JP2010035292A - Inductive power receiving circuit - Google Patents

Inductive power receiving circuit Download PDF

Info

Publication number
JP2010035292A
JP2010035292A JP2008192934A JP2008192934A JP2010035292A JP 2010035292 A JP2010035292 A JP 2010035292A JP 2008192934 A JP2008192934 A JP 2008192934A JP 2008192934 A JP2008192934 A JP 2008192934A JP 2010035292 A JP2010035292 A JP 2010035292A
Authority
JP
Japan
Prior art keywords
voltage
core member
power receiving
saturable reactor
coil winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008192934A
Other languages
Japanese (ja)
Other versions
JP5250867B2 (en
Inventor
Shuzo Nishino
修三 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daifuku Co Ltd
Original Assignee
Daifuku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daifuku Co Ltd filed Critical Daifuku Co Ltd
Priority to JP2008192934A priority Critical patent/JP5250867B2/en
Publication of JP2010035292A publication Critical patent/JP2010035292A/en
Application granted granted Critical
Publication of JP5250867B2 publication Critical patent/JP5250867B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-cost inductive power receiving circuit, capable of using a small saturable reactor and efficiently charging an electric double-layer capacitor. <P>SOLUTION: The inductive power receiving circuit is equipped with: a power-receiving coil 32; a resonance capacitor 33, which forms a resonance circuit, resonating at the frequency of an inductive line 29 with the power- receiving coil 32; a saturable reactor 34, wherein a primary coil winding 43 having a core member for forming an annular magnetic path and wound around a core member so as to interlink the annular magnetic path is connected, in parallel with the power receiving coil 32 and one secondary coil winding 44 is provided penetrating through the through-hole at the center of the core member; and a rectifying circuit 35, which is connected to the secondary coil winding 44 of the saturable reactor 34, so as to supply a capacitor bank (electric double-layer capacitor) 38 with power. The saturated voltage of the core member of the saturable reactor 34 and the number of windings N of the primary coil winding 43 of the saturable reactor 34 are set, based on the rated voltage of and the maximum chargeable current of the capacitor bank 38. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、可飽和リアクトルあるいは複合リアクトルを用いた無接触給電設備の誘導受電回路に関するものである。   The present invention relates to an induction power receiving circuit of a contactless power supply facility using a saturable reactor or a composite reactor.

従来の可飽和リアクトルを用いた誘導受電回路の一例が特許文献1に開示されている。
特許文献1に開示されている誘導受電回路は、高周波電流を流す誘導線路に対向して前記誘導線路より起電力が誘起される受電コイルと、この受電コイルとともに前記誘導線路の周波数に共振する共振回路を形成する共振コンデンサと、環状磁路を形成するコア部材を有し、コイル巻線が前記環状磁路に鎖交するように巻かれて前記受電コイルと並列に接続され、前記コイル巻線に中間タップが付加された中間タップ付き円環型(ドーナツ形状)可飽和リアクトルと、可飽和リアクトルの中間タップに接続され負荷に給電する整流回路と、この整流回路および負荷に並列に接続された平滑コンデンサとを備えて構成されている。
An example of an induction power receiving circuit using a conventional saturable reactor is disclosed in Patent Document 1.
The induction power receiving circuit disclosed in Patent Document 1 is a power receiving coil in which an electromotive force is induced from the induction line facing an induction line through which a high-frequency current flows, and a resonance that resonates with the frequency of the induction line together with the power receiving coil. A resonance capacitor that forms a circuit; and a core member that forms an annular magnetic path, wherein the coil winding is wound so as to be linked to the annular magnetic path, and is connected in parallel with the power receiving coil. A ring-shaped (doughnut-shaped) saturable reactor with an intermediate tap added to the rectifier, a rectifier circuit connected to the intermediate tap of the saturable reactor and supplying power to the load, and connected in parallel to the rectifier circuit and the load And a smoothing capacitor.

このように誘導受電回路に中間タップ付き可飽和リアクトルを用いることにより、可飽和リアクトルの負荷電圧を上昇させることなく、任意に定格電力を設定することができ、また可飽和リアクトルの出力端電圧、すなわち負荷電圧を所望の値に設定することができる。
特開2005−102378号公報
Thus, by using a saturable reactor with an intermediate tap in the induction power receiving circuit, the rated power can be arbitrarily set without increasing the load voltage of the saturable reactor, and the output terminal voltage of the saturable reactor, That is, the load voltage can be set to a desired value.
JP 2005-102378 A

しかし、上記した従来の構成によると、可飽和リアクトルのコイル巻線に付加する中間タップのターン数で出力端電圧を調整するため、変圧比が大きいときは、コイル巻線のうち、整流回路に並列に接続される巻線(二次巻線)に流れる電流が大きくなり、この二次巻線に径が太い電線を使用する必要があり、実際に可飽和リアクトルの円環型(ドーナツ形状)のコア部材に巻く際に困難が生じる。したがって、コア部材を大きいものにする必要があり、その結果、コア部材が重くなり、設置スペースの確保が困難になるという問題があった。したがって、一次巻線と二次巻線の巻線比を大きくすることができなかった。   However, according to the conventional configuration described above, the output terminal voltage is adjusted by the number of turns of the intermediate tap added to the coil winding of the saturable reactor. The current that flows in the winding connected in parallel (secondary winding) becomes large, and it is necessary to use a wire with a large diameter for this secondary winding. Actually, the ring shape of the saturable reactor (doughnut shape) Difficulty occurs when it is wound around the core member. Therefore, it is necessary to make the core member large. As a result, there is a problem that the core member becomes heavy and it is difficult to secure an installation space. Therefore, the winding ratio between the primary winding and the secondary winding cannot be increased.

また負荷に、バッテリや電気二重層コンデンサを想定すると、使用電圧は、12〜24Vと低く、従来、無接触給電設備で使用するDC300V(AC220V)と電圧比で大きくかけ離れており、巻線比が20:1以上となる。このようなトランスは、大掛かりで高価なものとなっていた。   Also, assuming a battery or an electric double layer capacitor as a load, the operating voltage is as low as 12 to 24V, which is far from the DC300V (AC220V) used in the conventional contactless power supply equipment in terms of voltage ratio, and the winding ratio is 20: 1 or more. Such transformers are large and expensive.

そこで本発明は、小型のコア部材を用いた可飽和リアクトルを使用でき、バッテリや電気二重層コンデンサを効率よく充電できる安価な誘導受電回路を提供することを目的としたものである。   Accordingly, an object of the present invention is to provide an inexpensive induction power receiving circuit that can use a saturable reactor using a small core member and can efficiently charge a battery or an electric double layer capacitor.

前記した目的を達成するために、本発明の請求項1記載の誘導受電回路は、高周波電流を流す誘導線路に対向して前記誘導線路より起電力が誘起される受電コイルを設け、この受電コイルに誘導される起電力によりバッテリあるいは電気二重層コンデンサに充電する誘導受電回路であって、
前記受電コイルとともに前記誘導線路の周波数に共振する共振回路を形成する共振コンデンサと、環状磁路を形成する円環型のコア部材を有し、前記環状磁路に鎖交するようにコア部材に巻かれた一次側コイル巻線が前記受電コイルと並列に接続され、1本の二次側コイル巻線が前記コア部材の中心の貫通孔を貫通して設けられた可飽和リアクトルと、前記可飽和リアクトルの二次側コイル巻線に接続され、前記バッテリあるいは電気二重層コンデンサへ給電する整流回路とを備え、前記可飽和リアクトルのコア部材の飽和電圧と前記可飽和リアクトルの一次側コイル巻線の巻数を、前記バッテリあるいは電気二重層コンデンサの定格電圧と、前記バッテリあるいは電気二重層コンデンサの充電が可能な最大電流に基づいて設定したことを特徴としたものである。
In order to achieve the above object, an induction power receiving circuit according to claim 1 of the present invention is provided with a power receiving coil in which an electromotive force is induced from the induction line opposite to the induction line through which a high-frequency current flows. An induction power receiving circuit that charges a battery or an electric double layer capacitor by an electromotive force induced by
A resonance capacitor that forms a resonance circuit that resonates with the frequency of the induction line together with the power receiving coil, and an annular core member that forms an annular magnetic path, and the core member is linked to the annular magnetic path. A saturable reactor in which a wound primary side coil winding is connected in parallel with the power receiving coil, and one secondary side coil winding is provided through a central through hole of the core member; A rectifier circuit connected to the secondary coil winding of the saturated reactor and supplying power to the battery or the electric double layer capacitor, the saturation voltage of the core member of the saturable reactor and the primary coil winding of the saturable reactor The number of turns is set based on the rated voltage of the battery or electric double layer capacitor and the maximum current at which the battery or electric double layer capacitor can be charged. It is obtained by the.

バッテリあるいは電気二重層コンデンサの電圧が定格電圧に達すると、バッテリあるいは電気二重層コンデンサへは充電電流が流れなくなり、バッテリあるいは電気二重層コンデンサへ給電する上記共振回路の共振電圧が上昇し、共振暴走が発生することから、バッテリあるいは電気二重層コンデンサの電圧が定格電圧に達すると、可飽和リアクトルのインピーダンスを小さくして、すなわちコア部材を飽和して共振暴走を回避する必要がある。またバッテリあるいは電気二重層コンデンサには、充電が可能な充電電流がある。   When the voltage of the battery or electric double layer capacitor reaches the rated voltage, the charging current does not flow to the battery or electric double layer capacitor, the resonance voltage of the resonance circuit that supplies power to the battery or electric double layer capacitor rises, and resonance runaway occurs. Therefore, when the voltage of the battery or the electric double layer capacitor reaches the rated voltage, it is necessary to reduce the impedance of the saturable reactor, that is, to saturate the core member to avoid resonance runaway. The battery or the electric double layer capacitor has a charging current that can be charged.

上記構成によれば、バッテリあるいは電気二重層コンデンサの定格電圧により可飽和リアクトルのコア部材の飽和電圧が設定され、かつバッテリあるいは電気二重層コンデンサへの充電電流が、充電が可能な充電電流の範囲内で最大となるように、バッテリあるいは電気二重層コンデンサを充電する一次側コイル巻線の巻数Nが設定される。したがって、使用されるバッテリあるいは電気二重層コンデンサの特性を満たし、かつ共振暴走を回避できる可飽和リアクトルを求めることができ、このとき、二次側コイル巻線には、一次側コイル巻線の巻数N倍の電流が流れ、可飽和リアクトルの二次側電圧は、一次側電圧のN分の1となるので、低電圧で且つ大電流でバッテリあるいは電気二重層コンデンサを充電でき、効率よく充電することができる。   According to the above configuration, the saturation voltage of the core member of the saturable reactor is set by the rated voltage of the battery or the electric double layer capacitor, and the charging current to the battery or the electric double layer capacitor is within the range of the charging current that can be charged. The number N of turns of the primary side coil winding for charging the battery or the electric double layer capacitor is set so as to be maximum. Therefore, it is possible to obtain a saturable reactor that satisfies the characteristics of the battery or electric double layer capacitor to be used and can avoid resonance runaway. At this time, the secondary coil winding has the number of turns of the primary coil winding. N times the current flows, and the secondary side voltage of the saturable reactor is 1 / N of the primary side voltage. Therefore, the battery or the electric double layer capacitor can be charged with a low voltage and a large current, and charging is performed efficiently. be able to.

また二次側コイル巻線には一次側コイル巻線のN倍の電流が流れるために、二次側コイル巻線の線径を大きくする必要があるが、二次側コイル巻線はコア部材の貫通孔に貫通され、コア部材に巻く必要がないので、コア部材を小型化でき、よって可飽和リアクトルの設置スペースを小さくでき、安価な誘導受電回路を提供できる。   Moreover, since the current N times that of the primary side coil winding flows through the secondary side coil winding, it is necessary to increase the wire diameter of the secondary side coil winding. Since the core member can be downsized, the space for installing the saturable reactor can be reduced, and an inexpensive induction power receiving circuit can be provided.

また請求項2記載の誘導受電回路は、請求項1に記載の発明であって、前記バッテリあるいは電気二重層コンデンサに近接して前記可飽和リアクトルを配置したことを特徴としたものである。   An induction power receiving circuit according to a second aspect is the invention according to the first aspect, wherein the saturable reactor is disposed in the vicinity of the battery or the electric double layer capacitor.

可飽和リアクトルの二次側コイル巻線には、一次側コイル巻線のN倍の大きな電流が流れる。よって二次側コイル巻線および接続する電線の線径は大きくなるため、敷設には困難が伴う。   A current N times as large as that of the primary coil winding flows through the secondary coil winding of the saturable reactor. Therefore, since the secondary coil winding and the wire diameter of the electric wire to be connected are increased, it is difficult to lay the cable.

上記構成によれば、バッテリあるいは電気二重層コンデンサに近接して可飽和リアクトルを配置することにより、二次側コイル巻線および接続する電線の長さを短くでき、敷設を容易にできる。   According to the above configuration, by arranging the saturable reactor close to the battery or the electric double layer capacitor, the length of the secondary coil winding and the electric wire to be connected can be shortened, and the laying can be facilitated.

また請求項3記載の誘導受電回路は、請求項1または請求項2に記載の発明であって、前記誘導線路へ供給される高周波電流は、前記バッテリあるいは電気二重層コンデンサの電圧が、前記定格電圧に達すると遮断されることを特徴としたものである。   The induction power receiving circuit according to claim 3 is the invention according to claim 1 or claim 2, wherein the high frequency current supplied to the induction line is determined by the voltage of the battery or the electric double layer capacitor being the rating. It is characterized by being cut off when the voltage is reached.

上記構成によれば、バッテリあるいは電気二重層コンデンサの電圧が、定格電圧(フル充電電圧)に設定され、フル充電電圧に達すると、誘導線路へ供給される高周波電流は遮断され、充電が終了され、不要な電力の消費が抑えられる。また万一、遮断が遅れても、可飽和リアクトルは飽和電圧になり、大きな一次側電流が流れて一次側電圧は一定に維持され、共振暴走が回避される。   According to the above configuration, the voltage of the battery or the electric double layer capacitor is set to the rated voltage (full charge voltage), and when the full charge voltage is reached, the high-frequency current supplied to the induction line is cut off and charging is terminated. , Unnecessary power consumption can be reduced. Even if the interruption is delayed, the saturable reactor becomes a saturation voltage, a large primary current flows, the primary voltage is kept constant, and resonance runaway is avoided.

さらに請求項4記載の誘導受電回路は、請求項1〜請求項3のいずれかに記載の発明であって、前記可飽和リアクトルに代えて、磁気抵抗の小さい環状磁路を形成する第1コア部材と、前記第1コア部材より磁気抵抗の大きい環状磁路を形成する第2コア部材とを有し、一次側コイル巻線が両環状磁路に共通に鎖交するように巻かれる複合コアリアクトルを備えることを特徴としたものである。   Furthermore, the inductive power receiving circuit according to claim 4 is the invention according to any one of claims 1 to 3, wherein the first core forms an annular magnetic path having a small magnetic resistance instead of the saturable reactor. A composite core having a member and a second core member that forms an annular magnetic path having a larger magnetic resistance than the first core member, and is wound so that the primary coil winding is linked to both annular magnetic paths in common It is characterized by having a reactor.

上記構成によれば、第1コア部材は、第2コア部材より磁気抵抗が小さいことにより、第1コア部材が磁気飽和していない領域においては、一次側コイル巻線に流れる電流による磁界(磁化力)はもっぱら第1コア部材に磁束を生じさせ、この状態ではリアクトルは大きなインダクタンス値を示す。そして、第1コア部材の磁束が飽和すると、第1コア部材の磁気飽和を起源とするインダクタンスはほぼゼロになるが、急激に増加を始めたコイル電流による磁化力が磁気抵抗が大きな第2コア部材に磁束を生じさせることから複合コアリアクトルとしてのインダクタンスはある程度の値を維持することになる。このため、第1コア部材が磁気飽和してもパルス状に急増しようとする電流は抑制され、複合コアリアクトルに流れるパルス電流の波高値は小さくなる。よってパルス電流はそれほど急峻で過大とはならず、穏やかに電圧抑制の作用が働く。   According to the above configuration, the first core member has a magnetic resistance smaller than that of the second core member. Therefore, in the region where the first core member is not magnetically saturated, a magnetic field (magnetization) due to the current flowing in the primary coil winding is obtained. Force) exclusively generates a magnetic flux in the first core member, and in this state, the reactor exhibits a large inductance value. When the magnetic flux of the first core member is saturated, the inductance originating from the magnetic saturation of the first core member becomes almost zero, but the second core having a large magnetic resistance due to the magnetizing force due to the coil current that has started to increase rapidly. Since the magnetic flux is generated in the member, the inductance as the composite core reactor maintains a certain value. For this reason, even if the first core member is magnetically saturated, the current that rapidly increases in a pulse shape is suppressed, and the peak value of the pulse current flowing through the composite core reactor becomes small. Therefore, the pulse current is not so steep and excessive, and the action of voltage suppression works gently.

本発明の誘導受電回路は、バッテリあるいは電気二重層コンデンサの特性が設定されると、この特性を満たし、かつ共振暴走を回避できる可飽和リアクトルを設定することができ、このとき、二次側コイル巻線には、一次側コイル巻線の巻数N倍の電流が流れ、可飽和リアクトルの二次側電圧は、一次側電圧のN分の1となるので、低電圧で且つ大電流でバッテリあるいは電気二重層コンデンサを効率よく充電でき、また二次側コイル巻線は線径を大きくする必要があるが、二次側コイル巻線はコア部材の貫通孔に貫通され、コア部材に巻く必要がないので、コア部材を小型化でき、可飽和リアクトルの設置スペースを小さくでき、安価な誘導受電回路を提供できる、という顕著な効果を有している。   When the characteristics of the battery or the electric double layer capacitor are set, the inductive power receiving circuit of the present invention can set a saturable reactor that satisfies this characteristic and can avoid resonance runaway. At this time, the secondary coil A current N times the number of turns of the primary side coil winding flows through the winding, and the secondary side voltage of the saturable reactor is 1 / Nth of the primary side voltage. The electric double layer capacitor can be charged efficiently and the secondary side coil winding needs to have a large wire diameter, but the secondary side coil winding needs to be passed through the core member through-hole and wound around the core member. Therefore, the core member can be downsized, the installation space for the saturable reactor can be reduced, and an inexpensive induction power receiving circuit can be provided.

以下に、本発明の実施の形態における誘導受電回路について、図面を参照しながら説明する。
図1は、本発明の実施の形態における誘導受電回路を搬送台車に備えた物品搬送設備の走行経路図、図2は物品搬送設備の同要部構成図である。
Hereinafter, an induction power receiving circuit according to an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a travel route diagram of an article conveying facility provided with an induction power receiving circuit in a conveying cart according to an embodiment of the present invention, and FIG.

図1および図2において、11はフロア12に設置された一対の走行レールであり、13はこの走行レール11に案内されて自走し、物品Rを搬送する4輪の搬送台車(移動体の一例)である。なお、搬送台車13の総台数を5台としている。   1 and 2, reference numeral 11 denotes a pair of traveling rails installed on the floor 12, and 13 is a four-wheel transportation carriage (moving body of the moving body) that is guided by the traveling rails 11 and travels by itself to convey the article R. An example). Note that the total number of transport carts 13 is five.

前記走行レール11により、ループ状(環状)に形成される搬送経路(移動経路の一例)14が構成され、この搬送経路14に沿って複数(図では9台)のステーション(物品受け手段)15が配置されており、搬送台車13は、搬送経路14に沿って走行し、搬送経路14に沿って配置されたステーション15間に渡って物品Rを搬送する搬送車を構成している。   The travel rail 11 constitutes a conveyance path (an example of a movement path) 14 formed in a loop shape (annular), and a plurality of (9 in the figure) stations (article receiving means) 15 along the conveyance path 14. The transport carriage 13 constitutes a transport vehicle that travels along the transport path 14 and transports the article R across the stations 15 disposed along the transport path 14.

また各ステーション15にはそれぞれ、各搬送台車13との間で物品Rの移載、すなわち搬入、搬出を行う移載用コンベヤ装置(たとえば、ローラコンベヤやチェンコンベヤ)16が設けられている。   In addition, each station 15 is provided with a transfer conveyor device (for example, a roller conveyor or a chain conveyor) 16 that transfers, that is, loads and unloads an article R to and from each transfer carriage 13.

前記搬送台車13は、図2に示すように、車体21と、この車体21上に設置され、物品Rを移載し載置する移載・載置用コンベヤ装置(たとえば、ローラコンベヤやチェンコンベヤ)22と、車体21の下部に取付けられ、車体21を一方の走行レール11に対して支持する2台の旋回式従動車輪装置23と、車体21の下部に取付けられ、車体21を他方の走行レール11に対して支持するとともに走行レール11の曲がり形状に追従可能でかつ旋回式従動車輪装置23に対して遠近移動自在(スライド自在)とした2台の旋回・スライド式駆動車輪装置24と、これら旋回・スライド式駆動車輪装置24のうちの一方に連結された走行用モータ(消費電力が変動する負荷の一例)25と、ステーション15と間の信号授受に使用される光伝送装置26Aを備えている。前記走行用モータ25の駆動により搬送台車13は走行される。   As shown in FIG. 2, the transport carriage 13 is installed on a vehicle body 21 and a transfer / loading conveyor device (for example, a roller conveyor or a chain conveyor) that is installed on the vehicle body 21 and transfers and loads an article R. ) 22, attached to the lower part of the vehicle body 21, two swivel driven wheel devices 23 that support the vehicle body 21 with respect to one traveling rail 11, and attached to the lower part of the vehicle body 21, Two swiveling / sliding driving wheel devices 24 that support the rail 11 and can follow the curved shape of the traveling rail 11 and can move to and away from the swiveling driven wheel device 23 (slidable); Used for exchanging signals between a traveling motor (an example of a load whose power consumption varies) 25 connected to one of these turning / sliding drive wheel devices 24 and a station 15. And a transmission unit 26A. The carriage 13 is driven by the driving motor 25.

また各ステーション15毎にそれぞれ、搬送台車13の光伝送装置26Aとの間で信号の授受を行う光伝送装置26Bと、搬送台車13がステーション15に停止していることを検出する台車検出センサ27と、所定周波数(たとえば10kHz)の高周波電流(交流電流)を供給する電源装置28が設けられ、この電源装置28より高周波電流が供給される一対の誘導線路29がステーション15より伸び、走行レール11の外方側面に走行方向に沿って上下に布設されている(配置されている)。   Further, for each station 15, an optical transmission device 26 </ b> B that transmits and receives signals to and from the optical transmission device 26 </ b> A of the transport carriage 13, and a cart detection sensor 27 that detects that the transport carriage 13 is stopped at the station 15. And a power supply device 28 for supplying a high-frequency current (alternating current) having a predetermined frequency (for example, 10 kHz), a pair of induction lines 29 to which a high-frequency current is supplied from the power supply device 28 extend from the station 15, and the traveling rail 11 Are arranged (arranged) vertically on the outer side surface along the traveling direction.

前記電源装置28は、台車検出センサ27によりステーション15前に搬送台車13が停止していることが検出され、かつ光伝送装置26Bより搬送台車13から充電指令信号(後述する)を入力しているとき、高周波電流を誘導線路29へ供給する。   The power supply device 28 detects that the carriage 13 is stopped before the station 15 by the carriage detection sensor 27, and inputs a charge command signal (described later) from the carriage 13 from the optical transmission device 26B. At this time, a high frequency current is supplied to the induction line 29.

また各搬送台車13にはそれぞれ、一方の旋回式従動車輪装置23の外方に、この誘導線路29により起電力が誘起され、走行用モータ25へ給電するためのピックアップユニット30が設置され、誘導受電回路31が設置されている。   In addition, a pick-up unit 30 for inducing an electromotive force by the induction line 29 and supplying power to the traveling motor 25 is installed on each transport carriage 13 outside the one of the swivel driven wheel devices 23, thereby A power receiving circuit 31 is installed.

前記ピックアップユニット30は、断面がE字状のフェライトの中央凸部にリッツ線を巻いて、10KHzほどの一定周波数の交番磁界中に置かれて誘導起電力を発生する受電コイル32(図3)を形成しており、両凹部の中心に誘導線路29が位置するように調整し、固定されている。   The pickup unit 30 is a power receiving coil 32 that generates an induced electromotive force when a litz wire is wound around a central convex portion of a ferrite having an E-shaped cross section and placed in an alternating magnetic field having a constant frequency of about 10 KHz (FIG. 3). The guide line 29 is adjusted and fixed so that the guide line 29 is positioned at the center of both concave portions.

図3に示すように、誘導受電回路31は、前記受電コイル32と、受電コイル32に並列に接続され受電コイル32とともに誘導線路29の周波数に共振する共振回路を形成するた共振コンデンサ33と、この共振コンデンサ33に接続される可飽和リアクトル34と、可飽和リアクトル34に接続される整流回路35と、整流回路35のプラス側出力端に一端が接続されたDCチョーク36から構成され、DCチョーク36の他端と整流回路35のマイナス側出力端間に、直列接続されたM個(Mは2以上の整数)の電気2重層キャパシタ37からなるキャパシタバンク38が接続されている。   As shown in FIG. 3, the induction receiving circuit 31 includes the receiving coil 32 and a resonance capacitor 33 that is connected in parallel to the receiving coil 32 and forms a resonance circuit that resonates with the receiving coil 32 at the frequency of the induction line 29. A saturable reactor 34 connected to the resonance capacitor 33, a rectifier circuit 35 connected to the saturable reactor 34, and a DC choke 36 having one end connected to the positive output terminal of the rectifier circuit 35, are provided. Connected between the other end of 36 and the negative output end of the rectifier circuit 35 is a capacitor bank 38 composed of M electric double layer capacitors 37 (M is an integer of 2 or more) connected in series.

このキャパシタバンク38に、キャパシタバンク38から直流の電力が給電される負荷として、走行用モータ25を駆動するインバータ39が接続されている。
前記可飽和リアクトル34は、軟磁性材料の飽和特性を利用したもので、印加される交流電圧がある電圧を超えると急激に流入電流が増加することで印加電圧を増加させない、交流電圧を一定値以下に抑制する働きがある。可飽和リアクトル34は誘導受電回路31において、印加される共振電圧によって電流が流入し、この流入電流が作る磁束がコア内で飽和して、リアクトルの逆起電力が失われることで、ある交流サイクルの時間ポイントで急に流入電流が増え、誘導受電回路31における共振エネルギーのそれ以上の蓄積を抑制することで、共振電圧自体の上昇を抑制するという特性を持っている。
An inverter 39 that drives the traveling motor 25 is connected to the capacitor bank 38 as a load to which DC power is supplied from the capacitor bank 38.
The saturable reactor 34 utilizes the saturation characteristic of a soft magnetic material. When the applied AC voltage exceeds a certain voltage, the inflow current increases rapidly, and the applied voltage is not increased. There is a function to suppress below. In the inductive power receiving circuit 31, a current flows into the saturable reactor 34 due to the applied resonant voltage, and the magnetic flux generated by the inflow current is saturated in the core, and the counter electromotive force of the reactor is lost, thereby causing an AC cycle. The inflow current suddenly increases at this time point, and by suppressing further accumulation of resonance energy in the induction power receiving circuit 31, it has a characteristic of suppressing an increase in the resonance voltage itself.

可飽和リアクトル34の構成を図5に示す。
図示するように、中央に貫通孔(空洞)41を設けた、環状磁路を形成する円環型(ドーナツ形状)のコア部材42を有し、入力端子43Aを両端に有する一次側コイル巻線43が前記環状磁路に鎖交するように巻かれ(コイル巻数N;Nは2以上の数)、各入力端子43Aがそれぞれ共振コンデンサ33の両端に接続されている。またコア部材42の貫通孔41を貫通して、出力端子44Aを両端に有する1本の二次側コイル巻線44が設けられ、二次側コイル巻線44の各出力端子44Aがそれぞれ整流回路35の入力端に接続されている。前記コア部材42は、アモルファス合金軟磁性材料やナノ結晶軟磁性材料{高透磁率で高効率材料、すなわち最大磁束密度が大きく、かつコアロスの少ない(B−H特性においてヒステリシスループが囲む面積が小さい)材料}の帯体をロール状に密に巻き、そして巻いて形成した両側のコアの厚みを加えた寸法と、コア中央部の貫通孔(空洞)41の径をほぼ同一として形成されている。
The configuration of the saturable reactor 34 is shown in FIG.
As shown in the figure, a primary side coil winding having an annular (doughnut-shaped) core member 42 having a through-hole (cavity) 41 at the center and forming an annular magnetic path and having input terminals 43A at both ends. 43 is wound so as to interlink with the annular magnetic path (coil winding number N; N is a number of 2 or more), and each input terminal 43A is connected to both ends of the resonance capacitor 33, respectively. One secondary coil winding 44 having an output terminal 44A at both ends is provided through the through hole 41 of the core member 42, and each output terminal 44A of the secondary coil winding 44 is a rectifier circuit. 35 is connected to the input terminal. The core member 42 is an amorphous alloy soft magnetic material or a nanocrystalline soft magnetic material {high permeability and high efficiency material, that is, maximum magnetic flux density is large, and core loss is small (BH characteristics have a small area surrounded by a hysteresis loop). ) Material} band is densely wound in the form of a roll, and the dimensions obtained by adding the thicknesses of the cores on both sides are formed so that the diameter of the through hole (cavity) 41 in the center of the core is substantially the same. .

またコア部材42に発生する熱を放熱するために、たとえばアルミニウムや銅などの熱伝導率の高い低透磁率材料、あるいはたとえばSUS304などの低透磁率材料からなる放熱板45が設けられている。またこの放熱板45は、ブラケットを兼ねてL字形に折り曲げられており、その主面はコア部材42の外径より大きく、コア部材42の貫通孔41とほぼ同径の孔46が空けられている。また柔軟な絶縁材料からなり、コア部材42の貫通孔41および放熱板45の孔46の径にほぼ一致する径の円筒状の中空芯材47(たとえば、紙やプラスチックからなる筒状の芯材)を備え、この芯材47を位置決め部材として、この芯材47にコア部材42、放熱板45の順にその貫通孔41,孔46を通し(揃え)、続けてこれらコア部材42と放熱板45を接合し、さらに揃えた孔41,46を使用して、通常の絶縁電線(撚り線)からなる一次側コイル巻線43がコア部材42の環状磁路に鎖交するように巻かれている。   In order to dissipate the heat generated in the core member 42, a heat radiating plate 45 made of a low magnetic permeability material having a high thermal conductivity such as aluminum or copper or a low magnetic permeability material such as SUS304 is provided. The heat radiating plate 45 is also bent in an L shape so as to serve as a bracket. The main surface of the heat radiating plate 45 is larger than the outer diameter of the core member 42, and a hole 46 having substantially the same diameter as the through hole 41 of the core member 42 is formed. Yes. Also, a cylindrical hollow core material 47 (for example, a cylindrical core material made of paper or plastic), which is made of a flexible insulating material and has a diameter substantially equal to the diameter of the through hole 41 of the core member 42 and the diameter of the hole 46 of the heat radiating plate 45. ), The core member 47 is used as a positioning member, and the core member 47 is passed (aligned) through the through hole 41 and the hole 46 in the order of the core member 42 and the heat radiating plate 45, and then the core member 42 and the heat radiating plate 45. The primary side coil winding 43 made of a normal insulated wire (stranded wire) is wound so as to be linked to the annular magnetic path of the core member 42 using the holes 41 and 46 that are further aligned. .

上記構成により、可飽和リアクトル34の出力端電圧(出力電圧)Vは入力端電圧(入力電圧)Vよりも低い電圧に変圧する。上記出力端電圧(出力電圧)Vは式(1)により求められる。また可飽和リアクトル34の出力端電流(出力電流)Iは入力端電流(入力電流)Iより増幅され、出力電流Iは式(2)により求められる。 With the above configuration, the output terminal voltage (output voltage) V 2 of the saturable reactor 34 is transformed to a voltage lower than the input terminal voltage (input voltage) V 1 . The output voltage (output voltage) V 2 is obtained by Equation (1). Further, the output terminal current (output current) I 2 of the saturable reactor 34 is amplified by the input terminal current (input current) I 1 , and the output current I 2 is obtained by the equation (2).

=V/N ・・・(1)
=I×N ・・・(2)
このように、二次側コイル巻線44には、一次側コイル巻線43のN倍の電流が流れるために、二次側コイル巻線44の線径を、一次側コイル巻線43の線径より大きくする必要が生じる。なお、この出力電圧Vは、整流回路35を介してキャパシタバンク38の充電電圧VDCとなり、出力電流Iはキャパシタバンク38の充電電流となる。
[可飽和リアクトル34の一次側コイル巻線43の巻数Nと飽和電圧の設定]
図3の回路を原理的に説明する。この原理を示す図4において、受電コイル32のリアクタンスLoと共振コンデンサ33の静電容量Cを誘導線路29の周波数に共振するように設定し、かつ誘導線路電流Iを一定とした場合、抵抗負荷Rへ流れ出る電流IACは、抵抗負荷Rの値にかかわらず一定の値となる。また誘導線路電流Ioから、給電できる定格電力Woは定まっており、例えば600Wである。
V 2 = V 1 / N (1)
I 2 = I 1 × N (2)
Thus, since the current N times that of the primary side coil winding 43 flows through the secondary side coil winding 44, the wire diameter of the secondary side coil winding 44 is set to the wire of the primary side coil winding 43. It needs to be larger than the diameter. The output voltage V 2 becomes the charging voltage V DC of the capacitor bank 38 via the rectifier circuit 35, and the output current I 2 becomes the charging current of the capacitor bank 38.
[Setting of the number of turns N and saturation voltage of the primary coil winding 43 of the saturable reactor 34]
The circuit of FIG. 3 will be described in principle. In FIG. 4 showing this principle, when the reactance Lo of the receiving coil 32 and the capacitance C 0 of the resonant capacitor 33 are set to resonate with the frequency of the induction line 29 and the induction line current I 0 is constant, current I AC flowing to the resistive load R is a constant value irrespective of the value of the resistive load R. Further, the rated power Wo that can be supplied is determined from the induction line current Io, for example, 600 W.

したがって、入力電流Iは、共振回路の電気特性により一定であり、定格電力Woをこの入力電流Iで除算することにより、最大の入力電圧Vmaxが求められる。またキャパシタバンク38の電圧が定格電圧、すなわちフル充電時の電圧(フル充電電圧)Vfとなったとき、キャパシタバンク38へ充電電流が流れず、抵抗負荷Rが無限大と見なされ共振回路の共振電圧Vが上昇する共振暴走を回避するために、可飽和リアクトル34の飽和電圧を設定する。すなわち、
出力電圧(実効値)V=フル充電電圧Vf
とする。このとき、
N×Vf=V≦Vmax
を満たす必要がある。
Therefore, the input current I 1 is constant depending on the electrical characteristics of the resonance circuit, and the maximum input voltage Vmax is obtained by dividing the rated power Wo by the input current I 1 . Further, when the voltage of the capacitor bank 38 becomes the rated voltage, that is, the voltage at full charge (full charge voltage) Vf, the charging current does not flow to the capacitor bank 38, the resistance load R is regarded as infinite, and the resonance of the resonance circuit to avoid resonance runaway the voltages V 1 increases and sets the saturation voltage of the saturable reactor 34. That is,
Output voltage (effective value) V 2 = full charge voltage Vf
And At this time,
N × Vf = V 1 ≦ Vmax
It is necessary to satisfy.

またキャパシタバンク38には、充電が可能な最大の充電電流Imaxがあるので、
(一定値)×N≦Imax
を満たす必要がある。
Since the capacitor bank 38 has a maximum charging current Imax that can be charged,
I 1 (constant value) × N ≦ Imax
It is necessary to satisfy.

また一次側巻線43の巻数Nが多い程、出力電流(二次側電流)Iは大きくなり、効率よく充電を行うことができることから、Imaxを満たす範囲で最大の巻数Nを求める。 The higher the number of turns N of the primary winding 43 is large, the output current (secondary current) I 2 becomes larger, since it can be carried out efficiently charge, the maximum number of turns N in the range satisfying Imax.

今、フル充電電圧Vf、すなわちキャパシタバンク38の定格電圧を12V、最大充電電流Imaxを50A、入力電流Iを2A、最大の入力電圧Vmaxを300Vとすると、最大の一次側巻線43の巻数Nは25が求められる。このとき、可飽和リアクトル34の飽和電圧Vは300V、キャパシタバンク38に流れる充電電流Iは、50Aとなる。 Now, assuming that the full charge voltage Vf, that is, the rated voltage of the capacitor bank 38 is 12 V, the maximum charge current Imax is 50 A, the input current I 1 is 2 A, and the maximum input voltage Vmax is 300 V, the maximum number of turns of the primary winding 43. N is required to be 25. At this time, the saturation voltage V 1 of the saturable reactor 34 is 300 V, and the charging current I 2 flowing through the capacitor bank 38 is 50 A.

このように、可飽和リアクトル34の飽和電圧とコイル巻数Nは、
・誘導線路29より給電できる定格電力Wo、
・共振回路の電気特性による一定の入力電流I
・キャパシタバンク38のフル充電電圧(定格電圧)Vf、
・キャパシタバンク38の充電が可能な最大の充電電流Imax
によって設定(調整)される。
Thus, the saturation voltage of the saturable reactor 34 and the number of coil turns N are
-Rated power Wo that can be fed from the induction line 29,
A constant input current I 1 due to the electrical characteristics of the resonant circuit,
-Full charge voltage (rated voltage) Vf of the capacitor bank 38,
The maximum charging current Imax that can charge the capacitor bank 38
Is set (adjusted).

また可飽和リアクトル34の二次側コイル巻線44には、一次側コイル巻線43のN倍の大きな電流が流れることによって、二次側コイル巻線44および接続する電線の線径は大きくなるため、キャパシタバンク38に近接して可飽和リアクトル34を配置して電線の長さを短くしている。   Further, a current N times as large as that of the primary coil winding 43 flows in the secondary coil winding 44 of the saturable reactor 34, so that the wire diameter of the secondary coil winding 44 and the electric wire to be connected increases. Therefore, the saturable reactor 34 is arranged close to the capacitor bank 38 to shorten the length of the electric wire.

また図3に示すように、インバータ39を制御して走行用モータ25を駆動し、搬送台車13の走行を制御する制御装置40が設けられ、この制御装置40は、インバータ39を駆動できるかどうかを判断するために、キャパシタバンク38の両端電圧を監視している。また制御装置40は、整流回路35からDCチョーク36を介して、あるいはキャパシタバンク38より給電されている。また制御装置40は、監視しているキャパシタバンク38の両端電圧の状態により、ステーション15の電源装置28に対して、上記充電指令信号(充電するのか、しないかの信号)を、光伝送装置26A,26Bを介して出力している。すなわち、キャパシタバンク38の両端電圧がフル充電電圧Vf以上となると、充電指令信号をオフ(充電不要)とし、フル充電電圧Vfより下がると充電指令信号をオン(充電必要)としている。上述したように、電源装置28は、台車検出センサ27によりステーション15前に搬送台車13が停止していることが検出され、かつ光伝送装置26Bを介して搬送台車13より出力される充電指令信号がオンのとき、高周波電流を誘導線路29へ給電し、また充電指令信号がオフとなると給電を停止し、不要な電力の消費を防止している。   Further, as shown in FIG. 3, a control device 40 for controlling the inverter 39 to drive the traveling motor 25 and controlling the traveling of the transport carriage 13 is provided. Whether the control device 40 can drive the inverter 39 or not. Therefore, the voltage across the capacitor bank 38 is monitored. The control device 40 is supplied with power from the rectifier circuit 35 via the DC choke 36 or from the capacitor bank 38. Further, the control device 40 sends the charge command signal (whether to charge or not) to the power supply device 28 of the station 15 according to the state of the voltage across the capacitor bank 38 being monitored. , 26B. That is, when the voltage across the capacitor bank 38 becomes equal to or higher than the full charge voltage Vf, the charge command signal is turned off (no charge is required), and when the voltage falls below the full charge voltage Vf, the charge command signal is turned on (charge is required). As described above, the power supply device 28 detects that the conveyance carriage 13 is stopped before the station 15 by the carriage detection sensor 27, and is output from the conveyance carriage 13 via the optical transmission device 26B. When is turned on, a high frequency current is fed to the induction line 29, and when the charging command signal is turned off, the feeding is stopped to prevent unnecessary power consumption.

また上記DCチョーク34は、流れる電流が少ないときインダクタンスは大きくなり、流れる電流が大きいときインダクタンスは小さくなるという特性を持っている。よって、充電時に、キャパシタバンク38の電圧が低く、充電電流が大きいとき、インダクタンスは小さいために、充電電流が消費されることなく、キャパシタバンク38が効率よく充電され、続いてキャパシタバンク38の電圧が上昇し、キャパシタバンク38のフル充電電圧Vfに近づき充電電流が少なくなると、DCチョーク34のインダクタンスは大きくなり、電圧降下(DCチョーク34の両端の電圧差)が大きくなる。   The DC choke 34 has a characteristic that the inductance increases when the flowing current is small, and the inductance decreases when the flowing current is large. Therefore, when charging, when the voltage of the capacitor bank 38 is low and the charging current is large, the inductance is small, so that the capacitor bank 38 is efficiently charged without consuming the charging current, and then the voltage of the capacitor bank 38 is charged. Rises and approaches the full charge voltage Vf of the capacitor bank 38, and the charging current decreases, the inductance of the DC choke 34 increases and the voltage drop (voltage difference across the DC choke 34) increases.

以下、上記実施の形態における作用を説明する。
搬送台車13の制御装置40は、キャパシタバンク38に蓄電された電力を使用してインバータ39を制御して走行用モータ25を駆動して、搬送台車13を走行させてステーション15間を移動させる。到着すると(詳細な制御方法については説明を省略する)、キャパシタバンク38の両端電圧がフル充電電圧Vf以上か未満かどうかを確認し、未満のとき、充電指令信号(オン信号)を光伝送装置26A,26Bを介してステーション15へ出力する。
Hereinafter, the operation in the above embodiment will be described.
The control device 40 of the transport carriage 13 uses the electric power stored in the capacitor bank 38 to control the inverter 39 to drive the travel motor 25 to cause the transport carriage 13 to travel and move between the stations 15. When it arrives (detailed control method is omitted), it is checked whether the voltage across the capacitor bank 38 is equal to or higher than the full charge voltage Vf, and when it is lower, a charge command signal (ON signal) is sent to the optical transmission device. The data is output to the station 15 via 26A and 26B.

各ステーション15では、搬送台車13がステーション15に対向して停止し、台車検出センサ27がオンすると、電源装置28は、光伝送装置26Bを介して入力する搬送台車13からの充電指令信号がオンかどうかを確認する。充電指令信号がオンのとき、電源装置28は、高周波電流を誘導線路29へ供給する。   In each station 15, when the carriage 13 stops facing the station 15 and the carriage detection sensor 27 is turned on, the power supply device 28 turns on the charge command signal from the carriage 13 that is input via the optical transmission device 26 </ b> B. Check whether or not. When the charge command signal is on, the power supply device 28 supplies a high-frequency current to the induction line 29.

これにより、誘導線路29に発生する磁束により、受電コイル32に誘導起電力が発生し、この受電コイル32と共振コンデンサ33とから形成される共振回路より一定電流(入力電流I)が可飽和リアクトル34へ給電され、キャパシタバンク38に充電される。 As a result, an induced electromotive force is generated in the receiving coil 32 by the magnetic flux generated in the induction line 29, and a constant current (input current I 1 ) is saturable from the resonance circuit formed by the receiving coil 32 and the resonance capacitor 33. Power is supplied to the reactor 34 and the capacitor bank 38 is charged.

キャパシタバンク38に充電している初期の状態では、キャパシタバンク38の電圧(出力電圧V)は、なかなか上昇せず、よってN倍の入力電圧Vは飽和電圧より低い状態にある。このように可飽和リアクトル34が飽和していない領域においては、可飽和リアクトル34は変圧器として作動し、一定の入力電流IのN倍の大きな充電電流Iがキャパシタバンク38へ流れ、充電される。 In the initial state in which the capacitor bank 38 is charged, the voltage (output voltage V 2 ) of the capacitor bank 38 does not increase easily, and thus the N-fold input voltage V 1 is lower than the saturation voltage. In the region where the saturable reactor 34 is not saturated as described above, the saturable reactor 34 operates as a transformer, and a charging current I 2 that is N times the constant input current I 1 flows to the capacitor bank 38 and is charged. Is done.

このような充電が続けられ、キャパシタバンク38の電圧が上昇し、電圧Vがキャパシタバンク38の定格電圧(フル充電電圧)Vfに近づく。上述したように、可飽和リアクトル34の出力端電圧(出力電圧;実効値)Vをキャパシタバンク38の充電電圧VDC(フル充電電圧Vf)に設定しているために、出力電圧のVの実効値からピーク電圧(√2×V)の間の電圧でも充電され、出力電圧のピーク電圧(√2×V)まで充電されようとなる。しかし、上述したようにキャパシタバンク38の電圧が上昇し、キャパシタバンク38のフル充電電圧Vfに近づくと、DCチョーク34により電圧が大きく降下され(DCチョーク34の両端の電圧差が大きくなり)、同時に制御装置40へ給電されて一定電力は消費されるので、キャパシタバンク38の充電電圧VDCがピーク電圧(√2×V)まで充電されることはない。なお、充電効率をよくするために、出力電圧のVの実効値をキャパシタバンク38のフル充電電圧Vfに設定しているが、出力電圧のVのピーク電圧をキャパシタバンク38のフル充電電圧Vfに設定してもよい。 Such charging is continued, the voltage rises in the capacitor bank 38, the voltage V 2 approaches the rated voltage (fully charged voltage) Vf of the capacitor bank 38. As described above, since the output terminal voltage (output voltage; effective value) V 2 of the saturable reactor 34 is set to the charging voltage V DC (full charging voltage Vf) of the capacitor bank 38, the output voltage V 2 The battery is charged even at a voltage between the effective value of 1 and the peak voltage (√2 × V 2 ), and is charged to the peak voltage (√2 × V 2 ) of the output voltage. However, as described above, when the voltage of the capacitor bank 38 increases and approaches the full charge voltage Vf of the capacitor bank 38, the voltage is greatly decreased by the DC choke 34 (the voltage difference between both ends of the DC choke 34 is increased). At the same time, since power is supplied to the control device 40 and constant power is consumed, the charging voltage VDC of the capacitor bank 38 is not charged to the peak voltage (√2 × V 2 ). In order to improve the charging efficiency, but the effective value of V 2 of the output voltage is set to the full charge voltage Vf of the capacitor bank 38, a full charge voltage of the peak voltage of V 2 output voltage capacitor bank 38 It may be set to Vf.

そして、キャパシタバンク38の電圧が上昇し、電圧Vがキャパシタバンク38の定格電圧(フル充電電圧)Vfとなると、搬送台車13の制御装置40は、充電指令信号をオフとする。このとき、充電電流Iは流れなくなる。 Then, the voltage rises in the capacitor bank 38, when the voltage V 2 becomes the rated voltage (fully charged voltage) Vf of the capacitor bank 38, the control unit 40 of the transport carriage 13, turns off the charge command signal. At this time, the charging current I 2 stops flowing.

ステーション15の電源装置28は、充電指令信号がオフとなると、誘導線路29への給電を停止し、充電が終了される。
また、電源装置28により充電指令信号をオフとするタイミングが遅れたり、光伝送装置26A,26Bに不具合が発生し、給電停止が遅れた場合でも、出力電圧VのN倍の入力電圧Vは飽和電圧となり、可飽和リアクトル34が飽和し、インピーダンスが減少し、これが共振回路を形成する受電コイル32と共振コンデンサ33による共振エネルギーの蓄積量の増大を抑制することで共振電圧(一次側電圧)Vが一定に抑制され、共振暴走が回避される。
When the charging command signal is turned off, the power supply device 28 of the station 15 stops the power supply to the induction line 29 and the charging is finished.
Further, even when the timing for turning off the charging command signal by the power supply device 28 is delayed, or when trouble occurs in the optical transmission devices 26A and 26B and the power supply stoppage is delayed, the input voltage V 1 that is N times the output voltage V 2. Becomes a saturation voltage, the saturable reactor 34 is saturated, and the impedance is reduced. This suppresses an increase in the amount of accumulated resonance energy by the power receiving coil 32 and the resonance capacitor 33 that form the resonance circuit, thereby reducing the resonance voltage (primary voltage). ) V 1 is kept constant and resonance runaway is avoided.

以上のように実施の形態によれば、誘導線路29より給電できる定格電力Woと、共振回路の電気特性による一定の入力電流Iと、キャパシタバンク38の定格電圧(フル充電電圧)Vfと、キャパシタバンク38の充電が可能な最大の充電電流Imaxに基づいて、すなわち設備の条件、使用されるキャパシタバンク38の特性に基づいて、可飽和リアクトル34の飽和電圧と一次側コイル巻線43の巻数Nを設定でき、よって低電圧(一次側電圧VのN分の1)で大電流(一次側コイル巻線43の入力電流IのN倍の電流)でキャパシタバンク38を効率よく充電でき、またフル充電電圧Vfとなっても一次側電圧Vを一定電圧に維持でき、共振暴走を回避できる誘導受電回路を提供することができる。また二次側コイル巻線44は線径を大きくする必要があるが、二次側コイル巻線44はコア部材42の貫通孔41に貫通させ、コア部材42に巻く必要がないので、コア部材42を小型化でき、よって可飽和リアクトル34の設置スペースを小さくでき、安価な誘導受電回路を提供できる。 According to the embodiment as described above, the rated power Wo capable feed from induction line 29, a constant input current I 1 due to the electrical characteristics of the resonant circuit, the rated voltage (fully charged voltage) of the capacitor bank 38 and Vf, The saturation voltage of the saturable reactor 34 and the number of turns of the primary coil winding 43 based on the maximum charging current Imax that can charge the capacitor bank 38, that is, based on the conditions of the equipment and the characteristics of the capacitor bank 38 used. can set the N, thus the capacitor bank 38 can be efficiently charged at a low voltage (primary voltage V 1 of the N content in 1) with a large current (N times the current of the input current I 1 of the primary coil winding 43) , also become a fully charged voltage Vf can maintain the primary side voltages V 1 to a constant voltage, it is possible to provide an induction incoming circuit capable of avoiding resonance runaway. The secondary side coil winding 44 needs to have a large wire diameter, but the secondary side coil winding 44 does not need to be passed through the through hole 41 of the core member 42 and wound around the core member 42. 42 can be reduced in size, so that the installation space of the saturable reactor 34 can be reduced, and an inexpensive induction power receiving circuit can be provided.

また実施の形態によれば、可飽和リアクトル34の二次側コイル巻線44には、一次側コイル巻線43のN倍の大きな電流が流れることによって、二次側コイル巻線44および接続する電線の線径は大きくなるため、敷設には困難が伴うが、キャパシタバンク38に近接して可飽和リアクトル34を配置することにより、二次側コイル巻線44および接続する電線の長さを短くでき、敷設を容易にできる。   Further, according to the embodiment, the secondary side coil winding 44 of the saturable reactor 34 is connected to the secondary side coil winding 44 by flowing a current N times as large as that of the primary side coil winding 43. Although the wire diameter becomes large and laying is difficult, the arrangement of the saturable reactor 34 close to the capacitor bank 38 shortens the length of the secondary coil winding 44 and the connected wire. And can be laid easily.

また実施の形態によれば、キャパシタバンク38の電圧が、定格電圧(フル充電電圧)Vfに設定され、フル充電電圧Vfに達すると、誘導線路29へ供給される高周波電流は遮断され、充電が終了されることにより、消費電力を抑えることができ、また万一遮断が遅れても、可飽和リアクトル34は飽和電圧になり、一次側電圧Vを一定電圧に維持でき、共振暴走を回避できる。 According to the embodiment, the voltage of the capacitor bank 38 is set to the rated voltage (full charge voltage) Vf, and when the voltage reaches the full charge voltage Vf, the high-frequency current supplied to the induction line 29 is cut off, and charging is performed. By being terminated, power consumption can be suppressed, and even if the interruption is delayed, the saturable reactor 34 becomes a saturation voltage, the primary voltage V 1 can be maintained at a constant voltage, and resonance runaway can be avoided. .

なお、本実施の形態では、可飽和リアクトル34を使用しているが、可飽和リアクトル34に代えて、磁気抵抗の小さい環状磁路を形成する第1コア部材と、前記第1コア部材より磁気抵抗の大きい環状磁路を形成する第2コア部材とを有し、一次側コイル巻線43を両環状磁路に共通に鎖交するように巻く複合コアリアクトルを使用することもできる。   In the present embodiment, the saturable reactor 34 is used. However, instead of the saturable reactor 34, a first core member that forms an annular magnetic path with a small magnetic resistance, and a magnet that is magnetic from the first core member. It is also possible to use a composite core reactor that has a second core member that forms an annular magnetic path with high resistance and winds the primary coil winding 43 so as to be linked to both annular magnetic paths in common.

このとき、第1コア部材は、第2コア部材より磁気抵抗が小さいことにより、第1コア部材が磁気飽和していない領域においては、コイル巻線に流れる電流による磁界(磁化力)はもっぱら第1コア部材に磁束を生じさせ、この状態ではリアクトルは大きなインダクタンス値を示す。そして、第1コア部材の磁束が飽和すると、第1コア部材の磁気飽和を起源とするインダクタンスはほぼゼロになるが、急激に増加を始めたコイル電流による磁化力が磁気抵抗が大きな第2コア部材に磁束を生じさせることから複合コアリアクトルとしてのインダクタンスはある程度の値を維持することになる。このため、第1コア部材が磁気飽和してもパルス状に急増しようとする電流は抑制され、複合コアリアクトルに流れるパルス電流の波高値は小さくなる。よってパルス電流はそれほど急峻で過大とはならずに電圧抑制の作用が働く。   At this time, since the first core member has a smaller magnetic resistance than the second core member, in the region where the first core member is not magnetically saturated, the magnetic field (magnetizing force) due to the current flowing in the coil winding is exclusively the first. Magnetic flux is generated in one core member, and in this state, the reactor shows a large inductance value. When the magnetic flux of the first core member is saturated, the inductance originating from the magnetic saturation of the first core member becomes almost zero, but the second core having a large magnetic resistance due to the magnetizing force due to the coil current that has started to increase rapidly. Since the magnetic flux is generated in the member, the inductance as the composite core reactor maintains a certain value. For this reason, even if the first core member is magnetically saturated, the current that rapidly increases in a pulse shape is suppressed, and the peak value of the pulse current flowing through the composite core reactor becomes small. Therefore, the pulse current does not become so steep and excessive, and the voltage suppression function works.

また本実施の形態では、各ステーション15にポイント給電のための誘導線路29および電源装置28を設けているが、複数のステーション15毎、あるいはステーション15間の距離に応じて、誘導線路29および電源装置28を設けるようにしてもよい。このとき、各ステーション15に電源装置28と誘導線路29を設ける必要がなくなり、設備としてのコストを低減することができる。   In the present embodiment, each station 15 is provided with an induction line 29 and a power supply device 28 for point power supply. However, the induction line 29 and the power supply are provided for each of the plurality of stations 15 or according to the distance between the stations 15. A device 28 may be provided. At this time, it is not necessary to provide the power supply device 28 and the induction line 29 in each station 15, and the cost as equipment can be reduced.

また本実施の形態では、二次側コイル巻線44を1本だけコア部材42に貫通させているが、数本(2,3本)の二次側コイル巻線44をコア部材42の貫通孔41に巻くようにしてもよい。数本(2,3本)であれば、線径が大きくなってもコア部材42の貫通孔41に巻くことができるが、1本のときに最大の変圧比をとれることはいうまでもない。   In the present embodiment, only one secondary coil winding 44 penetrates the core member 42, but several (2, 3) secondary coil windings 44 penetrate the core member 42. It may be wound around the hole 41. If it is several (2, 3), it can be wound around the through hole 41 of the core member 42 even if the wire diameter becomes large, but it goes without saying that the maximum transformation ratio can be taken with one. .

また本実施の形態では、充電対象を、キャパシタバンク38としているが、バッテリとしてもよい。
また本実施の形態では、キャパシタバンク38の電圧が上昇し、電圧Vがキャパシタバンク38の定格電圧(フル充電電圧)Vfとなると、搬送台車13の制御装置40は、ステーション15へ出力する充電指令信号をオフとして、誘導線路29への給電を停止し、充電電流Iを流さないようにしている。すなわち、キャパシタバンク38の(バッテリあるいは電気二重層コンデンサ)の電圧が前記定格電圧に達すると、誘導線路29へ供給される高周波電流を遮断するようにしているが、図6に示すように、受電コイル32の両端(共振回路の両端)を短絡するスイッチ50を設け、制御装置40にキャパシタバンク38の定格電圧(フル充電電圧)Vfを予め設定し、監視しているキャパシタバンク38の電圧が、設定された定格電圧(フル充電電圧)Vfとなると、スイッチ50を駆動して受電コイル32の両端を短絡して、充電電流Iを流さないようにしてもよく、誘導線路29へ供給される高周波電流を遮断したことと同じ作用が得られる。
In the present embodiment, the charging target is the capacitor bank 38, but may be a battery.
Further, in this embodiment, the voltage rises in the capacitor bank 38, when the voltage V 2 becomes the rated voltage (fully charged voltage) Vf of the capacitor bank 38, the control unit 40 of the transport carriage 13 outputs to the station 15 charge as an off-command signal to stop the power supply to the induction line 29, so that does not flow the charging current I 2. That is, when the voltage of the capacitor bank 38 (battery or electric double layer capacitor) reaches the rated voltage, the high-frequency current supplied to the induction line 29 is cut off. However, as shown in FIG. A switch 50 for short-circuiting both ends of the coil 32 (both ends of the resonance circuit) is provided, and the rated voltage (full charge voltage) Vf of the capacitor bank 38 is preset in the control device 40, and the voltage of the capacitor bank 38 being monitored is If the set rated voltage is (fully charged voltage) Vf, by short-circuiting both ends of the power receiving coil 32 drives the switch 50, is well supplied to the induction line 29 be configured not flow the charging current I 2 The same effect as cutting off the high-frequency current can be obtained.

本発明の実施の形態における誘電受電回路を備えた物品搬送設備の走行経路図である。It is a running route figure of the article conveyance equipment provided with the dielectric power receiving circuit in an embodiment of the invention. 同物品搬送設備の要部構成図である。It is a principal part block diagram of the goods conveyance equipment. 同物品搬送設備の誘導受電回路の回路図である。It is a circuit diagram of the induction | power receiving circuit of the goods conveyance equipment. 同物品搬送設備の誘導受電回路の原理説明図である。It is principle explanatory drawing of the induction | guidance | derivation receiving circuit of the goods conveyance equipment. 同物品搬送設備の誘導受電回路に使用する可変リアクトルの斜視図である。It is a perspective view of the variable reactor used for the induction | guidance | derivation receiving circuit of the goods conveyance equipment. 本発明の他の実施の形態における物品搬送設備の誘導受電回路の回路図である。It is a circuit diagram of the induction | guidance | derivation receiving circuit of the articles | goods conveyance installation in other embodiment of this invention.

符号の説明Explanation of symbols

11 走行レール
13 搬送台車
14 搬送経路
15 ステーション
21 車体
25 走行用モータ
26A,26B 光伝送装置
27 台車検出センサ
28 電源装置
29 誘導線路
31 誘導受電回路
32 受電コイル
33 共振コンデンサ
34 可飽和リアクトル
35 整流回路
36 DCチョーク
37 電気2重層キャパシタ
38 キャパシタバンク
39 インバータ
40 制御装置
41 貫通孔(空洞)
42 コア部材
43 一次側コイル巻線
44 二次側コイル巻線
45 放熱板
50 スイッチ
DESCRIPTION OF SYMBOLS 11 Traveling rail 13 Conveyance cart 14 Conveyance route 15 Station 21 Car body 25 Traveling motor 26A, 26B Optical transmission device 27 Dolly detection sensor 28 Power supply device 29 Induction line 31 Induction power reception circuit 32 Receiving coil 33 Resonance capacitor 34 Saturable reactor 35 Rectification circuit 36 DC choke 37 Electric double layer capacitor 38 Capacitor bank 39 Inverter 40 Control device 41 Through hole (cavity)
42 Core member 43 Primary coil winding 44 Secondary coil winding 45 Heat sink 50 Switch

Claims (4)

高周波電流を流す誘導線路に対向して前記誘導線路より起電力が誘起される受電コイルを設け、この受電コイルに誘導される起電力によりバッテリあるいは電気二重層コンデンサに充電する誘導受電回路であって、
前記受電コイルとともに前記誘導線路の周波数に共振する共振回路を形成する共振コンデンサと、
環状磁路を形成する円環型のコア部材を有し、前記環状磁路に鎖交するようにコア部材に巻かれた一次側コイル巻線が前記受電コイルと並列に接続され、1本の二次側コイル巻線が前記コア部材の中心の貫通孔を貫通して設けられた可飽和リアクトルと、
前記可飽和リアクトルの二次側コイル巻線に接続され、前記バッテリあるいは電気二重層コンデンサへ給電する整流回路と
を備え、
前記可飽和リアクトルのコア部材の飽和電圧と前記可飽和リアクトルの一次側コイル巻線の巻数を、前記バッテリあるいは電気二重層コンデンサの定格電圧と、前記バッテリあるいは電気二重層コンデンサの充電が可能な最大電流に基づいて設定したこと
を特徴とする誘導受電回路。
An inductive power receiving circuit that is provided with a power receiving coil for inducing an electromotive force from the induction line opposite to an induction line through which a high-frequency current flows, and charges a battery or an electric double layer capacitor by the electromotive force induced in the power receiving coil. ,
A resonant capacitor that forms a resonant circuit that resonates with the frequency of the induction line together with the power receiving coil;
An annular core member forming an annular magnetic path, and a primary coil winding wound around the core member so as to be linked to the annular magnetic path is connected in parallel with the power receiving coil; A saturable reactor in which a secondary coil winding is provided through the central through hole of the core member;
A rectifier circuit connected to the secondary coil winding of the saturable reactor and supplying power to the battery or the electric double layer capacitor;
The saturation voltage of the core member of the saturable reactor and the number of turns of the primary coil winding of the saturable reactor, the rated voltage of the battery or electric double layer capacitor, and the maximum chargeable voltage of the battery or electric double layer capacitor An inductive power receiving circuit characterized in that it is set based on a current.
前記バッテリあるいは電気二重層コンデンサに近接して前記可飽和リアクトルを配置したこと
を特徴とする請求項1に記載の誘導受電回路。
The inductive power receiving circuit according to claim 1, wherein the saturable reactor is disposed in proximity to the battery or the electric double layer capacitor.
前記誘導線路へ供給される高周波電流は、前記バッテリあるいは電気二重層コンデンサの電圧が、前記定格電圧に達すると遮断されること
を特徴とする請求項1または請求項2に記載の誘導受電回路。
3. The induction power receiving circuit according to claim 1, wherein the high frequency current supplied to the induction line is cut off when a voltage of the battery or the electric double layer capacitor reaches the rated voltage.
前記可飽和リアクトルに代えて、磁気抵抗の小さい環状磁路を形成する第1コア部材と、前記第1コア部材より磁気抵抗の大きい環状磁路を形成する第2コア部材とを有し、前記一次側コイル巻線が両環状磁路に共通に鎖交するように巻かれる複合コアリアクトルを備えること
を特徴とする請求項1〜請求項3のいずれかに記載の誘導受電回路。
In place of the saturable reactor, the first core member that forms an annular magnetic path with a small magnetic resistance, and the second core member that forms an annular magnetic path with a larger magnetic resistance than the first core member, The induction power receiving circuit according to any one of claims 1 to 3, further comprising a composite core reactor in which the primary coil winding is wound so as to interlink with both annular magnetic paths in common.
JP2008192934A 2008-07-28 2008-07-28 Induction power receiving circuit Active JP5250867B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008192934A JP5250867B2 (en) 2008-07-28 2008-07-28 Induction power receiving circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008192934A JP5250867B2 (en) 2008-07-28 2008-07-28 Induction power receiving circuit

Publications (2)

Publication Number Publication Date
JP2010035292A true JP2010035292A (en) 2010-02-12
JP5250867B2 JP5250867B2 (en) 2013-07-31

Family

ID=41739125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008192934A Active JP5250867B2 (en) 2008-07-28 2008-07-28 Induction power receiving circuit

Country Status (1)

Country Link
JP (1) JP5250867B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088160A (en) * 2008-09-30 2010-04-15 Daifuku Co Ltd Non-contact point power supply facility
JP2012138529A (en) * 2010-12-28 2012-07-19 Daifuku Co Ltd Secondary side power reception circuit of non-contact power supply facility, and saturable reactor used in secondary side power reception circuit
JP2013243890A (en) * 2012-05-22 2013-12-05 Heads Corp Contactless feeding apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133736A (en) * 1977-04-26 1978-11-21 Sony Corp Battery charger
JPH0937475A (en) * 1995-07-24 1997-02-07 Yuhshin Co Ltd Keyless entry system
JPH09261898A (en) * 1996-03-22 1997-10-03 Daifuku Co Ltd Non-contact feeder equipment
JPH1070856A (en) * 1996-08-26 1998-03-10 Hitachi Kiden Kogyo Ltd Constant voltage induction feeding device
JP2001186676A (en) * 1999-12-27 2001-07-06 Nec Corp Charge system for portable apparatus
JP2002369415A (en) * 2001-06-12 2002-12-20 Hitachi Kiden Kogyo Ltd Noncontact power feeding facility
JP2003272937A (en) * 2002-03-19 2003-09-26 Daifuku Co Ltd Composite core nonlinear reactor and inductive receiving circuit
JP2004235561A (en) * 2003-01-31 2004-08-19 Riso Kagaku Corp Feeder system
JP2005093830A (en) * 2003-09-19 2005-04-07 Daifuku Co Ltd Composite core reactor and inductive power receiving connection
JP2005102378A (en) * 2003-09-24 2005-04-14 Daifuku Co Ltd Inductive power receiving circuit

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53133736A (en) * 1977-04-26 1978-11-21 Sony Corp Battery charger
JPH0937475A (en) * 1995-07-24 1997-02-07 Yuhshin Co Ltd Keyless entry system
JPH09261898A (en) * 1996-03-22 1997-10-03 Daifuku Co Ltd Non-contact feeder equipment
JPH1070856A (en) * 1996-08-26 1998-03-10 Hitachi Kiden Kogyo Ltd Constant voltage induction feeding device
JP2001186676A (en) * 1999-12-27 2001-07-06 Nec Corp Charge system for portable apparatus
JP2002369415A (en) * 2001-06-12 2002-12-20 Hitachi Kiden Kogyo Ltd Noncontact power feeding facility
JP2003272937A (en) * 2002-03-19 2003-09-26 Daifuku Co Ltd Composite core nonlinear reactor and inductive receiving circuit
JP2004235561A (en) * 2003-01-31 2004-08-19 Riso Kagaku Corp Feeder system
JP2005093830A (en) * 2003-09-19 2005-04-07 Daifuku Co Ltd Composite core reactor and inductive power receiving connection
JP2005102378A (en) * 2003-09-24 2005-04-14 Daifuku Co Ltd Inductive power receiving circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088160A (en) * 2008-09-30 2010-04-15 Daifuku Co Ltd Non-contact point power supply facility
JP2012138529A (en) * 2010-12-28 2012-07-19 Daifuku Co Ltd Secondary side power reception circuit of non-contact power supply facility, and saturable reactor used in secondary side power reception circuit
JP2013243890A (en) * 2012-05-22 2013-12-05 Heads Corp Contactless feeding apparatus

Also Published As

Publication number Publication date
JP5250867B2 (en) 2013-07-31

Similar Documents

Publication Publication Date Title
JP5437650B2 (en) Non-contact power feeding device
JP5970158B2 (en) Contactless power supply
US9680311B2 (en) Wireless power supply system
JP2018196322A (en) Non-contact power supply device
JP6154835B2 (en) Non-contact power supply device
US20110304217A1 (en) Non-contact power feeding device
US10272789B2 (en) Wireless power supply system and wireless power transmission system
US11043845B2 (en) Power feeding device and wireless power transmission device
JP2012023913A (en) Non-contact power feeding device
JP2015136287A5 (en)
JP5490385B2 (en) Non-contact power feeding device
KR20170042944A (en) Method and apparatus for wireless charging using variable switching frequency
US10218186B2 (en) Power feeding device and non-contact power transmission device
JP2011182624A (en) Transmitter for power-supply instruction
JP5250867B2 (en) Induction power receiving circuit
WO2012001758A1 (en) Non-contact electric power feeding device
JP5246654B2 (en) Non-contact point power supply equipment
KR20120028310A (en) Electromagnetic apparatus using shared flux in a multi-load parallel magnetic circuit and method of operation
JP5170451B2 (en) Induction power receiving circuit
JP5413849B2 (en) Induction power receiving circuit
JP4046676B2 (en) Induction power receiving circuit
US20190319490A1 (en) Method and device for wireless charging of electrical energy storage in a fixed or mobile consumer
US9991749B2 (en) Coil unit, wireless power feeding device, wireless power receiving device, and wireless power transmission device
JP2018166394A (en) Inductive power supply device
KR101873399B1 (en) Resonant Inductor of Wireless Power Transfer Apparatus and a method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110331

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20111004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Ref document number: 5250867

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250