JP2010035072A - Optical communication system - Google Patents

Optical communication system Download PDF

Info

Publication number
JP2010035072A
JP2010035072A JP2008197197A JP2008197197A JP2010035072A JP 2010035072 A JP2010035072 A JP 2010035072A JP 2008197197 A JP2008197197 A JP 2008197197A JP 2008197197 A JP2008197197 A JP 2008197197A JP 2010035072 A JP2010035072 A JP 2010035072A
Authority
JP
Japan
Prior art keywords
random number
sequence
signal
communication system
fluctuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008197197A
Other languages
Japanese (ja)
Other versions
JP5260171B2 (en
Inventor
Tatsuya Tomaru
辰也 戸丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2008197197A priority Critical patent/JP5260171B2/en
Publication of JP2010035072A publication Critical patent/JP2010035072A/en
Application granted granted Critical
Publication of JP5260171B2 publication Critical patent/JP5260171B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an optical transmission and reception method meeting the condition that safe communication can be performed in principle while using a difference between an authorized recipient and an unauthorized recipient when a bit error rate (BER) of the authorized recipient is smaller than that of the unauthorized recipient. <P>SOLUTION: While using carrier light accompanied with such fluctuation as to cause even an authorized recipient to make a bit error, a signal is transmitted and received while performing error-correction coding thereon. A base of n+1 or more is used for a 2<SP>n</SP>-valued signal ((n) is an integer of ≥1), and an authorized sender and an authorized recipient share a seed key beforehand and then perform communication while selecting a base using the shared key. In signal transmission, the signal and a random number are transmitted and the random number is used for selecting the next transmission base. An unauthorized recipient does not know the base but has to make 2<SP>n</SP>-valued determination for error-correction code decoding so that his/her BER becomes greater than that of the authorized recipient. A difference between the BERs of the authorized recipient and the unauthorized recipient ensures the quantity of information that is safe from a viewpoint of information theory. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は光通信システムに関し、特に光通信あるいは一般の通信において安全性を向上させることができる光通信システムに関する。   The present invention relates to an optical communication system, and more particularly to an optical communication system capable of improving safety in optical communication or general communication.

通信における秘匿性の要求は古来より未来に亘る永遠のテーマであり、近年のネットワーク社会においては暗号学の発展によりその要求を確保してきた。一般に暗号は安全性の程度に応じて情報理論的安全性と計算量的安全性の2つに大別される。送信者の送信信号に関する変数をX,正規受信者の受信信号に関する変数をY,不正受信者の受信信号に関する変数をZ,送信者と正規受信者間の相互情報量をI(X;Y) ,送信者と不正受信者間の相互情報量をI(X;Z)とすれば正規の送受信者間で情報理論的に安全性が保証された情報量CはC = I(X;Y) - I(X;Z)になる。正規の送受信者間で予め情報量Cの秘密鍵を共有しておき正規の送受信者間で情報量C以下の通信をした場合、情報理論的に安全な通信が可能になる。しかしながら、これではあまりに膨大な秘密鍵が必要なため、一般的には少量の秘密鍵を用いて数学的に解読を困難にし、解読に非現実的な時間を要することを安全性の根拠にした暗号を用いることが多い(計算量的安全性)。計算量的に安全な暗号は現状の解読技術と計算機の能力に対して解読が困難なだけで技術の進歩に伴い安全性は低下する。この問題点に対して量子力学の性質を利用して十分な情報量Cの秘密鍵を生成する方法の研究が活発である。しかしながら、量子力学的性質はミクロの世界で現れるものであり、現実に導入する場合には制限事項も多い。   The demand for confidentiality in communications has been an eternal theme from the past to the future, and in the recent network society, the demand has been secured by the development of cryptography. In general, ciphers are roughly divided into information-theoretic security and computational security according to the degree of security. The variable related to the transmission signal of the sender is X, the variable related to the reception signal of the regular receiver is Y, the variable related to the reception signal of the unauthorized receiver is Z, and the mutual information between the sender and the regular receiver is I (X; Y) , If the mutual information amount between the sender and the unauthorized recipient is I (X; Z), the information amount C in which information safety is guaranteed between the legitimate sender and receiver is C = I (X; Y) -Becomes I (X; Z). When the secret key of the information amount C is shared in advance between authorized senders / receivers and communication is performed with the information amount C or less between the authorized senders / receivers, secure communication in terms of information theory becomes possible. However, this requires an enormous amount of secret keys, so it is generally difficult to break down mathematically using a small amount of secret keys, and security is based on the fact that it takes unrealistic time to break down. Cryptography is often used (computational security). Computationally safe ciphers are difficult to decipher against the current cryptanalysis techniques and computer capabilities, but the security decreases with technological progress. In order to solve this problem, research on a method for generating a secret key with a sufficient amount of information C by using the properties of quantum mechanics is active. However, quantum mechanical properties appear in the microscopic world, and there are many restrictions when actually introduced.

一般に暗号の強度は、正規受信者と盗聴者が同じ信号を得ると仮定し、解読がどの程度困難かにより評価する。しかしながら、現実の通信路にはノイズがあり,一般にビット誤りが存在する。即ち、正規受信者と盗聴者が同じ信号を得るとの仮定は必ずしも正しくない。このビット誤りが生じる点を利用すれば量子力学的性質を利用しなくても安全な情報量C = I(X;Y) - I(X;Z)を確保できることが知られている。相互情報量はビット誤り率(BER)の増加で減少するので、正規受信者よりも不正受信者のBERが大きい通信路を実現できれば情報理論的に安全な通信が可能になる(非特許文献1)。尚、不正受信者よりも正規受信者のBERが大きい通信路においても公衆通信路を用いた後処理により安全な情報量Cを得る方法があり得ることも情報理論において示されている(非特許文献2)。但し、具体的な方法論が確立しているわけではない。   In general, the strength of encryption is evaluated based on how difficult the decryption is based on the assumption that a legitimate receiver and an eavesdropper obtain the same signal. However, there are noises in actual communication channels, and generally there are bit errors. That is, the assumption that the legitimate receiver and the eavesdropper get the same signal is not necessarily correct. It is known that a safe information amount C = I (X; Y) −I (X; Z) can be secured without using the quantum mechanical property by utilizing the point at which this bit error occurs. Since the mutual information amount decreases with an increase in the bit error rate (BER), communication that is theoretically safe becomes possible if a communication path in which the BER of the unauthorized recipient is larger than that of the regular recipient can be realized (Non-patent Document 1). ). It is also shown in information theory that there can be a method for obtaining a safe information amount C by post-processing using a public communication path even in a communication path where the BER of a regular receiver is larger than that of an unauthorized receiver (non-patent) Reference 2). However, no specific methodology has been established.

特開2008-003339号公報JP 2008-003339 A A. D. Wyner, “The wire-tap channel,”Bell Syst. Tech. J., 54, 1335 (1975).A. D. Wyner, “The wire-tap channel,” Bell Syst. Tech. J., 54, 1335 (1975). U. M. Maurer, “Secret key agreement by public discussion from common information,”IEEE Trans. Inf. Theory, 39, 733 (1993).U. M. Maurer, “Secret key agreement by public discussion from common information,” IEEE Trans. Inf. Theory, 39, 733 (1993). C. H. Bennett, G. Brassard, and J.-M. Robert, SIAM J. Comput. 17, 210 (1988))C. H. Bennett, G. Brassard, and J.-M. Robert, SIAM J. Comput. 17, 210 (1988)) T. Tomaru, and M. Ban, “Secure optical communication using antisqueezing,”Phys. Rev. A 74, 032312 (2006)T. Tomaru, and M. Ban, “Secure optical communication using antisqueezing,” Phys. Rev. A 74, 032312 (2006) T. Tomaru, “LD light antisqueezing through fiber propagation in reflection-type interferometer,”Opt. Exp. 15, 11241 (2007))T. Tomaru, “LD light antisqueezing through fiber propagation in reflection-type interferometer,” Opt. Exp. 15, 11241 (2007))

一般に不正受信者が正規受信者よりも悪い条件で盗聴しているとは限らず、正規受信者と不正受信者のどちらのBERが大きいかは伝送路と不正受信法に依存する。正規受信者よりも不正受信者のBERが確実に大きい通信路を実現できれば確実に安全な情報量Cを確保できる。そこで、正規受信者よりも不正受信者のBERが確実に大きい通信路を実現することが課題である。また、情報理論的に安全な情報量を見積もるために、実現した通信路における送信者と不正受信者間の相互情報量I(X;Z)を見積もる方法が課題である。   In general, an unauthorized receiver does not always eavesdrop on a condition worse than that of an authorized receiver, and whether the BER of the authorized receiver or the unauthorized receiver is larger depends on the transmission path and the unauthorized reception method. If it is possible to realize a communication path in which the BER of the illegal recipient is surely larger than that of the regular recipient, a safe information amount C can be ensured. Therefore, it is a problem to realize a communication path in which the BER of the unauthorized recipient is surely larger than that of the regular recipient. Another problem is how to estimate the mutual information amount I (X; Z) between the sender and the unauthorized receiver in the realized communication path in order to estimate the information amount that is safe in terms of information theory.

まず課題を解決するための手段と原理を列挙する。
1.キャリア光に揺らぎを伴った光を利用し、正規受信者に対してもビット誤りがある。
First, the means and principles for solving the problems are listed.
1. There is a bit error even for a legitimate receiver using light with fluctuation in the carrier light.

このため誤り訂正符号化して伝送する。
2.伝送時の信号が2値の場合、送信基底数は2以上にする。
3.正規の送受信者は種鍵を予め共有するとし、それにより正規の送受信者はどの基底を用いて信号を送受信したかを知るものとする。従って、正規受信者は2値判定可能である。
4.不正受信者は送信基底を知らないので、例えば基底数が2ならば4値判定できるのみである。
5.ビット誤りがあるので誤り訂正符号の復号化が必須である。
6.誤り訂正符号は2値信号に対する符号なので、復号時には2値判定した結果が必要である。
7.4値判定しかできない不正受信者も復号のために2値判定しなければならない。
For this reason, it is transmitted after error correction coding.
2. If the signal during transmission is binary, the transmission basis number should be 2 or more.
3. It is assumed that the legitimate sender / receiver shares the seed key in advance, so that the legitimate sender / receiver knows which base is used to transmit / receive the signal. Therefore, a legitimate recipient can make a binary decision.
4). Since the unauthorized receiver does not know the transmission base, for example, if the base number is 2, it can only determine a 4-value.
5). Since there is a bit error, decoding of the error correction code is essential.
6). Since the error correction code is a code for a binary signal, a result of binary determination is required at the time of decoding.
7. Unauthorized recipients who can only make 4-value judgments must also make binary judgments for decryption.

このため「不正受信者のビット誤り率>正規受信者のビット誤り率」が実現される。
8.この差の分が正規の送受信者間の安全な情報量を与える。送受信する信号を乱数とし、プライバシーアンプの手法により送受信した乱数信号のビット数から安全な情報量までビット数を減らせば、情報理論的に安全な鍵を送受信者間で新たに共有できたことになる。
Therefore, “bit error rate of unauthorized receiver> bit error rate of regular receiver” is realized.
8). This difference provides a safe amount of information between legitimate senders and receivers. By using a random number as the signal to be sent and received and reducing the number of bits from the number of bits of the random number signal sent and received by the privacy amplifier method to a safe amount of information, a new key that is theoretically secure between information senders and receivers could be shared Become.

即ち、この鍵を用いてone-time-padの暗号通信が可能になる。
9.予め正規の送受信者間で共有していた種鍵を繰り返し使用すると不正受信された信号の解読を許すことになるので、信号(乱数信号を含む)と乱数(乱数信号とは別)を交互に送受信し、送受信された乱数を新たな秘密鍵として送受信基底を刷新していく。
That is, one-time-pad encryption communication is possible using this key.
9. Repeated use of a seed key that has been shared between authorized senders and receivers in advance allows decryption of illegally received signals, so signals (including random signals) and random numbers (separate from random signals) are alternated The transmission / reception base is renewed by using the transmitted / received random number as a new secret key.

キャリア光に揺らぎ(ノイズ)を伴った光を用いて、正規受信者に対しても必ずビット誤りが存在する点が本発明のポイントである。ビット誤りを訂正するために、信号伝送時には誤り訂正符号を用いる。キャリア光に信号を重畳する際、nビット(nは1以上の整数)をひとまとめにして1変調当たり2n値とすれば必要な送信基底数はn基底となるが、本発明ではn + 1基底以上とし、正規の送受信者が予め種鍵(乱数列)を共有することによりどの送信基底を利用するかが既知とする。従って、正規受信者は通常の受信が可能で、ビット誤りは誤り訂正符号の復号時に訂正される。一方、不正受信者は種鍵を知らず、基底情報を持たずに信号光を検出しなければならないために2n値の判定ができず、基底数をm (> n)とすれば2m値の判定ができるだけである。揺らぎがあるために不正受信者も誤り訂正符号を復号しなければならないが、誤り訂正符号は2m値に対するものではなく2n値に対するものなので不正受信者も2n値判定しなければならない。その際に不正受信者は種鍵を知らない分だけ不利になり、BERが正規受信者よりも大きくなる。 The point of the present invention is that a bit error always exists even for a legitimate receiver using light with fluctuation (noise) in the carrier light. In order to correct bit errors, error correction codes are used during signal transmission. When superimposing a signal on carrier light, if n bits (n is an integer of 1 or more) are collectively set to 2 n values per modulation, the necessary number of transmission bases is n bases, but in the present invention, n + 1 It is assumed that the transmission base is used by sharing the seed key (random number sequence) in advance with a regular sender / receiver. Therefore, the normal receiver can perform normal reception, and the bit error is corrected when the error correction code is decoded. On the other hand, the unauthorized receiver does not know the seed key and must detect the signal light without having the basis information, so the 2 n value cannot be determined, and if the basis number is m (> n), the 2 m value Can only be determined. Because of the fluctuation, the unauthorized receiver must also decode the error correction code. However, since the error correcting code is not for the 2 m value but for the 2 n value, the unauthorized receiver must also determine the 2 n value. At that time, the unauthorized recipient is disadvantaged by not knowing the seed key, and the BER becomes larger than that of the authorized recipient.

種鍵の長さが有限なものとすれば、それを繰り返し利用した場合、ストリーム暗号等と同様に解読される可能性が出てくる。そのため送信機に乱数発生器を具備し、信号と乱数を交互に伝送し、送受信された乱数を次回の伝送時の基底選択のための新たな種鍵とすることで種鍵を刷新していく。信号と乱数を例えば1:1の比で伝送した場合、同じ基底を2回使うことになる。もしビット誤りがなければ同じ種鍵を2回使えば基底が解読される可能性があるが、キャリア光に揺らぎがあればたとえ鍵を2回使ったとしても揺らぎの効果はまだ残り、不正受信者のBERが正規受信者のBERよりも大きいことが維持される。   If the seed key has a finite length, if it is used repeatedly, there is a possibility that it will be decrypted in the same way as the stream cipher. Therefore, the transmitter is equipped with a random number generator, and signals and random numbers are transmitted alternately, and the seed key is renewed by using the transmitted and received random numbers as a new seed key for base selection at the next transmission. . If a signal and a random number are transmitted at a ratio of 1: 1, for example, the same base is used twice. If there is no bit error, the base may be deciphered if the same seed key is used twice, but if the carrier light fluctuates, even if the key is used twice, the effect of fluctuation still remains and illegal reception That the subscriber's BER is greater than the legitimate receiver's BER.

安全性が保証される情報量は正規受信者と不正受信者のBERから算出される相互情報量の差だけである。したがって、送信された信号すべてに亘って安全性が保証されているわけではない。そのため、信号そのものも乱数で構成し(これを乱数信号と呼ぶ)、送受信者間で共有された乱数信号のビット数を安全な情報量まで論理演算により減らす処理を行い(ビット数を減らすことにより1ビット当たりの安全な情報量は増える点に着目し、このようなビット数を減らす処理はプライバシーアンプと呼ばれる)、それを送受信者が新たに共有した秘密鍵としてone-time-padの暗号通信をする方法が有効である。即ち、以上の処理は予め送受信者間で共有されていた少量の秘密鍵を増幅する手段になっている。   The amount of information for which safety is guaranteed is only the difference between the mutual information amounts calculated from the BER of the legitimate receiver and the unauthorized receiver. Therefore, security is not guaranteed over all transmitted signals. Therefore, the signal itself is also composed of random numbers (this is called a random number signal), and the number of bits of the random number signal shared between the sender and receiver is reduced to a safe amount of information by a logical operation (by reducing the number of bits) Paying attention to the fact that the amount of secure information per bit increases, such a process to reduce the number of bits is called a privacy amplifier), and one-time-pad encryption communication as a secret key newly shared by the sender and receiver The method of doing is effective. That is, the above processing is a means for amplifying a small amount of secret key shared between the sender and the receiver in advance.

本発明によれば、予め送受信者間で少量の種鍵を共有していれば通常の光通信路を用いて情報理論的に安全性が保証された通信が可能になる。   According to the present invention, if a small amount of seed key is shared in advance between senders and receivers, it is possible to perform communication in which safety is guaranteed in terms of information theory using a normal optical communication path.

以下、本発明の実施の形態について説明する。
(実施例1)
本発明は位相変調方式、振幅変調方式のいずれでも適用可能であるが、ここでは位相変調方式の場合を示す。また簡単化のため信号は2値とし、基底数は2とする。位相変調は参照光を必要とするPhase-shift keying (PSK)でも差動型のDifferential-phase-shift keying(DPSK)でもどちらでも良い。図1は本発明の基本的部分の一例を示すブロック図である。図2は位相空間内の信号の様子を示す。各三日月形の部分が各信号状態の揺らぎを模式的に示す。信号が2値、基底数が2なので信号状態は合計4値になる。基底がq軸に選ばれた場合、q軸を基準にした位相0とπの状態が“1”,“0”の信号になり(図2(a))、p軸に基底が選ばれた場合、位相π/2と3π/2の状態が“1”, “0”の信号になる(図2(b))。
Embodiments of the present invention will be described below.
Example 1
The present invention can be applied to either the phase modulation method or the amplitude modulation method, but here, the case of the phase modulation method is shown. For simplicity, the signal is binary and the base number is 2. The phase modulation may be either phase-shift keying (PSK) that requires reference light or differential-type differential-phase-shift keying (DPSK). FIG. 1 is a block diagram showing an example of a basic part of the present invention. FIG. 2 shows the state of the signal in the phase space. Each crescent-shaped part schematically shows the fluctuation of each signal state. Since the signal is binary and the basis number is 2, the signal state is 4 values in total. When the base is selected for the q-axis, the phase 0 and π states with respect to the q-axis become “1” and “0” signals (FIG. 2 (a)), and the base is selected for the p-axis. In this case, the states of the phases π / 2 and 3π / 2 are “1” and “0” signals (FIG. 2B).

送信機100内のレーザー光源110からの出力光は揺らぎ生成器120により揺らぎが加えられる(揺らぎ生成器120の具体例は実施例8で示す)。その結果、図2に示す三日月形の揺らぎを伴った状態になる。送受信者は予め種鍵(乱数列)を共有するものとする。送受信者は通信を始めるに当たって認証が必要なので、少なくとも認証用の鍵は保持していると考えられ、この仮定は妥当なものである。信号は符号器143により誤り訂正符号の符号化がなされる。符号化された信号は種鍵141を基に基底が選択されたうえで変調器130により位相揺らぎを伴ったキャリア光に重畳される。信号を重畳されたキャリア光は伝送路201を通して受信機に送られる。受信機300内では、送受信者間で予め共有した種鍵333を用いて変調器310を通して基底の選択をする。正規受信者は正しく基底選択できるので常に図2(c)の状態で受信できる。検出器320では2値判定をする(検出器320の具体的構成は実施例10で示す)。2値判定後の信号は復号器330により誤り訂正される。本発明ではキャリア光に揺らぎを伴った光が利用されているので正規受信者にもビット誤りが存在するが、誤り訂正符号を用いるのでビット誤りは訂正される。基本的にはこれで信号が送受信できたことになる。   Fluctuation is applied to the output light from the laser light source 110 in the transmitter 100 by the fluctuation generator 120 (a specific example of the fluctuation generator 120 is shown in the eighth embodiment). As a result, the crescent-shaped fluctuation shown in FIG. Assume that the sender and receiver share a seed key (random number sequence) in advance. Since the sender and receiver need to be authenticated before starting communication, it is considered that at least the authentication key is held, and this assumption is valid. The signal is encoded with an error correction code by an encoder 143. The base of the encoded signal is selected based on the seed key 141, and is superimposed on the carrier light accompanied by phase fluctuations by the modulator 130. The carrier light on which the signal is superimposed is sent to the receiver through the transmission path 201. In the receiver 300, a base is selected through the modulator 310 using a seed key 333 shared in advance between the sender and the receiver. Since the correct receiver can correctly select the basis, the receiver can always receive in the state shown in FIG. The detector 320 performs binary determination (a specific configuration of the detector 320 is shown in Example 10). The signal after the binary determination is error-corrected by the decoder 330. In the present invention, since the carrier light is accompanied by fluctuations, there is a bit error in the regular receiver, but the bit error is corrected because the error correction code is used. Basically, the signal can be transmitted and received.

不正受信者は種鍵を知らないので2値判定することはできないが、基底数が2ならば4値判定することは可能である。ここで、4値判定ではなく位相の測定のみをしたとする。正規受信者も2値判定するに当たってしていることは位相の測定なので、両者とも位相測定をしていると解釈すれば両者の情報量は同じになる。しかしながら、本発明では揺らぎを伴ったキャリア光を利用していることが重要である。揺らぎのために必ずビット誤りがあり誤り訂正しなければならない。復号化は2値信号に対して行うので、最終的な信号を得るためには位相測定を行うだけでは不十分で必ず2値判定しなければならない。不正受信者が受信する信号の揺らぎ分布を模式的に示したものが図2(d)である。各信号状態の揺らぎが小さければ点線を境界線として4値判定可能になるが、各信号状態の揺らぎが重なり不正受信者のBERが正規受信者よりも悪くなることが見込まれる。誤り訂正符号の復号では2値判定された結果が必要なので不正受信者も復号に先立ち4値判定ではなく2値判定しなければならず、またこの時点でBERが確定する。不正受信者は基底を知らないために正規受信者よりも必然的にBERが大きくなり、正規受信者・送信者間の相互情報量と不正受信者・送信者間の相互情報量の差相当分の情報理論的安全性が保証される。   An unauthorized recipient does not know the seed key and cannot make a binary decision, but if the base number is 2, it can make a quaternary decision. Here, it is assumed that only phase measurement is performed instead of four-value determination. Since it is the phase measurement that the legitimate receiver is also making the binary decision, the amount of information is the same if both are interpreted as phase measurement. However, in the present invention, it is important to use carrier light accompanied by fluctuations. There is always a bit error due to fluctuation, and the error must be corrected. Since decoding is performed on a binary signal, it is not sufficient to perform phase measurement to obtain a final signal, and binary determination must be made. FIG. 2D schematically shows the fluctuation distribution of the signal received by the unauthorized receiver. If the fluctuation of each signal state is small, it becomes possible to make a quaternary determination using the dotted line as a boundary line. However, fluctuations of each signal state are overlapped and the BER of the unauthorized receiver is expected to be worse than that of the regular receiver. The decoding of the error correction code requires a binary determination result, so an unauthorized recipient must also make a binary determination rather than a 4-level determination prior to decoding, and the BER is determined at this point. Since illegitimate receivers do not know the basis, the BER is inevitably higher than that of authorized receivers, and the amount of mutual information between authorized receivers and senders and the amount of mutual information between unauthorized recipients and senders The information-theoretic safety is guaranteed.

図3に基底がq軸で信号が“1”の場合の正規受信者と不正受信者の2値判定に関する領域区分を示す。各領域の正規受信者の判定がB: “0”及びB: “1”で示され、不正受信者の判定がE: “0”及びE: “1”で示されている。正規受信者は基底を知っているのでqの正負判定をする。“1”の信号に対してq < 0になる確率がBERになる。不正受信者は正しい基底を知らないので4値判定できるのみで図3の場合、破線で区切られた4つの領域を判定することになる(図2(d)参照)。q軸及びp軸の正方向に“1”、負方向に“0”が割り振られていたならば、図3の左上から右下に引かれた破線の上側を“1”、下側を“0”と判定することになる。“1”の信号を仮定しているので“0”と判定する確率がBERになる。正規受信者と不正受信者が異なる判定をするのは図3の斜線部に測定値が入る場合である。領域1に測定値が入った場合、正規受信者は正しく判定したことになるが不正受信者は間違って判定したことになる。領域1に測定値が入る確率をP1とすればその確率分だけ不正受信者の不利分になる。一方、領域2に測定値が入った場合、正規受信者は誤って判定したことになり、不正受信者は正しく判定したことになる。領域2に測定値が入る確率をP2とすればその確率分だけ不正受信者は有利になる。したがって、両領域に測定値が入る確率の差(P1−P2)が不正受信者の不利分になる。この確率差を相互情報量の差に変換すれば情報理論的に安全性が保証された情報量を算出できる。 FIG. 3 shows region classifications relating to binary determination of a regular recipient and an unauthorized recipient when the basis is the q axis and the signal is “1”. The judgment of the legitimate recipient in each area is indicated by B: “0” and B: “1”, and the judgment of the illegal recipient is indicated by E: “0” and E: “1”. Since the legitimate receiver knows the basis, q is judged positive or negative. The probability of q <0 for a signal of “1” is BER. Since the unauthorized recipient does not know the correct base, only four-value determination can be made, and in the case of FIG. 3, four areas separated by broken lines are determined (see FIG. 2 (d)). If “1” is assigned to the positive direction of the q-axis and p-axis, and “0” is assigned to the negative direction, the upper side of the broken line drawn from the upper left to the lower right of FIG. It will be determined as “0”. Since a signal of “1” is assumed, the probability of determining “0” is BER. It is when the measured value enters the shaded area in FIG. 3 that the regular receiver and the unauthorized receiver make a different determination. When the measured value is entered in the area 1, the authorized receiver is judged correctly, but the unauthorized recipient is judged wrong. If the probability that the measured value enters the area 1 is P 1 , it is the disadvantage of the unauthorized recipient by that probability. On the other hand, when the measured value is entered in the area 2, the authorized receiver has made an erroneous determination, and the unauthorized receiver has made the correct determination. The probability that a measurement value enters the area 2 P 2 Tosureba its probability amount corresponding unauthorized recipient becomes advantageous. Therefore, the difference (P 1 −P 2 ) in the probability that the measured value enters both areas is a disadvantage for the unauthorized recipient. If this probability difference is converted into a mutual information difference, an information amount whose safety is guaranteed in terms of information theory can be calculated.

正規受信者と不正受信者の間に生成できたBERの差を有効に利用するためには誤り訂正符号を適切に設定する必要がある。もし、用いた誤り訂正符号が不正受信者のBERに対しても誤り訂正可能ならば復号後は正規受信者と不正受信者間で情報量の差がなくなってしまうからである。従って、誤り訂正可能か不可能かの閾値が正規受信者のBERと不正受信者のBERの中間値に設定されるのが適当である。また、この閾値の両側で誤り訂正能力が急激に変化することが望ましい。即ち、この閾値よりも低いBERに対してはほぼ確実に誤り訂正可能で、この閾値よりも高いBERに対してはほとんど誤り訂正不可になっていることが望ましい。一般に誤り訂正符号の誤り訂正可能なBERと訂正能力が急激に変化するBERの閾値は、個別の符号に依存するだけでなく、符号の冗長度、反復度、畳み込みの程度等によっても変化する。従って、本発明で要求される設定はこれらのパラメタを調整することによって行う。
(実施例2)
実施例1では送受信者間で予め種鍵を共有しておりそれを用いて送信基底の選択をした。キャリア光に揺らぎを伴うために基底の多値化が有効であった。しかしながら、種鍵を繰り返し利用すると揺らぎの効果が縮小する。一般に同じ揺らぎの同じ信号をm回測定すれば揺らぎは1/√mに縮小されるからである。したがって、同じ種鍵を繰り返し使う回数を極力減らすことが有効である。そこで信号と乱数を交互に送り、伝送された乱数を次回の伝送時における基底選択のための秘密鍵に利用することを考える。信号と乱数を1:1の比で伝送するとすれば同じ秘密鍵を2回ずつ使うことになる。揺らぎの効果は1/√2に縮小されるが、まだ十分な大きさである。
In order to effectively use the BER difference generated between the regular receiver and the illegal receiver, it is necessary to appropriately set an error correction code. This is because if the error correction code used can correct the error even with respect to the BER of the unauthorized recipient, there will be no difference in the amount of information between the authorized recipient and the unauthorized recipient after decoding. Therefore, it is appropriate to set the threshold of whether error correction is possible or not to an intermediate value between the BER of the regular receiver and the BER of the unauthorized receiver. In addition, it is desirable that the error correction capability changes rapidly on both sides of the threshold. That is, it is desirable that error correction is almost certainly possible for BER lower than this threshold value, and error correction is almost impossible for BER higher than this threshold value. In general, the error correcting BER of an error correcting code and the BER threshold at which the correction capability changes abruptly not only depend on the individual code, but also change depending on the redundancy of the code, the degree of repetition, the degree of convolution, and the like. Therefore, the setting required in the present invention is performed by adjusting these parameters.
(Example 2)
In the first embodiment, the seed key is shared between the sender and the receiver, and the transmission base is selected using the seed key. Since the carrier light is fluctuated, it is effective to make the base multilevel. However, if the seed key is repeatedly used, the effect of fluctuation is reduced. This is because, generally, if the same signal with the same fluctuation is measured m times, the fluctuation is reduced to 1 / √m. Therefore, it is effective to reduce the number of times the same seed key is repeatedly used as much as possible. Therefore, it is considered that a signal and a random number are alternately sent and the transmitted random number is used as a secret key for base selection at the next transmission. If the signal and the random number are transmitted at a ratio of 1: 1, the same secret key is used twice. The effect of fluctuation is reduced to 1 / √2, but still large enough.

本実施例を具体的に示したブロック図が図4である。信号列1をs1, s2, s3, …、乱数発生器140からの出力乱数列をr1, r2, r3, …とすれば合成器142において合成列s1, r1, s2, r2, s3, r3, …が形成され、符号器143において誤り訂正復号化される。 FIG. 4 is a block diagram specifically showing the present embodiment. The signal sequence 1 s 1, s 2, s 3, ..., r 1 an output random number sequence from the random number generator 140, r 2, r 3, synthesized in ... Tosureba combiner 142 column s 1, r 1, s 2 , r 2 , s 3 , r 3 ,... are formed and subjected to error correction decoding in the encoder 143.

ここでsiとrj (i, j = 1, 2, 3, …)は1ビットとは限らず任意のビット数でよい。siとrjが1ビットの場合は乱数ビットと信号ビットが交互に並べられた場合であり、siとrjが多ビットの場合はブロックごとに並べられた場合に相当する。さらに、乱数ビットと信号ビットの並びがランダムに見えるように並べ替えを行うことも有効である。乱数発生器140からの出力r1, r2, r3, …は次回の伝送時における基底選択用の秘密鍵に利用されるので種鍵141になる。この様子を示したのが図5である。受信機側では種鍵333に基づき変調器310において基底選択がなされ、検出器320において2値判定され、復号器330において乱数と信号の合成列s1, r1, s2, r2, s3, r3, …に復号される。次に分離器331により乱数列332 (r1, r2, r3, …)と信号列3 (s1, s2, s3, …)に分離され、乱数列332は次回の伝送時における基底選択用の秘密鍵に利用されるので種鍵333になる。 Here, s i and r j (i, j = 1, 2, 3,...) Are not limited to 1 bit and may be any number of bits. The case where s i and r j are 1 bit corresponds to the case where random number bits and signal bits are alternately arranged, and the case where s i and r j are multiple bits corresponds to the case where they are arranged for each block. Furthermore, it is also effective to perform rearrangement so that the arrangement of random number bits and signal bits looks random. Since the outputs r 1 , r 2 , r 3 ,... From the random number generator 140 are used as secret keys for base selection at the next transmission, they become seed keys 141. This is shown in FIG. On the receiver side, base selection is performed in the modulator 310 based on the seed key 333, binary determination is performed in the detector 320, and a combined sequence of random numbers and signals s 1 , r 1 , s 2 , r 2 , s in the decoder 330. 3, r 3, is decoded ... to. Next, the separator 331 separates the random number sequence 332 (r 1 , r 2 , r 3 ,...) And the signal sequence 3 (s 1 , s 2 , s 3 ,...). Since it is used as a secret key for base selection, it becomes a seed key 333.

合成器142において乱数列と信号列を並び替える場合、並べ替えの規則は予め決めておくものであるが、乱数発生器140から出力された乱数を元に並べ替えの規則を順次変えていくことも可能である。この並べ替えの規則を変えた乱数は上述のように受信機側に伝送されるので、受信機側でも並べ替え規則の変更に対応できる。
(実施例3)
実施例1、2においてはキャリア光の揺らぎを利用して安全な情報量Cを確保できることを示した。しかしながら、安全な情報量はC = I(X;Y) - I(X;Z)のみで、伝送されたビット数すべてが安全なわけではない。したがって、伝送したい信号すべてに安全性を保証する必要がある場合には別の仕組みが必要である。その一例を示したのが図6である。実施例1,2で信号としていた情報を乱数発生器1110から出力される乱数とし、ここでは乱数信号1と呼ぶことにする。乱数信号1は送信機100から伝送路201を通して受信機300まで実施例2の手続きにより伝送され、乱数信号3として出力される。乱数信号1、3は乱数なので情報そのものに意味がある訳ではない。そこで、ビット数縮小演算器1120及び3120により論理演算を繰り返して安全な情報量Cまで情報量を減らす。例えば、乱数信号列1,3をs1, s2, s3, s4, s5, s6, s7, s8,…としてti = s2i-1 + s2i(但し、i = 1, 2, 3, …、+は論理和を表す)と論理演算すればビット数は半分になる。この処理を繰り返せば、所望の情報量までビット数を減らすことができる。この処理は送信機側及び受信機側でまったく同じことを行うもので、所謂Privacy amplificationである(非特許文献3)。ビット数を減らされた乱数信号1121及び3121は情報理論的に安全性が保証された情報量Cになっているので、これをone-time-padの秘密鍵として実際に送りたい信号を暗号化して通常の暗号通信をすればよい。即ち、実際に送りたい信号11は、暗号鍵1121を用いて光送信機1130により伝送路202に送信され、光受信機3130において暗号鍵3121により平分に復号化され、最終的な出力信号31を得る。
When the synthesizer 142 rearranges the random number sequence and the signal sequence, the rearrangement rule is determined in advance, but the rearrangement rule is sequentially changed based on the random number output from the random number generator 140. Is also possible. Since the random number with the rearrangement rule changed is transmitted to the receiver side as described above, the receiver side can cope with the change of the rearrangement rule.
(Example 3)
In the first and second embodiments, it has been shown that a safe information amount C can be secured by using fluctuations in carrier light. However, the safe amount of information is only C = I (X; Y) -I (X; Z), and not all the transmitted bits are safe. Therefore, when it is necessary to guarantee the safety of all signals to be transmitted, another mechanism is necessary. An example is shown in FIG. The information used as the signal in the first and second embodiments is a random number output from the random number generator 1110 and is referred to as a random number signal 1 here. The random number signal 1 is transmitted from the transmitter 100 to the receiver 300 through the transmission path 201 by the procedure of the second embodiment, and is output as the random number signal 3. Since the random number signals 1 and 3 are random numbers, the information itself is not meaningful. Therefore, the amount of information is reduced to a safe amount of information C by repeating logical operations using the bit number reduction arithmetic units 1120 and 3120. For example, the random signal sequences 1 and 3 are represented as s 1 , s 2 , s 3 , s 4 , s 5 , s 6 , s 7 , s 8 ,..., T i = s 2i-1 + s 2i (where i = 1, 2, 3, ..., + represents a logical sum) and the number of bits is halved. By repeating this process, the number of bits can be reduced to a desired amount of information. This process is exactly the same on the transmitter side and the receiver side, and is so-called Privacy amplification (Non-patent Document 3). Since the random number signals 1121 and 3121 with the reduced number of bits are the amount of information C whose safety is guaranteed in terms of information theory, encrypt the signal that you want to send as a one-time-pad secret key. Normal encryption communication. That is, the signal 11 that is actually desired to be sent is transmitted to the transmission line 202 by the optical transmitter 1130 using the encryption key 1121, and is uniformly decrypted by the encryption key 3121 in the optical receiver 3130, and the final output signal 31 is obtained. obtain.

本実施例では伝送路は201と202の2つを利用するが両者とも通常の伝送路で十分である。両者は物理的に異なる伝送路でも構わないし、波長多重伝送のように物理的に同じ光伝送路であっても構わない。
(実施例4)
実施例3ではビット数縮小演算(Privacy amplification)を行い情報理論的に安全な情報量を確保した。しかしながら、一般の通信で常に情報理論的安全性が要求されるわけではなく、効率を上げるために安全性のレベルを下げることも考えうる。通常よく利用される計算量的安全性の暗号(ストリーム暗号、等)と揺らぎを伴うキャリア光を併用すれば、情報理論的安全性は達成できないまでも通常の計算量的安全性よりは高いレベルの安全性を実現できる。
In this embodiment, two transmission lines 201 and 202 are used, but normal transmission lines are sufficient for both. Both may be physically different transmission paths, or may be physically the same optical transmission path as in wavelength division multiplexing.
Example 4
In Example 3, a bit number reduction operation (Privacy amplification) was performed to secure a safe information amount in terms of information theory. However, information-theoretic safety is not always required in general communication, and it is conceivable to reduce the level of security in order to increase efficiency. If the cryptographic security (stream cipher, etc.) that is usually used frequently and carrier light with fluctuation are used in combination, even if information theoretical security cannot be achieved, the level is higher than normal computational security. Can be realized.

図7はそれを実現する一例のブロック図である。予め送受信者間で共有した種鍵141の一部を用いて擬似乱数発生器150により擬似乱数列を発生させ、暗号器151において信号1を暗号化する。その後は実施例2と同様な手続きにより乱数発生器140からの出力列と暗号化された信号列から合成器142において合成列を形成し、符号器143により誤り訂正符号化し、変調器130において110及び120により生成されたキャリア光に符号化された信号を重畳する。変調器130における基底選択は種鍵141の一部を用いて行う。受信機側では種鍵333の一部を用いて実施例2と同様に変調器310において基底選択を行い、検出器320において2値判定し、復号器330において誤り訂正符号の復号化を行い、分離器331において乱数と暗号化された信号を分離する。暗号化された信号は復号器341により暗号が解かれて出力信号3を得る。暗号の復号においては、種鍵333の一部を用いて擬似乱数発生器340を駆動し、その出力擬似乱数列を利用する。   FIG. 7 is a block diagram of an example for realizing it. A pseudo-random number generator 150 generates a pseudo-random number sequence using a part of the seed key 141 shared in advance between the sender and the receiver, and the encryptor 151 encrypts the signal 1. Thereafter, a synthesized sequence is formed in the synthesizer 142 from the output sequence from the random number generator 140 and the encrypted signal sequence by the same procedure as in the second embodiment, and error correction coding is performed by the encoder 143. And 120, the encoded signal is superimposed on the carrier light generated by 120. Base selection in the modulator 130 is performed using a part of the seed key 141. On the receiver side, using a part of the seed key 333, the base is selected in the modulator 310 in the same manner as in the second embodiment, the binary determination is made in the detector 320, and the error correction code is decoded in the decoder 330, The separator 331 separates the random number and the encrypted signal. The encrypted signal is decrypted by the decryptor 341 to obtain the output signal 3. In decryption, the pseudorandom number generator 340 is driven using a part of the seed key 333, and the output pseudorandom number sequence is used.

乱数発生器140からの出力は上記の伝送を通して送受信者間で共有され、実施例2と同様に次回の信号伝送における基底選択に利用されると共に、一部は擬似乱数発生器150及び340を駆動するための種鍵更新としても利用される。
(実施例5)
実施例4では擬似乱数を用いた暗号と揺らぎを伴うキャリア光の併用したシステムについて記述した。乱数発生器140からの出力列と信号列1の合成は信号列1を暗号化してから行った。しかしながら暗号化は、乱数発生器140からの出力乱数列と信号列1の合成後に行うことも可能である。図8にその場合のブロック図を示す。送信機内の暗号器151と合成器142の順番が図7と比べて入れ替わっている。同様に受信機内の分離器331と復号器341の順番が図7と図8とでは入れ替わっている。この順番が入れ替わっていること以外は本実施例の手続きは実施例4と同様である。本実施例では乱数を含めて暗号化されるので解読がより困難になる。
(実施例6)
実施例4及び5においては、擬似乱数を用いた暗号と揺らぎを伴うキャリア光を併用したシステムについて述べた。これらのシステムを実施例3で述べた鍵生成システムに適用することも可能である。即ち、図7及び図8の送受信機を図6の送受信機に適用することができる。この場合、ビット数縮小演算器1120及び3120では要求する安全性のレベルに応じて縮小されるビット数を決めればよい。
(実施例7)
実施例6まではレーザー光源110からの出力光を揺らぎ生成器120により揺らぎを伴う光にしてから変調器130において信号重畳がなされた。しかしながら、揺らぎの生成は信号重畳後においても可能である。従って、揺らぎ生成器120と変調器130の順番を入れ替えることが可能であり、例えば、図4の送受信系に対してそれを実現したものを図9に示す。他のシステム構成に対してもこの入れ替えは可能である。
(実施例8)
揺らぎ生成器120は様々な形態が考えられるが光ファイバのカー効果を使った方法が便利である。一例を図10に示す。レーザー光源110からの出力光は光アンプ121により増幅され、帯域フィルタ122を通過して光ファイバ123を伝播する。この際、光ファイバのカー効果を通して位相揺らぎが加わる。レーザー出力光はコヒーレント状態で比較的よく記述でき、位相空間上の揺らぎの形が円形であるが、光ファイバのカー効果を通して楕円形、またさらに進んで三日月形になる。このように揺らぎの形が楕円形や三日月形になった光をアンチスクイズド光と呼ぶ(非特許文献4および非特許文献5)。カー効果は光強度に比例して大きくなるので、パルス光にしてピーク強度を大きくするのが有効である。この場合、ファイバ伝播に伴うパルス広がりを抑えることが効果的であり、ソリトン条件を満足するようにパルス幅、光強度、ファイバの分散値を選ぶと良い(特許文献1)。また上記のソリトン条件よりもさらに光強度を増加させると高次ソリトンの条件を満たすことが可能になり(特許文献1)、パルス幅縮小効果が働きカー効果を増強することができる。またその際スペクトル幅が拡大することになり、スペクトルの拡大は位相検出において位相揺らぎと同等な効果を示すのでさらに揺らぎの効果が増強される。またカー効果と同様にラマン効果も位相揺らぎの拡大に有効である。
The output from the random number generator 140 is shared between the sender and receiver through the above transmission, and is used for base selection in the next signal transmission as in the second embodiment, and partly drives the pseudo random number generators 150 and 340. It is also used as a seed key update.
(Example 5)
In the fourth embodiment, a system using a combination of encryption using pseudo-random numbers and carrier light with fluctuation is described. The synthesis of the output sequence from the random number generator 140 and the signal sequence 1 was performed after the signal sequence 1 was encrypted. However, encryption can also be performed after the output random number sequence from the random number generator 140 and the signal sequence 1 are combined. FIG. 8 shows a block diagram in that case. The order of the encryptor 151 and the combiner 142 in the transmitter is switched compared to that in FIG. Similarly, the order of the separator 331 and the decoder 341 in the receiver is switched between FIG. 7 and FIG. The procedure of this example is the same as that of Example 4 except that this order is changed. In this embodiment, since encryption is performed including random numbers, decryption becomes more difficult.
(Example 6)
In the fourth and fifth embodiments, a system is described in which encryption using pseudo-random numbers and carrier light with fluctuation are used in combination. These systems can also be applied to the key generation system described in the third embodiment. That is, the transceiver of FIGS. 7 and 8 can be applied to the transceiver of FIG. In this case, the bit number reduction calculators 1120 and 3120 may determine the number of bits to be reduced according to the required level of security.
(Example 7)
Until Example 6, the output light from the laser light source 110 was converted into light accompanied by fluctuations by the fluctuation generator 120 and then the signal was superimposed in the modulator 130. However, fluctuations can be generated even after signal superposition. Therefore, it is possible to change the order of the fluctuation generator 120 and the modulator 130. For example, FIG. 9 shows what has been realized for the transmission / reception system of FIG. This replacement is possible for other system configurations.
(Example 8)
Although the fluctuation generator 120 can take various forms, a method using the Kerr effect of an optical fiber is convenient. An example is shown in FIG. Output light from the laser light source 110 is amplified by the optical amplifier 121, passes through the band filter 122, and propagates through the optical fiber 123. At this time, phase fluctuation is applied through the Kerr effect of the optical fiber. The laser output light can be described relatively well in the coherent state, and the shape of the fluctuation in the phase space is circular, but it becomes elliptical through the Kerr effect of the optical fiber, and further progresses into a crescent shape. Light in which the shape of the fluctuation is elliptical or crescent is called anti-squeezed light (Non-Patent Document 4 and Non-Patent Document 5). Since the Kerr effect increases in proportion to the light intensity, it is effective to increase the peak intensity using pulsed light. In this case, it is effective to suppress the pulse spread accompanying the fiber propagation, and it is preferable to select the pulse width, the light intensity, and the fiber dispersion value so as to satisfy the soliton condition (Patent Document 1). Further, if the light intensity is further increased than the above soliton condition, it becomes possible to satisfy the condition of higher-order soliton (Patent Document 1), and the pulse width reduction effect works to enhance the Kerr effect. Further, at that time, the spectrum width is expanded, and the spectrum expansion exhibits the same effect as the phase fluctuation in the phase detection, so that the effect of the fluctuation is further enhanced. Similar to the Kerr effect, the Raman effect is also effective in expanding phase fluctuations.

図11は光サーキュレータ124とファラデーミラー125を用いてファイバ伝播の部分を往復にした実施例である。ファイバ長を半分にできる点が有利である。また、ファイバ伝播中の偏波状態に係わらずファイバ123を1往復した時点で偏波がちょうど90度回転するので、揺らぎ生成器出力時の偏波を安定させたい場合に有効である。さらに、揺らぎ生成器120内にファイバ干渉計を組み、振幅に対する位相揺らぎの比を大きくして、位相揺らぎの効果を大きくすることも有効である (非特許文献5)。
(実施例9)
実施例8においては光ファイバのカー効果で揺らぎを生成することを示した。揺らぎはその他熱揺らぎを始めとして様々な方法で生成することができる。一方、乱数発生器を用いて算術的に揺らぎ相当分の位相を付加することも可能である。図4のシステムに対してそれを実現した一例を図12に示す。乱数発生器115からの出力を揺らぎに見立てるために多値化し(回路116)、それと誤り訂正符号化された合成列及び種鍵141に基づく基底選択の信号を回路144において加算して変調器130への入力信号とする。この場合、キャリア光そのものの揺らぎは基本的にコヒーレント状態であるが、多くのビットを平均して見ると図2に示すような三日月形の揺らぎになる。信号列1から信号列3を得る手順は実施例2と同様である。
FIG. 11 shows an embodiment in which an optical circulator 124 and a Faraday mirror 125 are used to reciprocate the fiber propagation portion. The advantage is that the fiber length can be halved. Also, since the polarization rotates exactly 90 degrees when the fiber 123 is reciprocated once regardless of the polarization state during fiber propagation, it is effective when it is desired to stabilize the polarization at the output of the fluctuation generator. It is also effective to incorporate a fiber interferometer in the fluctuation generator 120 and increase the ratio of the phase fluctuation to the amplitude to increase the effect of the phase fluctuation (Non-Patent Document 5).
Example 9
In Example 8, it was shown that the fluctuation was generated by the Kerr effect of the optical fiber. Fluctuations can be generated in various ways, including other thermal fluctuations. On the other hand, it is also possible to add a phase corresponding to the fluctuation arithmetically using a random number generator. An example of realizing it for the system of FIG. 4 is shown in FIG. In order to make the output from the random number generator 115 fluctuate, the signal is converted into a multi-value (circuit 116), and the base selection signal based on the composite sequence and the seed key 141 which has been subjected to error correction coding is added in the circuit 144 to be added to the modulator 130. As an input signal. In this case, the fluctuation of the carrier light itself is basically a coherent state, but when many bits are averaged, a crescent shaped fluctuation as shown in FIG. 2 is obtained. The procedure for obtaining the signal sequence 3 from the signal sequence 1 is the same as in the second embodiment.

また、図13に示すように多値化した乱数を用いてレーザーを直接電流変調して揺らぎに見立てる方法もある。
(実施例10)
位相変調方式の場合、検出器320は平衡型ホモダイン検出器を用いることができる。図14にDPSK方式対応の平衡型ホモダイン検出器を示す。DPSK方式では隣り合うビット間の位相差に信号が重畳されているので、1ビット遅延干渉計321を用いて隣り合うビット間で信号光を干渉させた上で2個の光検出器322及び323により電気信号に変換する。差動回路324は2つの電気信号の差を取るもので、これが出力信号となる。この出力は位相空間上にある信号をある軸方向に射影したものになっている。どの軸方向への射影になるかは1ビット遅延干渉計321の2つの光路の位相差で決まる。図2(c)の場合はq軸の値により信号判定する設定になっており、1ビット遅延干渉計321は射影軸がq軸になるように設定する。PSKの場合は、1ビット遅延干渉計321が不要になるが、参照光源が必要になりその参照光と信号光の干渉信号が2つの光検出器で電気信号に変換される。
Further, as shown in FIG. 13, there is a method in which the laser is directly current-modulated using a multi-valued random number to make it appear as a fluctuation.
(Example 10)
In the case of the phase modulation method, the detector 320 can be a balanced homodyne detector. FIG. 14 shows a balanced homodyne detector corresponding to the DPSK system. Since the signal is superimposed on the phase difference between adjacent bits in the DPSK method, the two photodetectors 322 and 323 are used after interfering the signal light between adjacent bits using a 1-bit delay interferometer 321. Is converted into an electric signal. The differential circuit 324 takes a difference between two electrical signals, and this becomes an output signal. This output is obtained by projecting a signal in the phase space in a certain axial direction. The axial direction of projection is determined by the phase difference between the two optical paths of the 1-bit delay interferometer 321. In the case of FIG. 2 (c), the signal is determined based on the q-axis value, and the 1-bit delay interferometer 321 is set so that the projection axis is the q-axis. In the case of PSK, the 1-bit delay interferometer 321 is not necessary, but a reference light source is necessary, and the interference signal between the reference light and the signal light is converted into an electrical signal by two photodetectors.

2値信号の場合は、上記のように平衡型ホモダイン検出器は1組でよいが、4値信号になれば2つの直交位相成分の出力が必要になるので2組の平衡型ホモダイン検出器を用いる。また、さらに多値にした場合でも2次元の位相空間内の座標を決定すればよいので4値信号の場合と同様に2組の平衡型ホモダイン検出器を用意すれば信号検出可能である。
(実施例11)
実施例10までは2値で2基底の位相変調方式を例にとって示してきた。しかしながら、本発明は強度変調方式においても適用可能で、強度変調方式の場合の最も基本的な部分のブロックを示したのが図15である。図16には2値で2基底の場合の強度分布関数の様子を示す。強度変調方式では“0”, “1”の信号強度が基底に依存して変化する。2値で2基底の場合、信号状態は合計4値になる。受信機では選択した基底に依存して判定閾値を変化させる。その結果、正規受信者は揺らぎによって引き起こされる僅かなビット誤り以外は正確に受信できるが、不正受信者は基底を知らないので、図16(d)に示すように4値判定しかできない。4値の信号の確率分布には重なりがあるためにビット誤りが多くなる。
In the case of a binary signal, one set of balanced homodyne detectors is sufficient as described above. However, if a quaternary signal is used, the output of two quadrature components is required, so two balanced homodyne detectors are used. Use. Even in the case of further multi-values, the coordinates can be determined in the two-dimensional phase space, so that signals can be detected by preparing two sets of balanced homodyne detectors as in the case of four-value signals.
(Example 11)
Up to the tenth embodiment, a binary and two-basis phase modulation method has been shown as an example. However, the present invention can also be applied to the intensity modulation system, and FIG. 15 shows the most basic block in the case of the intensity modulation system. FIG. 16 shows the intensity distribution function in the case of two values and two bases. In the intensity modulation method, the signal intensity of “0” and “1” varies depending on the base. In the case of two values and two bases, the signal state is a total of four values. The receiver changes the determination threshold depending on the selected base. As a result, the legitimate receiver can accurately receive other than a few bit errors caused by fluctuations, but since the illegal receiver does not know the basis, only a four-value determination can be made as shown in FIG. Bit errors increase because of the overlap in the probability distribution of quaternary signals.

検出器320で行っていることが2値判定や領域判定ではなく強度測定であると考えれば、正規受信者と不正受信者が行っていることは同じになり、両者が持つ情報量には差がないことになるが、本発明では揺らぎの大きい光を使うためにビット誤りが存在し、誤り訂正符号を復号化しなければならない。その際、必ず2値判定しなければならず、不正受信者は基底を知らない分だけBERが大きくなる。これにより正規の送受信者間で安全な情報量を確保できる。   If it is thought that what the detector 320 is doing is intensity measurement rather than binary judgment or area judgment, what the authorized receiver and unauthorized recipient do is the same, and there is a difference in the amount of information held by both However, in the present invention, there is a bit error in order to use light with a large fluctuation, and the error correction code must be decoded. At that time, a binary decision must be made, and the BER increases by the amount that the unauthorized recipient does not know the basis. As a result, it is possible to secure a safe amount of information between authorized senders and receivers.

以上述べたように、強度変調方式においても位相変調方式の場合と同様な原理で情報理論的に安全な通信が可能になる。図15は、図1の位相変調方式の場合のものを強度変調方式の場合に変更したものである。両方式の主な違いは、送信機側では位相変調器130が強度変調器になる。受信機側では基底選択に位相変調器310を用いるのではなく検出器320内において判定閾値を変化させることで行う。その他の手続きは位相変調方式でも強度変調方式でも同じである。また両方式において個別部品の構成は変わるが、実施例10までに述べた位相変調方式の原理的なことは強度変調方式の場合でもすべて適用できる。   As described above, even in the intensity modulation system, information-theoretically safe communication can be performed based on the same principle as in the case of the phase modulation system. FIG. 15 is obtained by changing the phase modulation method in FIG. 1 to the intensity modulation method. The main difference between the two systems is that the phase modulator 130 becomes an intensity modulator on the transmitter side. On the receiver side, instead of using the phase modulator 310 for base selection, the decision threshold is changed in the detector 320. Other procedures are the same for both the phase modulation method and the intensity modulation method. In both systems, the configuration of the individual components varies, but all the principles of the phase modulation method described up to the tenth embodiment can be applied even in the case of the intensity modulation method.

位相変調方式を主な例に取って実施例を述べた。実施例11で言及したように、本発明は位相変調方式及び強度変調方式の区別無く成立するものである。また、2値、2基底を例にとって実施例を述べたが、さらに多値、多基底の場合でも本発明を適用することができる。   The embodiment has been described by taking the phase modulation method as a main example. As mentioned in the eleventh embodiment, the present invention is established without distinction between the phase modulation method and the intensity modulation method. Further, although the embodiment has been described by taking the binary and the two bases as an example, the present invention can be applied to the case of the multivalue and the multi bases.

本発明では揺らぎを用いれば情報理論的に安全な通信が可能になることを示した。計算量的な安全性ではなく情報理論的に保証された安全性は計算機の能力が向上しても安全性が低下することはなく極めてレベルの高い安全性を与える。従って、潜在需要は高いと考えられる。また、本発明は現在の技術レベルでも十分に実用的なシステムを構築できるものであり、産業上の利用の可能性は高い。
付記:
1. 乱数発生器と、誤り訂正符号化する符号器と、レーザー光源と、そのレーザー光源からの出力光に位相揺らぎまたは強度揺らぎを発生させる手段と、変調器を具備する送信機と、
伝送されてきた信号光の位相又は強度を測定又は判定する手段と誤り訂正符号の復号器を具備する受信機と、
送受信機間に設けられた伝送路とを有し、
入力信号列に前記乱数発生器からの出力乱数列を加えた合成列が、前記符号器により符号化され、前記符号はnビット(nは1以上の整数)ごとに区切られて2n値として前記変調器において前記揺らぎを伴ったレーザー光に重畳され、
前記符号重畳の際の送信基底の数はn + 1以上とし、前記送信機側と前記受信機側間であらかじめ乱数からなる種鍵を共有し、1個目の符号の送信基底は前記種鍵の値により決定され、2個目以降の符号の送信基底は前記種鍵及び/又は前記乱数発生器からの前記出力乱数列により決定され、
受信機側では、前記送信側と同様に1個目の符号の受信基底が前記種鍵の値により決定され、2個目以降の符号の受信基底が前記種鍵及び/または1個目以降に伝送されてきた符号を構成する前記乱数発生器からの前記出力乱数列により決定され、その決定された基底を用いて前記伝送路を通して伝送されてきた符号重畳光が受信され、前記復号器により前記合成列に復号化され、復号化された前記合成列は前記乱数列と前記信号列に分離され、前記分離された乱数列は新たに送受信者間で共有された種鍵として前記2個目以降の符号の受信基底決定に利用されるものであり、
前記揺らぎを発生させる手段には光ファイバを具備し、前記レーザー光源からの出力光は高次ソリトン効果によりスペクトル拡大し、それを通して位相揺らぎが生じることを特徴とする光通信システム。
2.乱数発生器と、擬似乱数発生器と、誤り訂正符号化する符号器と、レーザー光源と、そのレーザー光源からの出力光に位相揺らぎまたは強度揺らぎを発生させる手段と、変調器を具備する送信機と、
伝送されてきた信号光の位相または強度を測定又は判定する手段と、誤り訂正符号の復号器と、擬似乱数発生器を具備する受信機と、
送受信機間に設けられた伝送路とを有し、
前記送信機側と前記受信機側間であらかじめ乱数からなる種鍵を共有し、前記種鍵の一部を入力として前記送信機内擬似乱数発生器から出力擬似乱数列を出力させ、入力信号列に前記乱数発生器からの出力乱数列を加えた合成列を前記擬似乱数列により暗号化し、前記暗号化された合成列は前記符号器により符号化され、前記符号はnビット(nは1以上の整数)ごとに区切られて2n値として前記変調器において前記揺らぎを伴ったレーザー光に重畳され、前記符号重畳の際の送信基底の数はn + 1以上とし、1個目の符号の送信基底は前記種鍵の残りの一部により決定され、2個目以降の符号の送信基底は前記種鍵及び/又は前記乱数発生器からの前記出力乱数列により決定され、前記出力乱数列の一部は前記擬似乱数発生器への入力鍵の刷新に利用され、
受信機側では、前記送信側と同様に1個目の符号の受信基底が前記種鍵の値により決定され、2個目以降の符号の受信基底が前記種鍵及び/または1個目以降に伝送されてきた符号を構成する前記乱数発生器からの前記出力乱数列により決定され、その決定された基底を用いて前記伝送路を通して伝送されてきた符号重畳光が受信され、前記復号器により前記暗号化された合成列に復号化され、前記送信側と同様にして前記種鍵の一部を用いて前記受信機内擬似乱数発生器から出力される擬似乱数列により前記暗号化された合成列の暗号が解かれ、暗号化が解かれた前記合成列は前記乱数列と前記信号列に分離され、前記分離された乱数列は新たに送受信者間で共有された種鍵として前記2個目以降の符号の送受信基底決定及び擬似乱数発生器の入力鍵刷新に利用されるものであり、
前記揺らぎを発生させる手段には光ファイバを具備し、前記レーザー光源からの出力光は高次ソリトン効果によりスペクトル拡大し、それを通して位相揺らぎが生じることを特徴とする光通信システム。
In the present invention, it has been shown that if the fluctuation is used, it is possible to perform secure communication in terms of information theory. The safety that is guaranteed in terms of information theory, not the computational safety, does not decrease the safety even if the computer performance is improved, and gives a very high level of safety. Therefore, the potential demand is considered high. In addition, the present invention can construct a sufficiently practical system even at the current technical level, and has high industrial applicability.
Note:
1. A random number generator, an encoder for error correction coding, a laser light source, means for generating phase fluctuation or intensity fluctuation in output light from the laser light source, and a transmitter comprising a modulator,
A receiver comprising means for measuring or determining the phase or intensity of the transmitted signal light and a decoder for an error correction code;
A transmission line provided between the transceiver and
A composite sequence obtained by adding the output random number sequence from the random number generator to the input signal sequence is encoded by the encoder, and the code is divided into n bits (n is an integer of 1 or more) to obtain 2 n values. Superimposed on the laser beam with the fluctuation in the modulator,
The number of transmission bases at the time of code superposition is n + 1 or more, and a seed key consisting of random numbers is shared in advance between the transmitter side and the receiver side, and the transmission base of the first code is the seed key The transmission base of the second and subsequent codes is determined by the seed key and / or the output random number sequence from the random number generator,
On the receiver side, the reception base of the first code is determined by the value of the seed key as in the transmission side, and the reception base of the second and subsequent codes is determined by the seed key and / or the first and subsequent keys. Determined by the output random number sequence from the random number generator constituting the transmitted code, the code superimposed light transmitted through the transmission path using the determined base is received, and the decoder Decrypted into a composite sequence, the decrypted composite sequence is separated into the random number sequence and the signal sequence, and the separated random number sequence is the second and subsequent seed keys that are newly shared between the sender and the receiver Used to determine the reception base of the code of
An optical communication system characterized in that the means for generating fluctuations comprises an optical fiber, and the output light from the laser light source is spectrum-expanded by a high-order soliton effect, and phase fluctuations are generated therethrough.
2. Random number generator, pseudo-random number generator, encoder for error correction encoding, laser light source, means for generating phase fluctuation or intensity fluctuation in output light from the laser light source, and transmitter comprising a modulator When,
Means for measuring or determining the phase or intensity of the transmitted signal light; a decoder for error correction code; and a receiver comprising a pseudo-random number generator;
A transmission line provided between the transceiver and
A seed key consisting of random numbers is shared in advance between the transmitter side and the receiver side, and an output pseudo-random number sequence is output from the pseudo-random number generator in the transmitter with a part of the seed key as an input, to the input signal sequence A composite sequence obtained by adding an output random number sequence from the random number generator is encrypted with the pseudo-random number sequence, the encrypted composite sequence is encoded by the encoder, and the code has n bits (n is 1 or more). for each integer) separated by being superimposed on the laser beam with the fluctuations in the modulator as a 2 n values, the number of transmission basis during code superimposed to the n + 1 or more, transmission of 1 th code The basis is determined by the remaining part of the seed key, the transmission base of the second and subsequent codes is determined by the seed key and / or the output random number sequence from the random number generator, and one of the output random number sequences. Is useful for renewing the input key to the pseudo-random number generator. It is,
On the receiver side, the reception base of the first code is determined by the value of the seed key, as in the transmission side, and the reception base of the second and subsequent codes is determined by the seed key and / or the first and subsequent keys. Determined by the output random number sequence from the random number generator constituting the transmitted code, the code superimposed light transmitted through the transmission path using the determined base is received, and the decoder The encrypted composite sequence is decrypted by the pseudo random number sequence output from the pseudo random number generator in the receiver using a part of the seed key in the same manner as the transmission side. The combined sequence that has been decrypted and decrypted is separated into the random number sequence and the signal sequence, and the separated random number sequence is the second and subsequent seed keys that are newly shared between the sender and the receiver Code base and pseudo-random number generator It is intended to be used to input key innovation,
An optical communication system characterized in that the means for generating fluctuation comprises an optical fiber, and the output light from the laser light source is expanded in spectrum by a high-order soliton effect, and phase fluctuation occurs through the spectrum.

本発明の基本的部分に対する構成の一例を示すブロック図。The block diagram which shows an example of a structure with respect to the fundamental part of this invention. 位相変調方式における2値信号、2基底の場合の位相空間内の各信号の揺らぎを示す図(a, b)と、正規受信者の受信信号状態(c)及び不正受信者の受信信号状態(d)を示す図。Figure (a, b) showing the fluctuation of each signal in the phase space in the case of binary signal and two bases in the phase modulation method, the reception signal state of the regular receiver (c) and the reception signal state of the unauthorized receiver ( The figure which shows d). q軸を基底として“1”の信号を送信した場合の受信側における位相空間内の各座標値に対する “0”, “1”判定を示す図。“B”は正規受信者を示し、“E”は不正受信者を示す。The figure which shows "0" and "1" judgment with respect to each coordinate value in the phase space in the receiving side at the time of transmitting a signal of "1" on the q axis. “B” indicates an authorized recipient, and “E” indicates an unauthorized recipient. 本発明の構成の一例を示すブロック図。The block diagram which shows an example of a structure of this invention. 基底と合成列の関係を示すブロック図。The block diagram which shows the relationship between a base and a synthetic sequence. 本発明の構成の一例を示すブロック図。The block diagram which shows an example of a structure of this invention. 本発明の構成の一例を示すブロック図。The block diagram which shows an example of a structure of this invention. 本発明の構成の一例を示すブロック図。The block diagram which shows an example of a structure of this invention. 本発明の構成の一例を示すブロック図。The block diagram which shows an example of a structure of this invention. 揺らぎ生成器の構成の一例を示すブロック図。The block diagram which shows an example of a structure of a fluctuation generator. 揺らぎ生成器の構成の一例を示すブロック図。The block diagram which shows an example of a structure of a fluctuation generator. 本発明の構成の一例を示すブロック図。The block diagram which shows an example of a structure of this invention. 本発明の構成の一例を示すブロック図。The block diagram which shows an example of a structure of this invention. 検出器の構成の一例を示すブロック図。The block diagram which shows an example of a structure of a detector. 強度変調方式における本発明の基本的部分に対する構成の一例を示すブロック図。The block diagram which shows an example of a structure with respect to the fundamental part of this invention in an intensity | strength modulation system. 強度変調方式における2値信号、2基底の場合の揺らぎを伴う各信号値の強度分布示す図(a, b)と、正規受信者の受信信号状態(c)及び不正受信者の受信信号状態(d)を示す図。Binary signal in intensity modulation system, diagrams showing the intensity distribution of each signal value with fluctuations in the case of two bases (a, b), received signal status (c) of the regular receiver and received signal status of the unauthorized receiver ( The figure which shows d).

符号の説明Explanation of symbols

1…信号(乱数信号)、3…信号(乱数信号)、11…信号、31…信号、100…送信機、110…レーザー光源、115…乱数発生器、116…多値化回路、120…揺らぎ生成器、121…光アンプ、122…帯域透過フィルタ、123…光ファイバ、124…サーキュレータ、125…ファラデーミラー、130…変調器、140…乱数発生器、141…種鍵、142…合成器、143…符号器、144…加算回路、150…擬似乱数発生器、151…暗号器、
201…光伝送路、202…光伝送路、
300…受信機、310…変調器、320…検出器、321…1ビット遅延干渉計、322…光検出器、323…光検出器、324…差動出力回路、330…復号器、331…分離器、332…乱数、333…種鍵、340…擬似乱数発生器、341…復号器、
1000…送信装置、1110…乱数発生器、1120…ビット数縮小演算器、1121…暗号鍵、1130…光送信機、
3000…受信装置、3120…ビット数縮小演算器、3121…暗号鍵、3130…光受信機
DESCRIPTION OF SYMBOLS 1 ... Signal (random number signal), 3 ... Signal (random number signal), 11 ... Signal, 31 ... Signal, 100 ... Transmitter, 110 ... Laser light source, 115 ... Random number generator, 116 ... Multi-valued circuit, 120 ... Fluctuation Generator 121, optical amplifier 122, band pass filter 123, optical fiber 124, circulator 125, Faraday mirror 130, modulator 140, random number generator 141, seed key 142, combiner 143 ... Encoder, 144 ... Adder circuit, 150 ... Pseudo random number generator, 151 ... Encryptor,
201: optical transmission path, 202: optical transmission path,
DESCRIPTION OF SYMBOLS 300 ... Receiver, 310 ... Modulator, 320 ... Detector, 321 ... 1 bit delay interferometer, 322 ... Photo detector, 323 ... Photo detector, 324 ... Differential output circuit, 330 ... Decoder, 331 ... Separation 332 ... random number, 333 ... seed key, 340 ... pseudo random number generator, 341 ... decoder,
1000 ... Transmitting device, 1110 ... Random number generator, 1120 ... Bit number reduction computing unit, 1121 ... Encryption key, 1130 ... Optical transmitter,
3000 ... receiving device, 3120 ... bit number reduction calculator, 3121 ... encryption key, 3130 ... optical receiver

Claims (20)

乱数発生器と、誤り訂正符号化する符号器と、レーザー光源と、そのレーザー光源からの出力光に位相揺らぎまたは強度揺らぎを発生させる手段と、変調器を具備する送信機と、
伝送されてきた信号光の位相又は強度を測定又は判定
する手段と誤り訂正符号の復号器を具備する受信機と、
送受信機間に設けられた伝送路とを有し、
入力信号列に前記乱数発生器からの出力乱数列を加えた合成列が、前記符号器により符号化され、前記符号はnビット(nは1以上の整数)ごとに区切られて2n値として前記変調器において前記揺らぎを伴ったレーザー光に重畳され、
前記符号重畳の際の送信基底の数はn + 1以上とし、前記送信機側と前記受信機側間であらかじめ乱数からなる種鍵を共有し、1個目の符号の送信基底は前記種鍵の値により決定され、2個目以降の符号の送信基底は前記種鍵及び/又は前記乱数発生器からの前記出力乱数列により決定され、
受信機側では、1個目の符号の受信基底が前記種鍵の値により決定され、2個目以降の符号の受信基底が前記種鍵及び/または1個目以降に伝送されてきた符号を構成する前記乱数発生器からの前記出力乱数列により決定され、その決定された基底を用いて前記伝送路を通して伝送されてきた符号重畳光が受信され、前記復号器により前記合成列に復号化され、復号化された前記合成列は前記乱数列と前記信号列に分離され、前記分離された乱数列は新たに送受信者間で共有された種鍵として前記2個目以降の符号の受信基底決定に利用されることを特徴とする光通信システム。
A random number generator, an encoder for error correction coding, a laser light source, means for generating phase fluctuation or intensity fluctuation in output light from the laser light source, and a transmitter comprising a modulator,
A receiver comprising means for measuring or determining the phase or intensity of the transmitted signal light and a decoder for error correction code;
A transmission path provided between the transceiver and
A composite sequence obtained by adding the output random number sequence from the random number generator to the input signal sequence is encoded by the encoder, and the code is divided into n bits (n is an integer of 1 or more) to obtain 2 n values. Superimposed on the laser beam with the fluctuation in the modulator,
The number of transmission bases at the time of code superposition is n + 1 or more, and a seed key consisting of random numbers is shared in advance between the transmitter side and the receiver side, and the transmission base of the first code is the seed key The transmission base of the second and subsequent codes is determined by the seed key and / or the output random number sequence from the random number generator,
On the receiver side, the receiving base of the first code is determined by the value of the seed key, and the receiving base of the second and subsequent codes is the seed key and / or the code transmitted after the first one. Determined by the output random number sequence from the random number generator constituting, and the code superimposed light transmitted through the transmission line using the determined basis is received and decoded into the combined sequence by the decoder Then, the decoded composite sequence is separated into the random number sequence and the signal sequence, and the separated random number sequence is used as a seed key shared between the sender and the receiver to determine the reception basis of the second and subsequent codes. An optical communication system, characterized in that it is used in an optical system.
前記乱数列と前記入力信号列から形成された前記合成列は並び替えが行われてから前記誤り訂正符号化されることを特徴とする請求項1記載の光通信システム。   2. The optical communication system according to claim 1, wherein the composite sequence formed from the random number sequence and the input signal sequence is subjected to the error correction coding after being rearranged. 前記合成列が形成される前に入力信号列が暗号化されていることを特徴とする請求項1記載の光通信システム。   2. The optical communication system according to claim 1, wherein an input signal sequence is encrypted before the composite sequence is formed. 前記誤り訂正符号化する前に前記合成列が暗号化されていることを特徴とする請求項1記載の光通信システム。   2. The optical communication system according to claim 1, wherein the composite sequence is encrypted before the error correction coding. 前記誤り訂正符号はあるビット誤り率(BER)を境に低BER側は誤り訂正可能であるが高BER側は誤り訂正不可に設定させたものとし、受信機側のBERが前記低BER側になるように誤り訂正符号が設定されていることを特徴とする請求項1記載の光通信システム。   The error correction code is set so that error correction is possible on the low BER side at a certain bit error rate (BER), but error correction is impossible on the high BER side, and the BER on the receiver side is set to the low BER side. The optical communication system according to claim 1, wherein an error correction code is set so as to satisfy. 前記入力信号が乱数信号であり、
送受信されたその乱数信号からプライバシーアンプによりその乱数信号のビット数を減らし、その減らされたビット数の乱数信号を暗号鍵として暗号通信することを特徴とする請求項1記載の光通信システム。
The input signal is a random number signal;
2. The optical communication system according to claim 1, wherein the number of bits of the random number signal is reduced by the privacy amplifier from the transmitted and received random number signal, and the random number signal of the reduced number of bits is used for encryption communication as an encryption key.
前記揺らぎを発生させる手段を通して出力されたレーザー光はアンチスクイズド光であることを特徴とする請求項1記載の光通信システム。   2. The optical communication system according to claim 1, wherein the laser light output through the means for generating fluctuation is anti-squeezed light. 前記揺らぎを発生させる手段には光ファイバを具備し、カー効果により位相揺らぎを発生させることを特徴とする請求項1記載の光通信システム。   2. The optical communication system according to claim 1, wherein said means for generating fluctuation comprises an optical fiber, and phase fluctuation is generated by Kerr effect. 前記揺らぎを発生させる手段には光ファイバを具備し、ラマン効果により位相揺らぎを発生させることを特徴とする請求項1記載の光通信システム。   2. The optical communication system according to claim 1, wherein said means for generating fluctuation comprises an optical fiber, and phase fluctuation is generated by a Raman effect. 前記揺らぎを発生させる手段は、第2の乱数発生器を具備し、前記第2の乱数発生器からの出力乱数列は多値化され、前記レーザー光源あるいは前記変調器に入力されることを特徴とする請求項1記載の光通信システム。   The means for generating fluctuation comprises a second random number generator, and an output random number sequence from the second random number generator is multi-valued and input to the laser light source or the modulator. The optical communication system according to claim 1. 前記位相測定または判定をする手段は1組あるいは2組のホモダイン検出器からなることを特徴とする請求項1記載の光通信システム。   2. The optical communication system according to claim 1, wherein the means for measuring or determining the phase comprises one set or two sets of homodyne detectors. 前記位相測定または判定をする手段は2個の光検出器からなる平衡型検出器を1組又は2組で構成することを特徴とする請求項1記載の光通信システム。   2. The optical communication system according to claim 1, wherein said means for measuring or determining the phase comprises one set or two sets of balanced detectors composed of two photodetectors. 乱数発生器と、擬似乱数発生器と、誤り訂正符号化する符号器と、レーザー光源と、そのレーザー光源からの出力光に位相揺らぎまたは強度揺らぎを発生させる手段と、変調器を具備する送信機と、
伝送されてきた信号光の位相または強度を測定又は判定する手段と、誤り訂正符号の復号器と、擬似乱数発生器を具備する受信機と、
送受信機間に設けられた伝送路とを有し、
前記送信機側と前記受信機側間であらかじめ乱数からなる種鍵を共有し、前記種鍵の一部を入力として前記送信機内擬似乱数発生器から出力擬似乱数列を出力させ、入力信号列に前記乱数発生器からの出力乱数列を加えた合成列を前記擬似乱数列により暗号化し、前記暗号化された合成列は前記符号器により符号化され、前記符号はnビット(nは1以上の整数)ごとに区切られて2n値として前記変調器において前記揺らぎを伴ったレーザー光に重畳され、前記符号重畳の際の送信基底の数はn + 1以上とし、1個目の符号の送信基底は前記種鍵の残りの一部により決定され、2個目以降の符号の送信基底は前記種鍵及び/又は前記乱数発生器からの前記出力乱数列により決定され、前記出力乱数列の一部は前記擬似乱数発生器への入力鍵の刷新に利用され、
受信機側では、1個目の符号の受信基底が前記種鍵の値により決定され、2個目以降の符号の受信基底が前記種鍵及び/または1個目以降に伝送されてきた符号を構成する前記乱数発生器からの前記出力乱数列により決定され、その決定された基底を用いて前記伝送路を通して伝送されてきた符号重畳光が受信され、前記復号器により前記暗号化された合成列に復号化され、前記種鍵の一部を用いて前記受信機内擬似乱数発生器から出力される擬似乱数列により前記暗号化された合成列の暗号が解かれ、暗号化が解かれた前記合成列は前記乱数列と前記信号列に分離され、前記分離された乱数列は新たに送受信者間で共有された種鍵として前記2個目以降の符号の受信基底決定及び擬似乱数発生器の入力鍵刷新に利用されることを特徴とする光通信システム。
Random number generator, pseudo-random number generator, encoder for error correction coding, laser light source, means for generating phase fluctuation or intensity fluctuation in output light from the laser light source, and transmitter having a modulator When,
Means for measuring or determining the phase or intensity of transmitted signal light; a decoder for error correction code; and a receiver comprising a pseudo-random number generator;
A transmission path provided between the transceiver and
A seed key consisting of random numbers is shared in advance between the transmitter side and the receiver side, and an output pseudo-random number sequence is output from the pseudo-random number generator in the transmitter with a part of the seed key as an input, to the input signal sequence A composite sequence obtained by adding an output random number sequence from the random number generator is encrypted with the pseudo-random number sequence, the encrypted composite sequence is encoded by the encoder, and the code has n bits (n is 1 or more). for each integer) separated by being superimposed on the laser beam with the fluctuations in the modulator as a 2 n values, the number of transmission basis during code superimposed to the n + 1 or more, transmission of 1 th code The basis is determined by the remaining part of the seed key, the transmission base of the second and subsequent codes is determined by the seed key and / or the output random number sequence from the random number generator, and one of the output random number sequences. Is useful for renewing the input key to the pseudo-random number generator. It is,
On the receiver side, the receiving base of the first code is determined by the value of the seed key, and the receiving base of the second and subsequent codes is the seed key and / or the code transmitted after the first one. Determined by the output random number sequence from the random number generator that constitutes the code superimposed light transmitted through the transmission path using the determined basis, and the combined sequence encrypted by the decoder The encrypted composite sequence is decrypted by the pseudo-random sequence output from the pseudo-random number generator in the receiver using a part of the seed key, and the composite is decrypted. The sequence is separated into the random number sequence and the signal sequence, and the separated random number sequence is used as a seed key newly shared between the sender and receiver, and the reception basis determination of the second and subsequent codes and the input of the pseudo random number generator Light used for key renovation Shin system.
前記誤り訂正符号はあるビット誤り率(BER)を境に低BER側は誤り訂正可能であるが高BER側は誤り訂正不可に設定させたものとし、受信機側のBERが前記低BER側になるように誤り訂正符号が設定されていることを特徴とする請求項13記載の光通信システム。   The error correction code is set so that error correction is possible on the low BER side at a certain bit error rate (BER), but error correction is impossible on the high BER side, and the BER on the receiver side is set to the low BER side. 14. The optical communication system according to claim 13, wherein an error correction code is set so that 前記揺らぎを発生させる手段を通して出力されたレーザー光はアンチスクイズド光であることを特徴とする請求項13記載の光通信システム。   14. The optical communication system according to claim 13, wherein the laser light output through the means for generating fluctuation is anti-squeezed light. 前記揺らぎを発生させる手段には光ファイバを具備し、カー効果により位相揺らぎを発生させることを特徴とする請求項13記載の光通信システム。   14. The optical communication system according to claim 13, wherein the means for generating fluctuation comprises an optical fiber, and phase fluctuation is generated by the Kerr effect. 前記揺らぎを発生させる手段には光ファイバを具備し、ラマン効果により位相揺らぎを発生させることを特徴とする請求項13記載の光通信システム。   14. The optical communication system according to claim 13, wherein the means for generating fluctuation comprises an optical fiber, and phase fluctuation is generated by a Raman effect. 前記揺らぎを発生させる手段は、第2の乱数発生器を具備し、前記第2の乱数発生器からの出力乱数列は多値化され、前記レーザー光源あるいは前記変調器に入力されることを特徴とする請求項13記載の光通信システム。   The means for generating fluctuation comprises a second random number generator, and an output random number sequence from the second random number generator is multi-valued and input to the laser light source or the modulator. The optical communication system according to claim 13. 前記位相測定または判定をする手段は1組あるいは2組のホモダイン検出器からなることを特徴とする請求項13記載の光通信システム。   14. The optical communication system according to claim 13, wherein the means for measuring or determining the phase comprises one set or two sets of homodyne detectors. 前記位相測定または判定をする手段は2個の光検出器からなる平衡型検出器を1組あるいは2組で構成することを特徴とする請求項13記載の光通信システム。   14. The optical communication system according to claim 13, wherein the means for measuring or determining the phase comprises one set or two sets of balanced detectors composed of two photodetectors.
JP2008197197A 2008-07-31 2008-07-31 Optical communication system Expired - Fee Related JP5260171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008197197A JP5260171B2 (en) 2008-07-31 2008-07-31 Optical communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008197197A JP5260171B2 (en) 2008-07-31 2008-07-31 Optical communication system

Publications (2)

Publication Number Publication Date
JP2010035072A true JP2010035072A (en) 2010-02-12
JP5260171B2 JP5260171B2 (en) 2013-08-14

Family

ID=41739001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008197197A Expired - Fee Related JP5260171B2 (en) 2008-07-31 2008-07-31 Optical communication system

Country Status (1)

Country Link
JP (1) JP5260171B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011099325A1 (en) * 2010-02-15 2011-08-18 株式会社日立製作所 Encrypted communication system, transmitter and receiver using same
JP2013003256A (en) * 2011-06-14 2013-01-07 Hitachi Ltd Transfer device for optical communication
US8582770B2 (en) 2009-03-11 2013-11-12 Hitachi, Ltd. Cryptographic communication system
WO2014199474A1 (en) * 2013-06-12 2014-12-18 株式会社日立製作所 High-security communication system, and transmitter and receiver both used therein
CN106888053A (en) * 2017-03-14 2017-06-23 中国科学院西安光学精密机械研究所 The real-time enciphering/deciphering system and method for super high speed all-optical data based on compound logic

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054650A (en) * 2004-08-11 2006-02-23 Nippon Telegr & Teleph Corp <Ntt> Optical communication method
JP2007129386A (en) * 2005-11-02 2007-05-24 Hitachi Ltd Light communication device
JP2008066981A (en) * 2006-09-06 2008-03-21 Nippon Telegr & Teleph Corp <Ntt> Secret key delivery device and secret key delivery method
JP2009296217A (en) * 2008-06-04 2009-12-17 Hitachi Ltd Cryptographic communication apparatus
WO2011099325A1 (en) * 2010-02-15 2011-08-18 株式会社日立製作所 Encrypted communication system, transmitter and receiver using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054650A (en) * 2004-08-11 2006-02-23 Nippon Telegr & Teleph Corp <Ntt> Optical communication method
JP2007129386A (en) * 2005-11-02 2007-05-24 Hitachi Ltd Light communication device
JP2008066981A (en) * 2006-09-06 2008-03-21 Nippon Telegr & Teleph Corp <Ntt> Secret key delivery device and secret key delivery method
JP2009296217A (en) * 2008-06-04 2009-12-17 Hitachi Ltd Cryptographic communication apparatus
WO2011099325A1 (en) * 2010-02-15 2011-08-18 株式会社日立製作所 Encrypted communication system, transmitter and receiver using same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8582770B2 (en) 2009-03-11 2013-11-12 Hitachi, Ltd. Cryptographic communication system
WO2011099325A1 (en) * 2010-02-15 2011-08-18 株式会社日立製作所 Encrypted communication system, transmitter and receiver using same
JP5282147B2 (en) * 2010-02-15 2013-09-04 株式会社日立製作所 Cryptographic communication system and transmitter and receiver used therefor
US8934633B2 (en) 2010-02-15 2015-01-13 Hitachi, Ltd. Encrypted communication system, transmitter and receiver using same
JP2013003256A (en) * 2011-06-14 2013-01-07 Hitachi Ltd Transfer device for optical communication
WO2014199474A1 (en) * 2013-06-12 2014-12-18 株式会社日立製作所 High-security communication system, and transmitter and receiver both used therein
JPWO2014199474A1 (en) * 2013-06-12 2017-02-23 株式会社日立製作所 High security communication system and transmitter and receiver used therefor
US10305681B2 (en) 2013-06-12 2019-05-28 Hitachi, Ltd. High-security communication system, and transmitter and receiver both used therein
CN106888053A (en) * 2017-03-14 2017-06-23 中国科学院西安光学精密机械研究所 The real-time enciphering/deciphering system and method for super high speed all-optical data based on compound logic
CN106888053B (en) * 2017-03-14 2023-05-02 中国科学院西安光学精密机械研究所 Ultra-high-speed all-optical data real-time encryption/decryption system and method based on composite logic

Also Published As

Publication number Publication date
JP5260171B2 (en) 2013-08-14

Similar Documents

Publication Publication Date Title
JP5282147B2 (en) Cryptographic communication system and transmitter and receiver used therefor
JP6899773B2 (en) Permanently secure communication with short-term secure encrypted quantum communication
US10305681B2 (en) High-security communication system, and transmitter and receiver both used therein
JP5384781B2 (en) Secret communication system and method for generating shared secret information
WO2010103628A1 (en) Encryption communication system
JP4906732B2 (en) Data transmission device, data reception device, and data communication device
WO2012046463A1 (en) Optical transmission device and receiving device for yuen encryption, optical transmission method and receiving method for yuen encryption, and encrypted communication system
JP6471903B2 (en) Optical communication system
KR20140054647A (en) Method for enhancing security of secret key generated in quantum key distribution system
JP5260171B2 (en) Optical communication system
Lo et al. Quantum cryptography: from theory to practice
JP5189900B2 (en) Cryptographic communication device
JP4879183B2 (en) Data transmitting apparatus and data receiving apparatus
WO2015166719A1 (en) Physical layer encryption device and method
JP5064042B2 (en) Data transmitting apparatus and data receiving apparatus
JP2013021422A (en) Cipher transmission device
JP5052256B2 (en) Data communication apparatus and data communication method
JP5280518B2 (en) Cryptographic communication system
JP2006157639A (en) Cipher transmitter
US7606367B2 (en) Quantum cryptography with fewer random numbers
JP2006295338A (en) Data transmission apparatus, data reception apparatus, and data communications apparatus
El Zouka et al. On the power of quantum cryptography and computers
JP5710521B2 (en) High security communication system and transmitter and receiver used therefor
Cincotti On the security of spectrally encoded quantum-encryption protocols

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5260171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees