added, and saccharification reaction was carried out for 12, 24 and 91 hours while rotating in a heat block at 50 ° C., and a part was sampled at each time. After diluting this with water, the amount of free glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.). The glycan saccharification rate and the hemicellulose saccharification rate were calculated according to Example 2.

その結果を表3に示した。グリカン糖化率とヘミセルロースの糖化率は全てアルカリ処理サンプルで高くなり、91時間反応で44.5と18.97%を示していた。   The results are shown in Table 3. The glycan saccharification rate and the saccharification rate of hemicellulose were all high in the alkali-treated samples, and showed 44.5 and 18.97% in the 91-hour reaction.

Figure 2010035431
Figure 2010035431

実施例4[ミルキークィーン原料の成分データ、硫酸2段階糖化データ、酵素糖化データと、手で分けた際の稈とそれ以外(葉鞘・葉身)のデータ比較]
稲わら10 g[品種名:ミルキークィーン、成熟期の稲わら(水分含量10%以下)を刈り取ってすぐ4℃の低温室に保管したもの]を、長さ1 cm間隔で切断して実施例1に従って破砕・糖化・易分解性糖質の定量を行った。また、上記稲わら30 g[品種名:ミルキークィーン]を、実施例1によって稈とそれ以外の茎葉部(葉鞘と葉身)を分離した。分離された稈と葉鞘・葉身部の重さを量り、実施例1に従って粉砕・糖化・易分解性糖質の定量を行った。
Example 4 [Composition data of milky queen raw material, sulfuric acid two-stage saccharification data, enzymatic saccharification data, and comparison of cocoon and other (leaf sheath / leaf blade) data when separated by hand]
Example of rice straw 10 g [variety name: milky queen, harvested rice straw (moisture content of 10% or less) cut and stored in a cold room immediately at 4 ° C] cut at 1 cm intervals According to 1, the crushing / saccharification / degradable carbohydrates were quantified. In addition, rice bran and other stems and leaves (leaf sheath and leaf blade) were separated from the rice straw 30 g [variety name: Milky Queen] according to Example 1. The separated cocoons and leaf sheaths / leaf blades were weighed, and pulverized / saccharified / degradable carbohydrates were quantified according to Example 1.

その結果を表4に示す。全体の稲わら[品種名:ミルキークィーン]には、易分解性糖質としてシュークロース率(4.63%)が一番高く、全易分解性糖質率は12.61%も示していた。本実施例の稲わらは、実施例1のコシヒカリ(全易分解性糖質率2.49%)との品種の差はあるが、その収穫後の保存法(実施例1のコシヒカリは水田での天日干し)により、より多くの易分解性糖質(3.78 g)が簡便に糖化・回収可能であった。また、稈と葉鞘・葉身で全易分解性糖質率は稈部が28.16%で、易分解性糖質量率は91.8%であり、稲わら全体の易分解性糖質量の9割以上が稈に集中していた。   The results are shown in Table 4. The whole rice straw [variety name: Milky Queen] had the highest sucrose ratio (4.63%) as an easily degradable carbohydrate, and the total easily degradable sugar ratio was 12.61%. The rice straw of this example is different from Koshihikari of Example 1 (total easily degradable carbohydrate rate 2.49%), but the preservation method after harvest (Koshihikari of Example 1 is More easily degradable carbohydrates (3.78 g) could be easily saccharified and recovered by sun drying. In addition, the total easily degradable sugar ratio of cocoon, leaf sheath and leaf blades is 28.16% in the buttocks, and the readily degradable sugar mass ratio is 91.8%, which is more than 90% of the total easily degradable sugar mass of rice straw. I was concentrating on my niece.

Figure 2010035431

Glc.:Glucose、Fru.:Fructose、Suc.:Sucrose
全含有量:各試料30 g当たりの全易分解性糖質量(g)
量率:易分解性糖質量率(%)=[各試料中の全易分解性糖質量(g)/稈と葉鞘・葉身の全易分解性糖質量の合計(g)]×100
Figure 2010035431

Glc .: Glucose, Fru .: Fructose, Suc .: Sucrose
Total content 1 : Total easily degradable sugar mass (g) per 30 g of each sample
Quantity ratio 2 : Mass ratio of readily degradable sugar (%) = [total mass of easily degradable sugar in each sample (g) / total of all easily degradable sugar masses of cocoons, leaf sheaths and leaf blades (g)] × 100

その後、稲わらと各画分試料[品種名:ミルキークィーン、上記で粉砕を行ったもの、全体、稈と葉鞘・葉身]50 mgをそれぞれ量りとり、実施例2に従い全糖化実験と2段階硫酸処理を行い、総グルコース率、グリカン糖化率、セルロース率、セルロースの糖化率、総キシラン率及びヘミセルロースの糖化率を計算した。   Thereafter, rice straw and each fraction sample (variety name: milky queen, pulverized as above, whole, straw, leaf sheath and leaf blades) were weighed 50 mg each, and total saccharification experiment and 2 steps according to Example 2 Sulfuric acid treatment was performed, and the total glucose rate, glycan saccharification rate, cellulose rate, cellulose saccharification rate, total xylan rate, and hemicellulose saccharification rate were calculated.

その結果を表5に示す。全体の稲わら[品種名:ミルキークィーン]では、グリカン糖化率は40.01%で、セルロースの糖化率は29.89%で、ヘミセルロースの糖化率は7.60%であった。   The results are shown in Table 5. In the whole rice straw (variety name: Milky Queen), the glycan saccharification rate was 40.01%, the saccharification rate of cellulose was 29.89%, and the saccharification rate of hemicellulose was 7.60%.

一方、稈と葉鞘・葉身ではグリカン糖化率、セルロースの糖化率及びヘミセルロースの糖化率は全て稈部が高く55.29、36.09及び7.00%を示してグリカン糖化率、ヘミセルロースの糖化率は共に葉鞘・葉身部に比べて2倍程度の糖化性を示した。   On the other hand, the glycan saccharification rate, the saccharification rate of cellulose and the saccharification rate of hemicellulose were all high in the buttocks and showed glycan saccharification rate and saccharification rate of hemicellulose in leaf sheath and leaf. The saccharification was about twice that of the body.

Figure 2010035431

Glc.:Glucose
総Glc.率、総キシラン率:2段階硫酸処理で測定(各試料の乾重あたり対する率)
Figure 2010035431

Glc .: Glucose
Total Glc. Rate 1 , total xylan rate 1 : measured by two-stage sulfuric acid treatment (rate per dry weight of each sample)

実施例5[機械的分離 roller なし、3 cm cut 、グラインダミル、1 mm cutあり
ミルキークィーン原料をグラインダミルで潰し、筒を使って分離したものの低比重部、高比重部の成分データ、硫酸2段階糖化データ、酵素糖化データ]
実施例4で用いた30 gの稲わら[品種名:ミルキークィーン]を長さ3 cm間隔で裁断し、グラインダミル(RDI−15、グローエンジニアリング社)に投入し、回転グラインダ(直径15 cm)と固定グラインダ(直径15 cm)の砥石間隙を500 μm、回転数は1000 rpmでの条件下で擦り潰しながら粉砕を行い、粉砕物をメッシュサイズ1 mmの篩にかけて粒子サイズ1 mm以下の微粉砕稲わらを回収して重さを量った。粒子サイズ1 mm以上の稲わら粉砕物(20.5 g)は長さ1 m×内径 7 cmの上部開放式円筒管に入れ、下から1 L/secの空気を通気して比重差による分離を行った。比重差により円筒管の上部から飛ばされた破砕物を低比重部として回収し、円筒管内に残った稲わら粉砕物を高比重部として回収して、それぞれ重さを量った。回収された稲わらの粉砕物(1 mm 篩通過部、高比重部、低比重部)をさらにウェレミルを用いて粒子サイズ0.5 mm以下に破砕をした。
Example 5 [Without mechanical separation roller, 3 cm cut, grinder mill, 1 mm cut With milky queen raw material crushed with a grinder mill and separated using a cylinder, component data of low specific gravity part and high specific gravity part, sulfuric acid 2 Staged saccharification data, enzymatic saccharification data]
30 g of rice straw [variety name: milky queen] used in Example 4 was cut at intervals of 3 cm in length and put into a grinder mill (RDI-15, Glow Engineering), and a rotating grinder (diameter 15 cm). And grinding with a grinding grinder of 500 μm and a rotation speed of 1000 rpm. Grind the crushed material through a sieve with a mesh size of 1 mm and finely pulverize with a particle size of 1 mm or less. The rice straw was collected and weighed. Grained rice straw (20.5 g) with a particle size of 1 mm or more is placed in a 1 m long x 7 cm inner diameter open top cylindrical tube, and 1 L / sec of air is vented from the bottom to separate the specific gravity difference. It was. The crushed material blown from the upper part of the cylindrical tube due to the difference in specific gravity was collected as a low specific gravity part, and the crushed rice straw remaining in the cylindrical tube was collected as a high specific gravity part and weighed. The recovered pulverized rice straw (1 mm sieve passing part, high specific gravity part, low specific gravity part) was further crushed to a particle size of 0.5 mm or less using a Were mill.

その後、稲わらと各画分試料を実施例1に従い、易分解性糖質の糖化反応と定量実験を行い、乾重あたりの各易分解性糖質含有率と全易分解性糖質量を計算した。乾重回収率と糖濃縮率及び糖回収率を実施例4によって測定された稲わら[品種名:ミルキークィーン]の稈部位の乾重(35.2%:30 gの稲わらから10.6 gが得られる)と易分解性糖質率(91.8 %)及び全易分解性糖質量(2.97 g)を理想値(100 %)とし、各画分試料の乾重と易分解性糖質率及び全易分解性糖質量と、それぞれ比較して計算した。   Then, the rice straw and each fraction sample were subjected to saccharification reaction and quantitative experiment of easily degradable carbohydrates according to Example 1, and each easily degradable sugar content per dry weight and total easily degradable sugar mass were calculated. did. Dry weight recovery rate, sugar concentration rate, and sugar recovery rate were measured according to Example 4. Rice straw [variety name: milky queen] dry weight (35.2%: 30 g of rice straw yielded 10.6 g) ), Easy-degradable carbohydrate rate (91.8%) and total easily-degradable sugar mass (2.97 g) as ideal values (100%), dry weight of each fraction sample, easily-degradable carbohydrate rate and total easily-degradable It calculated by comparing with the amount of sex sugar.

その結果を表6に示す。機械的粉砕・分離で得られた1 mm篩通過部と高比重部及び低比重部の乾重回収率、糖濃縮率、糖回収率は、それぞれ(60、43、26)、(27、68、19)、(152、33、50)であり、手で分離した稈部の理想値(100、100、100)と比べると本実施例では風に飛ばされる低比重部(乾重回収率152%)が多いものの、高比重部(糖濃縮率68%)に稈部の特徴である最も高い糖濃縮率を示していた。   The results are shown in Table 6. The dry weight recovery rate, sugar concentration rate, and sugar recovery rate of the 1 mm sieve passing part, high specific gravity part, and low specific gravity part obtained by mechanical pulverization / separation were (60, 43, 26), (27, 68), respectively. 19), (152, 33, 50), compared to the ideal value (100, 100, 100) of the buttocks separated by hand, in this embodiment, the low specific gravity part (dry weight recovery rate 152) that is blown by the wind %), The high specific gravity part (sugar concentration rate of 68%) showed the highest sugar concentration rate, which is characteristic of the buttocks.

Figure 2010035431

:各試料の乾重あたりの全易分解性糖質含有率
:各試料30 gから機械的分離したサンプル稲わらの全易分解性糖質量
:実施例4によって分離された稈部位(乾重10.6 g)に対する各試料の乾重比
:実施例4によって分離された稈部位(易分解性糖質率91.8%)に対する各試料の易分解性糖質率比
:実施例4によって分離された稈部位(全易分解性糖質量2.97 g)に対する各試料の全易分解性糖質量比
:実施例4によって分離された稈部位の乾重・易分解性糖質含有率
Figure 2010035431

1 : Total easily degradable carbohydrate content per dry weight of each sample
2 : Total degradable sugar mass of sample rice straw mechanically separated from 30 g of each sample
3 : Dry weight ratio of each sample to the heel part (dry weight 10.6 g) separated in Example 4
4 : Ratio of easily degradable carbohydrate ratio of each sample to the sputum site separated according to Example 4 (easily degradable carbohydrate ratio 91.8%)
5 : Total easily degradable sugar mass ratio of each sample to the sputum site (total easily degradable sugar mass 2.97 g) separated in Example 4
6 : Dry weight / easily degradable carbohydrate content of the sputum part separated in Example 4

その後、各画分試料[品種名:ミルキークィーン、上記で粉砕・分離を行ったもの、1 mm 篩通過部、高比重部、低比重部]50 mgをそれぞれ量りとり、実施例2に従い全糖化実験と2段階硫酸処理を行い、総グルコース率、グリカン糖化率、セルロース率、セルロース糖化率、総キシラン率及びヘミセルロース糖化率を計算した。   Thereafter, 50 mg of each fraction sample [variety name: milky queen, pulverized and separated as above, 1 mm sieve passing part, high specific gravity part, low specific gravity part] was weighed and total saccharified according to Example 2. The experiment and two-stage sulfuric acid treatment were performed, and the total glucose rate, glycan saccharification rate, cellulose rate, cellulose saccharification rate, total xylan rate, and hemicellulose saccharification rate were calculated.

その結果を表7に示す。グリカン糖化率、セルロースの糖化率は高比重部粉砕物が高く、それぞれ46.52と31.43%を示した。   The results are shown in Table 7. The glycan saccharification rate and the saccharification rate of cellulose were high in the high specific gravity pulverized product, showing 46.52 and 31.43% respectively.

Figure 2010035431

Glc.:Glucose
総Glc.率、総キシラン率:2段階硫酸処理で測定
:実施例4によって分離された稈部位のグリカン糖化率、セルロース糖化率及びヘミセルロース糖化率
Figure 2010035431

Glc .: Glucose
Total Glc. Rate 1 , Total xylan rate 1 : Measured by two-step sulfuric acid treatment
2 : Glycan saccharification rate, cellulose saccharification rate, and hemicellulose saccharification rate of the heel part separated according to Example 4

実施例6[機械的分離 roller あり、3 cm cut、グラインダミル、1 mm cutなし
ミルキークィーン原料をローラーを通し、3 cmに切ってグラインダミルで潰し、筒を使って分離したものの低比重部、高比重部の成分データ、硫酸2段階糖化データ、酵素糖化データ]
実施例4で用いた30 gの稲わら[品種名:ミルキークィーン]を、100 kgの負荷がかかった間隙0 mmのローラー(鉄製、直径14 cm)を垂直方向で通過させながら潰した。その後、長さ3 cm間隔で裁断してグラインダミル(RDI−15、グローエンジニアリング社)に投入し、実施例5に従い粉砕を行った。ただし、粉砕後に実施例5で行った、メッシュサイズ1 mmの篩を用いた分離は実施せず、粉砕後の回収分全量を用いて以下の実験を行った。すなわち、粉砕後、全量の28.1 gの粉砕物から実施例5に従って低比重部と高比重部の分離・破砕を行った。その後、実施例1に従い易分解性糖質の糖化反応と定量実験を行い、乾重あたりの含有率と全易分解性糖質量を計算した。乾重回収率・糖濃縮率・糖回収率は実施例5に従い計算した。
Example 6 [With mechanical separation roller, 3 cm cut, grinder mill, without 1 mm cut Milky queen raw material was passed through a roller, cut to 3 cm, crushed with a grinder mill, and separated using a cylinder, low specific gravity part, Component data of high specific gravity part, sulfuric acid two-stage saccharification data, enzymatic saccharification data]
30 g of rice straw [variety name: milky queen] used in Example 4 was crushed while passing through a roller with a gap of 0 mm (iron, diameter: 14 cm) loaded with 100 kg in a vertical direction. Then, it cut | judged at intervals of 3 cm in length, thrown into the grinder mill (RDI-15, glow engineering company), and grind | pulverized according to Example 5. FIG. However, separation using a sieve with a mesh size of 1 mm, which was performed in Example 5 after pulverization, was not performed, and the following experiment was performed using the entire recovered amount after pulverization. That is, after the pulverization, the low specific gravity part and the high specific gravity part were separated and crushed according to Example 5 from the total amount of 28.1 g of the pulverized product. Thereafter, a saccharification reaction of a readily degradable sugar and a quantitative experiment were performed according to Example 1, and the content per dry weight and the total easily degradable sugar mass were calculated. The dry weight recovery rate, sugar concentration rate, and sugar recovery rate were calculated according to Example 5.

その結果を表8に示す。高比重部と低比重部の乾重回収率、糖濃縮率及び糖回収率はそれぞれ(96、78、75)、(153、23、35)であった。手で分離した稈部の理想値(100、100、100)と比べると最初ローラーに稲わらを通し、グラインダミルで粉砕後の1mm 以下の稲わらを回収しない本実施例では、風に飛ばされにくい高比重部から稈部の特徴である糖濃縮率が最も高く(78%)、乾重回収率(96%)も理論値に相当する値が得られた。本実施例法によって稲わらの稈部が効率よく分離できた。   The results are shown in Table 8. The dry weight recovery rate, sugar concentration rate and sugar recovery rate of the high specific gravity part and low specific gravity part were (96, 78, 75) and (153, 23, 35), respectively. Compared with the ideal value (100, 100, 100) of the heel part separated by hand, rice straw is first passed through a roller, and in this example, rice straw of 1 mm or less after grinding with a grinder mill is not collected. The sugar concentration rate, which is the characteristic of the high specific gravity part to the buttocks, is the highest (78%), and the dry weight recovery rate (96%) was also equivalent to the theoretical value. By this method, the straw of the rice straw was efficiently separated.

Figure 2010035431

:各試料の乾重あたりの全易分解性糖質含有率
:各試料30 gから機械的分離したサンプル稲わらの全易分解性糖質量
:実施例4によって分離された稈部位(乾重10.6 g)に対する各試料の乾重比
:実施例4によって分離された稈部位(易分解性糖質率91.8%)に対する各試料の易分解性糖質率比
:実施例4によって分離された稈部位(全易分解性糖質量2.97 g)に対する各試料の全易分解性糖質量比
:実施例4によって分離された稈部位の乾重・易分解性糖質含有率
Figure 2010035431

1 : Total easily degradable carbohydrate content per dry weight of each sample
2 : Total degradable sugar mass of sample rice straw mechanically separated from 30 g of each sample
3 : Dry weight ratio of each sample to the heel part (dry weight 10.6 g) separated in Example 4
4 : Ratio of easily degradable carbohydrate ratio of each sample to the sputum site separated according to Example 4 (easily degradable carbohydrate ratio 91.8%)
5 : Total easily degradable sugar mass ratio of each sample to the sputum site (total easily degradable sugar mass 2.97 g) separated in Example 4
6 : Dry weight / easily degradable carbohydrate content of the sputum part separated in Example 4

その後、各試料[品種名:ミルキークィーン、上記で粉砕・分離を行ったもの、高比重部、低比重部]50 mgをそれぞれ量りとり、実施例2に従い全糖化実験と2段階硫酸処理を行い、総グルコース率、グリカン糖化率、セルロース率、セルロース糖化率、総キシラン率及びヘミセルロース糖化率を計算した。   Thereafter, 50 mg of each sample [variety name: milky queen, pulverized and separated as above, high specific gravity part, low specific gravity part] was weighed and subjected to total saccharification experiment and two-stage sulfuric acid treatment according to Example 2. The total glucose rate, glycan saccharification rate, cellulose rate, cellulose saccharification rate, total xylan rate and hemicellulose saccharification rate were calculated.

その結果を表9に示す。グリカン糖化率とヘミセルロース糖化率は高比重部粉砕物が高く、それぞれ47.94と6.36%を示し、実施例4の稈部のグリカン糖化率とヘミセルロース糖化率(55.29、7.00%)に類似している値が得られ、本粉砕・分離法で得られた高比重部は、全糖化性が高い(実施例2、4)稲わらの稈部が大半を占めていることがわかった。本実施例法によって稲わらの稈部が効率よく分離できた。   The results are shown in Table 9. The glycan saccharification rate and the hemicellulose saccharification rate were high in the high specific gravity pulverized product, showing 47.94 and 6.36%, respectively, values similar to the glycan saccharification rate and hemicellulose saccharification rate (55.29, 7.00%) in Example 4 It was found that the high specific gravity part obtained by this pulverization / separation method has a high total saccharification (Examples 2 and 4), and most of the straw of rice straw occupies. By this method, the straw of the rice straw was efficiently separated.

Figure 2010035431

Glc.:Glucose
総Glc.率、総キシラン率:2段階硫酸処理で測定(各試料の乾重あたり対する率)
:実施例4によって分離された稈部位のグリカン糖化率、セルロース糖化率及びヘミセルロース糖化率
Figure 2010035431

Glc .: Glucose
Total Glc. Rate 1 , total xylan rate 1 : measured by two-stage sulfuric acid treatment (rate per dry weight of each sample)
2 : Glycan saccharification rate, cellulose saccharification rate, and hemicellulose saccharification rate of the heel part separated according to Example 4

実施例7[機械的分離 roller あり、1 cm cut 、グラインダミル、1 mm cutあり
ミルキークィーン原料をローラーを通し、1 cmに切ってグラインダミルで潰し、筒を使って分離したものの低比重部、高比重部の成分データ、硫酸2段階糖化データ、酵素糖化データ]
実施例4で用いた30 gの稲わら[品種名:ミルキークィーン]を、100 kgの負荷がかかった間隙0 mmのローラー(鉄製、直径14 cm)を垂直方向で通過させながら潰した。その後、長さ1 cm間隔で裁断してグラインダミル(RDI−15、グローエンジニアリング社)に投入し、実施例5に従い粉砕を行った。粉砕後、メッシュサイズ1 mmの篩にかけて粒子サイズ1 mm以下の微粉砕稲わらを回収して重さを量った。残りの25.2 gの粉砕物は実施例5に従って低比重部と高比重部の分離・破砕を行った。その後、1mm 篩通過部、高比重部、低比重部の易分解性糖質の糖化反応と定量実験を実施例1に従って行い、乾重あたりの含有率と全易分解性糖質量を計算した。乾重回収率・糖濃縮率・糖回収率は実施例5に従い計算した。
Example 7 [With mechanical separation roller, 1 cm cut, grinder mill, 1 mm cut With milky queen raw material passed through a roller, cut into 1 cm, crushed with a grinder mill, separated using a cylinder, low specific gravity part, Component data of high specific gravity part, sulfuric acid two-stage saccharification data, enzymatic saccharification data]
30 g of rice straw [variety name: milky queen] used in Example 4 was crushed while passing through a roller with a gap of 0 mm (iron, diameter: 14 cm) loaded with 100 kg in a vertical direction. Then, it cut | judged at intervals of 1 cm in length, thrown into the grinder mill (RDI-15, glow engineering company), and grind | pulverized according to Example 5. FIG. After pulverization, the crushed rice straw having a particle size of 1 mm or less was collected through a sieve having a mesh size of 1 mm and weighed. The remaining 25.2 g of the pulverized product was subjected to separation and crushing of a low specific gravity part and a high specific gravity part according to Example 5. Then, the saccharification reaction and quantitative experiment of the easily degradable carbohydrates in the 1 mm sieve passing part, high specific gravity part, and low specific gravity part were performed according to Example 1, and the content per dry weight and the total easily degradable sugar mass were calculated. The dry weight recovery rate, sugar concentration rate, and sugar recovery rate were calculated according to Example 5.

その結果を表10に示した。機械的粉砕・分離で得られた各部位1 mm 篩通過部、高比重部、低比重部の乾重回収率、糖濃縮率及び糖回収率は、それぞれ(35、19、7)、(62、76、47)、(170、23、39)であった。手で分離した稈部の理想値(100、100、100)と比べると本実施例では風に飛ばされる低比重部(乾重回収率170%)が多いものの、高比重部(糖濃縮率76%)に稈部の特徴である最も高い糖濃縮率を示していた。   The results are shown in Table 10. The dry weight recovery rate, sugar concentration rate, and sugar recovery rate of the 1 mm sieve passing part, high specific gravity part, and low specific gravity part obtained by mechanical pulverization / separation were (35, 19, 7), (62 76, 47), (170, 23, 39). Compared to the ideal value (100, 100, 100) of the buttocks separated by hand, in this example there are more low specific gravity parts (dry weight recovery rate 170%) that are blown by the wind, but high specific gravity parts (sugar concentration rate 76) %) Showed the highest sugar concentration rate characteristic of the buttocks.

Figure 2010035431

:各試料の乾重あたりの全易分解性糖質含有率
:各試料30 gから機械的分離したサンプル稲わらの全易分解性糖質量
:実施例4によって分離された稈部位(乾重10.6 g)に対する各試料の乾重比
:実施例4によって分離された稈部位(易分解性糖質率91.8%)に対する各試料の易分解性糖質率比
:実施例4によって分離された稈部位(全易分解性糖質量2.97 g)に対する各試料の全易分解性糖質量比
:実施例4によって分離された稈部位の乾重・易分解性糖質含有率
Figure 2010035431

1 : Total easily degradable carbohydrate content per dry weight of each sample
2 : Total degradable sugar mass of sample rice straw mechanically separated from 30 g of each sample
3 : Dry weight ratio of each sample to the heel part (dry weight 10.6 g) separated in Example 4
4 : Ratio of easily degradable carbohydrate ratio of each sample to the sputum site separated according to Example 4 (easily degradable carbohydrate ratio 91.8%)
5 : Total easily degradable sugar mass ratio of each sample to the sputum site (total easily degradable sugar mass 2.97 g) separated in Example 4
6 : Dry weight / easily degradable carbohydrate content of the sputum part separated in Example 4

その後、各試料[品種名:ミルキークィーン、上記で粉砕・分離を行ったもの、1mm 篩通過部、高比重部、低比重部]50 mgをそれぞれ量りとり、実施例2に従い全糖化実験と2段階硫酸処理を行い、総グルコース率、グリカン糖化率、セルロース率、セルロース糖化率、総キシラン率及びヘミセルロース糖化率を計算した。   Thereafter, 50 mg of each sample [variety name: milky queen, pulverized / separated above, 1 mm sieve passing part, high specific gravity part, low specific gravity part] was weighed and subjected to total saccharification experiments and 2 according to Example 2. Stepped sulfuric acid treatment was performed, and the total glucose rate, glycan saccharification rate, cellulose rate, cellulose saccharification rate, total xylan rate, and hemicellulose saccharification rate were calculated.

その結果を表11に示した。グリカン糖化率、セルロースの糖化率及びヘミセルロースの糖化率は全て高比重部粉砕物が高く、それぞれ52.81、27.53及び7.23%を示していた。   The results are shown in Table 11. The glycan saccharification rate, cellulose saccharification rate, and hemicellulose saccharification rate were all high in the high specific gravity pulverized product, showing 52.81, 27.53, and 7.23%, respectively.

Figure 2010035431

Glc.:Glucose
総Glc.率、総キシラン率:2段階硫酸処理で測定(各試料の乾重あたり対する率)
:実施例4によって分離された稈部位のグリカン糖化率、セルロース糖化率及びヘミセルロース糖化率
Figure 2010035431

Glc .: Glucose
Total Glc. Rate 1 , total xylan rate 1 : measured by two-stage sulfuric acid treatment (rate per dry weight of each sample)
2 : Glycan saccharification rate, cellulose saccharification rate, and hemicellulose saccharification rate of the heel part separated according to Example 4

実施例8[機械的分離 roller あり、2 cm cut 、グラインダミル、1 mm cutあり
ミルキークィーン原料をローラーを通し、2 cmに切ってグラインダミルで潰し、筒を使って分離したものの低比重部、高比重部の成分データ、硫酸2段階糖化データ、酵素糖化データ]
実施例4で用いた30 gの稲わら[品種名:ミルキークィーン]を、100 kgの負荷がかかった間隙0 mmのローラー(鉄製、直径14 cm)を垂直方向で通過させながら潰した。その後、長さ2 cm間隔で裁断してグラインダミル(RDI−15、グローエンジニアリング社)に投入し、実施例5に従い粉砕を行った。粉砕後、メッシュサイズ1 mmの篩にかけて粒子サイズ1 mm以下の微粉砕稲わらを回収して重さを量った。残りの25.7gの粉砕物は実施例5に従って低比重部と高比重部の分離・破砕を行った。その後、1 mm 篩通過部、高比重部、低比重部の易分解性糖質の糖化反応と定量実験を実施例1に従って行い、乾重あたりの含有率と全易分解性糖質量を計算した。乾重回収率・糖濃縮率・糖回収率は実施例5に従い計算した。
Example 8 [With mechanical separation roller, 2 cm cut, grinder mill, 1 mm cut With milky queen raw material passed through a roller, cut to 2 cm, crushed with a grinder mill, separated using a cylinder, low specific gravity part, Component data of high specific gravity part, sulfuric acid two-stage saccharification data, enzymatic saccharification data]
30 g of rice straw [variety name: milky queen] used in Example 4 was crushed while passing through a roller with a gap of 0 mm (iron, diameter: 14 cm) loaded with 100 kg in a vertical direction. Then, it cut | judged at intervals of 2 cm in length, thrown into the grinder mill (RDI-15, glow engineering company), and grind | pulverized according to Example 5. FIG. After pulverization, the crushed rice straw having a particle size of 1 mm or less was collected through a sieve having a mesh size of 1 mm and weighed. The remaining 25.7 g of the pulverized product was subjected to separation and crushing of the low specific gravity part and the high specific gravity part according to Example 5. Thereafter, the saccharification reaction and quantitative experiment of the easily degradable carbohydrates in the 1 mm sieve passage part, high specific gravity part, and low specific gravity part were carried out according to Example 1, and the content per dry weight and the total easily degradable sugar mass were calculated. . The dry weight recovery rate, sugar concentration rate, and sugar recovery rate were calculated according to Example 5.

その結果を表12に示した。機械的粉砕・分離で得られた各部位1 mm 篩通過部、高比重部、低比重部の乾重回収率、糖濃縮率及び糖回収率は、それぞれ(29、23、7)、(121、66、80)、(114、11、12)であった。手で分離した稈部の理想値(100、100、100)と比べると本実施例では、風に飛ばされにくい高比重部で稈部の特徴である糖濃縮率が最も高く(66%)、乾重回収率(121%)は理論値より高いものの、高い値の糖回収率(80%)が示された。本実施例法によって稲わらの稈部が効率よく分離できた。   The results are shown in Table 12. The dry weight recovery rate, sugar concentration rate, and sugar recovery rate of the 1 mm sieve passing part, high specific gravity part, and low specific gravity part obtained by mechanical pulverization / separation were (29, 23, 7), (121 66, 80), (114, 11, 12). Compared with the ideal value of the buttocks separated by hand (100, 100, 100), in this example, the sugar concentration rate that is the characteristic of the buttocks is the highest (66%) in the high specific gravity part that is not easily blown by the wind (66%), Although the dry weight recovery rate (121%) was higher than the theoretical value, a high sugar recovery rate (80%) was shown. By this method, the straw of the rice straw was efficiently separated.

Figure 2010035431

:各試料の乾重あたりの全易分解性糖質含有率
:各試料30 gから機械的分離したサンプル稲わらの全易分解性糖質量
:実施例4によって分離された稈部位(乾重10.6 g)に対する各試料の乾重比
:実施例4によって分離された稈部位(易分解性糖質率91.8%)に対する各試料の易分解性糖質率比
:実施例4によって分離された稈部位(全易分解性糖質量2.97 g)に対する各試料の全易分解性糖質量比
:実施例4によって分離された稈部位の乾重・易分解性糖質含有率
Figure 2010035431

1 : Total easily degradable carbohydrate content per dry weight of each sample
2 : Total degradable sugar mass of sample rice straw mechanically separated from 30 g of each sample
3 : Dry weight ratio of each sample to the heel part (dry weight 10.6 g) separated in Example 4
4 : Ratio of easily degradable carbohydrate ratio of each sample to the sputum site separated according to Example 4 (easily degradable carbohydrate ratio 91.8%)
5 : Ratio of total readily degradable sugar mass of each sample to the sputum site (total easily degradable sugar mass 2.97 g) separated in Example 4
6 : Dry weight / easily degradable carbohydrate content of the sputum part separated in Example 4

その後、各試料[品種名:ミルキークィーン、上記で粉砕・分離を行ったもの、1mm 篩通過部、高比重部、低比重部]50 mgをそれぞれ量りとり、実施例2に従い全糖化実験と2段階硫酸処理を行い、総グルコース率、グリカン糖化率、セルロース率、セルロース糖化率、総キシラン率及びヘミセルロース糖化率を計算した。   Thereafter, 50 mg of each sample [variety name: milky queen, pulverized / separated above, 1 mm sieve passing part, high specific gravity part, low specific gravity part] was weighed, respectively. Stepped sulfuric acid treatment was performed, and the total glucose rate, glycan saccharification rate, cellulose rate, cellulose saccharification rate, total xylan rate, and hemicellulose saccharification rate were calculated.

その結果を表13に示した。グリカン糖化率、セルロース糖化率及びヘミセルロース糖化率は全て高比重部粉砕物が高く、それぞれ55.92、36.48及び7.21%を示していた。本結果は実施例4の稈部の55.29、36.09及び7.00%に最も近い値であった。本実施例法によって稲わらの稈部が効率よく分離できた。   The results are shown in Table 13. The glycan saccharification rate, cellulose saccharification rate, and hemicellulose saccharification rate were all high in the high-specific gravity pulverized product, showing 55.92, 36.48, and 7.21%, respectively. This result was the closest value to 55.29, 36.09 and 7.00% of the buttocks of Example 4. By this method, the straw of the rice straw was efficiently separated.

Figure 2010035431

Glc.:Glucose
総Glc.率、総キシラン率:2段階硫酸処理で測定(各試料の乾重あたり対する率)
:実施例4によって分離された稈部位のグリカン糖化率、セルロース糖化率及びヘミセルロース糖化率
Figure 2010035431

Glc .: Glucose
Total Glc. Rate 1 , total xylan rate 1 : measured by two-stage sulfuric acid treatment (rate per dry weight of each sample)
2 : Glycan saccharification rate, cellulose saccharification rate, and hemicellulose saccharification rate of the heel part separated according to Example 4

実施例9[機械的分離 roller あり、3 cm cut 、グラインダミル、1 mm cutあり
ミルキークィーン原料をローラーを通し、3 cmに切ってグラインダミルで潰し、筒を使って分離したものの低比重部、高比重部の成分データ、硫酸2段階糖化データ、酵素糖化データ]
実施例4で用いた30 gの稲わら[品種名:ミルキークィーン]を、100 kgの負荷がかかった間隙0 mmのローラー(鉄製、直径14 cm)を垂直方向で通過させながら潰した。その後、長さ3 cm間隔で裁断してグラインダミル(RDI−15、グローエンジニアリング社)に投入し、実施例5に従い粉砕を行った。粉砕後、メッシュサイズ1 mmの篩にかけて粒子サイズ1 mm以下の微粉砕稲わらを回収して重さを量った。残りの23.8gの粉砕物は実施例5に従って低比重部と高比重部の分離・破砕を行った。その後、1mm 篩通過部、高比重部、低比重部の易分解性糖質の糖化反応と定量実験を実施例1に従って行い、乾重あたりの含有率と全易分解性糖質量を計算した。乾重回収率・糖濃縮率・糖回収率は実施例5に従い計算した。
Example 9 [with mechanical separation roller, 3 cm cut, grinder mill, 1 mm cut with Milky Queen raw material passed through a roller, cut to 3 cm, crushed with a grinder mill, separated using a cylinder, low specific gravity part, Component data of high specific gravity part, sulfuric acid two-stage saccharification data, enzymatic saccharification data]
30 g of rice straw [variety name: milky queen] used in Example 4 was crushed while passing through a roller with a gap of 0 mm (iron, diameter: 14 cm) loaded with 100 kg in a vertical direction. Then, it cut | judged at intervals of 3 cm in length, thrown into the grinder mill (RDI-15, glow engineering company), and grind | pulverized according to Example 5. FIG. After pulverization, the crushed rice straw having a particle size of 1 mm or less was collected through a sieve having a mesh size of 1 mm and weighed. The remaining 23.8 g of the pulverized product was subjected to separation and crushing of the low specific gravity part and the high specific gravity part according to Example 5. Then, the saccharification reaction and quantitative experiment of the easily degradable carbohydrates in the 1 mm sieve passing part, high specific gravity part, and low specific gravity part were performed according to Example 1, and the content per dry weight and the total easily degradable sugar mass were calculated. The dry weight recovery rate, sugar concentration rate, and sugar recovery rate were calculated according to Example 5.

その結果を表14に示す。機械的粉砕・分離で得られた各部位1mm 篩通過部、高比重部、低比重部の乾重回収率、糖濃縮率及び糖回収率は、それぞれ(42、43、18)(94、76、72)、(121、21、25)、であった。手で分離した稈部の理想値(100、100、100)と比べると本実施例では、風に飛ばされにくい高比重部で稈部の特徴である糖濃縮率が最も高く(76%)、乾重回収率(94%)も高い値が得られた。本実施例法によって稲わらの稈部が効率よく分離できた。   The results are shown in Table 14. The dry weight recovery rate, sugar concentration rate, and sugar recovery rate of each 1mm sieve passing part, high specific gravity part, and low specific gravity part obtained by mechanical grinding / separation are (42, 43, 18) (94, 76 72), (121, 21, 25). Compared with the ideal value (100, 100, 100) of the buttocks separated by hand, in this example, the sugar concentration rate that is the characteristic of the buttocks is the highest (76%) in the high specific gravity part that is not easily blown by the wind, The dry weight recovery rate (94%) was also high. By this method, the straw of the rice straw was efficiently separated.

Figure 2010035431

:各試料の乾重あたりの全易分解性糖質含有率
:各試料30 gから機械的分離したサンプル稲わらの全易分解性糖質量
:実施例4によって分離された稈部位(乾重10.6 g)に対する各試料の乾重比
:実施例4によって分離された稈部位(易分解性糖質率91.8%)に対する各試料の易分解性糖質率比
:実施例4によって分離された稈部位(全易分解性糖質量2.97 g)に対する各試料の全易分解性糖質量比
:実施例4によって分離された稈部位の乾重・易分解性糖質含有率
Figure 2010035431

1 : Total easily degradable carbohydrate content per dry weight of each sample
2 : Total degradable sugar mass of sample rice straw mechanically separated from 30 g of each sample
3 : Dry weight ratio of each sample to the heel part (dry weight 10.6 g) separated in Example 4
4 : Ratio of easily degradable carbohydrate ratio of each sample to the sputum site separated according to Example 4 (easily degradable carbohydrate ratio 91.8%)
5 : Total easily degradable sugar mass ratio of each sample to the sputum site (total easily degradable sugar mass 2.97 g) separated in Example 4
6 : Dry weight / easily degradable carbohydrate content of the sputum part separated in Example 4

その後、各試料[品種名:ミルキークィーン、上記で粉砕・分離を行ったもの、1mm 篩通過部、高比重部、低比重部]50 mgをそれぞれ量りとり、実施例2に従い全糖化実験と2段階硫酸処理を行い、総グルコース率、グリカン糖化率、セルロース率、セルロース糖化率、総キシラン率及びヘミセルロース糖化率を計算した。   Thereafter, 50 mg of each sample [variety name: milky queen, pulverized / separated above, 1 mm sieve passing part, high specific gravity part, low specific gravity part] was weighed, respectively. Stepped sulfuric acid treatment was performed, and the total glucose rate, glycan saccharification rate, cellulose rate, cellulose saccharification rate, total xylan rate, and hemicellulose saccharification rate were calculated.

その結果を表15に示す。グリカン糖化率は高比重部が高く47.57%を示し、1mm篩通過と低比重部粉砕物より高い値を示していた。本実施例法によって稲わらの稈部が効率よく分離できた。   The results are shown in Table 15. The glycan saccharification rate was 47.57%, which was high in the high specific gravity part, and was higher than that of the pulverized product with the 1 mm sieve and the low specific gravity part. By this method, the straw of the rice straw was efficiently separated.

Figure 2010035431

Glc.:Glucose
総Glc.率、総キシラン率:2段階硫酸処理で測定(各試料の乾重あたり対する率)
:実施例4によって分離された稈部位のグリカン糖化率、セルロース糖化率及びヘミセルロース糖化率
Figure 2010035431

Glc .: Glucose
Total Glc. Rate 1 , total xylan rate 1 : measured by two-stage sulfuric acid treatment (rate per dry weight of each sample)
2 : Glycan saccharification rate, cellulose saccharification rate, and hemicellulose saccharification rate of the heel part separated according to Example 4

実施例10[機械的分離 roller あり、4 cm cut 、グラインダミル、1 mm cutあり
ミルキークィーン原料をローラーを通し、4 cmに切ってグラインダミルで潰し、筒を使って分離したものの低比重部、高比重部の成分データ、硫酸2段階糖化データ、酵素糖化データ]
実施例4で用いた30 gの稲わら[品種名:ミルキークィーン]を、100 kgの負荷がかかった間隙0 mmのローラー(鉄製、直径14 cm)を垂直方向で通過させながら潰した。その後、長さ4 cm間隔で裁断してグラインダミル(RDI−15、グローエンジニアリング社)に投入し、実施例5に従い粉砕を行った。粉砕後、メッシュサイズ1 mmの篩にかけて粒子サイズ1 mm以下の微粉砕稲わらを回収して重さを量った。残りの24.0 gの粉砕物は実施例5に従って低比重部と高比重部の分離・破砕を行った。その後、1 mm 篩通過部、高比重部、低比重部の易分解性糖質の糖化反応と定量実験を実施例1に従って行い、乾重あたりの含有率と全易分解性糖質量を計算した。乾重回収率・糖濃縮率・糖回収率は実施例5に従い計算した。
Example 10 [with mechanical separation roller, 4 cm cut, grinder mill, 1 mm cut milky queen raw material is passed through a roller, cut to 4 cm, crushed with a grinder mill, separated using a cylinder, low specific gravity part, Component data of high specific gravity part, sulfuric acid two-stage saccharification data, enzymatic saccharification data]
30 g of rice straw [variety name: milky queen] used in Example 4 was crushed while passing through a roller with a gap of 0 mm (iron, diameter: 14 cm) loaded with 100 kg in a vertical direction. Then, it cut | judged at intervals of 4 cm in length, thrown into the grinder mill (RDI-15, glow engineering company), and grind | pulverized according to Example 5. FIG. After pulverization, the pulverized rice straw having a particle size of 1 mm or less was collected through a sieve having a mesh size of 1 mm and weighed. The remaining 24.0 g of the pulverized product was subjected to separation and crushing of the low specific gravity part and the high specific gravity part according to Example 5. Thereafter, the saccharification reaction and quantitative experiment of the easily degradable carbohydrates in the 1 mm sieve passage part, high specific gravity part, and low specific gravity part were carried out according to Example 1, and the content per dry weight and the total easily degradable sugar mass were calculated. . The dry weight recovery rate, sugar concentration rate, and sugar recovery rate were calculated according to Example 5.

その結果を表16に示す。機械的粉砕・分離で得られた各部位1 mm 篩通過部、高比重部、低比重部の乾重回収率、糖濃縮率及び糖回収率は、それぞれ(39、26、10)、(61、71、43)、(157、16、25)であった。手で分離した稈部の理想値(100、100、100)と比べると本実施例では、風に飛ばされる低比重部(乾重回収率157%)が多いものの、高比重部(糖濃縮率71%)に稈部の特徴である最も高い糖濃縮率を示していた。   The results are shown in Table 16. The dry weight recovery rate, sugar concentration rate, and sugar recovery rate of each part 1 mm sieve passing part, high specific gravity part, and low specific gravity part obtained by mechanical pulverization / separation were (39, 26, 10), (61 71, 43), (157, 16, 25). Compared with the ideal value (100, 100, 100) of the buttocks separated by hand, in this example, there are many low specific gravity parts (dry weight recovery rate 157%) blown by the wind, but high specific gravity parts (sugar concentration rate) 71%) showed the highest sugar concentration rate characteristic of the buttocks.

実施例5、6、7、8、9、10の結果から稲わらの機械的粉砕の際、いずれの粉砕法でも高比重部に糖濃縮率が高いことから高比重部は稲わらの稈部を反映していると考えられる。また、ローラーを通す工程と稲わらを長さ2 cmから 3 cmに切断して粉砕を行うことにより、より稈部の分離効果が上がった。   From the results of Examples 5, 6, 7, 8, 9, and 10, when the rice straw was mechanically pulverized, the high specific gravity part was the straw part of the rice straw because the sugar concentration rate was high in the high specific gravity part in any pulverization method. Is considered to be reflected. In addition, the effect of separating the ridges was improved by passing the roller and cutting the rice straw from 2 cm to 3 cm in length and crushing.

Figure 2010035431

:各試料の乾重あたりの全易分解性糖質含有率
:各試料30 gから機械的分離したサンプル稲わらの全易分解性糖質量
:実施例4によって分離された稈部位(乾重10.6 g)に対する各試料の乾重比
:実施例4によって分離された稈部位(易分解性糖質率91.8%)に対する各試料の易分解性糖質率比
:実施例4によって分離された稈部位(全易分解性糖質量2.97 g)に対する各試料の全易分解性糖質量比
:実施例4によって分離された稈部位の乾重・易分解性糖質含有率
Figure 2010035431

1 : Total easily degradable carbohydrate content per dry weight of each sample
2 : Total degradable sugar mass of sample rice straw mechanically separated from 30 g of each sample
3 : Dry weight ratio of each sample to the heel part (dry weight 10.6 g) separated in Example 4
4 : Ratio of easily degradable carbohydrate ratio of each sample to the sputum site separated according to Example 4 (easily degradable carbohydrate ratio 91.8%)
5 : Total easily degradable sugar mass ratio of each sample to the sputum site (total easily degradable sugar mass 2.97 g) separated in Example 4
6 : Dry weight / easily degradable carbohydrate content of the sputum part separated in Example 4

その後、各試料[品種名:ミルキークィーン、上記で粉砕・分離を行ったもの、1 mm 篩通過部、高比重部、低比重部]50 mgをそれぞれ量りとり、実施例2に従い全糖化実験と2段階硫酸処理を行い、総グルコース率、グリカン糖化率、セルロース率、セルロース糖化率、総キシラン率及びヘミセルロース糖化率を計算した。   Thereafter, 50 mg of each sample [variety name: milky queen, pulverized / separated above, 1 mm sieve passing part, high specific gravity part, low specific gravity part] was weighed, respectively, and total saccharification experiments were conducted according to Example 2. Two-stage sulfuric acid treatment was performed, and the total glucose rate, glycan saccharification rate, cellulose rate, cellulose saccharification rate, total xylan rate, and hemicellulose saccharification rate were calculated.

その結果を表17に示す。グリカン糖化率は高比重部粉砕物が高く、48.50%を示していた。   The results are shown in Table 17. The glycan saccharification rate was 48.50%, which was high in the high specific gravity pulverized product.

Figure 2010035431

Glc.:Glucose
総Glc.率、総キシラン率:2段階硫酸処理で測定(各試料の乾重あたり対する率)
:実施例4によって分離された稈部位のグリカン糖化率、セルロース糖化率及びヘミセルロース糖化率
Figure 2010035431

Glc .: Glucose
Total Glc. Rate 1 , total xylan rate 1 : measured by two-stage sulfuric acid treatment (rate per dry weight of each sample)
2 : Glycan saccharification rate, cellulose saccharification rate, and hemicellulose saccharification rate of the heel part separated according to Example 4

実施例11[夢あおばの各時期の試料に対する全体の成分データと手分けした稈及びその他(葉鞘・葉身)の成分データ]
稲わら[品種名:夢あおばを各時期(出穂期、乳熟期、糊熟期、黄熟期及び完熟期)に刈り取って、70℃で48時間以上乾燥したもの(水分含量10%以下)]を、長さ1 cm間隔で切断して実施例1に従って全体または稈部及びその他(葉鞘・葉身)に分けて、破砕・糖化・易分解性糖質の定量を実施例1に従い行った。
Example 11 [Composition data of cocoon and other (leaf sheath / leaf blade) separated from the whole component data for each sample of Yume Aoba]
Rice straw [Cultivar name: Dream Aoba harvested at each season (heading, milk ripening, paste ripening, yellow ripening and full ripening) and dried at 70 ° C for 48 hours or more (water content 10% or less)] The sample was cut at intervals of 1 cm in length and divided into whole or buttocks and other parts (leaf sheath / leaf blade) according to Example 1, and crushed / saccharified / degradable carbohydrates were quantified according to Example 1.

その結果を表18に示す。全体の稲わら中の易分解性糖質は出穂期から完熟期(収穫期)にかけてその含有率に変化が見られた。出穂期、乳熟期、糊熟期、黄熟期及び完熟期にかけて全含有率は、それぞれ15.73、18.61、10.25、7.18及び12.69%を示しており、実の成熟に伴いその率は下がるものの、収穫期には再び含有率が上がる傾向を示していた。また、その率の変化を一番左右するものは澱粉率であり、時期ごとに8.76、8.57、2.45、0.39及び4.25%を示していた。また、シュークロース率も澱粉率と同様な変化パタンを示し、時期ごとに2.36、4.57、2.89、1.05及び2.96%という経時的変化が見られた。いずれも、収穫期の完熟期にはその率が再び上がっていた。また、稈部の全易分解性糖質含有率は時期にかかわらず高い値を示しており、乳熟期以降は全易分解性糖質量の7割以上が稈部に集中して存在していた。   The results are shown in Table 18. The content of the readily degradable sugars in the whole rice straw changed from the heading to the full maturity (harvest). The total content of heading, milk ripening, paste ripening, yellow ripening and full ripening was 15.73, 18.61, 10.25, 7.18, and 12.69%, respectively. In the period, the content rate showed a tendency to increase again. The most important factor in the change in the rate was the starch rate, which showed 8.76, 8.57, 2.45, 0.39 and 4.25% for each period. Moreover, the sucrose rate showed the same change pattern as the starch rate, and changes with time of 2.36, 4.57, 2.89, 1.05, and 2.96% were observed for each period. In both cases, the rate increased again during the harvest period. In addition, the total easily degradable sugar content of the buttocks shows a high value regardless of the season, and more than 70% of the total easily degradable sugar mass is concentrated in the buttocks after the milk ripening period. It was.

Figure 2010035431

Glc.:Glucose、Fru.:Fructose、Suc.:Sucrose
全含有量:各試料30 g当たりの全易分解性糖質量(g)
量率:易分解性糖質量率(%)=[各試料中の全易分解性糖質量(g)/稈と葉鞘・葉身の全易分解性糖質量の合計(g)]×100
Figure 2010035431

Glc .: Glucose, Fru .: Fructose, Suc .: Sucrose
Total content 1 : Total easily degradable sugar mass (g) per 30 g of each sample
Quantity ratio 2 : Mass ratio of readily degradable sugar (%) = [total mass of easily degradable sugar in each sample (g) / total of all easily degradable sugar masses of cocoons, leaf sheaths and leaf blades (g)] × 100

実施例12[夢あおばの出穂期の試料に対する全体の硫酸2段階糖化データ及び酵素糖化(セルラーゼ・キシラナーゼ製剤など)データと、手分けした稈及びその他(葉鞘・葉身)の比較データ]
稲わらと各画分試料[品種名:夢あおば、出穂期、実施例11で粉砕を行ったものの全体、稈と葉鞘・葉身]50 mgをそれぞれ量りとり、実施例2に従い全糖化実験と2段階硫酸処理を行い、総グルコース率、グリカン糖化率、セルロース率、セルロース糖化率、総キシラン率及びヘミセルロース糖化率を計算した。
Example 12 [Comparison data of total sulfuric acid two-stage saccharification data and enzymatic saccharification (cellulase / xylanase preparation, etc.) data and hand-separated cocoon and other (leaf sheath / leaf blade) data for samples of heading stage of Yume Aoba]
Rice straw and each fraction sample [variety name: Yume Aoba, heading stage, whole pulverized in Example 11, cocoon and leaf sheath / leaf blade] were weighed 50 mg each, and total saccharification experiment was conducted according to Example 2. Two-stage sulfuric acid treatment was performed, and the total glucose rate, glycan saccharification rate, cellulose rate, cellulose saccharification rate, total xylan rate, and hemicellulose saccharification rate were calculated.

その結果を表19に示す。全体稲わらのグリカン糖化率は64.46%で、セルロース糖化率は51.01%で、ヘミセルロース糖化率は9.74%であった。稈部とその他(葉鞘・葉身)のグリカン糖化率、セルロース糖化率及びヘミセルロース糖化率は全て稈部が高く、74.55、42.90及び9.27%を示していた。   The results are shown in Table 19. The glycan saccharification rate of whole rice straw was 64.46%, the cellulose saccharification rate was 51.01%, and the hemicellulose saccharification rate was 9.74%. The glycan saccharification rate, cellulose saccharification rate, and hemicellulose saccharification rate of the buttocks and others (leaf sheath / leaf blade) were all high in the buttocks, showing 74.55, 42.90, and 9.27%.

Figure 2010035431

Glc.:Glucose
総Glc.率、総キシラン率:2段階硫酸処理で測定(各試料の乾重あたり対する率)
Figure 2010035431

Glc .: Glucose
Total Glc. Rate 1 , total xylan rate 1 : measured by two-stage sulfuric acid treatment (rate per dry weight of each sample)

実施例13[夢あおばの完熟期の試料に対する全体の硫酸2段階糖化データ及び酵素糖化(セルラーゼ・キシラナーゼ製剤など)データと、手分けした稈及びその他(葉鞘・葉身)の比較データ]
稲わらと各画分試料[品種名:夢あおば、完熟期、実施例11で粉砕を行ったものの全体、稈と葉鞘・葉身]50 mgをそれぞれ量りとり、実施例2に従い全糖化実験と2段階硫酸処理を行い、総グルコース率、グリカン糖化率、セルロース率、セルロース糖化率、総キシラン率及びヘミセルロース糖化率を計算した。
Example 13 [Comparison data of total sulfuric acid two-stage saccharification data and enzymatic saccharification (cellulase / xylanase preparation, etc.) data, and hand-separated cocoon and other (leaf sheath / leaf blade)]
Rice straw and each fraction sample [variety name: Yume Aoba, fully matured, whole pulverized in Example 11, cocoon and leaf sheath / leaf blade] were weighed 50 mg each, and total saccharification experiment was conducted according to Example 2. Two-stage sulfuric acid treatment was performed, and the total glucose rate, glycan saccharification rate, cellulose rate, cellulose saccharification rate, total xylan rate, and hemicellulose saccharification rate were calculated.

その結果を表20に示す。全体稲わらのグリカン糖化率は51.78%で、セルロース糖化率は38.41%で、ヘミセルロース糖化率は6.69%であった。稈部とその他(葉鞘・葉身)のグリカン糖化率、セルロース糖化率及びヘミセルロース糖化率は全て稈部が高く、63.55、47.47及び7.72%を示していた。   The results are shown in Table 20. The glycan saccharification rate of whole rice straw was 51.78%, the cellulose saccharification rate was 38.41%, and the hemicellulose saccharification rate was 6.69%. The glycan saccharification rate, cellulose saccharification rate, and hemicellulose saccharification rate of the buttocks and others (leaf sheath / leaf blade) were all high in the buttocks, showing 63.55, 47.47, and 7.72%.

Figure 2010035431

Glc.:Glucose
総Glc.率、総キシラン率:2段階硫酸処理で測定(各試料の乾重あたり対する率)
Figure 2010035431

Glc .: Glucose
Total Glc. Rate 1 , total xylan rate 1 : measured by two-stage sulfuric acid treatment (rate per dry weight of each sample)

実施例14 [並行複発酵による稲わらのエタノール発酵]
各試料[品種名:ミルキークィーン、実施例4で手分けした稈部と葉鞘・葉身部、実施例9で機械的分離した高比重部と低比重部]の並行複発酵は、実施例3の酵素系とSaccharomyces cerevisiae NBRC0224を用いて行った。
Example 14 [Ethanol fermentation of rice straw by parallel double fermentation]
The parallel multi-fermentation of each sample [variety name: milky queen, heel part and leaf sheath / leaf body part separated in Example 4 and high specific gravity part and low specific gravity part mechanically separated in Example 9] The enzyme system and Saccharomyces cerevisiae NBRC0224 were used.

すなわち、各試料[稈部と高比重部]を200 mg量り取り、10 ml容のバイアル瓶に入れたものを2本用意し、クエン酸ナトリウム緩衝液(50 mM、pH 4.8)を2 ml加え、高温高圧滅菌(121℃、15分)を行った。その後、そのうち1本にはフィルター濾過(0.2 μm)したセルラーゼ製剤(24 μl、 Celluclast 1.5 L、ノボザイムズ・ジャパン社)、ヘミセルラーゼ製剤(12 μl、 Viscozyme L、ノボザイムズ・ジャパン社)及びβ-グルコシダーゼ製剤(8 μl、 Novozyme188、シグマ社)を添加して、滅菌ゴム栓とアルミニウムキャップでシリングした。その後、30℃で酵素反応を48時間行った。反応後、サンプルを速やかに4℃に冷却し、遠心分離(15,000 g、3分)して上清一部分をサンプリングした。これを水で希釈した後、グルコースC−IIテストワコー(和光純薬工業株式会社)を用いてグルコース量を測定した。   That is, weigh out 200 mg of each sample [saddle part and high specific gravity part] and prepare two in 10 ml vials. Add 2 ml of sodium citrate buffer (50 mM, pH 4.8). Then, high-temperature and high-pressure sterilization (121 ° C., 15 minutes) was performed. After that, one of them was filtered (0.2 μm) cellulase preparation (24 μl, Celluclast 1.5 L, Novozymes Japan), hemicellulase preparation (12 μl, Viscozyme L, Novozymes Japan) and β-glucosidase preparation (8 μl, Novozyme188, Sigma) was added and shilled with a sterile rubber stopper and aluminum cap. Thereafter, the enzyme reaction was carried out at 30 ° C. for 48 hours. After the reaction, the sample was immediately cooled to 4 ° C., centrifuged (15,000 g, 3 minutes), and a part of the supernatant was sampled. After diluting this with water, the amount of glucose was measured using Glucose C-II Test Wako (Wako Pure Chemical Industries, Ltd.).

他1本は上記の酵素液を加えた後、酵母液(事前に30℃のYPD培地で16時間培養を行った培養液を、2回遠心(5,000 g、5分)・洗浄(生理食塩水)し、並行複発酵時の初発O.D.600nmが1になるように調整したもの)を0.1 ml加えて滅菌ゴム栓とアルミニウムキャップでシリングした。その後、30℃で並行複発酵を48時間行った。発酵後、サンプルを速やかに4℃に冷却し、遠心分離(15,000 g、3分)して上清一部分をサンプリングし、フィルター濾過(0.2 μm)した。これを水で希釈した後、島津製HPLC(LC-20AD、SIL-20AC、CTO-20AC、RID-10A)とAminex HPX-87Hカラム(300 mm×7.8 mm、Bio-RAD社)を用いてエタノール定量を行った。 For the other one, after adding the above enzyme solution, the yeast solution (the culture solution previously cultured in YPD medium at 30 ° C. for 16 hours was centrifuged twice (5,000 g, 5 minutes) and washed (saline) ) and was Schilling with sterile rubber stoppers and aluminum caps simultaneous saccharification that fermentation during the initial OD 600nm was adjusted to 1) was added 0.1 ml. Thereafter, parallel double fermentation was performed at 30 ° C. for 48 hours. After fermentation, the sample was quickly cooled to 4 ° C., centrifuged (15,000 g, 3 minutes), a portion of the supernatant was sampled, and filtered (0.2 μm). After diluting with water, Shimadzu HPLC (LC-20AD, SIL-20AC, CTO-20AC, RID-10A) and Aminex R HPX-87H column (300 mm x 7.8 mm, Bio-RAD) were used. Ethanol quantification was performed.

上記の酵素糖化後のグルコース量と実施例4及び9で求めたフラクトース率から得られる理論エタノール量(1分子のグルコースまたは1分子のフラクトースから、2分子のエタノールが生成される。)を100%として、並行複発酵で得られたエタノール発酵収率(%)を計算した。   100% of the theoretical amount of ethanol obtained from the amount of glucose after enzymatic saccharification and the fructose ratio determined in Examples 4 and 9 (two molecules of ethanol are produced from one molecule of glucose or one molecule of fructose). The ethanol fermentation yield (%) obtained by parallel double fermentation was calculated.

葉鞘・葉身部と低比重部は糖化率が低いので、これらの部位については、効率的な糖化反応とエタノール発酵を行うため、実施例3で行った稲わらのアルカリ処理を行った。すなわち、各試料[葉鞘・葉身部と低比重部]200 mgをそれぞれ量り取り、10 ml容のバイアル瓶に入れたものを2本用意し、NaOH 水溶液(50 mM)を1 ml加え、121℃で15分間、アルカリ処理を行った後、クエン酸ナトリウム緩衝液(200 mM、pH 4.8、NaN 0.01%)0.5 mlとHCl水溶液(100 mM)0.5 mlを入れた。そのうち1本は上記の酵素液のみを、他1本は酵素液と上記の酵母液を添加して、それぞれ酵素反応と並行複発酵を行った。その後、上記同様にグルコース定量とエタノール定量を行い、エタノール発酵収率を計算した。 Since the saccharification rate is low in the leaf sheath / leaf blade part and the low specific gravity part, the rice straw alkali treatment performed in Example 3 was performed on these parts in order to perform an efficient saccharification reaction and ethanol fermentation. That is, weighed 200 mg of each sample [leaf sheath / leaf blade part and low specific gravity part], prepared two in 10 ml vials, added 1 ml NaOH aqueous solution (50 mM), 121 After alkali treatment at 15 ° C. for 15 minutes, 0.5 ml of sodium citrate buffer (200 mM, pH 4.8, NaN 3 0.01%) and 0.5 ml of aqueous HCl (100 mM) were added. One of them was added with only the above enzyme solution, and the other was added with the enzyme solution and the above yeast solution to carry out an enzyme reaction and parallel double fermentation, respectively. Thereafter, glucose quantification and ethanol quantification were performed in the same manner as described above, and the ethanol fermentation yield was calculated.

その結果を表21に示す。いずれのサンプルにおいても、エタノールの発酵収率は75%を超えていた。各エタノール量は、実施例4、9で求められた易分解性糖質の量を超えており、セルロース由来のエタノール生産が確認された。特に、易分解性糖質を多く含む稈部と高比重部ではエタノール生産も高い結果が得られた。なお、糖化性の低い葉鞘・葉身部と低比重部においても、アルカリ処理後に高いエタノール発酵収率を得ることに成功した。   The results are shown in Table 21. In all samples, the fermentation yield of ethanol exceeded 75%. The amount of each ethanol exceeded the amount of easily degradable carbohydrates determined in Examples 4 and 9, and ethanol production from cellulose was confirmed. In particular, ethanol production was also high in the buttocks and high specific gravity areas containing a large amount of easily degradable carbohydrates. In addition, it succeeded in obtaining a high ethanol fermentation yield after alkali treatment also in the leaf sheath / leaf blade part and low specific gravity part with low saccharification.

Figure 2010035431
Figure 2010035431

本発明は、効率的な稲の糖化技術の開発に関するものであり、バイオエタノール製造技術の開発、バイオリファイナリー技術の開発に繋がることが期待される。特に、我が国で喫緊の課題となっている、国産バイオエタノール生産技術開発に新機軸を提供するものとして、極めて重要性が高い。また、アジアやアメリカ西部などを中心とする稲作地帯での稲茎葉利用技術の開発に繋がる。   The present invention relates to the development of efficient rice saccharification technology, and is expected to lead to the development of bioethanol production technology and biorefinery technology. In particular, it is extremely important as a new innovation for the development of domestic bioethanol production technology, which is an urgent issue in Japan. In addition, it will lead to the development of rice stalk and leaf utilization technology in rice growing areas mainly in Asia and the western United States.

稈と葉鞘・葉身の物理的破砕による破砕粒子サイズ分布を示すグラフである。●は葉鞘・葉身部、○は稈部の結果を示す。It is a graph which shows the crushing particle size distribution by the physical crushing of a cocoon, a leaf sheath, and a leaf blade. ● shows the results for the leaf sheath / leaf blade, and ○ shows the result for the buttocks.

Claims (10)

稲茎葉部を、重量比で全体の7割以上の断片が10cm以下の長さになるように裁断した後、その裁断物中の稈とそれ以外の茎葉部との結合を分断し、稈とそれ以外の茎葉部とを分離した後に、稈が濃縮された画分を酵素糖化することを特徴とする、稲の糖化法。   After cutting the rice shoots and leaves so that more than 70% of the whole fragments are 10cm in length by weight ratio, the bond between the buds in the cut and the other shoots and leaves is cut off, A method for saccharification of rice characterized by enzymatic saccharification of the fraction enriched with straw after separating the other leaves and stems. 「稈が濃縮された画分」を、粉砕処理及び/または80℃以上130℃以下の加熱処理を行った後、セルロース分解酵素、澱粉分解酵素、β-(1→3), (1→4)グルカン分解酵素及びヘミセルロース分解酵素からなる群より選ばれた少なくとも一種類の酵素を含む条件において酵素糖化することを特徴とする、請求項1に記載の稲の糖化法。   After crushing and / or heat treatment at 80 ° C. or higher and 130 ° C. or lower for “the fraction enriched with koji”, cellulose degrading enzyme, starch degrading enzyme, β- (1 → 3), (1 → 4 2. The method for saccharification of rice according to claim 1, wherein enzymatic saccharification is performed under conditions containing at least one enzyme selected from the group consisting of glucan-degrading enzymes and hemicellulose-degrading enzymes. 稈とそれ以外の茎葉部とを分離することにより得られた「稈が濃縮された画分」以外の画分を、粉砕処理を行った後、酸処理、アルカリ処理及び水熱処理からなる群より選ばれた少なくとも一種類の前処理を行い、酵素糖化することを特徴とする、請求項1または2に記載の稲の糖化法。   From the group consisting of acid treatment, alkali treatment and hydrothermal treatment after pulverizing the fraction other than the “fraction enriched with straw” obtained by separating the straw and other stems and leaves The method for saccharification of rice according to claim 1 or 2, wherein the saccharification is performed by performing at least one selected pretreatment. 稲茎葉部が、稲の地上部を刈り取り、籾を分離した後の植物体地上部またはその切断物であることを特徴とする、請求項1〜3のいずれかに記載の稲の糖化法。   The method for saccharification of rice according to any one of claims 1 to 3, wherein the rice shoots and leaves are the above-ground part of the plant body after cutting the above-ground part of the rice and separating the straw or a cut product thereof. 「稈が濃縮された画分」を、含水率を20%(w/w)以下に下げた状態で貯蔵した後に、酵素糖化することを特徴とする、請求項1〜4のいずれかに記載の稲の糖化法。   The enzymatic saccharification is carried out after storing the "fraction enriched with koji" in a state where the water content is lowered to 20% (w / w) or less. Saccharification method of rice. 稈とそれ以外の茎葉部との結合部を分断する方法が、磨砕による方法であることを特徴とする、請求項1〜5のいずれかに記載の稲の糖化法。   The method for saccharification of rice according to any one of claims 1 to 5, wherein the method of dividing the binding portion between the straw and the other stem and leaves is a method by grinding. 稈とそれ以外の茎葉部とを分離する方法が、稈とそれ以外の茎葉部の比重差により分離する方法であることを特徴とする、請求項1〜6のいずれかに記載の稲の糖化法。   The saccharification of rice according to any one of claims 1 to 6, wherein the method of separating the cocoon and the other shoots and leaves is a method of separating the cocoon and the other shoots and leaves by a specific gravity difference. Law. 稈とそれ以外の茎葉部とを分離する工程の前に、稈を加圧して潰すことにより稈の空隙サイズを低下させることを特徴とする、請求項1〜7のいずれかに記載の稲の糖化法。   The paddy rice according to any one of claims 1 to 7, wherein, before the step of separating the cocoon and the other stem and leaf part, the size of the cocoon gap is reduced by pressing and crushing the cocoon. Saccharification method. 稈とそれ以外の茎葉部とを分離する方法が、風に飛ばされる際の挙動差により両者を分離する方法であることを特徴とする、請求項1〜8のいずれかに記載の稲の糖化法。   The saccharification of rice according to any one of claims 1 to 8, characterized in that the method of separating the straw from the other stems and leaves is a method of separating both from the difference in behavior when blown by wind. Law. 請求項1〜9のいずれかに記載の稲の糖化法を用いることを特徴とする、エタノールの製造法。   A method for producing ethanol, characterized by using the rice saccharification method according to claim 1.
JP2008198418A 2008-07-31 2008-07-31 Rice saccharification method Expired - Fee Related JP5311548B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008198418A JP5311548B2 (en) 2008-07-31 2008-07-31 Rice saccharification method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008198418A JP5311548B2 (en) 2008-07-31 2008-07-31 Rice saccharification method

Publications (2)

Publication Number Publication Date
JP2010035431A true JP2010035431A (en) 2010-02-18
JP5311548B2 JP5311548B2 (en) 2013-10-09

Family

ID=42008623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008198418A Expired - Fee Related JP5311548B2 (en) 2008-07-31 2008-07-31 Rice saccharification method

Country Status (1)

Country Link
JP (1) JP5311548B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143915A (en) * 2012-01-13 2013-07-25 Hitachi Zosen Corp Method for producing ethanol using biomass

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242565A (en) * 2003-02-13 2004-09-02 National Agriculture & Bio-Oriented Research Organization Methods for producing fructose disaccharides and fructose disaccharide synthase
JP2009183264A (en) * 2008-01-11 2009-08-20 National Agriculture & Food Research Organization Saccharification method of rice straw
JP2009189291A (en) * 2008-02-14 2009-08-27 National Agriculture & Food Research Organization Saccharifying method for cellulose-containing biomass

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004242565A (en) * 2003-02-13 2004-09-02 National Agriculture & Bio-Oriented Research Organization Methods for producing fructose disaccharides and fructose disaccharide synthase
JP2009183264A (en) * 2008-01-11 2009-08-20 National Agriculture & Food Research Organization Saccharification method of rice straw
JP2009189291A (en) * 2008-02-14 2009-08-27 National Agriculture & Food Research Organization Saccharifying method for cellulose-containing biomass

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6013030087; PARK,J.Y. et al.: 'DiSC (direct saccharification of culms) process for bioethanol production from rice straw.' Bioresour. Technol. Vol.102, No.11, 201106, pp.6502-7 *
JPN6013030089; PARK,J.Y. et al.: 'Culm in rice straw as a new source for sugar recovery via enzymatic saccharification.' Biosci. Biotechnol. Biochem. Vol.74, No.1, 201001, pp.50-5 *
JPN6013030091; PARK,J.Y. et al.: 'Efficient recovery of glucose and fructose via enzymatic saccharification of rice straw with soft ca' Biosci. Biotechnol. Biochem. Vol.73, No.5, 200905, pp.1072-7 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013143915A (en) * 2012-01-13 2013-07-25 Hitachi Zosen Corp Method for producing ethanol using biomass

Also Published As

Publication number Publication date
JP5311548B2 (en) 2013-10-09

Similar Documents

Publication Publication Date Title
Whitfield et al. Processing of materials derived from sweet sorghum for biobased products
Bonechi et al. Biomass: an overview
CA2839073C (en) A corn stalk material, a method and apparatus for preparing it
Anderson et al. Assessment of bermudagrass and bunch grasses as feedstock for conversion to ethanol
CN103597085B (en) For the method converting lignocellulosic materials into useful products
Kim et al. Ethanol production using whole plant biomass of Jerusalem artichoke by Kluyveromyces marxianus CBS1555
CN101519671B (en) Technological method for transforming fuel alcohol in stages and cogenerating electricity and paper pulp with pennisetum hydridum
Peters Carbohydrates for fermentation
US20110003341A1 (en) Process for producing saccharide
KR20150028959A (en) Methods of hydrolyzing pretreated densified biomass particulates and systems related thereto
Bensah et al. Alkali and glycerol pretreatment of West African biomass for production of sugars and ethanol
Bensah et al. Ethanol production from hydrothermally-treated biomass from West Africa
Szijártó et al. Pretreatment of reed by wet oxidation and subsequent utilization of the pretreated fibers for ethanol production
JP5322151B2 (en) Saccharification method of rice straw
Hossain et al. The efficacy of the period of saccharification on oil palm (Elaeis guineensis) trunk sap hydrolysis
JP2010523142A (en) Bioethanol production method using beer fermentation by-product
CN101912151A (en) Technical implementation method for improving quality of tobacco stalk by applying steam explosion technology and enzyme treatment technology
Noh et al. Value-added products from pumpkin wastes: a review
Chavan et al. An assessment of sweet sorghum cultivars for ethanol production
EP2370589A2 (en) Methods of processing ensiled biomass
JP5311548B2 (en) Rice saccharification method
CN103789356A (en) Method for preparing ethanol and xylooligosaccharide feed additive
Casler et al. Grasses and legumes for cellulosic bioenergy
CN106900984A (en) A kind of piglet preparation method of nucleotides corn straw feedstuff high
Sriroth et al. The outlook of sugar and starch crops in biorefinery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130619

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5311548

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees